[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN110165020B - 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法 - Google Patents

一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法 Download PDF

Info

Publication number
CN110165020B
CN110165020B CN201910457215.9A CN201910457215A CN110165020B CN 110165020 B CN110165020 B CN 110165020B CN 201910457215 A CN201910457215 A CN 201910457215A CN 110165020 B CN110165020 B CN 110165020B
Authority
CN
China
Prior art keywords
sno
cds
film
thin film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910457215.9A
Other languages
English (en)
Other versions
CN110165020A (zh
Inventor
丁建宁
陈志文
袁宁一
郭华飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201910457215.9A priority Critical patent/CN110165020B/zh
Publication of CN110165020A publication Critical patent/CN110165020A/zh
Application granted granted Critical
Publication of CN110165020B publication Critical patent/CN110165020B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明属于太阳电池制备领域,具体涉及一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法,本发明的基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池是通过使用CdS/SnO2混合N型层来代替单一的SnO2缓冲层,通过对比两者的Sb2Se3的XRD图谱可以明显的发现,使用SnO2作为N型层时,(120)是Sb2Se3的择优取向,而使用混合N型层可以使Sb2Se3的(120)晶面的取向降到最低,并使(221)成为择优取向,更加有利于电子的传输,并且由于CdS薄膜的存在不仅可以诱导Sb2Se3薄膜的柱状生长,还可以提高其结晶性从而提高其电池效率。

Description

一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备 方法
技术领域
本发明属于太阳电池制备领域,具体涉及一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法。
背景技术
近年来,随着地球上有限的石油和煤炭等不可再生资源的逐渐耗尽,可再生能源的利用与开发显得越来越紧迫,其中,太阳能光伏发电将取之不尽的辐射到地面上的太阳能通过太阳电池等光伏器件的光电转换而源源不断地转变成为电能,已经成为可再生能源中最安全、最环保和最具潜力的竞争者。
目前为止,常见的太阳电池主要包括硅电池,薄膜电池等等,在薄膜电池中主要分为钙钛矿、CIGS与CZTS等,然而钙钛矿电池具有环境不稳定性,CIGS 成本较高,CZTS中Sn的熔点较低,在制备过程中及其容易散失,难于制备。而 Sb2Se3作为一种二元半导体材料,由于其优异的光电性能,例如:适当的带隙(1.1 eV),吸收系数大(>105cm-1),高载流子迁移率(10cm2V-1s-1指少数载流子)和长载流子寿命(基于瞬态吸收光谱的60ns),具有极大的蒸气压(1200 Pa@550℃) 等使得国内外的许多研究机构对硒化锑薄膜电池展开了更深入的研究。
但是到目前为止,大多数的硒化锑薄膜电池是基于有毒的CdS薄膜作为缓冲层,一方面CdS因为其比较小的带隙(约2.4eV)会吸收大部分的入射光,另一方面由于Cd元素的扩散可能会导致器件的不稳定性,因此我们选用一种环境友好型的缓冲层SnO2来代替有毒的CdS薄膜,因为它具有宽带隙(3.6eV) 和高n型掺杂浓度(1019至1020cm-3)。另一方面SnO2的广泛使用也表明其稳定的化学性质,无毒性,大带隙和高稳定性使SnO2能够代替CdS作为缓冲层。此外,SnO2与FTO的透明导电层之间的相似性将产生较少的晶格失配,从而导致更好的电子传输。但是,单纯的用SnO2去代替CdS还存在一些不足之处,因为 SnO2薄膜较低的结晶度和较大的表面粗糙度在与Sb2Se3薄膜形成P-N结时会引入更多的界面缺陷和电子的复合,并且Sb2Se3薄膜的生长取向不好,从而导致效率偏低。
发明内容
为了进一步提高Sb2Se3薄膜电池的效率,本发明提供了一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法。
本发明的发明人怀疑影响SnO2/Sb2Se3太阳电池最终效率的主要因素是薄膜表面的粗糙度和结晶性,但是,通过低温溶液法制备的SnO2薄膜具有良好的表面性和结晶度,所以我们猜测效率低于其他缓冲层的主要原因是由于Sb2Se3薄膜的生长取向导致的。为此,本发明方法在SnO2薄膜下添加了一层超薄的CdS希望能改变Sb2Se3薄膜的生长方式。从而提高其电池效率。
本发明所涉及的一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池的制备方法按以下步骤实施:
(1)FTO基底玻璃的清洗,将FTO玻璃分别用泡沫水,丙酮,乙醇,去离子水分别超声清洗30分钟,并用氮气吹干。
(2)CdS薄膜的制备,将15~20mL CdSO4溶液(15mmol/L),19~35mL 氨水(浓度为25%~28%的工业氨水),15~20mL硫脲溶液(75mmol/L),依次倒入装有250mL去离子水的烧杯中得到混合溶液,将清洗好的FTO玻璃用夹子夹住放入其中,并且搅拌溶液,反应时间为8~20min,反应温度为65~80℃,得到厚度为10-40nm的CdS薄膜。
(3)SnO2薄膜的制备,将上述步骤(2)得到的厚度为10-40nm的CdS薄膜放入旋涂仪中,滴加配置好的SnO2水溶液(按照质量比SnO2:H2O/1:4)于CdS 薄膜上,旋涂1-4次,每次旋涂30s,转速5000rpm,之后150℃退火30min,得到厚度为10-40nm的SnO2薄膜。
N型层一般都有个最佳的厚度,如果厚度过薄或者过厚都会影响p-n结的质量,以及影响电子的抽取和传输,从而导致电池开压的降低,效率降低,因此,本发明中CdS薄膜和SnO2薄膜的厚度优选为10-40nm。
SnO2水溶液的配比会影响SnO2薄膜的厚度,如果配比太稀了,要得到相同的厚度,就要多旋涂几次,这样就会导致层与层之间界面问题的增加,也会导致电子传输的困难,从而影响电池效率。
旋涂时间和转速也会影响SnO2薄膜的厚度,从而影响电池的效率。
退火能够提高SnO2薄膜的结晶度,退火温度和时间不够的话,晶粒不会融合在一起变大,就会产生很多空洞和晶界缺陷,从而影响电子的传输,如果过高的话会导致薄膜产生裂痕,也会导致空洞和晶界缺陷的产生,从而降低电池效率。
(4)Sb2Se3薄膜的制备,将上述步骤(3)得到的CdS/SnO2薄膜放入快速退火炉中,并将0.4-0.6g由江西科泰公司生产的Sb2Se3粉末放入腔室中,在压力为0.34Pa下,温度为580℃沉积110s得到Sb2Se3薄膜。
退火炉中,退火时的压力就是腔室的真空度,如果真空度不够的话Sb2Se3高温下会被氧化产生Sb203,温度过高或者过低都会影响Sb2Se3薄膜的蒸发速率,过高过低都会导致Sb2Se3薄膜产生很多的空洞和缺陷,时间过低过高会影响 Sb2Se3薄膜的厚度,因而得不到一个很好的p-n结,从而导致效率的降低。
(5)金电极的制备,将步骤(4)得到的Sb2Se3薄膜放入蒸发仪中,蒸发一层80nm厚的金电极。
与现有技术相比,本发明具有以下有益效果:本发明方法具有操作简单,成本低,产业化程度高等优点。采用本方法制备得到的基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池是通过使用CdS/SnO2混合N型层来代替单一的SnO2缓冲层,CdS薄膜的存在可以诱导Sb2Se3的柱状生长,可以使Sb2Se3的(120)晶面的取向降到最低,并使(221)择优取向,更加有利于电子的传输,并且诱导硒化锑薄膜沿柱状生长,此外,还可以提高其结晶性,从而提高Sb2Se3薄膜的电池效率,对于促进硒化锑薄膜电池的发展具有十分重要的科学意义。
附图说明
图1为本发明制备的CdS/SnO2/Sb2Se3薄膜电池的结构示意图。
图2为本发明制备的基于SnO2,CdS/SnO2,CdS作为缓冲层的Sb2Se3薄膜的 XRD图。
图3为本发明制备的基于SnO2,CdS/SnO2,CdS作为缓冲层的Sb2Se3薄膜的 SEM图。
图4为本发明制备的基于SnO2,CdS/SnO2,CdS作为缓冲层的Sb2Se3薄膜电池的截面SEM图。
图5为本发明制备的基于SnO2,CdS/SnO2,CdS作为缓冲层的Sb2Se3薄膜电池的效率图。
具体实施方式
下面通过实施例对本发明做进一步详细说明,这些实施例仅用来说明本发明,并不限制本发明的范围,本发明的目的是提供一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池的制备方法,具体过程如下:
采用水浴法制备CdS薄膜,将得到的CdS薄膜采用旋涂的方法沉积一层SnO2薄膜,然后采用RTE方法制备Sb2Se3薄膜,最后采用蒸发技术沉积一层金电极。
这些实施例仅用来说明本发明,并不限制本发明的范围。
实施例1
FTO基底玻璃的清洗
衬底选用FTO玻璃,依次用泡沫水,丙酮,乙醇,去离子水分别超声清洗30 分钟,干燥后备用。
CdS薄膜的制备:
将15mL CdSO4溶液(15mmol/L),19mL氨水(浓度为25%~28%的工业氨水),15mL硫脲溶液(75mmol/L),依次倒入装有250mL去离子水的烧杯中得到混合溶液,将清洗好的FTO玻璃用夹子夹住放入其中,并且搅拌溶液,反应时间为8min,反应温度为70℃,得到厚度为10nm的CdS薄膜。
SnO2薄膜的制备:
将厚度为10nm的CdS薄膜放入旋涂仪中,滴加配置好的SnO2水溶液 (SnO2:H2O/1:4)于CdS薄膜上,旋涂4次,每次旋涂30s,转速5000rpm,之后 150℃退火30min,得到厚度为40nm的SnO2薄膜。
Sb2Se3薄膜的制备:
1.将上述处理好的N型CdS/SnO2薄膜放入快速退火炉中,利用真空泵将腔体压力抽至0.34Pa。
2.炉温以10℃/s的速度升温至300℃,保持20min,使得基底与Sb2Se3源得到充分的加热。
3.然后将温度以10℃/s的速度升温至580℃,保持110s,然后自然降温,待50℃以下取出,即制备得到Sb2Se3薄膜。
采用XRD粉末衍射分析发现其(120)峰降至最低,(221)峰成为择优取向。采用场发射扫描电镜观察薄膜的表面形貌,发现所制备得到的Sb2Se3薄膜完全结晶。并且通过截面SEM图可以看出其诱导Sb2Se3薄膜沿柱状生长。
Au电极的制备
在上述得到的Sb2Se3薄膜表面采用蒸发仪镀一层厚度约为80nm的金电极,即得到一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池,发现在CdS薄膜厚度为10nm,SnO2厚度为40nm是效率最高电池性能参数为:开路电压 Voc=0.36V,短路电流密度Jsc=27.8mA/cm2,填充因子FF=52.7,电池效率 PCE=5.27%。
对比实施例1
FTO基底玻璃的清洗:
衬底选用FTO玻璃,依次用泡沫水,丙酮,乙醇,去离子水分别超声清洗 30分钟,干燥后备用。
SnO2薄膜的制备:
将清洗干净的FTO放入旋涂仪中,滴加配置好的SnO2水溶液(SnO2:H2O/1:4) 于FTO上,旋涂4次,每次旋涂30s,转速5000rpm,之后150℃退火30min,得到厚度为40nm的SnO2薄膜。
Sb2Se3薄膜的制备:
1.将上述处理好的N型SnO2薄膜放入快速退火炉中,利用真空泵将腔体压力抽至0.34Pa。
2.炉温以10℃/s的速度升温至300℃,保持20min,使得基底与Sb2Se3源得到充分的加热。
3.然后将温度以10℃/s的速度升温至580℃,保持110s,然后自然降温,待50℃以下取出,即制备得到Sb2Se3薄膜。
采用XRD粉末衍射分析发现其(120)峰是择优取向,(221)峰偏低。采用场发射扫描电镜观察薄膜的表面形貌,发现所制备得到的Sb2Se3薄膜完全结晶。并且通过截面SEM图可以看出Sb2Se3薄膜无序排列。
Au电极的制备
在上述得到的Sb2Se3薄膜表面采用蒸发仪镀一层厚度约为80nm的金电极,即得到SnO2作为N型层的Sb2Se3薄膜电池,电池性能参数为:开路电压Voc=0.32 V,短路电流密度Jsc=18.4mA/cm2,填充因子FF=39.4,电池效率PCE=2.33%。
对比实施例2
FTO基底玻璃的清洗:
衬底选用FTO玻璃,依次用泡沫水,丙酮,乙醇,去离子水分别超声清洗 30分钟,干燥后备用。
CdS薄膜的制备:
将CdSO4溶液15mL,氨水19mL,硫脲溶液15mL,依次倒入装有250mL 去离子水的烧杯中,将清洗好的FTO玻璃用夹子夹住放入其中,并且搅拌溶液,反应时间为20min,反应温度为70℃,得到厚度为40nm左右的CdS薄膜。
Sb2Se3薄膜的制备:
1.将上述处理好的N型CdS薄膜放入快速退火炉中,利用真空泵将腔体压力抽至0.34Pa。
2.炉温以10℃/s的速度升温至300℃,保持20min,使得基底与Sb2Se3源得到充分的加热。
3.然后将温度以10℃/s的速度升温至580℃,保持110s,然后自然降温,待 50℃以下取出,即制备得到Sb2Se3薄膜。
采用XRD粉末衍射分析发现(221)峰是它的择优取向。采用场发射扫描电镜观察薄膜的表面形貌,发现所制备得到的Sb2Se3薄膜的结晶性要差于CdS/SnO2作为缓冲层的Sb2Se3薄膜的结晶性,并且存在较多空洞。并且通过截面SEM图可以看出其诱导Sb2Se3薄膜沿柱状生长。
Au电极的制备
在上述得到的Sb2Se3薄膜表面采用蒸发仪镀一层厚度约为80nm的金电极,即得到CdS作为N型层的Sb2Se3薄膜电池,电池性能参数为:开路电压Voc=0.36V,短路电流密度Jsc=26.2mA/cm2,填充因子FF=52.2,电池效率PCE=4.94%。

Claims (3)

1.一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池的制备方法,其特征在于,所述制备方法步骤如下:
(1)采用化学浴沉积的方法,在FTO衬底上制备一层CdS薄膜;
(2)采用旋涂的方法,在步骤(1)得到的CdS薄膜上旋涂沉积一层SnO2薄膜;
将步骤(1)所得的厚度为10-40nm的CdS薄膜放入旋涂仪中,滴加配置好的SnO2水溶液于CdS薄膜上,旋涂4次,每次旋涂30s,转速5000rpm,之后150℃退火30min,得到厚度为10-40nm的SnO2,其中,SnO2水溶液按照质量比SnO2:H2O=1:4配制;
(3)采用快速热蒸发的方法,在步骤(2)得到的CdS/SnO2薄膜上沉积一层Sb2Se3薄膜;
将步骤(2)得到的CdS/SnO2薄膜放入快速退火炉中,在压力为0.34Pa,温度为580℃下沉积110s得到Sb2Se3薄膜;
(4)采用蒸发的方法,在步骤(3)得到的Sb2Se3薄膜上制备一层金电极;
所述薄膜电池的结构自下而上依次为:FTO衬底、CdS层、SnO2层、Sb2Se3层、Au。
2.如权利要求1所述的基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池的制备方法,其特征在于,所述步骤(1)按以下步骤进行:对FTO玻璃依次用泡沫水,丙酮,乙醇和去离子水超声清洗,干燥后用水浴法制备厚度为10-40nm的CdS薄膜。
3.如权利要求1所述的基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池的制备方法,其特征在于,将步骤(3)得到的Sb2Se3薄膜放入蒸发仪中,蒸发一层80nm厚的金电极。
CN201910457215.9A 2019-05-29 2019-05-29 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法 Active CN110165020B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910457215.9A CN110165020B (zh) 2019-05-29 2019-05-29 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910457215.9A CN110165020B (zh) 2019-05-29 2019-05-29 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法

Publications (2)

Publication Number Publication Date
CN110165020A CN110165020A (zh) 2019-08-23
CN110165020B true CN110165020B (zh) 2021-01-29

Family

ID=67629670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910457215.9A Active CN110165020B (zh) 2019-05-29 2019-05-29 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法

Country Status (1)

Country Link
CN (1) CN110165020B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111560583B (zh) * 2020-05-05 2022-08-05 东北电力大学 一种诱导(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜制备方法
CN113013286A (zh) * 2021-01-27 2021-06-22 西北工业大学深圳研究院 高(hk1)晶面丰度的硒化锑薄膜、硒化锑薄膜太阳能电池及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104143579A (zh) * 2013-05-07 2014-11-12 华中科技大学 一种锑基化合物薄膜太阳能电池及其制备方法
CN104659123B (zh) * 2013-11-25 2018-08-21 华中科技大学 化合物薄膜太阳能电池及其制备方法
CN107546289A (zh) * 2017-08-01 2018-01-05 华中科技大学 一种硒化锑薄膜太阳能电池及其制备方法
CN109616550B (zh) * 2018-11-16 2020-02-14 常州大学 一种提高Sb2Se3薄膜晶粒柱状生长趋势的方法

Also Published As

Publication number Publication date
CN110165020A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
Chu et al. Recent progress in thin‐film cadmium telluride solar cells
US20070257255A1 (en) Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor
CN106898662B (zh) 一种p-i-n型硒化锑太阳电池
WO2021159728A1 (zh) 叠层光伏器件及生产方法
CN102157577B (zh) 纳米硅/单晶硅异质结径向纳米线太阳电池及制备方法
CN112542549B (zh) 一种宽带隙钙钛矿太阳能电池及其制备和应用
CN110844936A (zh) 一种三硫化二锑纳米棒阵列的制备方法及基于其的太阳电池
CN113078239A (zh) 一种硒化锑薄膜太阳电池及其制备方法
CN110165020B (zh) 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法
Chander et al. Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: a review on high throughput processed methods
CN104465807B (zh) 一种czts纳米阵列薄膜太阳能光伏电池及其制备方法
CN109309145B (zh) 一种p+/p/n硒化锑薄膜电池的制备方法
CN101700872A (zh) 铜铟镓硒纳米线阵列及其制备方法与应用
CN114335348B (zh) 一种pn异质结硒化锑/钙钛矿太阳能电池及其制备方法
JP3311873B2 (ja) 半導体薄膜の製造方法
CN112563118B (zh) In掺杂CdS薄膜、制备方法及制备的CIGS电池
CN115181995A (zh) 一种硒化锑薄膜光阴极及其制备方法
CN102522505B (zh) 无机与有机混合太阳能电池
JPH0955378A (ja) 半導体薄膜形成用前駆体及び半導体薄膜の製造方法
CN109616550B (zh) 一种提高Sb2Se3薄膜晶粒柱状生长趋势的方法
CN103268906B (zh) 硫化镉薄膜及具有硫化镉薄膜的太阳能电池的制备方法
KR101906712B1 (ko) 광흡수층 조성물, 이를 포함하는 투명태양전지 및 이의 제조방법
Bhandari et al. Applications of hybrid organic-inorganic metal halide perovskite thin film as a hole transport layer in CdTe thin film solar cells
CN114823346A (zh) 五价金属元素掺杂金属氧化物薄膜的制备方法及应用
Abid et al. Solar Cell Efficiency Energy Materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant