[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN110180186A - A kind of topographic map conversion method and system - Google Patents

A kind of topographic map conversion method and system Download PDF

Info

Publication number
CN110180186A
CN110180186A CN201910453305.0A CN201910453305A CN110180186A CN 110180186 A CN110180186 A CN 110180186A CN 201910453305 A CN201910453305 A CN 201910453305A CN 110180186 A CN110180186 A CN 110180186A
Authority
CN
China
Prior art keywords
geometric
label
picture
matched
topographic map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910453305.0A
Other languages
Chinese (zh)
Other versions
CN110180186B (en
Inventor
张然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Wonderful Idea Information Technology Co Ltd
Original Assignee
Beijing Wonderful Idea Information Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Wonderful Idea Information Technology Co Ltd filed Critical Beijing Wonderful Idea Information Technology Co Ltd
Priority to CN201910453305.0A priority Critical patent/CN110180186B/en
Publication of CN110180186A publication Critical patent/CN110180186A/en
Application granted granted Critical
Publication of CN110180186B publication Critical patent/CN110180186B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/50Controlling the output signals based on the game progress
    • A63F13/53Controlling the output signals based on the game progress involving additional visual information provided to the game scene, e.g. by overlay to simulate a head-up display [HUD] or displaying a laser sight in a shooting game
    • A63F13/537Controlling the output signals based on the game progress involving additional visual information provided to the game scene, e.g. by overlay to simulate a head-up display [HUD] or displaying a laser sight in a shooting game using indicators, e.g. showing the condition of a game character on screen
    • A63F13/5378Controlling the output signals based on the game progress involving additional visual information provided to the game scene, e.g. by overlay to simulate a head-up display [HUD] or displaying a laser sight in a shooting game using indicators, e.g. showing the condition of a game character on screen for displaying an additional top view, e.g. radar screens or maps
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/60Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/049Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Image Analysis (AREA)

Abstract

The present invention provides a kind of topographic map conversion method and systems, are related to image-editing technology field, solve the problems, such as that there are inefficiency, cumbersome when player edits topographic map in the prior art.This method comprises: pre-processing to rough draft topographic map, interference picture is removed in acquisition;By deep neural network, identification goes in interference picture to indicate the label of landform element type and geometric parameter;For the label that will identify that from going in interference picture to delete, label picture is removed in acquisition;Identification goes in label picture to indicate the geometric figure of landform element outline;The label that will identify that is matched with the geometric figure identified;According to the position of the matched label of geometric figure, geometric figure and geometric figure that identify, rough draft topographic map is converted into editable electronic topographic map.The rough draft topographic map of player can be converted into editable electronics blueprint in game editing machine automatically by the solution of the present invention, implementation is simple, conveniently, it is easy to operate, and improve treatment effeciency.

Description

A kind of topographic map conversion method and system
Technical field
The present invention relates to image-editing technology field more particularly to a kind of topographic map conversion methods and system.
Background technique
With the continuous development of electronic technology, online game has become the mode of many consumer entertainment pastimes, network trip The type and content of play are also more and more abundant, while user is also higher and higher to the experience requirements of online game.In order to meet not With the demand for experience of user, player can designed, designed topographic map, but in traditional game map_editor, player edits topographic map When there is a problem of inefficiency, cumbersome, this problems demand solves.
Summary of the invention
The embodiment of the present invention provides a kind of topographic map conversion method and system, edits landform to solve player in the prior art There is a problem of inefficiency, cumbersome when figure.
In order to solve the above-mentioned technical problem, the present invention is implemented as follows:
In a first aspect, the embodiment provides a kind of topographic map conversion methods, comprising:
Rough draft topographic map is pre-processed, interference picture is removed in acquisition;
By deep neural network, go in interference picture to indicate the mark of landform element type and geometric parameter described in identification Label;
The label that will identify that goes in interference picture to delete from described, and label picture is removed in acquisition;
It goes in label picture to indicate the geometric figure of landform element outline described in identification;
The label that will identify that is matched with the geometric figure identified;
According to the position of the matched label of geometric figure, geometric figure and geometric figure that identify, by rough draft topographic map It is converted into editable electronic topographic map.
Optionally, described to pre-process to rough draft topographic map, obtaining the step of removing interference picture includes:
Binary conversion treatment is carried out to rough draft topographic map, obtains binaryzation picture;
Image noise and interfering line to binaryzation picture are removed processing, and interference picture is removed in acquisition.
Optionally, described by deep neural network, remove in interference picture to indicate landform element type and several described in identification The step of label of what parameter includes:
By the first deep neural network, identifies and intercept and described go in interference picture to indicate landform element type and geometry The label preselected area of parameter;
After the range of label preselected area is expanded by parameter preset, the interfering line in label preselected area is removed Processing, and the coordinate position of label preselected area is adjusted, obtain the label picture for being marked with the preparatory region of label;
By the second deep neural network, identifying indicates landform element class in each label preselected area in the label picture The icon of type and the text for indicating landform element geometric parameter.
Optionally, first deep neural network is long including the first deep layer convolutional neural networks layer, the first bidirectional circulating Short-term memory neural net layer, the first full articulamentum and the first output layer;
It is described by the first deep neural network, identify and intercept it is described go in interference picture to indicate landform element type and The step of label preselected area of geometric parameter includes:
It goes interference picture as the input of the first deep layer convolutional neural networks layer for described, passes through the first deep layer convolution Neural net layer goes interference picture to carry out feature extraction to described, obtains first network characteristic pattern;
The first network characteristic pattern is slided, every row obtains W with the window of predetermined size to slide unit by turn line by line A one-dimensional vector, W are the width of the first network characteristic pattern;
Using the W one-dimensional vector that every row obtains as the defeated of the long Memory Neural Networks layer in short-term of the first bidirectional circulating Enter, the first tensor is obtained by the long Memory Neural Networks layer in short-term of first bidirectional circulating;
Using first tensor as the input of the first full articulamentum, second is obtained by the described first full articulamentum Amount;
Using second tensor as the input of the first output layer, the first network is obtained by first output layer Each pixel mapped goes the output of pixel region in interference picture as a result, the output result includes vertical sits in characteristic pattern Mark offset prediction result, text probabilistic forecasting result and boundary shifts amount prediction result;
According to pixel mapped each in the network characterization figure go interference picture in pixel region output as a result, It goes in interference picture to indicate the label preselected area of landform element type and geometric parameter described in determination.
Optionally, described using second tensor as the input of the first output layer, it is obtained by first output layer Each pixel mapped removes the step of output result of pixel region in interference picture packet in the first network characteristic pattern It includes:
Using second tensor as the input of the first output layer, the first network is obtained by first output layer Each pixel mapped under different anchor anchor sizes goes the output result of pixel region in interference picture in characteristic pattern.
Optionally, second deep neural network is long including the second deep layer convolutional neural networks layer, the second bidirectional circulating Short-term memory neural net layer, the second full articulamentum and the second output layer;
It is described by the second deep neural network, identifying indicates that landform is first in each label preselected area in the label picture The icon of plain type and the step of indicating the text of landform element geometric parameter include:
Using the label picture as the input of the second deep layer convolutional neural networks layer, pass through the second deep layer convolution mind Feature extraction is carried out to label preselected area each in the label picture through network layer, obtains the second network characterization figure;
Using the second network characterization figure as the input of the long Memory Neural Networks layer in short-term of the second bidirectional circulating, pass through institute It states the long Memory Neural Networks layer in short-term of the second bidirectional circulating and obtains third tensor;
Using the third tensor as the input of the second full articulamentum, the 4th is obtained by the described second full articulamentum Amount;
Using the 4th tensor as the input of the second output layer, it is special that two network is obtained by second output layer Every frame result vector is mapped as the probability of all icons and text in sign figure;
Be mapped as the probability of all icons and text according to frame result vector every in the two network characterizations figure, determine described in The text for marking the icon for indicating landform element type in picture in each label preselected area and indicating landform element geometric parameter.
Optionally, described to pass through the first deep neural network, it identifies and intercepts and described go in interference picture to indicate landform member Before the label preselected area of plain type and geometric parameter, further includes:
By pre-prepd first rough draft label data collection, the first deep neural network is trained, and in training Increase interfering line and interference text in the process;
Wherein, the first rough draft label data collection includes icon data set and lteral data collection;
It is described by the second deep neural network, identifying indicates that landform is first in each label preselected area in the label picture Before the icon of plain type and the text of expression landform element geometric parameter, further includes:
By pre-prepd second rough draft label data collection, the second deep neural network is trained, and in training Increase interfering line and interference text in the process;
Wherein, the second rough draft label data collection includes icon data set and lteral data collection.
Optionally, gone described in the identification in label picture indicate landform element outline geometric figure the step of include:
Label picture is gone to carry out an image thinning according to default thinning algorithm by described, and treated to image thinning It goes label picture to carry out expansion process and corrosion treatment, obtains first stage picture;
Label picture will be gone to carry out logical AND operation before the first stage picture and image thinning processing, obtains second Stage picture;
The second stage picture is subjected to secondary image refinement according to default thinning algorithm, obtains phase III picture;
The profile point for searching geometric figure contour line by way of seeking all in the phase III picture, according to seeking all over As a result the geometric figure that landform element outline is indicated in the phase III picture is determined.
Optionally, the profile point of geometric figure contour line is searched in the way of seeking all in the phase III picture, It is determined in the phase III picture after the geometric figure of expression landform element outline according to result is sought all over, further includes:
The evaluation parameter for obtaining each geometric figure determined in the phase III picture, by the evaluation of each geometric figure Parameter is compared with preset evaluation index respectively;
Delete the geometric figure that evaluation parameter in the phase III picture is less than preset evaluation index;
Wherein, the evaluation parameter includes profile minimum image vegetarian refreshments number and profile minimum circumscribed rectangle area.
Optionally, the step of label that will identify that is matched with the geometric figure identified include:
The label that will identify that is as target labels, according to the relative positional relationship of target labels and each geometric figure, Determine the geometric figure to be matched of target labels;
If geometric figure to be matched, which does not match, gives other labels, using the geometric figure to be matched as of target labels With geometric figure;
If geometric figure to be matched, which has matched, gives other labels, obtain target labels minimum circumscribed rectangle with it is to be matched several What intersection of figure minimum circumscribed rectangle and the first ratio of union, and obtain matched label minimum circumscribed rectangle with it is to be matched The intersection of geometric figure minimum circumscribed rectangle and the second ratio of union;
If the first ratio is greater than the second ratio, using geometric figure to be matched as the matching geometric figure of target labels; If the second ratio is greater than the first ratio, geometric figure to be matched is continued as the matching geometric figure for having matched label;
If the first ratio and the second ratio are identical, target labels minimum circumscribed rectangle central point and geometry to be matched are obtained The first distance of figure minimum circumscribed rectangle central point, and obtain matched label minimum circumscribed rectangle central point with it is to be matched several The second distance of what figure minimum circumscribed rectangle central point;
If first distance is less than second distance, using geometric figure to be matched as the matching geometric figure of target labels; If second distance is greater than first distance, geometric figure to be matched is continued as the matching geometric figure for having matched label.
Optionally, the relative positional relationship according to target labels and each geometric figure, determine target labels to Match geometric figure the step of include:
Searching overlay area and target labels has the geometric figure of intersection;
If the overlay area of only one geometric figure and the overlay area of target labels have intersection, by the geometric graph To be matched geometric figure of the shape as target labels;
If having the overlay area of multiple geometric figures and the overlay area of target labels that there is intersection, there is friendship by multiple The geometric figure of collection obtains target labels minimum circumscribed rectangle and each candidate figure minimum circumscribed rectangle as candidate figure The ratio of intersection and union, and obtain to be matched geometric figure of the maximum candidate figure of ratio as target labels;
If being not covered with region and target labels has the geometric figure of intersection, target labels minimum circumscribed rectangle is obtained Central point is obtained apart from the smallest geometric figure at a distance from each geometric figure minimum circumscribed rectangle central point as target The geometric figure to be matched of label.
Optionally, the position of the basis identifies geometric figure, the matched label of geometric figure and geometric figure, will Rough draft topographic map is converted into the step of editable electronic topographic map and includes:
According to the position of the matched label of geometric figure, geometric figure and geometric figure that identify, rough draft is determined respectively Profile, type, geometric parameter and the position of topographic map mesorelief element;
According to the type and geometric parameter of landform element, the grayscale image of performance landform element stereoscopic effect is obtained;
Profile and grayscale image to landform element carry out distortion processing respectively, according to the profile of the landform element after distortion and Grayscale image obtain performance landform element stereoscopic effect, and with the matched height map of landform element shape;
According to the position of landform element, the 3-dimensional digital matrix that the height map of all landform elements is added to pre-generated In;
According to superimposed 3-dimensional digital matrix, editable electronic topographic map is generated.
Second aspect, the embodiments of the present invention also provide a kind of topographic map converting systems, comprising:
Preprocessing module, for pre-processing to rough draft topographic map, interference picture is removed in acquisition;
First identification module goes in interference picture to indicate landform element class described in identification for passing through deep neural network The label of type and geometric parameter;
Removing module, the label for will identify that go in interference picture to delete from described, and label picture is removed in acquisition;
Second identification module, for identification geometric figure for going in label picture to indicate landform element outline;
Matching module, the label for will identify that are matched with the geometric figure identified;
Conversion module, for according to the position of the matched label of geometric figure, geometric figure and geometric figure identified, Rough draft topographic map is converted into editable electronic topographic map.
Optionally, first identification module includes:
First identification submodule described removes table in interference picture for by the first deep neural network, identifying and intercepting Show the label preselected area of landform element type and geometric parameter;
Submodule is removed, after expanding the range of label preselected area by parameter preset, in label preselected area Interfering line be removed processing, and adjust the coordinate position of label preselected area, obtain the mark for being marked with the preparatory region of label Remember picture;
Second identification submodule, for by the second deep neural network, identifying each label pre-selection in the label picture The icon of landform element type is indicated in region and indicates the text of landform element geometric parameter.
In embodiments of the present invention, rough draft topographic map is pre-processed first, interference picture is removed in acquisition;Then pass through depth Neural network is spent, identification goes in interference picture to indicate the label of landform element type and geometric parameter;The label that will identify that again From going in interference picture to delete, after label picture is removed in acquisition, identification goes in label picture to indicate the geometric graph of landform element outline Shape;Then the label that will identify that is matched with the geometric figure identified;Geometric figure, the geometry that last basis identifies Rough draft topographic map is converted into editable electronic topographic map by the label of Graphic Pattern Matching and the position of geometric figure.So pass through this The rough draft topographic map of player can be converted into editable electronics blueprint in game editing machine automatically by the method for inventive embodiments, Player need to only determine the geomorphic type in specified region in rough draft topographic map by icon, describe landforms by geometric figure lines Chamfered shape, without executing other operations, implementation is simple, conveniently, it is easy to operate, and improve treatment effeciency.
Detailed description of the invention
Fig. 1 is the flow chart of topographic map conversion method provided in an embodiment of the present invention;
Fig. 2 is the picture schematic diagram in topographic map conversion method provided in an embodiment of the present invention Jing Guo binary conversion treatment;
Fig. 3 is the picture signal removed in topographic map conversion method provided in an embodiment of the present invention by noise and interfering line Figure;
Fig. 4 is the picture schematic diagram for expanding label preselected area in topographic map conversion method provided in an embodiment of the present invention;
Fig. 5 is the signal that interfering line in label preselected area is removed in topographic map conversion method provided in an embodiment of the present invention Figure;
Fig. 6 is the picture signal of precise marking label preselected area in topographic map conversion method provided in an embodiment of the present invention Figure;
Fig. 7 is to remove label picture schematic diagram in topographic map conversion method provided in an embodiment of the present invention;
Fig. 8 is to increase interfering line schematic diagram one in topographic map conversion method provided in an embodiment of the present invention;
Fig. 9 is to increase interfering line schematic diagram two in topographic map conversion method provided in an embodiment of the present invention;
Figure 10 is the result schematic diagram in topographic map conversion method provided in an embodiment of the present invention after dilation erosion;
Figure 11 is the result schematic diagram of dilation erosion after refining in topographic map conversion method provided in an embodiment of the present invention;
Figure 12 is the result schematic diagram in topographic map conversion method provided in an embodiment of the present invention after secondary refinement;
Figure 13 is the schematic diagram one that profile point is traversed in topographic map conversion method provided in an embodiment of the present invention;
Figure 14 is the schematic diagram two that profile point is traversed in topographic map conversion method provided in an embodiment of the present invention;
Figure 15 is the schematic diagram that profile is distorted in topographic map conversion method provided in an embodiment of the present invention;
Figure 16 is the schematic diagram that concave polygon is distorted in topographic map conversion method provided in an embodiment of the present invention;
Figure 17 is the schematic diagram that grayscale image is distorted in topographic map conversion method provided in an embodiment of the present invention;
Figure 18 is the structural schematic diagram of topographic map converting system provided in an embodiment of the present invention.
Specific embodiment
Following will be combined with the drawings in the embodiments of the present invention, and technical solution in the embodiment of the present invention carries out clear, complete Site preparation description, it is clear that described embodiments are some of the embodiments of the present invention, instead of all the embodiments.Based on this hair Embodiment in bright, every other implementation obtained by those of ordinary skill in the art without making creative efforts Example, shall fall within the protection scope of the present invention.
In some embodiments of the invention, a kind of topographic map conversion method is provided, shown referring to Fig.1, the method Include:
Step 101: rough draft topographic map being pre-processed, interference picture is removed in acquisition.
Without limitation to the acquisition pattern of rough draft topographic map, such as player can pass through Freehandhand-drawing under line to the embodiment of the present invention Mode completes rough draft topographic map, then can be by mobile phone, computer etc. eventually by taking pictures or scanning the system of uploading to or player The mapping software at end, which draws, completes rough draft topographic map, then by picture transfer to system.
But usual player draws and the rough draft topographic map uploaded is RGB triple channel picture, be limited to different paper textures, Illumination condition and shooting background etc. can generate many redundancies, interfere subsequent identification judgement, in order to promote recognition effect, For this step by pre-processing to rough draft topographic map, interference picture is clearly removed in acquisition, can accurately identify figure convenient for subsequent Label and geometric figure in piece.
Step 102: by deep neural network, going in interference picture to indicate landform element type and geometric parameters described in identification Several labels.
Here, it by deep neural network, accurately can go in interference picture to identify outgoing label by pretreated, with Determine the type and geometric parameter of rough draft topographic map mesorelief element.
Wherein, the type of landform element such as may include high mountain, river, Hu Bo, grassland, sandy beach, road, but be not limited to This.
Wherein, the geometric parameter of landform element may include the basic parameter to form landform element, specifically, landform element Geometric parameter can correspond to the type setting of landform element, if the type of landform element is high mountain, the then geometry of landform element Parameter may include the relative altitude etc. of high mountain, if the type of landform element is road, then the geometric parameter of landform element can wrap Include the length and width etc. of road.Certainly, the geometric parameter of above-mentioned landform element is only for example, the embodiment of the present invention The geometric parameter of landform element is not limited to above-mentioned several.
Step 103: the label that will identify that goes in interference picture to delete from described, and label picture is removed in acquisition.
Here, by the label that will identify that from going in interference picture to delete, label picture is removed in acquisition, convenient for subsequent from figure Geometric figure is identified in piece.
Step 104: going in label picture to indicate the geometric figure of landform element outline described in identification.
Here, by identifying the geometric figure gone in label picture, it is capable of determining that rough draft topographic map mesorelief element Chamfered shape.
Step 105: the label that will identify that is matched with the geometric figure identified.
Here, the geometric figure in rough draft topographic map and label are individually drawn, and pass through the label that will identify that and knowledge Not Chu geometric figure matched, be capable of determining that the type of the Contour matching of rough draft topographic map mesorelief element and several What parameter, is accurately transformed into electronic topographic map convenient for the subsequent landform element by rough draft topographic map.
Step 106:, will be careless according to the position of the matched label of geometric figure, geometric figure and geometric figure that identify Original text topographic map is converted into editable electronic topographic map.
Here, it according to the position of the matched label of geometric figure, geometric figure and geometric figure that identify, can determine The position of the chamfered shape of rough draft topographic map mesorelief element, the type of landform Match of elemental composition and geometric parameter and landform element out It sets, so that rough draft topographic map is converted into editable electronic topographic map.
The rough draft topographic map of player can be converted into game editor automatically by the topographic map conversion method of the embodiment of the present invention Editable electronics blueprint in device, player need to only be determined the geomorphic type in specified region by icon in rough draft topographic map, led to Cross geometric figure lines and describe landforms chamfered shape, without executing other operations, implementation is simple, conveniently, it is easy to operate, and mention High treatment effeciency.
Optionally, above-mentioned steps 101 include:
Step 1011: binary conversion treatment being carried out to rough draft topographic map, obtains binaryzation picture.
Here, adaptive threshold binary conversion treatment is carried out to rough draft topographic map first, generates binaryzation picture, at this time as schemed Shown in 2, most of texture and interference are had been removed in rough draft topographic map.
Step 1012: image noise and interfering line to binaryzation picture are removed processing, and interference picture is removed in acquisition.
Here, continue in binaryzation picture due to shooting environmental etc. caused by image noise and interfering line go Except processing, at this time as shown in figure 3, obtaining clearly binaryzation picture.
Wherein, the image noise and interfering line of binaryzation picture can be eliminated by opening operation (first corrode and expand afterwards), but not It is limited to this.
Optionally, above-mentioned steps 102 include:
Step 1021: by the first deep neural network, identifying and intercept and described go in interference picture to indicate landform element The label preselected area of type and geometric parameter.
Here, it goes in interference picture to identify and intercept out by pretreated by the first deep neural network first Label preselected area further accurately identifies the position of label convenient for subsequent step.
Step 1022: after the range of label preselected area is expanded by parameter preset, to the interference in label preselected area Line is removed processing, and adjusts the coordinate position of label preselected area, obtains the label picture for being marked with the preparatory region of label.
Since the range of label preselected area is not necessarily very accurate, cannot sometimes completely include icon to be predicted and Text information needs its position accurately to be adjusted and interfered removal.In this step, to guarantee whole icons and text letter Breath is all selected, first expands the range of label preselected area by parameter preset, and whole icons and text are all by label at this time Preselected area includes.But the rear portion geometric figure line segment of expansion be also possible to can by comprising in label preselected area, As shown in figure 4, can be to identifying that icon and text interfere in process in next step.This step is further by label pre-selected zone Interfering line in domain is removed processing, as shown in figure 5, the simultaneously coordinate position of intense adjustment label preselected area, is only wrapped Label preselected area containing icon and text information, at this time can be with the location of pixels of precise marking all icons and text, such as Fig. 6 It is shown, the convenient identification to icon and text, and can be used for it is subsequent icon and text are accurately deleted from original image, label is removed in acquisition Picture, as shown in fig. 7, to the convenient identification to geometric figure.
Wherein, by the range of label preselected area by parameter preset expand when, such as can by label preselected area laterally and It is longitudinal to expand 40 pixels respectively, but not limited to this.
Step 1023: by the second deep neural network, identifying in the label picture is indicated in each label preselected area The icon of landform element type and the text for indicating landform element geometric parameter.
Here, by the second deep neural network, can be recognized accurately in each label preselected area indicates landform element The icon of type and the text for indicating landform element geometric parameter, so that it is determined that the type and geometric parameter of landform element.
In recent years, the continuous advancement with deep learning algorithm and breakthrough, computer vision object detection task achieve Huge progress, subset of the text target detection as object detection task, due to the application market of its magnanimity, such as OCR Multilingual translation etc., is also cured under (Optical Character Recognition, optical character identification) task, natural scene Hair is taken seriously.
It is different from traditional natural target detection, the target text sequence of text target detection usually has random length, boundary The mature target detection modelling effect of the characteristics such as fuzzy, directly application is unsatisfactory, therefore uses in the embodiment of the present invention by text Sequence is height by width, text actual height of 16 pixels, is small scale character block by original character cutting, and neural network is only The score of the vertical each small scale character block of prediction, is finally spliced into long word sequence.Further, since the reason cut by force, often Text information that a character block includes is simultaneously imperfect, needs to combine its lateral context auxiliary judgment, therefore in traditional CNN After (Convolutional Neural Networks, convolutional neural networks), it is complete to joined bidirectional circulating recurrent neural network It is apt to lateral contextual information, increases the robustness of model.It introduces in detail below.
Optionally, first deep neural network is long including the first deep layer convolutional neural networks layer, the first bidirectional circulating Short-term memory neural net layer, the first full articulamentum and the first output layer.
In the embodiment of the present invention, the first deep neural network used is by the first deep layer convolutional neural networks layer, first pair To circulation long short-term memory (B-LSTM, Bidirectional-Long Short Term Memory) neural net layer, first Full articulamentum and the first output layer are constituted.
Above-mentioned steps 1021 include:
Step 10211: going interference picture as the input of the first deep layer convolutional neural networks layer for described, pass through described the One deep layer convolutional neural networks layer goes interference picture to carry out feature extraction to described, obtains first network characteristic pattern.
Here, interference picture is gone to initially enter the first deep layer convolutional neural networks layer extraction picture spy by pretreated Sign obtains first network characteristic pattern.The common VGG16 network architecture such as can be used in first deep layer convolutional neural networks layer, passes through Final first network characteristic pattern is obtained after five groups of convolution pond layers, having a size of 512 (the 16 of original image chip size Wx H x / mono-).
Step 10212: the first network characteristic pattern is slided with the window of predetermined size to slide unit by turn line by line Dynamic, every row obtains W one-dimensional vector, and W is the width of the first network characteristic pattern.
It here, is to slide with the window of predetermined size by the first network characteristic pattern of the first deep layer convolutional neural networks layer output Dynamic unit, is slided, every row obtains W one-dimensional vector by turn line by line.Such as by first network characteristic pattern with the group of windows of 3x3x512 At one-dimensional vector as sliding unit, slides laterally by turn line by line and (slide to be mapped on input picture every time and has slided 16 pictures Element, this sliding distance are determined by 4 maximum value pond layers in convolutional network structure), every row obtains W (characteristic pattern width) A dimension is the one-dimensional vector of 3x 3x C, and C is port number.
Step 10213: using the W one-dimensional vector that every row obtains as the long short-term memory nerve net of the first bidirectional circulating The input of network layers obtains the first tensor by the long Memory Neural Networks layer in short-term of first bidirectional circulating.
Here, Memory Neural Networks B- in short-term is grown using the W one-dimensional vector that every row obtains as the first bidirectional circulating LSTM layers of input obtains the first tensor.For example, using the one-dimensional vector that W dimension of a line is 3x 3x C as B-LSTM layers Input obtains the W 256 hidden state vector of dimension (being spliced by the 128 hidden state vectors of dimension of 2 unidirectional LSTM networks), to institute There is row to carry out aforesaid operations, obtains the first tensor of W x H x 256.
Step 10214: using first tensor as the input of the first full articulamentum, being obtained by the described first full articulamentum Obtain the second tensor.
Here, the first tensor of W x H x 256 is such as inputted into the first full articulamentum, obtains the tensor of W x H x 512.
Step 10215: using second tensor as the input of the first output layer, institute being obtained by first output layer It states each pixel mapped in first network characteristic pattern and goes the output of pixel region in interference picture as a result, the output is tied Fruit includes ordinate offset prediction result, text probabilistic forecasting result and boundary shifts amount prediction result.
Here, i.e. the second tensor of result before is inputted into the first output layer, each pixel in first network characteristic pattern Point obtains three groups of outputs, is each responsible for ordinate offset prediction result, text probabilistic forecasting result and the prediction of boundary shifts amount As a result.Since (practical receptive field is the 228x228 pixel region in original image to each pixel in first network characteristic pattern Domain) be mapped to after interference picture between be divided into 16 pixels, therefore each pixel in first network characteristic pattern be responsible for it is pre- Surveying and removing fixed width in interference picture is the information of 16 pixel regions, comprising: the region is the probability of character block, the region text Height and vertical centre the point position of block, the boundary shifts amount of the region character block.
Step 10216: pixel region in interference picture is gone according to pixel mapped each in the network characterization figure Output as a result, determine described in go interference picture in indicate landform element type and geometric parameter label preselected area.
At this point, the final result exported by the first deep neural network, can determine away in interference figure piece indicates ground The label preselected area of shape element type and geometric parameter.
Optionally, above-mentioned steps 10215 include:
Using second tensor as the input of the first output layer, the first network is obtained by first output layer Each pixel mapped under different anchor anchor sizes goes the output result of pixel region in interference picture in characteristic pattern.
Here, it in order to meet the multi-scale prediction characteristic of model, increases common in target detection neural network Anchor mechanism, since character block width has been fixed as 16 pixels, anchor different at this time only is responsible for distinguishing in height side The character block of face different scale such as can define 9 anchor scales, respectively represent the high pre- measurement ruler of 11 pixels up to 273 pixels Degree, when making training set, only scale and the immediate anchor of character block just can be positive example, remaining example that is negative by table.
It is as shown in the table by the output result of the first output layer:
Wherein, logarithm loss function can be used for first item prediction result, for second and third loss function, can adopts With MSE loss function.
Optionally, before above-mentioned steps 1021, further includes:
By pre-prepd first rough draft label data collection, the first deep neural network is trained, and in training Increase interfering line and interference text in the process;Wherein, the first rough draft label data collection includes icon data set and text number According to collection.
Here, since deep neural network needs mass data to be trained, and satisfactory training set is obtained very Difficulty, therefore the first deep neural network of this step is in the training process, and training set is constructed by the way of manually generated, that is, is passed through Pre-prepd first rough draft label data collection is trained.
Specifically, can be from disclosed MNIST handwritten numeral data set and several hand-written icons of our preparations, at random Icon, digital jointing are selected as character string, the number spliced is scaled at random high -65 pixels of 16 pixels.It The character string spliced is pasted in the picture having a size of 1440x900 afterwards, and records character string position, by its according to The width cutting of 16 pixels is character block for using when training.
Simultaneously because other than words identification, can also there is a large amount of Freehandhand-drawing geometry in the following Freehandhand-drawing blueprint for identification Figure line, the ability for distinguishing text and geometric figure to have deep learning model in training increase dry in training set Disturb line and interference text.Interfere lines can be by the image in elliptic curve, bezier curve, straight line and Freehandhand-drawing scribble training set Random combine forms, as shown in Figure 8.
Finally, by generating magnanimity (such as 500,000) training set training pattern, so that model has the accurate text of identification Block field mark function.
Optionally, second deep neural network is long including the second deep layer convolutional neural networks layer, the second bidirectional circulating Short-term memory neural net layer, the second full articulamentum and the second output layer;
Above-mentioned steps 1023 include:
Using the label picture as the input of the second deep layer convolutional neural networks layer, pass through the second deep layer convolution mind Feature extraction is carried out to label preselected area each in the label picture through network layer, obtains the second network characterization figure;
Using the second network characterization figure as the input of the long Memory Neural Networks layer in short-term of the second bidirectional circulating, pass through institute It states the long Memory Neural Networks layer in short-term of the second bidirectional circulating and obtains third tensor;
Using the third tensor as the input of the second full articulamentum, the 4th is obtained by the described second full articulamentum Amount;
Using the 4th tensor as the input of the second output layer, it is special that two network is obtained by second output layer Every frame result vector is mapped as the probability of all icons and text in sign figure;
Be mapped as the probability of all icons and text according to frame result vector every in the two network characterizations figure, determine described in The text for marking the icon for indicating landform element type in picture in each label preselected area and indicating landform element geometric parameter.
Here, Text region is predicted using end-to-end deep neural network, the design architecture and label preselected area of network The first deep neural network it is similar, be equally convolutional neural networks+Recognition with Recurrent Neural Network framework, pass through convolutional neural networks Extracting feature transfers to Recognition with Recurrent Neural Network to judge that final result, network using CTC-LOSS assessment of loss and optimize net in training Network parameter.
Specific network parameter is as shown in the table, but not limited to this.
It is deep layer convolutional neural networks layer in the 1-14 layer of model, part pond layer uses rectangle form pool window in this process Mouthful replace traditional rectangular pond window, make final characteristic pattern extraction result having a size of w/16 x 1, each 512 dimensional feature to Amount represents the image information of receptive field (frame).
Since every frame not necessarily includes all information of letter, model can not be according to the feature vector independent judgment word of every frame Symbol needs integrating context information, therefore all 512 dimensional vectors for representing every frame information is put into double-layer double-direction B-LSTM network, Show that a 256 dimensional vector of final number of frames (W/16) is sent to final output layer.
Output layer can normalize exponential function by softmax and the result vector of every frame is mapped as all characters in dictionary Probability, training when for calculate CTC-Loss (Connectionist temporal classification-Loss, connection Timing Classification Loss) function backpropagation.
At this point, the final result exported by the second deep neural network, can recognize that in all label preselected areas It indicates the icon of landform element type and indicates the text of landform element geometric parameter, so that it is determined that the type of landform element and several What parameter.
Optionally, before above-mentioned steps 1023, further includes:
By pre-prepd second rough draft label data collection, the second deep neural network is trained, and in training Increase interfering line and interference text in the process;Wherein, the second rough draft label data collection includes icon data set and text number According to collection.
Here, similar with the deep neural network model of label preselected area, it is difficult to obtain what a large amount of real users were drawn Icon text needs to construct training set using the mode that simulation generates, that is, passes through pre-prepd second rough draft label data Collection is trained.Specifically, such as can be by being spliced into 500,000 surveys at random in the icon library and handwritten numeral training set collected in advance Picture on probation is trained as the second rough draft label data collection, but not limited to this.While in order to enhance the generalization ability of model, Random addition interfering line and interference text, as shown in Figure 9.
Optionally, above-mentioned steps 104 include:
Step 1041: going label picture to carry out an image thinning according to default thinning algorithm for described, and thin to image Change that treated goes label picture to carry out expansion process and corrosion treatment, obtains first stage picture.
Step 1042: label picture will be gone to carry out logical AND behaviour before the first stage picture and image thinning processing Make, obtains second stage picture.
Here, label picture profile being removed all relatively slightly after binaryzation, and there are some noises, we are rotten using expansion Erosion, the mode of refinement are further processed.
Expansion is essentially identical with corrosion principle, the matrix that the value of a N*N is complete 1 is constructed, as a small window in full figure Upper movement, moving step length is M (M≤N), when mobile every time, by the value and window square of the upper pixel being overlapped with window of figure Battle array carries out with operation.In expansion process, if with operation result is all 0, the value of the pixel in window is all set It is set to 0, is otherwise all set to 255.In corrosion process, if with operation is all 1, the value of the pixel in window is complete Portion is set as 255, is otherwise all set to 0.
Simple first expansion, post-etching is as a result and bad, especially for it is some relatively close to lines, may weigh A thick lines are synthesized, as shown in Figure 10.Therefore, we are using first carrying out image thinning, reflation, corrosion, then with two Label picture is gone to do with operation after value, such result is just substantially consistent with original image, as shown in figure 11.Wherein thinning algorithm Zhang-suen algorithm such as can be used, but not limited to this.
Step 1043: the second stage picture being subjected to secondary image refinement according to default thinning algorithm, obtains third Stage picture.
Here, due to doing excessive erosion, expansion after refinement, profile still has many thick places, we reuse Thinning algorithm (such as zhang-suen algorithm) refinement is primary, obtains the final image carried out before lines of outline identification that we want Data, i.e. phase III picture, as shown in figure 12.
Step 1044: searching the profile of geometric figure contour line by way of seeking all in the phase III picture Point, according to seek all over result determine in the phase III picture indicate landform element outline geometric figure.
At this point, the profile point of geometric figure contour line can be found by way of seeking all over, so that it is determined that going out to indicate ground The geometric figure of shape element outline.
Search the embodiment of the present invention profile point of geometric figure contour line by way of seeking all over below one specifically answers It is illustrated below with process.
Profile starting point is looked for first, is begun stepping through from the upper left corner, the point A that first pixel value is 255 is found, as first The starting point of contour line judges 8 adjacent points of the point centered on the point.If only one point B value is that 255, A point is One endpoint of the profile, B point are next points of profile;If there is 2 point B, C values are 255, then illustrate that A is not profile Endpoint, need the direction along two points of B, C to continually look for the subsequent point of profile;It is 255 if it is greater than 2 point values, illustrates that A is The crosspoint of multiple profiles will find suitable two points in multiple points, as the searching subsequent both direction of profile.It determines The rule of two o'clock: the slope of these points and A point line is calculated, subsequent point of most similar two points of slope as the profile is taken.
As shown in figure 13, (0,7) (1,6) (2,5) (3,4) are best periphery two o'clock;
(0,4) (0,6) (1,5) (1,7) (2,3) (2,6) (3,7) (4,5) are next periphery two o'clock;
(0,5) (0,2) (1,3) (1,4) (2,7) (3,6) (4,6), (5,7) are periphery two o'clock again;
(0,1) (0,3) (1,2) (2,4) (3,5) (4,7) (5,6) (6,7) are worst periphery two o'clock.
0 is set by the ABC found (may be without C) value put, prevents from traversing the point again.
Then look for 8, the periphery point of B.If the value that the periphery of B is not put is 255, theoretically the contour line direction is answered To this stopping.But actually Freehandhand-drawing error or the error after Morphological scale-space, it is possible to should be the point ined succession It breaks, at this moment needs to carry out Error processing (breakpoint connecting).It is exactly to look for N number of point forward along the original direction of profile in principle Range, if it is found, then think the point be subsequent point, otherwise contour line the direction terminate.As shown in figure 14, B point week While not having adjacent value is 255 point, then the point of dash area is found, if there is being worth the point for being 255, then as the subsequent of B point Point continually looks for, and then search of the profile in the direction B terminates if it is not found,.
If the value of only one point of the periphery of B is 255, necessarily next point of contour line.
If it is crosspoint that it is 255, B point that the periphery of B, which is greater than the value of a point, need to carry out selection judgement (crosspoint Selection).It is equal to 255 peripheral point for each, as starting point, finds the son that all length is more than or equal to N (assuming that N=20) Line segment seeks slope to the adjacent two o'clock of each sub-line section and seeks the slope average value of sliver, slope average value and former profile Subsequent point of the most similar all the points as sub-line section of slope average value of last N number of point as profile.To choose sub-line section The last one point continually look for 8, periphery point.
If there is C point, then according to the identical mode of 8, the periphery B point is found, the another part of profile is obtained.
It identifies in all contour lines, due to the presence of noise, has many short or small area useless wheels Exterior feature, simultaneously because the presence of label, the contour line of label also belongs to useless contour line.In order to eliminate undesirable profile, optionally, After step 1044, further includes:
The evaluation parameter for obtaining each geometric figure determined in the phase III picture, by the evaluation of each geometric figure Parameter is compared with preset evaluation index respectively;
Delete the geometric figure that evaluation parameter in the phase III picture is less than preset evaluation index;
Wherein, the evaluation parameter includes profile minimum image vegetarian refreshments number and profile minimum circumscribed rectangle area.
Here, profile minimum image vegetarian refreshments number and profile minimum circumscribed rectangle area two indices are defined, by all wheels Exterior feature is calculated by the two evaluation indexes, deletes the contour line for being less than index.Meanwhile identifying the minimum rectangle of outgoing label, it will The contour line that label minimum rectangle includes is deleted.The interference of undesirable profile line is avoided, to accurately obtain expression landform member The geometric figure of plain profile.
Optionally, above-mentioned steps 105 include:
Step 1051: the label that will identify that is opposite with each geometric figure according to target labels as target labels Positional relationship determines the geometric figure to be matched of target labels;
Step 1052: if geometric figure to be matched, which does not match, gives other labels, using the geometric figure to be matched as mesh Mark the matching geometric figure of label;
Step 1053: if geometric figure to be matched, which has matched, gives other labels, obtaining target labels minimum circumscribed rectangle First ratio of intersection and union with geometric figure minimum circumscribed rectangle to be matched, and obtain and matched the minimum external square of label The intersection of shape and geometric figure minimum circumscribed rectangle to be matched and the second ratio of union;
Step 1054: if the first ratio is greater than the second ratio, using geometric figure to be matched as the matching of target labels Geometric figure;If the second ratio is greater than the first ratio, geometric figure to be matched is continued several as the matching for having matched label What figure;
Step 1055: if the first ratio and the second ratio are identical, obtain target labels minimum circumscribed rectangle central point with The first distance of geometric figure minimum circumscribed rectangle central point to be matched, and obtain and matched label minimum circumscribed rectangle central point With the second distance of geometric figure minimum circumscribed rectangle central point to be matched;
Step 1056: if first distance is less than second distance, using geometric figure to be matched as the matching of target labels Geometric figure;If second distance is greater than first distance, geometric figure to be matched is continued several as the matching for having matched label What figure.
At this point, it is basic as evaluation index using the minimum circumscribed rectangle of geometric figure and the minimum circumscribed rectangle of label, The geometric figure of tag match is accurately obtained.
Optionally, in step 1051, according to the relative positional relationship of target labels and each geometric figure, target mark is determined Label geometric figure to be matched the step of include:
Searching overlay area and target labels has the geometric figure of intersection;
If the overlay area of only one geometric figure and the overlay area of target labels have intersection, by the geometric graph To be matched geometric figure of the shape as target labels;
If having the overlay area of multiple geometric figures and the overlay area of target labels that there is intersection, there is friendship by multiple The geometric figure of collection obtains target labels minimum circumscribed rectangle and each candidate figure minimum circumscribed rectangle as candidate figure The ratio of intersection and union, and obtain to be matched geometric figure of the maximum candidate figure of ratio as target labels;
If being not covered with region and target labels has the geometric figure of intersection, target labels minimum circumscribed rectangle is obtained Central point is obtained apart from the smallest geometric figure at a distance from each geometric figure minimum circumscribed rectangle central point as target The geometric figure to be matched of label.
At this point, it is basic as evaluation index using the minimum circumscribed rectangle of geometric figure and the minimum circumscribed rectangle of label, The geometric figure to be matched of label is obtained first, then the geometric figure of tag match is obtained by abovementioned steps 1052-1056.
Wherein, it includes that the overlay area of geometric figure includes mesh that the overlay area of geometric figure and target labels, which have intersection, The overlay area of mark label and geometric figure intersects two kinds of situations with target labels.
Optionally, above-mentioned steps 106 include:
Step 1061: according to the position of the matched label of geometric figure, geometric figure and geometric figure that identify, respectively Determine profile, type, geometric parameter and the position of rough draft topographic map mesorelief element.
Step 1062: according to the type and geometric parameter of landform element, obtaining the gray scale of performance landform element stereoscopic effect Figure.
Here, up-stream system has had identified the position of landform element, chamfered shape and some main geometric parameters Number, but these will realize real element or far from being enough, such as mountains and rivers ascending curve in map is not May be simple straight line, in order to meet reality to have it is certain rise and fall, mountain ridge mountain valley etc., and geometric parameters can also be reached Several requirements.Further requirement may need to realize the mountain of designated shape or even the mountain of a text.In order to reach these Omnifarious demand final decision forms mountains and rivers by the way of grayscale image.
The advantage of grayscale image is that almost can all digitize all demands, is then stored in a picture. This picture can be almost limitless according to size mountains and rivers precision.And it is easy to other people to check and show and final share to Other users.It even can finally become the gray scale picture library of specified landform.
Step 1063: profile and grayscale image to landform element carry out distortion processing respectively, according to the landform member after distortion Element profile and grayscale image obtain performance landform element stereoscopic effect, and with the matched height map of landform element shape.
Here, it is rectangle that a disadvantage of picture, which is shape, but the chamfered shape of the landform element obtained is because of Freehandhand-drawing Or various other reasons, it is difficult well-regulated shape.But stiff the covering of grayscale image can not be cut out in designated shape It cuts and will form the discontinuous of pixel in this way.There are also grayscale image generally have a large amount of blank, it is hollow situations such as, equally will lead to life At landform can be less than specified landform (because empty side).So this step takes dual twisting technique, i.e., distort simultaneously The profile of grayscale image and landform element reaches matching, carries out the production of height map later.
Specifically, as shown in figure 15, the curve in picture can be removed two sides X, Y when the profile of distortion landform element Then to minimum and maximum two limiting values, go out minimum circumscribed rectangle.Parity method is penetrated by ray again and detects all songs Point in all curves is mapped in minimum circumscribed rectangle region by the point in line finally by distortion formula.
It, as shown in figure 16, can mostly a kind of folded processing mode in the above case said for concave polygon.Namely work as knowledge When point between other concave point two sides ab or cd, it is possible to determine that in the case where in polygon, twist into the radius of rectangle The corresponding ab length of point of use (or cd length).It will form in rectangular area point in this way to correspond in polygon Multiple the case where.
The case where purpose for distorting grayscale image is to remove empty side allows all gray scales full of this rectangular area.It can To use plavini, is first progressively scanned in X-direction, obtain the aggregate-value of width.Then contracting is being formed according to the width of rectangle The factor is put, the position for being only accumulated to rectangle originally is calculated by this zoom factor.Then it scans by column again, principle and X-axis Direction operation is the same.Grayscale image is as shown in figure 17 after distortion.
It finally obtained two histograms, two histograms be scaled to length-width ratio is consistent, and positions all so are just formed Then one-to-one effect generates height maps using two histograms.
Step 1064: according to the position of landform element, the height map of all landform elements being added to pre-generated three In dimension word matrix.
Here, the determination landform function to be stored, first is to have specific performance, and high mountain, river and grassland will have bright Aobvious difference, second is the three-dimensional performance power of three-dimensional space, and third is that landform easily supports later additions and deletions change to look into operation.So adopting With three-dimensional character matrix is established, All Around The World is digitized, portion three-dimensional picture pasting both can be used in this way and clearly showed, had simultaneously Standby three-dimensional sense, more because being the content that matrix can fast and accurately position designated precision position.
The height map of all landform elements is all added among the 3-dimensional digital matrix of generation, to be based on 3-dimensional digital Matrix obtains electronic topographic map.Wherein, it should be noted that sequence when superposition, first solid addition such as can be used, then carved in hollow out It carves.For example Plain mountains and rivers are first stacked, then cutting down rivers and lakes etc. out.Final 3-dimensional digital square has been eventually formed in this way Battle array.
Step 1065: according to superimposed 3-dimensional digital matrix, generating editable electronic topographic map.
The rough draft topographic map of player can be converted into game editor automatically by the topographic map conversion method of the embodiment of the present invention Editable electronics blueprint in device, player need to only be determined the geomorphic type in specified region by icon in rough draft topographic map, led to Cross geometric figure lines and describe landforms chamfered shape, without executing other operations, implementation is simple, conveniently, it is easy to operate, and mention High treatment effeciency.
In some embodiments of the invention, referring to Fig.1 shown in 8, a kind of topographic map converting system is additionally provided, comprising:
Preprocessing module 181, for pre-processing to rough draft topographic map, interference picture is removed in acquisition;
First identification module 182 goes in interference picture to indicate landform element described in identification for passing through deep neural network The label of type and geometric parameter;
Removing module 183, the label for will identify that go in interference picture to delete from described, and label picture is removed in acquisition;
Second identification module 184, for identification geometric figure for going in label picture to indicate landform element outline;
Matching module 185, the label for will identify that are matched with the geometric figure identified;
Conversion module 186, for the position according to the matched label of geometric figure, geometric figure and geometric figure identified It sets, rough draft topographic map is converted into editable electronic topographic map.
The rough draft topographic map of player can be converted into game editor automatically by the topographic map converting system of the embodiment of the present invention Editable electronics blueprint in device, player need to only be determined the geomorphic type in specified region by icon in rough draft topographic map, led to Cross geometric figure lines and describe landforms chamfered shape, without executing other operations, implementation is simple, conveniently, it is easy to operate, and mention High treatment effeciency.
Optionally, the preprocessing module 181 includes:
First processing submodule obtains binaryzation picture for carrying out binary conversion treatment to rough draft topographic map;
Second processing submodule, for binaryzation picture image noise and interfering line be removed processing, gone Interfere picture.
Optionally, first identification module 182 includes:
First identification submodule described removes table in interference picture for by the first deep neural network, identifying and intercepting Show the label preselected area of landform element type and geometric parameter;
Submodule is removed, after expanding the range of label preselected area by parameter preset, in label preselected area Interfering line be removed processing, and adjust the coordinate position of label preselected area, obtain the mark for being marked with the preparatory region of label Remember picture;
Second identification submodule, for by the second deep neural network, identifying each label pre-selection in the label picture The icon of landform element type is indicated in region and indicates the text of landform element geometric parameter.
Optionally, first deep neural network is long including the first deep layer convolutional neural networks layer, the first bidirectional circulating Short-term memory neural net layer, the first full articulamentum and the first output layer;
The first identification submodule is specifically used for:
It goes interference picture as the input of the first deep layer convolutional neural networks layer for described, passes through the first deep layer convolution Neural net layer goes interference picture to carry out feature extraction to described, obtains first network characteristic pattern;
The first network characteristic pattern is slided, every row obtains W with the window of predetermined size to slide unit by turn line by line A one-dimensional vector, W are the width of the first network characteristic pattern;
Using the W one-dimensional vector that every row obtains as the defeated of the long Memory Neural Networks layer in short-term of the first bidirectional circulating Enter, the first tensor is obtained by the long Memory Neural Networks layer in short-term of first bidirectional circulating;
Using first tensor as the input of the first full articulamentum, second is obtained by the described first full articulamentum Amount;
Using second tensor as the input of the first output layer, the first network is obtained by first output layer Each pixel mapped goes the output of pixel region in interference picture as a result, the output result includes vertical sits in characteristic pattern Mark offset prediction result, text probabilistic forecasting result and boundary shifts amount prediction result;
According to pixel mapped each in the network characterization figure go interference picture in pixel region output as a result, It goes in interference picture to indicate the label preselected area of landform element type and geometric parameter described in determination.
Optionally, the first identification submodule is also used to:
Using second tensor as the input of the first output layer, the first network is obtained by first output layer Each pixel mapped under different anchor anchor sizes goes the output result of pixel region in interference picture in characteristic pattern.
Optionally, second deep neural network is long including the second deep layer convolutional neural networks layer, the second bidirectional circulating Short-term memory neural net layer, the second full articulamentum and the second output layer;
The second identification submodule is specifically used for:
Using the label picture as the input of the second deep layer convolutional neural networks layer, pass through the second deep layer convolution mind Feature extraction is carried out to label preselected area each in the label picture through network layer, obtains the second network characterization figure;
Using the second network characterization figure as the input of the long Memory Neural Networks layer in short-term of the second bidirectional circulating, pass through institute It states the long Memory Neural Networks layer in short-term of the second bidirectional circulating and obtains third tensor;
Using the third tensor as the input of the second full articulamentum, the 4th is obtained by the described second full articulamentum Amount;
Using the 4th tensor as the input of the second output layer, it is special that two network is obtained by second output layer Every frame result vector is mapped as the probability of all icons and text in sign figure;
Be mapped as the probability of all icons and text according to frame result vector every in the two network characterizations figure, determine described in The text for marking the icon for indicating landform element type in picture in each label preselected area and indicating landform element geometric parameter.
Optionally, system further include:
First training module, for passing through pre-prepd first rough draft label data collection, to the first deep neural network It is trained, and increases interfering line and interference text in the training process;
Wherein, the first rough draft label data collection includes icon data set and lteral data collection;
Second training module, for passing through pre-prepd second rough draft label data collection, to the second deep neural network It is trained, and increases interfering line and interference text in the training process;
Wherein, the second rough draft label data collection includes icon data set and lteral data collection.
Optionally, second identification module 184 includes:
Third handles submodule, for going label picture to carry out an image thinning according to default thinning algorithm for described, And to image thinning, treated that label picture is gone to carry out expansion process and corrosion treatment, obtains first stage picture;
Logical AND operate submodule, for by the first stage picture and image thinning processing before go label picture into The operation of row logical AND, obtains second stage picture;
Secondary refinement submodule is thin for the second stage picture to be carried out secondary image according to default thinning algorithm Change, obtains phase III picture;
Submodule is sought all over, for searching geometric figure contour line by way of seeking all in the phase III picture Profile point, according to seek all over result determine in the phase III picture indicate landform element outline geometric figure.
Optionally, system further include:
Comparison module will be each for obtaining the evaluation parameter for each geometric figure determined in the phase III picture The evaluation parameter of geometric figure is compared with preset evaluation index respectively;
Removing module, the geometric graph for being less than preset evaluation index for deleting evaluation parameter in the phase III picture Shape;
Wherein, the evaluation parameter includes profile minimum image vegetarian refreshments number and profile minimum circumscribed rectangle area.
Optionally, the matching module 185 includes:
First determines submodule, and the label for will identify that is as target labels, according to target labels and each geometry The relative positional relationship of figure determines the geometric figure to be matched of target labels;
First matched sub-block gives other labels if not matching for geometric figure to be matched, by the geometry to be matched Matching geometric figure of the figure as target labels;
First acquisition submodule gives other labels if having matched for geometric figure to be matched, obtains target labels most The intersection of small boundary rectangle and geometric figure minimum circumscribed rectangle to be matched and the first ratio of union, and obtain and matched label The intersection of minimum circumscribed rectangle and geometric figure minimum circumscribed rectangle to be matched and the second ratio of union;
Second matched sub-block, if being greater than the second ratio for the first ratio, using geometric figure to be matched as target The matching geometric figure of label;If the second ratio be greater than the first ratio, by geometric figure to be matched continue as matched mark The matching geometric figure of label;
Second acquisition submodule obtains the minimum external square of target labels if identical for the first ratio and the second ratio The first distance of shape central point and geometric figure minimum circumscribed rectangle central point to be matched, and obtain that have matched label minimum external The second distance of rectangular centre point and geometric figure minimum circumscribed rectangle central point to be matched;
Third matched sub-block, if being less than second distance for first distance, using geometric figure to be matched as target The matching geometric figure of label;If second distance be greater than first distance, by geometric figure to be matched continue as matched mark The matching geometric figure of label.
Optionally, described first determine that submodule includes:
Searching unit has the geometric figure of intersection for searching overlay area and target labels;
First determination unit, if having for the overlay area of only one geometric figure and the overlay area of target labels Intersection, then using the geometric figure as the geometric figure to be matched of target labels;
Second determination unit, if being handed over for there is the overlay area of the overlay area of multiple geometric figures and target labels to have Collection obtains target labels minimum circumscribed rectangle and each candidate then using multiple geometric figures with intersection as candidate figure The intersection of figure minimum circumscribed rectangle and the ratio of union, and obtain ratio maximum candidate figure as target labels to With geometric figure;
Third determination unit obtains mesh if having the geometric figure of intersection for being not covered with region and target labels Label minimum circumscribed rectangle central point is marked at a distance from each geometric figure minimum circumscribed rectangle central point, and it is minimum to obtain distance To be matched geometric figure of the geometric figure as target labels.
Optionally, the conversion module 186 includes:
Second determines submodule, for according to the matched label of geometric figure, geometric figure and geometric figure identified Position, respectively determine rough draft topographic map mesorelief element profile, type, geometric parameter and position;
It is three-dimensional to obtain performance landform element for the type and geometric parameter according to landform element for third acquisition submodule The grayscale image of effect;
4th acquisition submodule, for landform element profile and grayscale image carry out distortion processing respectively, according to distortion The profile and grayscale image of landform element afterwards obtain performance landform element stereoscopic effect, and with the matched height of landform element shape Figure;
It is superimposed submodule, for the position according to landform element, the height map of all landform elements is added to pre- Mr. At 3-dimensional digital matrix in;
Submodule is generated, for generating editable electronic topographic map according to superimposed 3-dimensional digital matrix.
The rough draft topographic map of player can be converted into game editor automatically by the topographic map converting system of the embodiment of the present invention Editable electronics blueprint in device, player need to only be determined the geomorphic type in specified region by icon in rough draft topographic map, led to Cross geometric figure lines and describe landforms chamfered shape, without executing other operations, implementation is simple, conveniently, it is easy to operate, and mention High treatment effeciency.
Topographic map converting system provided in an embodiment of the present invention is able to achieve each mistake in the embodiment of the method for Fig. 1 to Figure 17 Journey, and identical technical effect can be reached, to avoid repeating, details are not described herein.The topographic map of the embodiment of the present invention converts system System,
The embodiment of the present invention also provides a kind of computer readable storage medium, and meter is stored on computer readable storage medium Calculation machine program, the computer program realize each process of above-mentioned topographic map conversion method embodiment when being executed by processor, and Identical technical effect can be reached, to avoid repeating, which is not described herein again.Wherein, the computer readable storage medium, such as Read-only memory (Read-Only Memory, abbreviation ROM), random access memory (Random Access Memory, abbreviation RAM), magnetic or disk etc..
It should be noted that, in this document, the terms "include", "comprise" or its any other variant are intended to non-row His property includes, so that the process, method, article or the device that include a series of elements not only include those elements, and And further include other elements that are not explicitly listed, or further include for this process, method, article or device institute it is intrinsic Element.In the absence of more restrictions, the element limited by sentence "including a ...", it is not excluded that including being somebody's turn to do There is also other identical elements in the process, method of element, article or device.
Through the above description of the embodiments, those skilled in the art can be understood that above-described embodiment side Method can be realized by means of software and necessary general hardware platform, naturally it is also possible to by hardware, but in many cases The former is more preferably embodiment.Based on this understanding, technical solution of the present invention substantially in other words does the prior art The part contributed out can be embodied in the form of software products, which is stored in a storage medium In (such as ROM/RAM, magnetic disk, CD), including some instructions are used so that a terminal (can be mobile phone, computer, service Device, air conditioner or network equipment etc.) execute method described in each embodiment of the present invention.
The embodiment of the present invention is described with above attached drawing, but the invention is not limited to above-mentioned specific Embodiment, the above mentioned embodiment is only schematical, rather than restrictive, those skilled in the art Under the inspiration of the present invention, without breaking away from the scope protected by the purposes and claims of the present invention, it can also make very much Form belongs within protection of the invention.

Claims (10)

1. a kind of topographic map conversion method characterized by comprising
Rough draft topographic map is pre-processed, interference picture is removed in acquisition;
By deep neural network, go in interference picture to indicate the label of landform element type and geometric parameter described in identification;
The label that will identify that goes in interference picture to delete from described, and label picture is removed in acquisition;
It goes in label picture to indicate the geometric figure of landform element outline described in identification;
The label that will identify that is matched with the geometric figure identified;
According to the position of the matched label of geometric figure, geometric figure and geometric figure that identify, rough draft topographic map is converted At editable electronic topographic map.
2. acquisition goes to do the method according to claim 1, wherein described pre-process rough draft topographic map The step of disturbing picture include:
Binary conversion treatment is carried out to rough draft topographic map, obtains binaryzation picture;
Image noise and interfering line to binaryzation picture are removed processing, and interference picture is removed in acquisition.
3. going to interfere described in identification the method according to claim 1, wherein described by deep neural network The step of label of expression landform element type and geometric parameter, includes: in picture
By the first deep neural network, identifies and intercept and described go in interference picture to indicate landform element type and geometric parameter Label preselected area;
After the range of label preselected area is expanded by parameter preset, place is removed to the interfering line in label preselected area Reason, and the coordinate position of label preselected area is adjusted, obtain the label picture for being marked with the preparatory region of label;
By the second deep neural network, identifying in the label picture indicates landform element type in each label preselected area Icon and the text for indicating landform element geometric parameter.
4. according to the method described in claim 3, it is characterized in that, first deep neural network includes the first deep layer convolution Neural net layer, the first bidirectional circulating long Memory Neural Networks layer, the first full articulamentum and the first output layer in short-term;
It is described by the first deep neural network, identify and intercept and described go in interference picture to indicate landform element type and geometry The step of label preselected area of parameter includes:
It goes interference picture as the input of the first deep layer convolutional neural networks layer for described, passes through the first deep layer convolutional Neural Network layer goes interference picture to carry out feature extraction to described, obtains first network characteristic pattern;
The first network characteristic pattern is slided, every row obtains W one with the window of predetermined size to slide unit by turn line by line Dimensional vector, W are the width of the first network characteristic pattern;
Using the W one-dimensional vector that every row obtains as the input of the long Memory Neural Networks layer in short-term of the first bidirectional circulating, lead to It crosses the long Memory Neural Networks layer in short-term of first bidirectional circulating and obtains the first tensor;
Using first tensor as the input of the first full articulamentum, the second tensor is obtained by the described first full articulamentum;
Using second tensor as the input of the first output layer, the first network feature is obtained by first output layer Each pixel mapped goes the output of pixel region in interference picture as a result, the output result includes that ordinate is inclined in figure Shifting amount prediction result, text probabilistic forecasting result and boundary shifts amount prediction result;
The output of pixel region in interference picture is gone according to pixel mapped each in the network characterization figure as a result, determining The label preselected area for going in interference picture to indicate landform element type and geometric parameter.
5. the method according to claim 1, wherein going to indicate landform element in label picture described in the identification The step of geometric figure of profile includes:
Label picture is gone to carry out an image thinning according to default thinning algorithm by described, and treated goes to mark to image thinning It signs picture and carries out expansion process and corrosion treatment, obtain first stage picture;
Label picture will be gone to carry out logical AND operation before the first stage picture and image thinning processing, obtains second stage Picture;
The second stage picture is subjected to secondary image refinement according to default thinning algorithm, obtains phase III picture;
The profile point for searching geometric figure contour line by way of seeking all in the phase III picture, according to seeking result all over Determine the geometric figure that landform element outline is indicated in the phase III picture.
6. according to the method described in claim 5, it is characterized in that, being looked into the way of seeking all in the phase III picture The profile point for looking for geometric figure contour line determines expression landform element outline in the phase III picture according to result is sought all over After geometric figure, further includes:
The evaluation parameter for obtaining each geometric figure determined in the phase III picture, by the evaluation parameter of each geometric figure It is compared respectively with preset evaluation index;
Delete the geometric figure that evaluation parameter in the phase III picture is less than preset evaluation index;
Wherein, the evaluation parameter includes profile minimum image vegetarian refreshments number and profile minimum circumscribed rectangle area.
7. the method according to claim 1, wherein the label that will identify that and the geometric figure identified The step of being matched include:
The label that will identify that is determined as target labels according to the relative positional relationship of target labels and each geometric figure The geometric figure to be matched of target labels;
It is if geometric figure to be matched, which does not match, gives other labels, the geometric figure to be matched is several as the matching of target labels What figure;
If geometric figure to be matched, which has matched, gives other labels, target labels minimum circumscribed rectangle and geometric graph to be matched are obtained The intersection of shape minimum circumscribed rectangle and the first ratio of union, and obtain and matched label minimum circumscribed rectangle and geometry to be matched The intersection of figure minimum circumscribed rectangle and the second ratio of union;
If the first ratio is greater than the second ratio, using geometric figure to be matched as the matching geometric figure of target labels;If the Two ratios are greater than the first ratio, then continue geometric figure to be matched as the matching geometric figure for having matched label;
If the first ratio and the second ratio are identical, target labels minimum circumscribed rectangle central point and geometric figure to be matched are obtained The first distance of minimum circumscribed rectangle central point, and obtain and matched label minimum circumscribed rectangle central point and geometric graph to be matched The second distance of shape minimum circumscribed rectangle central point;
If first distance is less than second distance, using geometric figure to be matched as the matching geometric figure of target labels;If the Two distances are greater than first distance, then continue geometric figure to be matched as the matching geometric figure for having matched label.
8. the method according to the description of claim 7 is characterized in that described opposite with each geometric figure according to target labels Positional relationship, the step of determining the geometric figure to be matched of target labels include:
Searching overlay area and target labels has the geometric figure of intersection;
If the overlay area of only one geometric figure and the overlay area of target labels have intersection, which is made For the geometric figure to be matched of target labels;
If have the overlay area of multiple geometric figures and the overlay area of target labels that there is intersection, by multiple with intersection Geometric figure obtains the intersection of target labels minimum circumscribed rectangle and each candidate figure minimum circumscribed rectangle as candidate figure With the ratio of union, and to be matched geometric figure of the maximum candidate figure of ratio as target labels is obtained;
If being not covered with region and target labels has the geometric figure of intersection, target labels minimum circumscribed rectangle center is obtained Point is obtained apart from the smallest geometric figure at a distance from each geometric figure minimum circumscribed rectangle central point as target labels Geometric figure to be matched.
9. the method according to claim 1, wherein geometric figure, geometric figure that the basis identifies The position of the label and geometric figure matched, the step of rough draft topographic map is converted into editable electronic topographic map include:
According to the position of the matched label of geometric figure, geometric figure and geometric figure that identify, rough draft landform is determined respectively Profile, type, geometric parameter and the position of figure mesorelief element;
According to the type and geometric parameter of landform element, the grayscale image of performance landform element stereoscopic effect is obtained;
Profile and grayscale image to landform element carry out distortion processing respectively, according to the profile and gray scale of the landform element after distortion Figure obtain performance landform element stereoscopic effect, and with the matched height map of landform element shape;
According to the position of landform element, in the 3-dimensional digital matrix for being added to pre-generated by the height map of all landform elements;
According to superimposed 3-dimensional digital matrix, editable electronic topographic map is generated.
10. a kind of topographic map converting system characterized by comprising
Preprocessing module, for pre-processing to rough draft topographic map, interference picture is removed in acquisition;
First identification module, for by deep neural network, go in interference picture to indicate described in identification landform element type and The label of geometric parameter;
Removing module, the label for will identify that go in interference picture to delete from described, and label picture is removed in acquisition;
Second identification module, for identification geometric figure for going in label picture to indicate landform element outline;
Matching module, the label for will identify that are matched with the geometric figure identified;
Conversion module will be careless for the position according to the matched label of geometric figure, geometric figure and geometric figure identified Original text topographic map is converted into editable electronic topographic map.
CN201910453305.0A 2019-05-28 2019-05-28 Topographic map conversion method and system Expired - Fee Related CN110180186B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910453305.0A CN110180186B (en) 2019-05-28 2019-05-28 Topographic map conversion method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910453305.0A CN110180186B (en) 2019-05-28 2019-05-28 Topographic map conversion method and system

Publications (2)

Publication Number Publication Date
CN110180186A true CN110180186A (en) 2019-08-30
CN110180186B CN110180186B (en) 2022-08-19

Family

ID=67718332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910453305.0A Expired - Fee Related CN110180186B (en) 2019-05-28 2019-05-28 Topographic map conversion method and system

Country Status (1)

Country Link
CN (1) CN110180186B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110969659A (en) * 2019-10-31 2020-04-07 浙江未来技术研究院(嘉兴) Space positioning device and method for passive marking point
CN111199194A (en) * 2019-12-25 2020-05-26 吉林大学 Automobile intelligent cabin instrument testing method based on machine vision and deep learning
CN111744187A (en) * 2020-08-10 2020-10-09 腾讯科技(深圳)有限公司 Game data processing method and device, computer and readable storage medium
CN111870953A (en) * 2020-07-24 2020-11-03 上海米哈游天命科技有限公司 Height map generation method, device, equipment and storage medium
CN111957045A (en) * 2020-09-01 2020-11-20 网易(杭州)网络有限公司 Terrain deformation method, device, equipment and storage medium
CN112711965A (en) * 2019-10-24 2021-04-27 深圳市优必选科技股份有限公司 Method, device and equipment for identifying picture book
CN112862929A (en) * 2021-03-10 2021-05-28 网易(杭州)网络有限公司 Method, device and equipment for generating virtual target model and readable storage medium
CN113158982A (en) * 2021-05-17 2021-07-23 广东中卡云计算有限公司 Semi-intrusive target key point marking method
CN114088063A (en) * 2021-10-19 2022-02-25 青海省交通工程技术服务中心 Pier local scour terrain measurement method based on mobile terminal

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111516A (en) * 1989-04-11 1992-05-05 Kabushiki Kaisha Toyota Chuo Kenkyusho Apparatus for visual recognition
EP0495697A1 (en) * 1991-01-15 1992-07-22 Thomson-Csf Image-shape recognition method
US7016536B1 (en) * 1999-11-24 2006-03-21 Gtx Corporation Method and apparatus for automatic cleaning and enhancing of scanned documents
US20080220873A1 (en) * 2007-03-06 2008-09-11 Robert Ernest Lee Distributed network architecture for introducing dynamic content into a synthetic environment
US20090275414A1 (en) * 2007-03-06 2009-11-05 Trion World Network, Inc. Apparatus, method, and computer readable media to perform transactions in association with participants interacting in a synthetic environment
US20160104039A1 (en) * 2014-10-10 2016-04-14 Morpho Method for identifying a sign on a deformed document
WO2019000653A1 (en) * 2017-06-30 2019-01-03 清华大学深圳研究生院 Image target identification method and apparatus
US20190122077A1 (en) * 2016-03-15 2019-04-25 Impra Europe S.A.S. Method for classification of unique/rare cases by reinforcement learning in neural networks
KR101947650B1 (en) * 2017-11-14 2019-05-20 국방과학연구소 Apparatus and method for generating learning image in game engine-based machine learning

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111516A (en) * 1989-04-11 1992-05-05 Kabushiki Kaisha Toyota Chuo Kenkyusho Apparatus for visual recognition
EP0495697A1 (en) * 1991-01-15 1992-07-22 Thomson-Csf Image-shape recognition method
US7016536B1 (en) * 1999-11-24 2006-03-21 Gtx Corporation Method and apparatus for automatic cleaning and enhancing of scanned documents
US20080220873A1 (en) * 2007-03-06 2008-09-11 Robert Ernest Lee Distributed network architecture for introducing dynamic content into a synthetic environment
US20090275414A1 (en) * 2007-03-06 2009-11-05 Trion World Network, Inc. Apparatus, method, and computer readable media to perform transactions in association with participants interacting in a synthetic environment
US20160104039A1 (en) * 2014-10-10 2016-04-14 Morpho Method for identifying a sign on a deformed document
US20190122077A1 (en) * 2016-03-15 2019-04-25 Impra Europe S.A.S. Method for classification of unique/rare cases by reinforcement learning in neural networks
WO2019000653A1 (en) * 2017-06-30 2019-01-03 清华大学深圳研究生院 Image target identification method and apparatus
KR101947650B1 (en) * 2017-11-14 2019-05-20 국방과학연구소 Apparatus and method for generating learning image in game engine-based machine learning

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周蓓蓓: ""彩色地形图点状地物符号的提取与识别"", 《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑 计算机软件及计算机应用》, no. 11, 15 November 2008 (2008-11-15), pages 7 - 12 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112711965A (en) * 2019-10-24 2021-04-27 深圳市优必选科技股份有限公司 Method, device and equipment for identifying picture book
CN112711965B (en) * 2019-10-24 2023-12-05 深圳市优必选科技股份有限公司 Drawing recognition method, device and equipment
CN110969659B (en) * 2019-10-31 2024-03-15 浙江清华长三角研究院 Spatial positioning device and method for passive mark point
CN110969659A (en) * 2019-10-31 2020-04-07 浙江未来技术研究院(嘉兴) Space positioning device and method for passive marking point
CN111199194A (en) * 2019-12-25 2020-05-26 吉林大学 Automobile intelligent cabin instrument testing method based on machine vision and deep learning
CN111870953A (en) * 2020-07-24 2020-11-03 上海米哈游天命科技有限公司 Height map generation method, device, equipment and storage medium
CN111744187A (en) * 2020-08-10 2020-10-09 腾讯科技(深圳)有限公司 Game data processing method and device, computer and readable storage medium
CN111957045A (en) * 2020-09-01 2020-11-20 网易(杭州)网络有限公司 Terrain deformation method, device, equipment and storage medium
CN112862929A (en) * 2021-03-10 2021-05-28 网易(杭州)网络有限公司 Method, device and equipment for generating virtual target model and readable storage medium
CN112862929B (en) * 2021-03-10 2024-05-28 网易(杭州)网络有限公司 Method, device, equipment and readable storage medium for generating virtual target model
CN113158982A (en) * 2021-05-17 2021-07-23 广东中卡云计算有限公司 Semi-intrusive target key point marking method
CN114088063A (en) * 2021-10-19 2022-02-25 青海省交通工程技术服务中心 Pier local scour terrain measurement method based on mobile terminal
CN114088063B (en) * 2021-10-19 2024-02-02 青海省交通工程技术服务中心 Pier local scour terrain measurement method based on mobile terminal

Also Published As

Publication number Publication date
CN110180186B (en) 2022-08-19

Similar Documents

Publication Publication Date Title
CN110180186A (en) A kind of topographic map conversion method and system
CN109299274B (en) Natural scene text detection method based on full convolution neural network
CN110738207A (en) character detection method for fusing character area edge information in character image
CN110853026B (en) Remote sensing image change detection method integrating deep learning and region segmentation
CN113673338B (en) Automatic labeling method, system and medium for weak supervision of natural scene text image character pixels
Kadam et al. Detection and localization of multiple image splicing using MobileNet V1
CN111723585A (en) Style-controllable image text real-time translation and conversion method
CN110287952B (en) Method and system for recognizing characters of dimension picture
CN111738055B (en) Multi-category text detection system and bill form detection method based on same
CN108345850A (en) The scene text detection method of the territorial classification of stroke feature transformation and deep learning based on super-pixel
US6917708B2 (en) Handwriting recognition by word separation into silhouette bar codes and other feature extraction
CN111553837A (en) Artistic text image generation method based on neural style migration
CN109948533B (en) Text detection method, device and equipment and readable storage medium
CN111860525B (en) Bottom-up optical character recognition method suitable for terminal block
CN111753828A (en) Natural scene horizontal character detection method based on deep convolutional neural network
CN112200117A (en) Form identification method and device
CN111950389B (en) Depth binary feature facial expression recognition method based on lightweight network
CN114937278A (en) Text content extraction and identification method based on line text box word segmentation algorithm
CN110517270A (en) A kind of indoor scene semantic segmentation method based on super-pixel depth network
CN109460767A (en) Rule-based convex print bank card number segmentation and recognition methods
CN112686265A (en) Hierarchic contour extraction-based pictograph segmentation method
CN109117841B (en) Scene text detection method based on stroke width transformation and convolutional neural network
CN112132750A (en) Video processing method and device
CN112800259B (en) Image generation method and system based on edge closure and commonality detection
CN113688864B (en) Human-object interaction relation classification method based on split attention

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Yan Liting

Inventor after: Zhang Ran

Inventor before: Zhang Ran

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220819