CN110115630B - 具有联动式控制模式的医疗机器人系统 - Google Patents
具有联动式控制模式的医疗机器人系统 Download PDFInfo
- Publication number
- CN110115630B CN110115630B CN201910402911.XA CN201910402911A CN110115630B CN 110115630 B CN110115630 B CN 110115630B CN 201910402911 A CN201910402911 A CN 201910402911A CN 110115630 B CN110115630 B CN 110115630B
- Authority
- CN
- China
- Prior art keywords
- instrument
- slave manipulator
- imaging system
- slave
- guide tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000033001 locomotion Effects 0.000 claims abstract description 143
- 238000000034 method Methods 0.000 claims abstract description 47
- 230000004044 response Effects 0.000 claims abstract description 41
- 238000003384 imaging method Methods 0.000 claims description 199
- 210000003484 anatomy Anatomy 0.000 claims description 10
- 230000007246 mechanism Effects 0.000 description 91
- 239000012636 effector Substances 0.000 description 61
- 238000012545 processing Methods 0.000 description 33
- 238000003780 insertion Methods 0.000 description 31
- 230000037431 insertion Effects 0.000 description 31
- 210000001519 tissue Anatomy 0.000 description 26
- 230000006870 function Effects 0.000 description 22
- 238000010586 diagram Methods 0.000 description 18
- 230000005540 biological transmission Effects 0.000 description 16
- 238000005457 optimization Methods 0.000 description 14
- 230000000712 assembly Effects 0.000 description 12
- 238000000429 assembly Methods 0.000 description 12
- 210000000707 wrist Anatomy 0.000 description 12
- 239000000835 fiber Substances 0.000 description 8
- 238000001356 surgical procedure Methods 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000005286 illumination Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- 210000003857 wrist joint Anatomy 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000000881 depressing effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 210000003128 head Anatomy 0.000 description 4
- 230000002262 irrigation Effects 0.000 description 4
- 238000003973 irrigation Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000013011 mating Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 101100512532 Mus musculus Atf7ip2 gene Proteins 0.000 description 2
- 101100408036 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PGU1 gene Proteins 0.000 description 2
- 101100042789 Schizosaccharomyces pombe (strain 972 / ATCC 24843) psm1 gene Proteins 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000013075 data extraction Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000005057 finger movement Effects 0.000 description 2
- 230000003116 impacting effect Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000000451 tissue damage Effects 0.000 description 2
- 231100000827 tissue damage Toxicity 0.000 description 2
- 230000017105 transposition Effects 0.000 description 2
- 241001631457 Cannula Species 0.000 description 1
- 241000976924 Inca Species 0.000 description 1
- 206010023230 Joint stiffness Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 101100095978 Schizosaccharomyces pombe (strain 972 / ATCC 24843) psm3 gene Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 208000002847 Surgical Wound Diseases 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 210000000436 anus Anatomy 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 210000003717 douglas' pouch Anatomy 0.000 description 1
- 210000000613 ear canal Anatomy 0.000 description 1
- 229920001746 electroactive polymer Polymers 0.000 description 1
- 238000002674 endoscopic surgery Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003000 extruded plastic Substances 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 210000004704 glottis Anatomy 0.000 description 1
- 210000004247 hand Anatomy 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000002432 robotic surgery Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000003356 suture material Substances 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 238000013334 tissue model Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 210000003708 urethra Anatomy 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Leader-follower robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
- A61B1/00087—Tools
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/71—Manipulators operated by drive cable mechanisms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/72—Micromanipulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/361—Image-producing devices, e.g. surgical cameras
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00193—Optical arrangements adapted for stereoscopic vision
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/005—Flexible endoscopes
- A61B1/0051—Flexible endoscopes with controlled bending of insertion part
- A61B1/0055—Constructional details of insertion parts, e.g. vertebral elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/012—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
- A61B1/018—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/00234—Surgical instruments, devices or methods for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00278—Transorgan operations, e.g. transgastric
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00681—Aspects not otherwise provided for
- A61B2017/00694—Aspects not otherwise provided for with means correcting for movement of or for synchronisation with the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B2017/3445—Cannulas used as instrument channel for multiple instruments
- A61B2017/3447—Linked multiple cannulas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2061—Tracking techniques using shape-sensors, e.g. fiber shape sensors with Bragg gratings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/301—Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/305—Details of wrist mechanisms at distal ends of robotic arms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/305—Details of wrist mechanisms at distal ends of robotic arms
- A61B2034/306—Wrists with multiple vertebrae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Robotics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Gynecology & Obstetrics (AREA)
- Manipulator (AREA)
Abstract
在联动式控制模式中,外科医生用输入设备直接控制关联从操纵器的移动,同时响应该直接控制的从操纵器的指令运动而间接控制一个或多个非关联从操纵器的移动,以实现次级目标。通过经由联动式控制模式自动进行次级任务,由于减少了外科医生转换到另一个直接模式以手动实现期望的次级目标的需要,提高了系统的可用性。因此,联动式控制模式允许外科医生更好地集中于进行医疗程序并且更少地关注于操控系统。
Description
本申请是申请日为2011年5月11日、名称为“具有联动式控制模式的医疗机器人系统”的中国专利申请2016100890290的分案申请,该专利申请2016100890290是申请日为2011年5月11日、名称为“具有联动式控制模式的医疗机器人系统”的中国专利申请201180024113.X的分案申请。
相关申请的交叉引用
本申请为于2007年6月13日提交的题目为“Minimally Invasive SurgicalSystem(微创手术系统)”的美国专利申请号11/762,200的部分继续申请,其在此通过引用并入。
本申请也为于2009年6月23日提交的题目为“Medical robotic systemproviding an auxiliary view including range of motion limitations forarticulatable instruments extending out of a distal end of an entry guide(提供包括从进入引导装置远端延伸出的可枢接器械的移动极限范围的辅助视像的医疗机器人系统)”的美国专利申请号12/489,566的部分继续申请和于2009年11月5日提交的题目为“Controller assisted reconfiguration of an articulated instrument duringmovement into and out of an entry guide(在从进入引导装置移进移出期间控制器辅助重新配置枢接的器械)”的美国专利申请号12/613,328的部分继续申请,后者为于2009年8月15日提交的题目为“Smooth control of an articulated instrument across areaswith different work space conditions(在具有不同工作空间条件的区域平稳控制枢接的器械)”的美国专利申请号12/541,913的部分继续,所有申请都通过引用并入。
另外,本申请涉及以下美国专利申请,所有申请都通过引用并入:
Mohr的题目为“Retraction of tissue for single port entry,roboticallyassisted medical procedures(用于单端口进入的机器人辅助医疗程序的组织牵引)”的美国专利申请号11/762,217;
Mohr等的题目为“Bracing of bundled medical devices for single portentry,robotically assisted medical procedures(用于单端口进入的机器人辅助医疗程序的拉紧成束的医疗器械)”的美国专利申请号11/762,222;
Schena的题目为“Extendable suction surface for bracing medical devicesduring robotically assisted medical procedures(用于在机器人辅助医疗程序期间拉紧医疗器械的可扩张吸力面)”的美国专利申请号11/762,231;
Diolaiti等的题目为“Control system configured to compensate for non-ideal actuator-to-joint linkage characteristics in a medical robotic system(配置来弥补医疗机器人系统中不理想的致动器与接头间连接特征的控制系统)”的美国专利申请号11/762,236;
Cooper等的题目为“Surgical instrument actuation system(手术器械致动系统)”的美国专利申请号11/762,185;
Cooper等的题目为“Surgical instrument actuator(手术器械致动器)”的美国专利申请号11/762,172;
Larkin等的题目为“Minimally invasive surgical system(微创手术系统)”的美国专利申请号11/762,165;
Larkin等的题目为“Minimally invasive surgical instrument advancement(微创手术器械进入)”的美国专利申请号11/762,161;
Cooper等的题目为“Surgical instrument control and actuation(手术器械控制和致动)”的美国专利申请号11/762,158;
Cooper的题目为“Surgical instrument with parallel motion mechanism(具有平行移动机构的手术器械)”的美国专利申请号11/762,154;
Larkin的题目为“Minimally invasive surgical apparatus with side exitinstruments(具有侧面离开器械的微创手术设备)”的美国专利申请号11/762,149;
Larkin的题目为“Minimally invasive surgical apparatus with side exitinstruments(具有侧面离开器械的微创手术设备)”的美国专利申请号11/762,170;
Larkin的题目为“Minimally invasive surgical instrument system(微创手术器械系统)”的美国专利申请号11/762,143;
Cooper等的题目为“Side looking minimally invasive surgery instrumentassembly(侧面观看微创手术器械组件)”的美国专利申请号11/762,135;
Cooper等的题目为“Side looking minimally invasive surgery instrumentassembly(侧面观看微创手术器械组件)”的美国专利申请号11/762,132;
Larkin等的题目为“Guide tube control of minimally invasive surgicalinstruments(微创手术器械的导向管控制)”的美国专利申请号11/762,127;
Larkin等的题目为“Minimally invasive surgery guide tube(微创手术导向管)”的美国专利申请号11/762,123;
Larkin等的题目为“Minimally invasive surgery guide tube(微创手术导向管)”的美国专利申请号11/762,120;
Larkin的题目为“Minimally invasive surgical retractor system(微创手术牵引系统)”的美国专利申请号11/762,118;
Schena等的题目为“Minimally invasive surgical illumination(微创手术照明)”的美国专利申请号11/762,114;
Duval等的题目为“Retrograde instrument(回撤器械)”的美国专利申请号11/762,110;
Duval等的题目为“Retrograde instrument(回撤器械)”的美国专利申请号11/762,204;
Larkin的题目为“Preventing instrument/tissue collisions(防止器械/组织碰撞)”的美国专利申请号11/762,202;
Larkin等的题目为“Minimally invasive surgery instrument assembly withreduced cross section(横截面减小的微创手术器械组件)”的美国专利申请号11/762,189;
Larkin等的题目为“Minimally invasive surgical system(微创手术系统)”的美国专利申请号11/762,191;和
Duval等的题目为“Minimally invasive surgical system(微创手术系统)”的美国专利申请号11/762,196。
背景技术
1、技术领域
本发明一般涉及医疗机器人系统,并且特别地,涉及提供联动式控制模式的医疗机器人系统。
2、背景技术
微创手术是已知的,具有不同的名称(例如,内窥镜检查、腹腔镜检查、关节镜检查、血管内的、钥匙孔等),通常特定于工作进行的解剖区。这种手术包括使用手执的并且遥控操作/遥控操纵/遥控呈现(机器人辅助/遥控机器人技术)的设备,诸如由加利福尼亚州Sunnyvale的Intuitive Surgical,Inc.制造的da手术系统。进行诊断(例如,活组织检查)和治疗程序(“医疗程序”)两者。器械可经手术切口或经自然孔经皮地插入患者。新型实验性微创手术变型是自然孔经腔道内窥镜手术(NOTES),其中器械经自然孔(例如,嘴、鼻孔、耳道、肛门、阴道、尿道)进入并在体内由经腔切口(例如,在胃或结肠壁中)继续至手术部位。尽管利用da手术系统的遥控操作手术提供了超过例如很多手执程序的很多益处,但对于一些患者和一些解剖区,da手术系统可能不能有效地进入手术部位。另外,进一步减少切口的尺寸和数量通常有助于患者恢复并帮助减少患者损伤和不适。
在这种医疗机器人系统中提供多个从操纵器(仆操纵器,slave manipulator),以实施有用的功能,诸如操纵器械对患者实施医疗程序,定位和定向成像系统诸如内窥镜成像设备以捕捉器械工作端的图像,和传递器械的工作端和成像系统的图像捕捉端至患者体内的工作位置。器械和成像系统(“医疗设备”)的工作端和图像捕捉端的传递利用一个或多个导向管和握住和操纵导向管(一个或多个)的结构。另外,主操纵器被用作输入设备以跟踪它们操作员的手的运动并向操作员提供指示它们关联从操纵器状态的适当触觉反馈。取决于它们的各自的功能,从操纵器和主操纵器(“机器人操纵器”)可以设计有不同的工作区和灵敏度。
通常,由从操纵器操纵的医疗设备的可达工作区为它的远末端(例如,工作端或图像捕捉端)可达到的空间中的一组点和朝向。在另一方面,医疗设备的远末端的灵敏工作区通常识别可通过主要改变它的朝向(例如,改变朝向远末端的腕关节的位置)到达的空间中的一组点。作为解释,灵敏度是机器人操纵器控制它的关联医疗设备的工作端的位置(以有限的方式)和朝向的能力的量度。进一步地,其涉及接头自由度(即机器人操纵器/医疗设备的运动链中独立启动的接头的数量)和笛卡儿(Cartesian)/输出自由度,后者描述远末端的独立刚性主体位置和朝向。尽管输出(从操纵器)自由度(DOF)的数量通常为至多6个,但输入(主操纵器)接头DOF的数量在很大程度上根据主操纵器设计而变化。
如可容易理解的,灵敏工作区通常为可达工作区的子集。为了使外科医生能够实现精细地控制器械的工作端,通常设计器械从操纵器以优化它们的灵敏度,甚至以牺牲它们总的可达工作区为代价。为了补偿这种限制,具有大的可达工作区的底座操纵器(basemanipulator)(诸如患者侧推车)可用于传递器械和成像系统从操纵器接近患者体内的进入孔(例如,微创切口或自然孔)。进一步地,当器械和成像系统被放在共同导向管内时,导向管用作次级底座,因为在该情况下导向管的移动有效地移动其中放置的所有器械和成像系统。随后,器械和成像系统从操纵器可最终传递它们各自医疗设备的工作端和图像捕捉端至患者体内的工作位置(例如,目标解剖结构)。
医疗机器人系统的总体能力通过构成其的所有机器人操纵器的工作区和灵敏度之间的平衡实现。然而,每个操纵器的单独能力的不同必须清楚并很好地被用户了解,以便有效地利用该系统。对于用户而言,通常难于选择哪个操纵器由控制台控制和怎样移动它以实现患者体内它们各自医疗设备的期望“工作配置”,器械的工作端具有可能的最好灵敏度和伸展,同时以提供在工作位置上进行的医疗程序的良好可视化方式放置成像系统的捕捉端,而不干扰器械的移动。因此,期望提供这样的系统,该系统能够例如针对照相机操纵器和底座操纵器(导向管操纵器和/或用于移动装配臂的操纵器和/或对患者侧支持系统的支撑物)进行次级的或联动的控制移动,以便不分散用户在使用手术器械时进行医疗程序的注意力。
自由度(DOF)的数量为独特地识别系统的姿势/配置的独立变量的数量。因为机器人操纵器是将(输入)接头空间绘制入(输出)笛卡儿空间的运动链,DOF的概念可在这两个空间中的任一中进行表达。特别地,接头DOF组为针对所有独立控制接头的接头变量组。通常地,接头为提供单一平移(棱柱接头)或旋转(回旋接头)DOF的机构。根据运动学模拟透视图,任何提供多于一种的DOF运动的机构被考虑为两个或多个单独接头。笛卡儿DOF组通常由描述端受动器(或末端)标架相对于给定的笛卡儿参考标架的位置和朝向的三个平移(位置)变量(例如,前后(surge)、上下(heave)、左右(sway))和三个旋转(朝向)变量(例如欧拉角(Euler angle)或滚转/俯仰/偏离角度)代表。
例如,具有安装在两个独立和垂直轨道上的端受动器的平面机构具有能够控制在两个轨道跨越的区域内的x/y位置(棱柱DOF)。如果端受动器可绕垂直于轨道平面的轴旋转,则存在对应于三个输出DOF(端受动器的x/y位置和朝向角度)的三个输入DOF(两个轨道位置和偏离角度)。
尽管笛卡儿DOF的数量为至多六个——所有平移变量和朝向变量都独立控制的情形,但接头DOF的数量通常是涉及考虑机构复杂性和任务详情的设计选择的结果。因此,接头DOF的数量可多于、等于或少于六。对于非冗余运动链(kinematic chain),独立控制的接头的数量等于端受动器标架的移动性程度。对于一些棱柱和回旋的接头DOF,端受动器标架具有对应于平移(x/y/z位置)和旋转(滚转/俯仰/偏离朝向角度)运动组合的笛卡儿空间中相等数量的DOF(当处于单数配置时除外)。
输入和输出DOF之间的差异在冗余或“有缺陷的”运动链(例如,机械操纵器)的情况下极其重要。特别地,“有缺陷的”操纵器具有少于六个的独立控制的接头并因此不能完全控制端受动器位置和朝向。相反,有缺陷的操纵器限于仅控制位置和朝向变量的子集。在另一方面,冗余的操纵器具有多于六个的接头DOF。因此,冗余的操纵器可使用多于一个的接头配置,以建立期望的6-DOF端受动器姿势。换言之,额外的自由度可用于不仅控制端受动器位置和朝向,而且控制操纵器本身的“形状”。除了运动学自由度,机构可具有其他DOF,诸如夹爪或剪刀刀片的枢轴转动杠杆运动。
对规定DOF的空间考虑参考标架同样重要。例如,接头空间(例如,在两个连杆之间的接头旋转)的单一DOF变化可导致结合附接至连杆之一的远末端的标架的笛卡儿平移变量和朝向变量变化的运动(远末端上的标架旋转和平移通过空间)。运动学描述了从一个测量空间到另一个的转换过程。例如,在运动链末端上使用接头空间测量以确定参考标架的笛卡儿空间位置和朝向是“正向”运动学。在运动链末端上使用参考标架的笛卡儿空间位置和朝向以确定要求的接头位置为“反向”运动学。如果存在任何回转接头,则运动学涉及非线性函数(三角函数)。
发明内容
本发明的方面的一个目的是提供联动式控制模式,其中一个或多个设备可被直接控制以实现初级目标,并且一个或多个其他设备可被间接控制以实现次级目标。
这些和其他目的通过本发明的不同方面完成,其中简而言之,一个方面是机器人系统,其包括:第一器械;底座,其与第一器械相连接,以便当底座移动时,第一器械移动;底座控制器装置,用于使底座移动以便当第一器械移动时优化第一器械的工作区;和第一器械控制器,用于根据指令移动移动第一器械,同时补偿底座的移动。
另一个方面是用于控制连接至底座的一个或多个器械的移动以便当底座移动时器械移动的方法,该方法包括:指令底座的操纵,以便优化第一器械的可操作的工作区;和根据指令移动指令第一器械的操纵,同时补偿底座的移动。
另一个方面是机器人系统,其包括:多个设备,每一个由多个从操纵器的相应一个操纵;主输入设备;和装置,用于指令多个从操纵器以便在共同的自由度方向(commondegree-of-freedom direction)上移动它们各自的设备,以响应主输入设备的移动。
另一个方面是将多个设备收回入导向管的方法,该方法包括:从输入设备接收收回指令;响应收回指令,朝向导向管一起收回延伸超过导向管远端的多个设备;和驱动多个设备至收回构型,以便多个设备中的每一个都可自由进入导向管。
还有另一个方面是机器人系统,其包括:多个器械,每一个由多个从操纵器的相应一个操纵;由成像系统操纵器操纵的成像系统;主输入设备;和装置,用于当成像系统操纵器响应主输入设备的移动而移动时指令多个从操纵器响应成像系统的移动而移动多个器械。
还有另一个方面是将成像系统的控制与机器人系统中的其他设备联动的方法,该方法包括:使多个器械移动以便当成像系统响应主输入设备的移动而移动时,跟随成像系统的图像捕捉端。
附图说明
图1为机器人辅助的微创遥控手术系统的示意图。
图2和3为遥控手术系统中患者侧支持系统的示意图。
图4为遥控手术系统中外科医生的控制台的简化正视图。
图5为说明微创手术器械组件各方面的示意图。
图6为说明微创手术器械组件各方面的示意图。
图7为图6细节的示意侧视图。
图8为手术器械组件的图解透视图。
图9为手术器械组件和致动器组件之间的界面的示意图。
图10为微创手术器械近端段的透视图。
图11为配合和启动图10所示器械的致动器组件的一段的透视图。
图12为说明在装配臂末端上安装微创手术器械和致动器组件的图解透视图。
图13为说明在装配臂末端上安装微创手术器械和致动器组件的另一个图解透视图。
图14为与柔性同轴的导向管和器械相关联的传动机构的图解视图。
图15为多端口手术的图解视图。
图16为多端口手术的另一个图解视图。
图17-19为说明防止不期望的器械与组织碰撞的进一步方面的图解平面图。
图20为外科医生用的图像镶嵌式输出显示器的图解视图。
图21为包括致力于牵引的多接头器械的说明性微创手术器械组件的图解透视图。
图22为在遥控手术系统中,用于用输入设备控制和选择性关联患者侧支持系统上的设备的部件的方块图。
图23为包括在遥控手术系统的操纵器控制器中的主/从控制系统的方块图。
图24-25为在遥控手术系统的操纵器控制器中执行的直接“工具追踪”模式体系的方块图。
图26-27为在遥控手术系统的操纵器控制器中执行的直接“成像系统”模式体系的方块图。
图28-29为在遥控手术系统的操纵器控制器中执行的直接“导向管”模式体系的方块图。
图30为微创遥控手术系统的集中式运动控制系统的图解视图。
图31为微创遥控手术系统的分布式运动控制系统的图解视图。
图32为在遥控手术系统的操纵器控制器中执行的联动式“工具追踪”模式体系的方块图。
图33为在遥控手术系统的操纵器控制器中执行的联动式“成像系统”模式体系的方块图。
图34为在遥控手术系统的操纵器控制器中执行的联动式“导向管”模式体系的方块图。
图35-37为器械联动式控制模式实例的流程图。
图38为导向管联动式控制模式实例的流程图。
图39为工具收回入有孔导向管的流程图,其用于在联动式“工具追踪”模式实例中进行工具更换或配件提供操作。
图40为成像系统联动式控制模式实例的流程图。
发明详述
说明本发明方面和实施方式的本说明书和附图不应被看作是限制性的——权利要求限定了保护的发明。可进行各种机械的、组成的、结构的、电的和操作的改变,而不脱离本说明书和权利要求的精神和范围。在一些情况中,熟知的电路、结构和技术没有详细显示以使本发明不模糊。在两个或多个图中的相同的数字代表相同或相似的元件。
进一步地,本说明书的术语不意欲限制本发明。例如,空间上的相对术语——诸如“在…下方”、“在…下面”、“下部”、“在…上方”、“上部”、“近端”、“远端”等——可用于描述如图所说明的一个元件或特征与另一个元件或特征的关系。除了图中显示的位置和朝向外,这些空间上的相对术语意欲包含在使用或操作中设备的不同位置和朝向。例如,如果图中的设备被翻转,则描述为“在其他元件或特征下面”或“在其他元件或特征下方”的元件将成为“在其他元件或特征上方”或“在其他元件或特征上面”。因此,示例性术语“在…下面”可包含上方和下方的位置和朝向两者。设备可以为其他朝向(旋转90度或处于其他朝向上),并且相应解释了本文使用的空间上的相对描述词。同样地,沿和绕不同轴的移动的描述包含不同的具体设备位置和朝向。另外,单数形式“一个(a)”、“一个(an)”和“该(the)”也意欲包含复数形式,除非上下文另有说明。同时,术语“包括”、“包括(comprising)”、“包含”等指定了所陈述特征、步骤、操作、元件和/或部件的存在,但不排除一个或多个其他特征、步骤、操作、元件、部件和/或组的存在或添加。描述为连接的部件可为电直接连接或机械直接连接的,或它们可经一个或多个中间部件间接连接。
遥控操纵和类似术语通常指的是操作员以相对自然的方式(例如,自然的手或手指移动)操纵主设备(例如,输入运动链),在其上主设备移动被制作成指令,该指令被实时处理并传送至对指令和环境力几乎即刻反应的从动设备(例如,输出运动链)。遥控操纵在美国专利号6,574,355(Green)中公开,其通过引用并入。
为了避免以下多个方面和说明性的实施方式的图和描述的重复,应当理解很多特征对于很多方面和实施方式是共同的。省略描述或图的一个方面不表示该方面从并入那个方面的实施方式中消失。相反,该方面可能是为了清楚和避免冗长的描述已省略。
因此,几个一般方面应用于以下多个描述。例如,至少一个手术端受动器在不同的图中显示或描述。端受动器是实施特定手术功能的微创手术器械或组件的一部分(例如,手术钳/抓紧器、针驱动器、剪刀、电烙钩、装订机、夹子施加器/除去器等)。很多端受动器具有单一的DOF(例如,打开和关闭的抓紧器)。端受动器可通过提供一个或多个额外的DOF的机构诸如“腕关节”型机构连接至手术器械主体。这种机构的例子在美国专利号6,371,952(Madhani等)和美国专利号6,817,974(Cooper等)中示出,两者通过引用并入,并可已知为多种Intuitive Surgical,Inc.机构,如用于da手术系统的8mm和5mm器械两者。尽管本文描述的手术器械通常包含端受动器,但应当理解在一些方面中可省略端受动器。例如,器械主体轴的远末端可用于牵引组织。作为另一个实例,抽吸或冲洗开口可存在于主体轴或腕关节机构的远末端。在这些方面中,应当理解定位和定向端受动器的描述包含定位和定向不具有端受动器的手术器械的末端。例如,针对端受动器末端的参考标架的描述也应当被理解为包含不具有端受动器的手术器械的末端的参考标架。
在本说明书中,应当理解单成像或立体成像系统/图像捕捉部件/照相机设备可被放置在器械的远端,无论何处显示或描述端受动器(该设备可被认为是“照相机器械”),或它可被放置在接近任何导向管或其他器械组件元件的远端的位置或在任何导向管或其他器械组件元件的远端。因此,本文使用的术语“成像系统”和类似术语应当被广义解释为在所描述的方面和实施方式的上下文中包含图像捕捉部件和图像捕捉部件与关联电路和硬件的组合两者。这种内窥镜成像系统(例如,光学、红外、超声等)包含具有远端放置的图像感测芯片和关联电路的系统,所述系统经有线或无线连接传递捕捉图像数据至体外。这种内窥镜成像系统也包含体外传递捕捉的图像的系统(例如,通过使用柱状透镜或光纤)。在一些器械或器械组件中,可使用直接观看光学系统(内窥镜图像直接在目镜中看到)。远端放置的半导体立体成像系统的实例在美国专利申请号11/614,661“StereoscopicEndoscope(立体内窥镜)”(Shafer等)中描述,其通过引用并入。为了清楚,熟知的内窥镜成像系统部件诸如电照明连接和光纤照明连接被省略或象征性地表示。内窥镜成像的照明在图中通常用单一照明端口代表。应当理解这些描写是示例性的。照明端口的尺寸、位置和数量可变化。照明端口通常被安排在成像孔的多个侧上,或完全包围成像孔,以最小化深的暗影。
在本说明书中,套管通常用于防止手术器械或导向管摩擦患者组织。套管可用于切口和自然孔两者。对于器械或导向管相对于它的插入(纵向)轴不频繁地平移或旋转的情况,可不使用套管。对于要求吹入的情况,套管可包含密封以防止过量的吹入气体泄漏经过器械或导向管。例如,对于不要求吹入的胸手术,套管密封可省略,并且如果器械或导向管插入轴移动最小,则随后套管本身可省略。在相对于导向管插入的器械的一些配置中刚性导向管可起到套管的作用。套管和导向管可为例如钢或挤出塑料。比钢便宜的塑料可适于一次性使用。
柔性手术器械和导向管的各种例子和组件被考虑适于本发明。在本说明书中,这种柔性以不同的方式实现。例如,一段或器械或导向管可为连续弯曲的柔性结构,诸如基于螺旋卷绕线圈或基于多个段被去除的管(例如,缝型切口)的结构。或者,柔性部分可由一系列短的、枢轴连接的段(“椎骨体”)制成,其提供了接近蛇形的连续弯曲结构。器械和导向管结构可包含美国专利申请公布号US2004/0138700(Cooper等)中的那些,其通过引用并入。为了清楚,图和关联描述通常仅显示器械和导向管的两个段,被称为近端(更接近传动机构;更远离手术部位)和远端(更远离传动机构;更接近手术部位)。应当理解到器械和导向管可被分为三段或更多段,每段为刚性、被动柔性或主动柔性的。对于远端段、近端段或整个机构描述的挠曲和弯曲也应用于为了清楚已经被省略的中间段。例如,在近端段和远端段之间的中间段可弯曲为简单或复合的曲线。柔性段可为各种长度。当弯曲时,具有更小外直径的段可具有与具有较大外直径的段相比更小的最小曲率半径。对于电缆控制的系统,当弯曲时,不可接受高的电缆摩擦或粘结限制了最小曲率半径和总弯曲角。导向管的(或任何接头的)最小弯曲半径是这样的:它不纽绞或以其他方式阻止内部手术器械的机构的平稳运动。柔性部件可以是例如多达大约四英尺的长度和大约0.6英寸的直径。特定机构的其他长度和直径(例如,更短、更小)和柔性程度可通过已经为其设计机构的目标解剖结构确定。
在一些情况中,仅器械或导向管的远端段是柔性的,近端段是刚性的。在其他情况中,在患者体内的整段器械或导向管都是柔性的。在还其他情况中,极远端段可为刚性的,并且一个或多个其他近端段为柔性的。柔性段可为被动的或它们可为可主动控制的(“易操纵的”)。这种主动控制可使用例如多组相对的电缆(例如,一组控制“俯仰”,并且正交组控制"偏离";三个电缆可用于实施相似的行动)实施。可使用其他控制元件诸如小的电或磁致动器、形状记忆合金、电活性聚合物(“人工肌肉”)、气动或液压风箱或活塞,和类似物。在一段器械或导向管完全或部分位于另一个导向管内的情况中,可存在被动和主动柔性的多种组合。例如,在被动柔性导向管内的主动柔性器械可施加足够的侧力,以屈曲周围的导向管。类似地,主动柔性导向管可屈曲位于其内的被动柔性器械。导向管和器械的主动柔性段可协同工作。对于柔性和刚性器械和导向管,放置在更远离中心纵向轴的控制电缆可提供超过被放置在接近中心纵向轴的电缆的机械优势,这取决于不同设计中的柔度考虑。
柔性段的柔度(刚度)可从几乎完全松弛(存在小的内部摩擦)变化至基本上刚性。在一些方面中,柔度是可控制的。例如,可使器械或导向管的一段或全部柔性段基本上(即,有效但不无限地)刚性(该段是“可刚性化的”或“可锁定的”)。可锁定的段可以为笔直、简单的曲线或以复合曲线形状锁定。锁定可通过施加张力至一个或多个电缆完成,所述一个或多个电缆沿足以引起摩擦以防止邻近椎骨体移动的器械或导向管纵向行进。电缆或多个电缆可行进通过每个椎骨体中的大的中心孔或可行进通过接近椎骨体外周的较小的孔。可选地,移动一个或多个控制电缆的一个或多个发动机的驱动元件可被软锁定在适当的位置(例如,通过伺服控制),以保持电缆在适当的位置并由此防止器械或导向管移动,因此将椎骨体锁定在正确的位置。可进行保持发动机驱动元件在正确的位置以有效地保持其他可移动器械和导向管部件也在正确的位置。应当理解,尽管有效,但在伺服控制下的刚度通常小于通过制动直接置于接头上可获得的刚度,诸如用于保持被动装配接头在正确的位置的制动。电缆刚度通常占支配地位,因为它通常小于伺服系统或制动接头刚度。
在一些情况下,可在松弛和刚性状态之间连续改变柔性段的柔度。例如,可增加锁定电缆张力以增加刚度,但不锁定柔性段为刚性状态。这种中间柔度可允许遥控操作,同时减少由于由反作用力引起的从手术部位移动可产生的组织损伤。并入柔性段中的合适的弯曲传感器允许遥控手术系统当弯曲时确定器械和/或导向管位置。美国专利申请公布号US2006/0013523(Childers等),其通过引用并入,公开了光纤位置形状感测设备和方法。美国专利申请号11/491,384(Larkin等),其通过引用并入,公开了用于控制这种段和柔性设备的光纤弯曲传感器(例如,光纤布拉格光栅(fiber Bragg grating))。
外科医生的输入以控制如本文描述的微创手术器械组件、器械和端受动器的方面通常使用直观的、照相机参照的控制界面进行。例如,da手术系统包含具有这种控制界面的外科医生的控制台,其可被改进以控制本文描述的方面。外科医生操纵一个或多个具有例如6个DOF的主手动输入机构,以控制从器械组件和器械。输入机构包含手指操作的抓紧器以控制一个或多个端受动器DOF(例如,关闭抓紧钳夹)。通过用外科医生的输入机构和图像输出显示器的位置定向端受动器和内窥镜成像系统的相对位置来提供直观的控制。该定向允许外科医生操纵输入机构和端受动器控制,如同看到基本上真实存在的手术工作部位。这种遥控操作真实存在指外科医生从透视图看到图像,该透视图看起来是操作员在手术部位上直接看到和工作的图像。美国专利号6,671,581(Niemeyer等),其通过引用并入,包含关于微创手术仪器中照相机参照的控制的进一步信息。
图1为说明机器人辅助的(遥控操纵的)微创手术系统2100的方面的示意图,其中器械通过导向管经由单一进入孔插入患者。该系统的一般体系类似于其他这种系统的体系,诸如Intuitive Surgical,Inc.的da手术系统和手术系统。三个主部件为外科医生的控制台2102、患者侧支持系统2104和视频系统2106,所有的都如所示通过有线或无线连接相互连接2108。
如图4所示,外科医生的控制台2102包含例如可手操作的、多DOF机械输入(“主”)设备203、204和脚踏板215、217,其允许外科医生操纵如本文描述的手术器械、导向管和成像系统(“从”)设备。这些输入设备可在一些方面中提供来自器械和器械组件部件的触觉反馈至外科医生。按钮205、207被提供在可手操作的输入设备203、204上,用于如本文描述转换功能或用于其他操作目的。控制台2102也包含立体视频输出显示器201,设置来使显示器上的图像大致聚焦在对应于在显示器屏幕后面/下面工作的外科医生的手的距离。与控制台的其他部件经总线210通信的处理器220在系统2100中实施各种功能。它实施的一个重要的功能是执行本文描述的多种控制器,以便通过控制信号平移和转移输入设备的机械运动,使得外科医生可有效地操纵和以其他方式移动设备,诸如当时与输入设备选择性关联的手术器械、成像系统和一个或多个导向管。尽管描述为处理器,但应理解处理器220可在实践中通过硬件、软件和固件的任何组合执行。同样,如本文描述的它的功能可通过一个单元实施或在不同的部件之间分配,其中的每一个都可通过硬件、软件和固件的任何组合依次执行。进一步地,尽管显示为控制台2102的一部分或在物理上邻近控制台2102,但处理器220也可包括遍及系统分布的很多子单元。这些方面在美国专利号6,671,581中更全面地进行讨论,其通过以上引用并入。
转回图1,患者侧支持系统2104包含地板安装结构2110,或可选地天花板安装结构2112,如点划线所示。结构2110可为可移动的或固定的(例如,相对于地板、天花板或其他设备诸如手术台)。在一个实施方式中,装配臂组件2114为改进的da手术系统臂组件。臂组件2114包含两个说明性的被动旋转装配接头2114a、2114b,其允许当它们的制动器松开时手动定位连接的连杆。在臂组件和结构2110之间的被动棱柱装配接头(未示出)可用于允许大的垂直调整。另外,导向管操纵器2116包含说明性的主动滚转接头2116a和主动偏离接头2116b。接头2116c和2116d起到平行机构的作用,以便由平台2118保持的(手术器械组件的)导向管在进入口诸如患者1222的肚脐处绕远程中心2120移动。在一个实施方式中,主动棱柱接头2124用于插入和撤回导向管。一个或多个手术器械和内窥镜成像系统被独立安装至平台2118。当患者2122被放置在可移动台2126上的不同位置时,多种装配和主动接头允许操纵器移动导向管、器械和成像系统。
图2和3为患者侧支持系统的另一个说明性实施方式的示意性侧正视图和前正视图。支撑2150是固定的(例如,安装在地板或天花板)。连杆2152在被动旋转装配接头2154处与支撑2150相连接。如所示的,接头2154的旋转轴与远程中心点2156对齐,远程中心点2156通常是(手术器械组件的)导向管(未示出)进入患者的位置(例如,对于腹部手术是在肚脐处)。连杆2158在旋转接头2160处与连杆2152相连接。连杆2162在旋转接头2164处与连杆2158相连接。连杆2166在旋转接头2168处与连杆2162相连接。安装导向管以滑动通过连杆2166的端2166a。平台2170由棱柱接头2172和旋转接头2174支持并连接至连杆2166。随着其沿连杆2166滑动,棱柱接头2172插入和撤回导向管。接头2174包含保持“C”形环悬臂的轴承组件。当“C”环滑动通过轴承时,其绕“C”内的中心点旋转,由此滚转导向管。“C”中的开口允许安装或更换导向管,而不移动上面的操纵器。平台2170支持手术器械的多个操纵器2176和成像系统,如以下所描述的。
这些说明性的机器人臂组件用于例如包含刚性导向管并被操作以相对于远程中心移动的器械组件。如果不要求绕远程中心运动,则可省略操纵器臂中的一些装配和主动接头。应当理解操纵器臂可包含连杆、被动和主动接头(可提供冗余的DOF)的不同组合,以实现必要的手术姿势范围。
再次参考图1,视频系统2106为例如手术部位的捕捉的内窥镜成像数据和/或来自患者外部的其他成像系统的手术前或实时的图像数据进行图像处理功能。视频系统2106向外科医生的控制台2102处的外科医生输出处理的图像数据(例如,手术部位的图像,以及相关的控制和患者信息)。在一些方面中,处理的图像数据被输出至对其他手术室人员或对一个或多个远离手术室的位置可见的任选外部监视器(例如,在另一个位置上的外科医生可监视视频;实况传输视频可用于培训等)。
作为器械组件的实例,图5为说明微创手术器械组件1600各方面的示意图。两个手术器械1602a、1602b延伸通过纵向延伸通过刚性导向管1606的通道1604a、1604b。在一些方面中,导向管1606是笔直的,在其他方面,其被弯曲以适应具体的插入口(器械类似地弯曲以便于插入)。导向管1606可具有多种横截面形状(例如圆形、椭圆形、磨圆的多边形),并且可使用不同数量的手术器械和通道。一些任选的工作通道可用于提供支持手术的功能,诸如冲洗和抽吸。在一些方面中,内窥镜成像系统(例如,单图像或立体图像捕捉或直接观看)位于导向管1606的远端1610。在一方面,用或不用套管1612或类似的导向结构,将导向管1606经切口(例如,在肚脐处大约2.0cm)或自然孔插入患者。在一些方面中,导向管1606可在套管1612内旋转。
手术器械1602a和1602b以类似的方式起作用,并且很多器械功能(主体滚转、腕关节操作、端受动器操作等)类似于用于da手术系统的手术器械(8mm和5mm器械主体直径)。在其他方面中,器械可起到不同的作用和/或具有没有在da手术系统器械中体现的能力(例如,一种器械可为笔直的,一种器械可为接合的,一种器械可为柔性的,等)。在本实例中,器械1602a包含在它近端上的传动部分(未示出)、细长的器械主体1614、多种手术端受动器1616之一和蛇形的两个自由度的将端受动器1616连接至器械主体1614的腕关节机构1618。如同在da手术系统中,在一些方面中,传动部分包含与永久安装在支持臂上的电致动器(例如,伺服发动机)连接的圆盘,以便可容易地更换器械。其他连接系统诸如匹配的万向节板和杠杆可用于转移机械界面上的致动力。传动部分中的机械机构(例如,齿轮、杠杆、万向节)从圆盘上转移致动力至行进通过器械主体1614(其可包含一个或多个枢接段)中的一个或多个通道的电缆、电线和/或电缆、电线和海波管(hypotube)组合,以控制腕关节1618和端受动器1616移动。在一些方面中,一个或多个圆盘和关联机构转移如所示绕器械主体1614的纵向轴1619滚转器械主体1614的致动力。在一些方面中,具体器械的致动器本身安装在如所示在通道1604a内纵向移动器械主体1614的单一线性致动器上。器械主体1614的主要段为基本上刚性单一管,尽管在一些方面中,它可为轻微可弹性弯曲的。该小柔性允许接近导向管1606的近端体段1620(即,患者外部)被轻微屈曲,以便几个器械主体与将以其他方式允许的它们单独的传动段外壳相比,可在导向管1606内间隔更近,好像几个相同长度的插瓶花被放置在小颈花瓶中。该屈曲是最小的(例如,在一个实施方式中为小于或等大约5度弯曲角)并且不引起显著摩擦,因为器械主体内的控制电缆和海波管的弯曲角小。
器械1602a和1602b分别包含延伸通过导向管的近端主体段和放置在超过导向管的远端的至少一个远端主体段。例如,器械1602a包含延伸通过导向管1606的近端体段1620、在接头1624处与近端体段1620相连接的远端主体段1622、在另一个接头1628处与远端主体段1622相连接的腕关节机构1626(该连接可包含另一个短的远端主体段)、和端受动器1630。在一些方面中,远端主体段1622和接头1624和1628起到平行运动机构1632的作用,其中在机构远端上的参考标架的位置可相对于机构近端上的参考标架改变,而不改变远端参考标架的朝向。
图6为说明另一个微创手术器械组件1700各方面的示意图。手术器械组件1700类似于器械组件1600,其中手术器械1702a、1702b起到类似于如上所述的器械1602a、1602b的作用,但组件1700具有独立运行的内窥镜成像系统1704,而非在导向管端处的固定的内窥镜成像系统。
在一方面,成像系统1704在机械上类似于如上所述的手术器械1602。总结如图6所示的这些方面,光学系统1704包含延伸通过导向管1708的基本上刚性的细长管近端体段1706,并且在近端体段1706的远端,连接了1个或2个DOF的平行运动机构1712,其类似于平行运动机构1622。平行运动机构1712包含第一接头1714、中间远端主体段1716和第二接头1718。腕关节机构或其他主动接头(例如,一个DOF以允许改变俯仰角度;两个DOF以允许改变俯仰和偏离角度)1720将图像捕捉部件1722连接至第二接头1718。可选地,接头1714为独立可控制的一个或两个DOF接头(俯仰/偏离),接头1718为另一个独立可控制的一个或两个DOF接头(例如,俯仰/偏离),并且图像捕捉部件1722直接连接在接头1718机构的远端。合适的立体图像捕捉部件的实例在美国专利申请号11/614,661中示出,通过以上引用并入。在一些方面中,成像系统1704在导向管1708内纵向移动(前后)。成像系统1704的控制在同时提交的美国专利申请号11/762,236中进行进一步描述,通过以上引用并入。在一些方面中,滚转可能是不期望的,因为需要保持特定视野朝向。具有上下平移(上/下)、左右平移(侧面至侧面)、前后平移(收回/插入)、偏离和俯仰DOF允许图像捕捉部件移动至不同的位置,同时保持组件1700的特定照相机参照并看到外科医生的校准。
图7为仅为了说明性目的示意图6的示意平面图的侧视图。图7显示了平行运动机构1712移动图像捕捉部件1722远离手术器械组件1700的纵向中心线。该移位提供了手术部位1724的改善的视图,因为一些或全部的器械主体远端段末端不存在于向外科医生输出的图像中,如在例如器械组件1600中发生的那样(图5)。平行运动机构1712和图像捕捉部件1722的俯仰是可控制的,如通过箭头说明的。
图8为说明手术器械组件1700的实施方式的图解透视图。如所示,两个独立的遥控操作的手术器械1740a、1740b(每个器械与单独的主操纵器相关联——例如针对左边器械的一个左手主操纵器和针对右边器械的一个右手主操纵器)行进通过并出现在刚性导向管1742的远端。每个器械1740a、1740b为如上所述的6个DOF器械,并包含如上所述的平行运动机构1744a、1744b,附接有腕关节1746a、1746b和端受动器1748a、1748b。另外,独立遥控操作的内窥镜成像系统1750行进通过并出现在导向管1742的远端上。在一些方面中,成像系统1750也包含平行运动机构1752、平行运动机构1752远端上的仅俯仰腕关节机构1754(该机构可在接头空间中具有一个或两个DOF)、和与腕关节机构1754相连接的立体内窥镜图像捕捉部件1756。在其他方面中,腕关节机构1754可包含偏离DOF。在还另一个方面中,成像系统1750中的近端和远端接头是独立控制的。在说明性使用中,平行运动机构1752向上和向侧面上下平移和左右平移图像捕捉部件1756,并且腕关节机构1754朝向图像捕捉部件1756,以将视野的中心放置在器械末端之间,如果器械对导向管的延伸中心线的侧面正在工作的话。在另一个说明性使用中,成像系统的远端主体段为独立上倾斜的(在一些方面中,也为独立偏离的),图像捕捉部件1756为独立下倾斜的(在一些方面中,也为独立偏离的)。如以上和以下所讨论的,成像系统1750可被移动至多个位置以牵引组织。
同样显示的是辅助通道1760,通过其,可引入或撤回例如冲洗、抽吸、或其他手术项目。在一些方面中,一个或多个小的易操纵的设备可经辅助通道1760插入以便在成像系统的窗口上喷洒清洗液(例如,加压水、气体)和/或干燥剂(例如,加压空气或吹入气体),从而清洗它们。在另一个方面中,这种清洁棒可为在插入前附接至照相机的被动设备。还在另一个方面中,当图像捕捉部件从导向管的远端出现时,棒末端被自动钩在图像捕捉部件上。弹簧温和地拉动清洁棒,以便当成像系统从导向管中撤回时,它趋于收回入导向管中。
图7进一步说明了当移动图像捕捉部件1722远离组件1700的中心线时,它可紧靠和移动在上面的组织结构表面1726,由此如所示从手术部位牵引组织结构。使用成像系统1704牵引组织是使用其他手术器械或为该任务特别设计的设备以牵引组织的例证。这种“帐篷柱”型牵引可通过本文描述的多种可移动部件的任一种进行,诸如远端出口或侧出口柔性设备和刚性主体部件设备上的平行运动机构,以及以下讨论的其他设备(例如,参考图21)。
图9为说明在手术器械组件2302和说明性的致动器组件2304之间界面的方面的示意图,手术器械组件2302代表如本文多种描述的柔性和刚性机构。为了该实例的目的,器械组件2302包含手术器械2306、围绕器械2306的主导向管2308和围绕主导向管2308的次导向管2310。
如图9所示,传动机构设置在每个器械或导向管的近端上:对于器械2306为传动机构2306a,对于主导向管2308为传动机构2308a,和对于次导向管2310为传动机构2310a。每个传动机构都被机械和可移动地连接至关联的致动器机构:传动机构2306a连接至致动器机构2312,传动机构2308a连接至致动器机构2314,传动机构2310a连接至致动器机构2316。在一方面,使用配合的圆盘,如在da手术系统器械接口中,如以下更详细地所示。在另一个方面中,使用配合的万向节板和杠杆。传动机构中的多个机械部件(例如,齿轮、杠杆、电缆、滑轮组、电缆导向器、万向节等)用于将机械力从接口传递至受控元件。每个致动器机构都包含至少一个控制关联器械或导向管远端上的移动的致动器(例如,伺服发动机(有刷或无刷))。例如,致动器2312a为控制手术器械2306的端受动器2306b夹具DOF的电动伺服发动机。器械(包含如本文描述的导向探测器)或导向管(或统称器械组件)可如所示从关联致动器机构(一个或多个)上分离并滑出。它可随后由另一个器械或导向管代替。除了机械接口外,在每个传动机构和致动器机构之间存在电子接口。该电子接口允许传输数据(例如,器械/导向管类型)。
在一些情况中,可手动启动一个或多个DOF。例如,手术器械2306可为具有手启动端受动器夹具DOF的被动柔性腹腔镜检查器械,并且导向管2308可为主动易操纵的,以提供如上所述的腕关节运动。在该实例中,外科医生伺服控制导向管DOF和助手控制器械夹具DOF。
除了控制器械和/或导向管元件的致动器,每个致动器组件也可包含提供沿器械组件2302的纵向轴(前后平移)运动的致动器部件(例如,发动机驱动的电缆、导螺杆、小齿轮等;线性发动机;和类似物)。如图9实例所示,致动器机构2312包含线性致动器2312b,致动器机构2314包含线性致动器2314b,并且致动器机构2316包含线性致动器2316b,以便可独立地同轴移动器械2306、主导向管2308和次导向管2310的每一个。如图9中进一步所示的,致动器组件2316被如上所述被动或主动地安装至装配臂2318。在主动安装体系中,主动安装可用于控制一个或多个部件DOF(例如,刚性导向管的插入)。
来自控制系统2320的控制信号控制致动器组件2304中的多个伺服发动机致动器。控制信号例如与输入/输出系统2322的外科医生的主输入相关联,以移动器械组件2302的机械从动部件。进而,来自致动器组件2304、和/或器械组件2302、和/或其他部件中传感器的多种反馈信号被传送至控制系统2320。这种反馈信号可产生信息,如由伺服发动机位置或其他位置、朝向和力信息指示的,诸如可通过使用基于光纤布拉格光栅的传感器获得。反馈信号也可包含力感测信息,诸如在输入/输出系统2322上对于外科医生例如是视觉或触觉输出的组织反作用力。
来自与器械组件2302相关联的内窥镜成像系统的图像数据被传送至图像处理系统2324。这种图像数据可包含,例如,如所示经输入/输出系统2322处理并输出至外科医生的立体图像数据。图像处理也可用于确定器械位置,其作为远端位置反馈传感器形式被输入至控制系统。另外,放置在患者外部和接近患者的任选的感测系统2326可感测与器械组件2302相关联的位置或其他数据。感测系统2326可为静止的或可由控制系统2320(致动器未示出,并且可类似于描述的那些或类似于已知的机械伺服部件)控制,并且它可包含放置在患者附近的一个或多个实际的传感器。来自感测系统2326的位置信息(例如,来自一个或多个无线传送器、RFID芯片等)和其他数据可送至控制系统2320。如果这种位置信息或其他数据被视觉输出至外科医生,则控制系统2320以未处理或处理的形式传送它至与在输入/输出系统2322上的外科医生的输出显示器整合的图像处理系统2324。进一步地,来自感测系统2326的任何图像数据,诸如荧光镜成像或其他实时成像(超声、X射线、MRI和类似数据),被送至与外科医生的显示器整合的图像处理系统2324。并且,来自感测系统2326的实时图像可与通过与外科医生的显示器整合的图像处理系统2324取得的手术前的图像整合。以这种方法,例如,一些组织(例如,脑组织结构)的手术前的图像从数据存储位置2328接收,可被增强以便有更好的可视度,将手术前的图像用实时图像中的其他组织标志记录,以及将组合的手术前的和实时的图像与来自器械和致动器组件2302、2304和/或感测系统2326的位置信息一起使用,以呈现输出显示,所述输出显示辅助外科医生机动操纵器械组件2302朝向手术部位,而不损害中间组织结构。
图10为微创手术器械2402近端部分的透视图。如图10所示,器械2402包含与器械主体管2406近端相连接的传动机构2404。主体管2406的远端2408上的部件为了清楚的目的被省略并可包含例如如上所述的2个DOF平行运动机构、腕关节和端受动器组合;如上所述的接头和内窥镜成像系统;等。在所示的说明性实施方式中,传动机构2404包含六个接口圆盘2410。一个或多个圆盘2410与器械240的DOF相关联。例如,一个圆盘可与器械主体滚转DOF相关联,并且第二圆盘可与端受动器夹具DOF相关联。如所示,在一个情况,圆盘为了紧凑而被布置成六角形栅格——在该情况下,六个圆盘处于三角形形状中。可采用其他栅格图案或更随意的布置。传动机构2404内的机械部件(例如,齿轮、杠杆、万向节、电缆等)传送圆盘2410上的滚转力矩至例如主体管2406(用于滚转)和与远端机构相连接的部件。控制远端DOF的电缆和/或电缆和海波管组合行进穿过主体管2406。在一个情况中,主体管直径大约7mm,并且在另一个情况中,它的直径大约5mm。当与关联的致动器圆盘配合时,离心相间隔的凸起的销2412提供了合适的圆盘2410朝向。一个或多个电子接口接插件2414提供了在器械2402和它关联的致动器机构之间的电子接口。在一些情况中,器械2402可将保存在半导体存储器集成电路中的信息经它关联的致动器机构传到控制系统。这种传送的信息可包含器械类型识别、器械使用的数量等。在一些情况中,控制系统可更新所储存的信息(例如,记录使用的数量,以确定常规维护时间安排或防止在规定的次数后使用器械)。讨论了在器械上存储信息的美国专利号6,866,671(Tierney等)通过引用并入。电子接口也可包含例如电烙端受动器的电源。可选地,这种电源连接可被放置在器械2402上的其他地方(例如,放置在传动机构2404的外壳上)。可包含用于例如光纤激光器、光纤远端弯曲或力传感器、冲洗、抽吸等的其他接插件。如所示,传动机构2404的外壳为大体上锲形或饼型,以允许它与相似的外壳接近放置,如以下所说明的。
图11为配合和启动手术器械2402中部件的致动器组件2420一部分的透视图。布置致动器圆盘2422以与接口圆盘2410配合。圆盘2422中的孔2424仅以单一360度朝向与接收销2412对齐。每个圆盘2422由关联的旋转伺服发动机致动器2426转动,其如上所述接收伺服控制输入。成形为对应于器械2402的传动机构外壳的大体上锲形的安装托架2428支持圆盘2422、伺服发动机致动器2426和配合器械2402的接口接插件2414的电子接口2430。在一种情况中,器械2402通过弹簧夹(未示出)保持紧靠致动器组件2420,以允许容易的移除。如图11所示,致动器组件外壳2428的部分2432被截短以允许器械主体管2406通过。可选地,孔可被置于致动器组件中,以允许主体管通过。已灭菌的间隔块(可再用的或一次性的;通常为塑料)可用于分开致动器组件和器械的传动机构,以保持无菌手术场所。无菌的薄塑料片或“帘子(drape)”(例如,0.002英寸厚的聚乙烯)用于覆盖未被间隔块覆盖的致动器组件部分,以及覆盖部分操纵器臂。美国专利号6,866,671,通过以上引用并入,讨论了这种间隔块和帘子。
图12为说明在装配/操纵器臂的末端上安装微创手术器械和它们关联的致动器组件的方面的图解透视图。如图12所示,手术器械2502a被安装在致动器组件2504上,以便如上所述传动机构配合致动器组件(任选的间隔块/帘子未示出)。器械2502a的主体管2506延伸经过致动器组件2504并进入刚性导向管2508中的口。如所描写的,尽管基本上是刚性的,但参考图5如上所讨论的,主体管2506在传动机构外壳和导向管之间轻微弯曲。该弯曲允许进入导向装置中的器械主体管的孔与以其他方式允许的它们的传动机构的尺寸相比间隔地更近。因为刚性器械主体管中的弯曲角度小于柔性(例如,松弛)器械主体的弯曲角度,所以电缆可比在柔性主体中的更刚硬。高电缆刚度是重要的,因为远端DOF的数量在器械中受控。同样,与柔性主体相比,刚性器械主体更容易插入导向管。在一个实施方式中,弯曲是弹性的,以便当器械从导向管撤回时,主体管呈现它笔直的形状(该主体管可以形成永久弯曲,其将防止器械主体滚转)。致动器组件2504被安装到控制主体管2506插入导向管2508内的线性致动器2510上(例如伺服控制的导螺杆和螺母或滚珠螺杆和螺母组件)。第二器械2502b如所示用类似的机构进行安装。另外,可类似地安装成像系统(未示出)。
图12进一步显示了导向管2508可移除地安装至支持平台2512。该安装可例如类似于用于保持套管在da手术系统操纵器臂上的安装。可移除和可代替的导向管允许设计用于以不同程序的不同导向管使用相同的遥控操纵系统(例如,具有不同横截面形状或多种数量和形状的工作和辅助通道的导向管)。进而,致动器平台2512利用一个或多个额外的致动器机构(例如,用于俯仰、偏离、滚转、插入)被安装至机器人操纵器臂2514(例如,4个DOF)。进而,操纵器臂2514可被安装至被动装配臂,如上参考图1所述的。
图13为说明从不同的角度并参考患者的如图12所示的方面的图解透视图。在图13中,放置臂2514和平台2512,以便导向管2508在肚脐进入患者的腹部。该进入为多种自然孔和切口进入的例证,包括经皮和经腔(例如,经胃,经结肠,经直肠,经阴道,经直肠子宫(道格拉斯窝(Douglas pouch))等)切口。图13也说明每个器械/成像系统的线性致动器怎样通过显示插入的成像系统2518和撤回的器械2502a、2502b独立运行。这些方面可应用于本文描述的其他手术器械组件(例如,具有端出口或侧出口的柔性导向管、侧面工作工具等)。可见,在一些情况中,操纵器臂移动以使导向管2508围绕进入口处的远程中心2520旋转进入患者。然而,如果中间组织限制了围绕远程中心的移动,则该臂可保持导向管2508在适当的位置。
图14为说明与柔性同轴导向管和器械相关联的传动机构的方面的图解视图。图14显示了同轴行进通过并离开次导向管2704远端的主导向管2702。同样地,次导向管2704同轴行进通过并离开三级导向管2706的远端。传动和致动器机构2708与三级导向管2706相关联。传动和致动器机构2710与次导向管2704相关联,并且导向管2704的近端段在进入三级导向管2706前延伸通过传动和致动器机构2710(可选地,与其邻近)。同样地,传动和致动器机构2712与主导向管2702相关联,并且导向管2702的近端段在进入次级和三级导向管2704、2706前延伸通过传动和致动器机构2708、2710(可选地,与其邻近)。行进通过并离开主导向管2702中通道2714的远端的器械和成像系统(未示出)的传动机构可类似地通常沿器械组件的纵轴排放(堆叠,stack),或它们可如上所述围绕在它的近端上的导向管2702的延伸纵轴进行布置。或者,控制器位置可并行组合和排放,诸如对于其中侧离开部件的传动机构并行放置的侧出口组件,并且两者都排放在导向管传动机构后面。中间出口组件可类似地进行配置。器械和/或成像系统致动器和控制也可在相同外壳内组合为导向管的致动器和传动机构。
在很多方面中,本文描述的设备被用作单端口设备——完成手术程序必需的所有部件都经单一进入口进入身体。然而,在一些方面中,可使用多个设备和口。图15为说明当三个手术器械组件在三个不同的口进入身体时的多端口方面的图解视图。器械组件2802包含主导向管、次导向管和两个器械,连同关联的传动和致动器机构,如上所述的。在该说明性的实例中,器械组件2804包含主导向管、次导向管和单一器械,连同关联的传动和致动器机构,如上所述的。成像系统组件2806包含导向管和成像系统,连同关联的传动和致动器机构,如上所述的。这些机构2802、2804、2806中的每一个都经如所示单独、唯一的口进入身体2808。所示设备是本文描述的多种刚性和柔性方面的例证。
图16为说明多端口方面的另一个图解视图。图16显示了三个说明性的器械或组件2810进入不同自然孔(鼻孔、嘴)并随后经单一体腔(咽喉)继续到达手术部位。
图17-19为说明防止不期望的器械与组织碰撞的方面的图解平面图。器械可能在由患者解剖术(例如,喉手术)限制的空间中与成像系统的视野之外的患者组织碰撞。这种碰撞可损害组织。对于多DOF手术器械,一些DOF可位于视野内,而其他更近端的DOF可位于视野外。因此,当这些近端DOF移动时,外科医生可能未觉察到发生组织损害。如图17所示,例如,内窥镜成像系统2920从导向管2922末端延伸。放置左侧工作器械2924a,以便所有的DOF位于成像系统2920的视野2926(通过虚线划界)内。然而,即使器械2924b的端受动器位于视野2926内,右侧工作器械2924b具有位于视野2926外的近端DOF(显示了如上所述的说明性的平行运动机构和腕关节)。该器械位置是任务诸如系扎缝线的例证。
在一方面,当制造照相机时可确定视野界线,以便该界线相对于照相机头(图像捕捉部件)是已知的。该界线信息随后被保存在与并入照相机头的成像系统相关联的非易失性存储器中。因此,该控制系统可使用成像系统器械的运动学和接头位置信息,相对于工作器械定位照相机头,并且因此该控制系统可确定相对于工作器械的视野界线。这样,控制器械以便在界线内工作。
在立体成像系统的另一个方面中,视野界线可相对于器械通过使用机器图像算法确定,以识别器械和它们在视野中的位置。该“工具跟踪”主题在美国专利申请公布号US2006/0258938Al(Hoffman等)中公开,其通过引用并入。
如图18所示,放置成像系统2920,以便照相机头正好位于导向管2922的远端上。器械2924a和2924b从导向管的远端延伸并位于成像系统2920的视野内。“可允许的体积(allowable volume)”被定义为与视野界线一致。控制系统防止器械2924a和2924b的任何部分在可允许的体积外移动。因为外科医生可看到器械2924a和2924b的所有远端移动部分,所以外科医生随后移动器械而不碰撞周围组织。记录器械的移动,并确定“器械体积”2928(由点线划界),其通过器械最远移动划界。器械体积为凸面体积,在其内,可移动器械而不与组织碰撞。
接下来,如图19所示插入成像系统2920。因此,视野2926也被插入,并且器械2924a、2924b的一部分位于插入的视野2926外。新的可允许的体积被确定为新插入的视野加先前确定的位于视野外的器械体积。因此,该控制系统将允许外科医生在位于新的可允许的体积内的任何地方移动器械。可重复该过程,以便进一步的视野插入或导向管2922移动。该方案允许外科医生实时定义可允许的器械运动范围,而不需要组织模型。仅需要外科医生追踪视野内的运动的器械范围的界线,并且当视野改变时,该控制系统将记录该信息。
防止不需要的器械/组织碰撞的另一种方法是使用图像镶嵌。图20为在手术程序期间外科医生看到的显示器(例如,立体)的图解视图。如图20所示,来自新的、较多插入的视野2940(由虚线划界)的图像被记录并与来自旧的较多撤回的视野2942的图像进行镶嵌。图像镶嵌是已知的(见例如,美国专利号4,673,988(Jansson等)和5,999,662(Burt等),其通过并入)并且已经被应用于医疗设备(见例如,美国专利号7,194,118(Harris等),其通过引用并入)。因此,外科医生看到比目前较多插入的视野更大的区域。器械的运动学上准确的图示模拟在旧的视野2942中示出,以便当器械移动时,外科医生可看到该区域中可能的碰撞。
图21为显示了致力于牵引的包含多接头器械的说明性微创手术器械组件的方面的图解透视图。如图21所示,导向管3102包含通道3104,通过其插入成像系统,和三个通道3106a、3106b、3106c,通过其可插入手术器械。显示牵引器械3108延伸通过通道3106c。
如所描绘的,牵引器械3108包含近端器械主体3110和四个系列连杆3112a-d。四个接头3114a-d将近端器械主体3110和连杆3112a-d连接在一起。在一方面,每个接头3114a-d为独立可控的单一DOF俯仰接头。在其他方面中,接头可具有额外的DOF。主动控制的(手或遥控操纵的)夹持器3116经被动滚转接头3118被安装在最远端连杆3112d的远端上。在一些方面中,其他端受动器或没有端受动器可取代夹持器。在一方面中,连杆3112a-d和夹持器3116的组合的长度足以牵引组织超过延伸通过通道3106a和3106b的器械的工作包络面。例如,连杆和夹持器的组合的长度可大约等于器械的整个插入范围(例如,大约5英寸)。显示了四个连杆和接头,并且可使用其他数量的连杆和接头。使用在通道3106c内的俯仰接头3114a-d和滚转器械3108的不同组合进行牵引。
为了进行牵引,插入器械3108,以便每个接头3114a-d一个接一个地暴露。可改变插入深度,以便当接头从导向管的远端出来时,可在距离导向管的远端不同的距离上以不同数量的接头开始牵引。即,例如,只要接头3114d被插入经过导向管的远端,牵引就可开始。为了牵引,夹持器3116可夹紧组织。当器械3108在通道3106c内滚转时,被动滚转接头3118防止夹紧的组织被扭转。在一方面中,该控制系统连接器械3108和导向管3102的运动。当导向管在牵引的组织“下方”左右移动时,该联动的运动控制允许组织通过夹持器3116保持在正确的位置上。例如,当导向管3102的远端被移动至左边时,滚转器械3108(并且可改变接头3114a-d的俯仰)以移动夹持器3116至右边。
图21进一步说明了在导向管内器械位置和控制的方面。工作手术器械不必插入穿过对应于它们的工作位置或与它们的工作位置对齐的导向管通道。例如,如图31所示,左侧工作器械不必插入通过最左边的通道3106c。相反,左侧工作器械可经“底部”通道3106b插入。右侧工作器械可随后经最右通道3106a插入。随后,可控制左和右侧工作器械以便在手术部位工作,而与经没有被滚转或偏离的通道3104插入的成像系统的视野对齐。换言之,在工作器械的插入通道之间的左-右轴不必与在手术部位的工作器械端受动器之间的左-右轴对齐或不必与立体成像系统的左-右轴瞳孔间的轴对齐。进一步地,通过控制系统识别哪个器械与每个具体的致动器相连接,可改变左-右器械位置。例如,牵引器械3108可经通道3106a插入,右侧工作器械可经通道3106b插入,和左侧工作器械可经通道3106c插入。在一些方面中,利用合适形状的通道和/或成像系统,成像系统可经几个通道之一插入。例如,“顶部”通道3104和“底部”通道3106b可为长方形,中心孔固定圆柱形器械主体。因此,成像系统可经“顶部”或“底部”通道插入,并且工作器械可经其他“顶部”或“底部”通道插入。
图22为用于控制和选择性关联患者侧支持系统2104上的医疗设备至外科医生的控制台2102的操作员操纵的输入设备203、204的部件的方块图。多种手术工具诸如抓紧器、切割器和针可用于在患者体内的工作部位上实施医疗程序。在该实例中,三个手术工具(工具l、工具2、工具3)2231、2241、2251用于以机器人地实施该程序,并且成像系统(IS)2261用于观看程序。工具2231、2241、2251和成像系统2261可被放置在导向管(GT)2271中,以便可延伸超过导向管2271远端。导向管2271可通过进入孔诸如微创切口或自然孔,使用机器人臂组件的装配部分,插入患者,并由导向管操纵器2272机动操纵朝向实施医疗程序的工作部位。
设备2231、2241、2251、2261、2271中的每一个都由自己的操纵器操纵。具体地,成像系统2261由成像系统操纵器(PSM4)2262操纵,第一手术工具2231由第一工具操纵器(PSM1)2232操纵,第二手术工具2241由第二工具操纵器(PSM2)2242操纵,第三手术工具2251由第三工具操纵器(PSM3)2252操纵,并且导向管2271由导向管操纵器2272操纵。
器械操纵器2232、2242、2252、2262中的每一个是携带致动器并提供机械无菌接口以传送运动至它的各自的枢接器械的机械组件。每个器械2231、2241、2251、2261是从它的操纵器接收运动并通过电缆传动装置传播该运动至它的远端枢接(例如,接头)的机械组件。这种接头可为棱柱的(例如,线性运动)或旋转的(例如,它们绕机械轴枢轴旋转)。此外,器械可具有迫使多个接头以预定方式一起移动的内部机械约束(例如,电缆、齿轮、凸轮、带等)。每组机械约束的接头执行特定的轴运动,并可设计约束以使旋转接头成对(例如,啮合接头)。也注意,以该方式,器械可具有比可用致动器更多的接头。
在直接的控制模式中,输入设备203、204中的每一个可通过多路调制器(MUX)2290与设备2261、2231、2241、2251、2271之一选择性相关联,以便关联的设备可通过它的控制器和操纵器由输入设备控制。例如,外科医生可对左和右输入设备203、204通过外科医生的控制台2102上的图形用户界面(GUI)2291指定关联性,以分别与第一和第二手术工具2231、2241相关联,所述手术工具通过它们各自的控制器2233、2243和操纵器2232、2242以遥控机器人方式控制,以便外科医生可对患者实施医疗程序,同时手术工具2251、成像系统2261和导向管2271各自通过它们各自的控制器(诸如在图24、25中所示)软锁定在正确的位置上。如果外科医生期望使用输入设备203、204之一控制手术工具2251的移动,则外科医生可通过简单地使输入设备与它目前关联的设备不关联而关联它至工具2251这样做。同样地,如果外科医生期望使用输入设备203、204之一或两者控制成像系统2261或导向管2271的移动,则外科医生可通过简单地使输入设备与它目前的关联设备不关联而关联它至成像系统2261或导向管2271这样做。
作为使用GUI 2291以提供MUX 2290选择输入SEL的替代,输入设备203、204与设备2251、2241、2231、2261、2271的选择性关联可由外科医生使用由声音识别系统理解的声音指令,或通过外科医生压下输入设备203、204之一的按钮,或通过外科医生压下外科医生的控制台2102上的脚踏板,或通过外科医生使用任何其他熟知的模式转换技术实施。尽管这种模式转换在本文中描述为由外科医生实施,但可选地它可在外科医生的指导下通过助手实施。
控制器2233、2243、2253、2263、2273中的每一个包括主/从控制系统。作为一个实例,图23说明了主/从控制系统300的方块图,当它与输入设备203相关联时,主/从控制系统300用于控制工具从操纵器2232的移动并且因此控制它的所附接工具2231的位置和朝向,如通过外科医生移动主操纵器203所指令的。类似的主/从控制系统可提供给系统2100中的其他从操纵器(例如,2241、2251、2261、2271)中的每一个。
主从操纵器两者包含很多与接头连接的连接系统以便于多自由度移动。当外科医生在实施手术程序过程期间从一个位置移动主操纵器203至另一个位置时,与主操纵器接头相关联的传感器提供指示主接头空间中这种指令移动的信息,并且与从操纵器接头相关联的传感器提供指示从操纵器并因此在从动接头空间中的工具2231移动的信息,用于反馈目的。
主输入处理单元301从在主操纵器203中的主接头传感器接收主接头位置信息,该信息在控制系统处理速率(例如,在本实例中为1300Hz)下取样,并从感测接头位置计算接头速度。主正向运动学处理单元302接收来自主输入处理单元301的主接头位置和速度,利用例如在方块303中分别确定和提供的雅可比矩阵(Jacobian matrix)和眼睛相关信息,从主接头空间将它们转变为相对于眼睛参考标架(即,与外科医生的眼睛位置相关联的参考标架)的笛卡儿空间中主标架(即,与主操纵器203相关联的标架)的相应位置和速度。
缩放和补偿处理单元304从主正向运动学处理单元302接收笛卡儿位置和速度指令,根据选择来实施手术程序的缩放因素缩放指令的移动,并考虑补偿以产生期望的从动工具标架(即,与工具2231相关联的标架)位置和速度。为了节约用词,笛卡儿位置在本说明书中适当时被解释为包含笛卡儿朝向,笛卡儿速度在适当时被解释为包含平移速度和角速度。缩放调整是有用的,其中相对于主操纵器203的较大的移动,从操纵器2232的小移动是期望的,以便允许在手术部位更精确移动从动工具2231。在另一方面,补偿相对于眼睛参考标架中的主标架的位置和朝向,确定例如照相机参考标架(即,与成像系统的图像捕捉端相关联的参考标架)中的端受动器标架(例如,与工具2231的端受动器相关联的标架)的相应位置和/或朝向。
模拟的从动处理单元308(也被称为“模拟域”)从缩放和补偿处理单元304接收期望的从动工具标架位置和速度指令,并限制期望的从动工具标架位置、朝向和速度为指定的笛卡儿限值,例如以便通过保持工具2231位于它的灵敏工作区内实施工具2231的正确和直观的操作,并防止将导致通过工具2231的端受动器施加的过多力的运动。模拟的从动处理单元308产生模拟的从动接头位置和速度,其相应于限制的从动工具标架位置和速度,同时保证产生的从动接头位置和速度不超过从动接头的实际运动范围和最大速度(即,接头限值),即使在从动运动学的运动学奇点附近。
反向缩放和补偿处理单元306从模拟从动处理单元308接收模拟接头位置和速度指令,并对它们上的缩放和补偿处理单元304实施反向功能。笛卡儿控制器307接收对缩放和补偿处理单元304的输入为第一输入,和反向缩放和补偿处理单元306的输出作为第二输入。笛卡儿控制器307随后产生误差信号作为第一和第二输入的差值,并且诸如利用以下公式从误差信号产生笛卡儿力“FCART”:
主转置运动学处理单元315通过求和节点314接收笛卡儿力FCART,并使用例如与主操纵器203相关联的雅可比转置矩阵和运动学关系在接头空间中产生相应扭矩。主输出处理单元316从主转置运动学处理单元315接收主扭矩信号,产生相应于主扭矩信号的电流,并供应电流至主操纵器203的相应的主接头发动机。因此,每当外科医生指令超过系统笛卡儿或从动接头限值或产生从操纵器2232的运动学奇点条件的位置或速度时,操纵主操纵器203的外科医生感知到笛卡儿力FCART。
当主输入处理单元301从主操纵器203中的传感器接收主接头位置时,从动输入处理单元309也在控制系统处理速率下从从操纵器2232中的位置传感器接收从动接头位置。接头控制单元320从从动输入处理单元309和由模拟从动处理单元308提供的模拟接头位置指令接收从动接头位置,并产生从动接头发动机的从动扭矩指令信号和主接头发动机的主扭矩反馈指令信号。
从动扭矩指令信号由接头控制单元320产生,以便驱动从操纵器的接头直到在接头控制单元320中计算出的反馈误差置零。从动输出处理单元310从接头控制单元320接收从动扭矩指令信号,将它们转变为适当的电流,并供应电流至从主操纵器的接头发动机,以便因此驱动发动机。
主扭矩反馈指令信号由接头控制单元320产生,作为从动接头位置和速度跟踪误差的函数,以便将施加到工具2231或它的从操纵器2232的力反映至主操纵器203,以便它们可由外科医生感知。运动学绘图单元311从接头控制单元320接收主扭矩反馈指令信号,并产生相应的笛卡儿力,所述笛卡儿力利用方块312中提供的从动运动学配置和先前计算出的从动参考标架位置信息被施加至相对于成像系统的照相机标架的工具2231末端。
增益313调整了笛卡儿力的大小,以保证系统稳定性,同时向外科医生提供足够的力感知。增益调整的笛卡儿力随后通过求和节点314,并与笛卡儿力一起处理,所述笛卡儿力通过主转置运动学处理单元315和主输出处理316由笛卡儿控制器307提供,如先前关于它们的由笛卡儿控制器307提供的笛卡儿力的处理所描述的。
描述了涉及主/从控制系统300常规方面的额外的细节,诸如基于熟知数学的本文针对的不同参考标架和方块303中提供的外科医生眼睛相关信息和方块312中提供的从动参考标架信息的计算,例如,在先前通过引用并入的和美国专利号6,424,885,“CameraReferenced Control in a Minimally Invasive Surgical Apparatus(微创手术装置中参照照相机的控制)”,其中参考标架的概念被称为“从动支点”。
接头控制单元320包含由主/从控制系统300控制的从操纵器2232的每个主动接头和齿轮的接头控制器。特别地,在从操纵器2232包含多个接头以移动工具2231通过它的可操作工作区的情况,这些接头中的每一个都将具有自己的控制器。为了简化本文和权利要求中的描述,术语“接头”被理解为在两个连杆之间的连接(平移或回转),并可包含齿轮(或棱柱接头)以及与可用于控制机器人臂组件的线性驱动机构连接的任何其他可控制的部件。
直接控制模式为用户直接控制特定从操纵器的控制模式。所有其他从操纵器(即,不与主操纵器连接的从操纵器)为软锁定的(即,所有它们的接头通过它们各自的控制器保持在正确的位置上)。作为实例,在诸如本文描述的单端口系统中,三个直接控制模式被定义为直接“工具追踪”模式,其中两个可手操作的输入设备与两个工具从操纵器和它们各自的工具相关联;直接“成像系统”模式,其中一只或两只手可操作的输入设备与成像系统相关联;和直接“导向管”模式,其中一只或两只手可操作的输入设备与导向管相关联。例如,图24-25说明了直接“工具追踪”模式,其中左右主输入设备204、203分别与第一和第二工具相关联,同时第三工具、成像系统和导向管通过它们各自的控制器保持在正确的位置上;图26-27说明了直接“成像系统”模式,其中左主输入设备204与成像系统相关联,同时第一工具、第二工具、第三工具和导向管通过它们各自的控制器保持在正确的位置上;和图28-29说明了直接“导向管”模式,其中左和右主输入设备204、203与导向管相关联,同时第一工具、第二工具、第三工具和成像系统通过它们各自的控制器保持在正确的位置上。
如图24、26、28所示的,数据摘除(pick-off)/接收点(分别处于关联设备控制器中执行的主/从控制系统的反向缩放和补偿方块306的输入和缩放和补偿方块304的输出)可用于向非关联控制器提供指令的状态信息,用于联动式控制模式和接收从非关联控制器返回的状态信息,如本文描述的。为了简化附图,反向缩放和补偿方块306以及缩放和补偿方块304两者被包含在命名为“缩放和补偿”的单一方块图中。尽管分别处于对反向缩放和补偿方块306的输入以及缩放和补偿方块304的输出的数据摘除/接收点用于这些实例中,但应理解其他数据摘除和接收点可用于实践本发明的各个方面。
同样为了简化图,主/从控制系统300已经被分成主侧部分和从侧部分(在“缩放和补偿”方块的相对侧上),PSM1*控制器248、PSM2*控制器247、PSM4*控制器268和GT*控制器288包括从动侧部件(例如,图23的控制系统300方块308、320、309、310、311、312、313),MTM控制器241、242、262、281、282包括主侧部件(例如,图23的控制系统300方块301、302、303、307、314、315、316)。图25、27、29中的保持位置方块251、252、253、271、272指示了状态指令(每个指示它的各自设备的恒定位置和朝向),所述状态指令保存在一个或多个存储设备中并分别提供给从动侧PSM3*控制器258、GT*控制器288、PSM4*控制器268、PSM1*控制器248和PSM2*控制器247,同时这些控制器中产生的追踪数据被忽略(或以其他方式抛弃),如来自这些控制器的向下的点箭头所指示的,以便它们各自的操纵器和设备保持在指令的状态。
在联动式控制模式中,外科医生直接控制关联从操纵器(例如,操纵器2232、2242、2252、2262、2272之一)的移动,同时间接控制一个或多个非关联从操纵器的移动,以响应指令的直接控制的从操纵器运动,以实现次级目标。次级目标的实例包含优化设备工作区(即,最大化它们的运动范围),优化其他设备和/或工作位置的成像系统的视图,最小化在设备和/或患者的解剖结构之间的碰撞机会,和驱动非关联设备至期望的姿势。利用经由联动式控制模式自动实施次级任务,系统的可用性通过减少外科医生转换到另一个直接模式以手动实现期望次级目标的需要而增强。因此,联动式控制模式允许外科医生更好地关注于实施医疗程序并更少地关注于处理系统。如以下所描述的,用户界面具有三个联动式控制模式:针对器械(一个或多个)的模式,针对成像系统的模式,和针对导向管的模式(即与设计来在手术系统内实施不同功能的操纵器的数量一样多的模式)。
提供触觉提示给外科医生以指示何时进行所连接操纵器的运动是有用的,因为否则外科医生可能不知道通过联动式控制模式间接控制的任何设备的移动。对于直接控制的设备这不是问题,因为这种直接控制的设备的主/从控制系统通常提供触觉反馈途径。因此,当联动式模式开始采用时,触觉提示诸如掣子(detent)可提供该信号给外科医生。
外科医生使用的规定输入设备203、204和设备2231、2241、2251、2261、2271的关联性的GUI 2291也可由外科医生用于规定联动式控制模式的各种参数。例如,外科医生可使用GUI 2291选择哪个设备操纵器参与不同的联动式控制模式并限定与联动式控制模式相关联的次级目标和/或将它们区分优先次序。
图30为说明并入本文描述的手术器械组件和部件的微创遥控手术系统的集中运动控制和协调系统体系的联动式控制方面的图解视图。运动协调器系统2202接收主输入2204、传感器输入2206和优化输入2208。
主输入2204可包含主控制机构上的外科医生的臂、腕关节、手和手指移动。输入也可来自其他移动(例如,手指、脚、膝盖等压下或移动按钮、杠杆、开关等)和控制具体部件的位置和朝向或控制特定任务操作(例如,使电烙端受动器或激光器、成像系统操作等通电)的指令(例如,声音)。
传感器输入2206可包含来自例如测量的伺服发动机位置的位置信息或感测的弯曲信息。通过引用并入的题目为“Robotic surgery system including position sensorsusing fiber Bragg gratings”(包括使用布拉格光纤光栅的位置传感器的机器人手术系统)的美国专利申请号11/491,384(Larkin等)描述了将布拉格光纤光栅用于位置感测。这种弯曲传感器可被并入本文描述的多种器械和成像系统,以便当确定部件(例如,端受动器末端)的位置和朝向信息时使用。位置和朝向信息也可由放置在患者外部的一个或多个传感器(例如,荧光透视、MRI、超声等)产生,并且所述传感器实时感测在患者内部件的位置和朝向的变化。
优化输入2208涉及次级目标。它们可为高水平指令,或该输入可包含更详细的指令或感知信息。高水平指令的实例会是智能控制器的指令以优化工作区。更详细的指令的实例将针对成像系统,以启动或停止优化它的照相机。传感器输入的实例会是已经达到工作区限值的信号。
运动协调器2202输出指令信号至与各遥控手术系统臂的操纵器相关联的各致动器控制器和致动器(例如,伺服发动机)。图30描述了送至两个器械控制器2210、成像系统控制器2212和导向管控制器2214的输出信号的实例。可使用控制器的其他数量和组合。运动协调器2202确定怎样利用全部的系统运动学(即,系统的总自由度),以实现由优化输入2208指示的次级目标。
作为实例,这种运动协调系统可用于控制手术器械组件1700(图6)。器械控制器2210与器械1702a、1702b相关联,成像系统控制器2212与成像系统1704相关联,并且导向管控制器2214与导向管1708相关联。因此,在一些方面中,操作遥控手术系统的外科医生将同时和自动进入以上所述的至少三个控制模式:移动器械的器械控制模式,移动成像系统的成像系统控制模式和移动导向管的导向管控制模式。类似的集中的体系可适于与本文描述的多种其他机构方面一起工作。
图31为说明并入了本文描述的手术器械组件和部件的微创遥控手术系统的分布式运动控制和协调系统体系的方面的图解视图。在图31显示的说明性方面中,控制和转变处理器2220与两个主臂优化器/控制器2222a、2222b、三个手术器械优化器/控制器2224a、2224b、2224c、成像系统优化器/控制器2226和导向管优化器/控制器2228交换信息。每个优化器/控制器与遥控手术系统中的主臂或从臂(其包含例如照相机(成像系统)臂、导向管臂和器械臂)相关联。优化器/控制器中的每一个都接收臂特定性的优化目标2230a-2230g。
在控制和转变处理器2220和各种优化器/控制器之间的双头箭头代表与优化器/控制器的臂相关联的追踪数据的交换。追踪数据包含整个臂的完整的笛卡儿配置,包括底座标架和远末端标架。控制和转变处理器2220将从每个优化器/控制器接收的追踪数据送至所有优化器/控制器,以便每个优化器/控制器具有关于系统中所有臂的现有笛卡儿配置的数据。另外,每个臂的优化器/控制器都接收对臂来说唯一的优化目标。当它寻求它的优化目标时,每个臂的优化器/控制器都随后使用其他臂位置作为输入和约束。在一方面中,每个优化控制器使用嵌入的局部优化器,以寻求它的优化目标。可独立打开或关闭每个臂的优化器/控制器的优化模块。例如,可打开仅针对成像系统和导向管的优化模块。
与集中的体系相比,分布式控制体系提供更多的柔性,尽管有降低性能的可能性。如果使用这种分布式控制体系而不是使用集中式体系,更容易加入新臂和改变全部系统配置。然而,在该分布式体系中,与可用集中式体系实施的全面优化相比,该优化是局部的,在所述集中式体系中单一模块知晓完整系统的状态。
图32-34说明了具体的联动式控制模式的方面,其中直接控制关联设备以实现初级目标,并且间接控制非关联设备以完成次级目标。具体地,图32说明了联动式“工具追踪”模式实施,其中左右主输入设备204、203分别与第一和第二工具相关联,同时通过将与它们各自的主/从控制系统的数据摘除点相连接的方块3202、3201和成像系统和导向管的联动式控制器3204、3203相联系,使它们指令移动的信息可用,以便它们可实施期望的“次级目标”;图33说明了联动式“成像系统”模式实例,其中左主输入设备204与成像系统相关联,同时通过将与它的主/从控制系统的数据摘除点相连接的方块3302和第一工具、第二工具和导向管的联动式控制器3304、3305、3303相联系,使它的指令移动的信息可用,以便它们可实施期望的“次级”目标;和图34说明了联动式"导向管"模式实例,其中左和右主输入设备204、203与导向管相关联,同时通过将与它的主/从控制系统的数据摘除点相连接的方块3402和第一工具、第二工具和成像系统的联动式控制器3404、3405、3403相联系,使它指令移动的信息可用,以便它们可实施期望的“次级”目标。注意,在这些联动式模式实例中,假定第三工具不被展开,以简化图。
图32-34中说明的连接方块和设备联动的控制器如所示可以以分布式方式执行,以便它们被整合入它们各自的控制器或在它们各自的控制器外部执行,或它们可以以集中的方式执行,以便它们被整合入它们各自的控制器外部的单一单元。为了将直接“工具追踪”模式转变成相应的联动式“工具追踪”模式,将连接方块3201、3202(如图32所示)与数据摘除/接收点(如图24所示)相连接。指令和控制它们各自的设备控制器以实施次级目标的设备联动的控制器3203、3204在它们各自的设备控制器的数据摘除/接收点上被连接并连接至连接方块3202、3201,以便它们可来回接收和发送信息,如由图32中的箭头指示的。同样地,为了将直接“成像系统”模式转变为相应的联动式“成像系统”模式,连接方块3302(如图33所示)与数据摘除/接收点相连接(如图26所示)。指令和控制它们的各自的设备控制器以实施次级目标的设备联动的控制器3303、3304、3305在它们各自的设备控制器的数据摘除/接收点上被连接并连接至连接方块3302,以便它们可来回接收和发送信息,如由图33中的箭头指示的。最后,为了将直接“导向管”模式转变为相应的联动式“导向管”模式,连接方块3402(如图34所示)与数据摘除/接收点相连接(如图28所示)。指令和控制它们各自的设备控制器以实施次级目标的设备联动的控制器3403、3404、3405在它们各自的设备控制器的数据摘除/接收点上被连接并连接至连接方块3402,以便它们可来回接收和发送信息,如由图34中的箭头指示的。
图35-40为说明联动式控制模式的实例的流程图。如先前说明的,用户界面具有三个联动式控制模式:针对器械(一个或多个)的模式、针对成像系统的模式和针对导向管的模式。图35-37和39为器械联动的控制的实例,图38为导向管联动的控制的实例,和图40为成像系统联动的控制的实例。参考图35-40描述的方法以及本文描述的多种控制器和其他处理单元优选在参考图4描述的处理器220中执行。
图35-36说明了器械联动的控制的实例的第一部分,其中优化了与导向管相连接并可延伸超过导向管远端的枢接设备的工作区。图6为这种器械组件的一个实例。尽管本实例描述了使用导向管优化用于实施医疗程序的枢接设备的工作区,但应理解本发明的方面也适用于任何与枢接设备相连接的底座,以便当底座移动时,枢接设备移动。作为实例,如果旋转装配接头2114a、2114b是可主动驱动的,参考图1-3描述的患者侧支持系统2104也可起到这种底座的作用。
首先参看图35,在3501中,以器械联动式控制模式在那时运行的导向管联动的控制器3203(例如,运动协调器2202或导向管优化器/控制器2228,这取决于使用集中式还是分布式联动模式体系),从与导向管相连接的所有设备(即,当导向管移动时移动的设备)的连接方块和联动的控制器接收指令的设备末端位置。例如,设备可被联动至导向管,如果它被放置在导向管内或如果它以其他方式物理附接至导向管的话。如本文所用的(除了在描述的上下文清楚地以其他方式指示的位置上),短语“设备末端位置”指表示设备的最远端接头的固定参考标架中笛卡儿坐标和由最远端接头的角度位置确定的朝向的信息。
在3502中,导向管联动的控制器3203使用接收的指令的设备末端位置,以确定优化与导向管相连接的设备的工作区的导向管末端位置,同时它们各自的控制器保持它们的设备末端位置。因为优化功能要求设备的运动限值和运动学的范围的知识以及导向管和设备的目前末端位置,所以运动和运动学信息的这种范围优选在系统启动时或以常规方式的其他方便时间上提供给导向管联动的控制器3203,同时如先前描述的,在设备连接方块和联动的控制器的操作期间提供设备目前的末端位置。为了确定期望的导向管末端位置,设备控制器中的每一个可为它的设备提供期望的笛卡儿姿势,以便导向管联动的控制以这样的方式求解运动学:放置导向管末端以便允许可配置的设备的接头尽可能接近它的期望的姿势,同时不从期望的末端位置移动它的末端。
优选地这种优化通过使用设备的运动范围和选择的加权最小化价值函数实施。例如,可选择加权值,以便与最大化成像系统2261的运动范围和末端被保持在正确的位置上的任何其他设备(即,通过它的控制器保持或“软锁定”在适当的位置上)相比,更大量地加权最大化被直接控制的器械2231、2241的运动范围(即,具有更高的优先级)。在3503中,确定的导向管末端位置随后被提供给导向管控制器2272,以驱动导向管2271至确定的末端位置和设备控制器2233、2243、2263,以便它们可驱动它们各自的设备2231、2241、2261至优化它们各自的工作区的枢接的接头配置,如以下参考图36描述的。
现在参看图36,其描述由与导向管相联动的设备的设备控制器实施的互补行动,在3601中,导向管2271的指令的位置从导向管联动的控制器接收。在3602中,设备控制器对它们各自的从操纵器产生更新的接头位置指令,以适应新的导向管位置,同时满足指令的设备末端位置。对于在器械联动式控制模式下与输入设备204、203相关联的器械2231、2241,指令的设备末端位置对应于由输入设备204、203指令的末端位置。对于在这时不与输入设备204、203关联的成像系统2261或另一个器械2251,指令的设备末端位置为它们目前的末端位置,以便这些非关联设备的末端有效地保持在正确的位置上。在3603中,设备控制器将更新的接头位置指令提供给它们各自的从操纵器,以便优化设备工作区。
图37说明了一个实例的任选的第二部分,该实例中成像系统2261的移动与器械2231、2241的移动相连接,以便器械很好地被放置在成像系统的视野中。但是参考图35-36描述的实例的第一部分解决优化与导向管相连接并可延伸超过导向管远端的设备的工作区的次级目标,该实例的第二部分解决优化由成像系统捕捉的图像中设备末端的视图的次级目标。
现在参考图37,在3701中,在这时以器械联动式控制模式运行的成像系统联动的控制器3204(例如,运动协调器2202或成像系统优化器/控制器2226,这取决于是使用集中的还是分布式联动模式体系),从所有设备控制器接收指令的设备末端位置。在3702中,成像系统联动的控制器确定指令的器械末端位置的质心,并且在3703中,它使用在目前和先前数字处理期间中确定的质心位置中的差别确定质心速度。在3704和3705中,实施震颤过滤(振动消除,tremor filter)以便通过分别应用死区行为(dead-zone behavior)至质心位置和应用低通滤波(low pass filter)至质心速度,确定期望的成像系统末端位置和速度。
在3706中,成像系统联动的控制器3204随后使用枢接成像系统2261和导向管2271目前的末端位置的反向运动学确定成像系统2261的期望的接头位置。在3707中,成像系统联动的控制器使用成像系统2261的正向运动学确定相应于改变的从动接头位置的成像系统末端位置,并将确定的成像系统末端位置提供给导向管联动的控制器3203。注意,在3707中确定的成像系统末端位置应该与在3704中期望的成像系统末端位置相同,除非接头限值或奇点在3707中发生——在这种情况下它们将不同以避免限值或奇点。导向管联动的控制器随后根据如参考图35描述的实例第一部分,与器械末端位置一起处理成像系统末端位置,以产生优化器械和成像系统工作区的导向管末端位置。在3708中,成像系统联动的控制器3204从导向管联动的控制器3203接收指令的导向管末端位置并在3709中使用它以便通过将在3707中确定的成像系统末端位置和改变的导向管末端位置应用于在实施3706中使用的相同的等式和限值以确定指令的从动接头位置。在3710中,由成像系统控制器2263确定的指令的从动接头位置随后提供为成像系统操纵器2262的致动器指令,以便相应地操纵或移动成像系统2261。
在完成医疗程序后,所有在程序期间使用的医疗设备应该从患者收回。使用联动式控制模式在相同时间的上收回所有设备是有利的,而不是使用直接控制模式一次一个的进行。特别地,通过在直接控制下收回一个设备,期望所有其他设备在联动式控制下跟随收回,同时解决次级目标,诸如避免在收回期间与彼此和/或与患者解剖结构碰撞。另外,在将每个设备收回入它的导向管后,有必要首先将设备置于收回构型,以便它可被收回入导向管。例如,图21描述的牵引器械3108在它的连杆3112a-3112d的每一个与通道3106c对齐后,可仅完全被收回入导向管3102的通道3106c。因此,在设备进入它的导向管前期望自动驱动设备中的每一个进入它的收回构型。这适用于在直接控制下收回的设备以及通过联动式控制模式间接收回的设备。
相反地,在实施医疗程序前,在程序期间使用的所有医疗设备都应该被插入患者。使用联动式控制模式在相同的时间上插入所有的设备是有利的,而不是使用直接控制模式一次一个地进行。特别地,通过在直接控制下插入一个设备,期望所有其他设备在联动式控制下跟随插入,同时解决次级目标,诸如避免在插入期间与彼此和/或与患者解剖结构碰撞。另外,在器械被插入患者和它们到达工作部位后,将器械置于优化它们的工作区的构型是有用的。将器械的工作端很好地放置在成像系统的视野中也是有用的。因此,在成像系统到达工作位置上期望的观察点后,期望自动驱动器械中的每一个进入它的最优构型。
图38说明了使用联动控制以将医疗设备收回入导向管的实例。尽管设备中任何一个可被直接控制而其他被间接控制以便收回入导向管,但该实例使用了用于控制收回的导向管操纵器的实际自由度(DOF)。因为所有设备都与导向管连接,所以当导向管移动时,所有设备都移动。然而,在该实例中的导向管操纵器不具有用于插入/收回的致动器,因此,通过将导向管插入/收回指令送至设备控制器中的每一个同时导向管保持在正确的位置上,使设备在期望的插入/收回方向上移动,实现实际插入/收回DOF。
在3801中,导向管连接方块3402周期性从它关联的外科医生操纵的输入设备(一个或多个)接收常规的时间取样的输出,在这种情况下其指示导向管沿它的纵轴向后收回(例如,远离工作部位)。在3802中,连接方块3402将接收的收回指令转达至其他设备联动的控制器,以便它们进而指令它们各自的设备操纵器在期望的收回方向上从它们的位置上收回它们各自的设备。
在3803中,设备控制器(即,不是导向管控制器)中的每一个确定什么时候它的各自设备的最近端旋转连杆的近端处于距离导向管远端的阈值距离“TH”内。阈值距离“TH”可例如通过考虑以下进行确定:最近端旋转连杆的目前旋转角、在输入设备上由外科医生指令的收回速率、和在“清理出的(straightened out)”设备和在导向管中设备延伸通过的通道之间的余隙。特别地,选择阈值距离“TH”,以便设备中的每一个都可被收回入导向管,而不碰击它被放置的它各自通道的末端或侧面。
设备的最近端旋转连杆的近端和导向管的远端之间的距离可以常规方式通过以下进行确定:确定从远程中心“RC”(即,导向管的枢轴点)延伸至导向管远端的第一矢量,确定设备的最近端旋转连杆,确定从远程中心“RC”延伸至旋转设备的最近端旋转连杆的最近端接头的第二矢量,和从在第一和第二向量之间的差值确定设备的最近端旋转连杆的近端和导向管远端之间的距离。
在3804中,在确定它各自的设备的最近端旋转连杆的近端位于距离导向管远端的阈值距离“TH”内后,设备控制器(即,非导向管控制器)中的每一个都驱动它的设备至收回构型(即,允许设备被完全收入导向管的接头和连杆构型)。设备被驱动至它的收回构型的速率至少部分地通过以下速率进行确定:在该速率下,输入设备的输出改变插入/收回指令的方向,以便避免设备和导向管之间的碰撞。另外,设备控制器中的每一个驱动它的设备至它的收回构型时,可能的与其他设备和/或患者的碰撞也被避免和考虑。在3805中,一旦每个设备通过它各自的设备控制器确定为在它的收回构型中,则设备控制器允许它各自的设备被收回入导向管中的它的通道,以响应从在这时与导向管关联的输入设备(一个或多个)发出的收回指令。
因为与器械相比,成像系统的图像捕捉端通常更近地放置于导向管远端,以便器械的工作端和工作部位很好地被放置在成像系统的视野内,成像系统的最近端旋转连杆将通常为设备组的第一旋转的连杆,其延伸超过导向管远端,以当设备组被收回时达到距离远端的阈值距离“TH”。当其他设备中的每一个的最近端旋转连杆到达从导向管远端的阈值距离“TH”时,它的设备控制器驱动它的设备至它的收回构型。
作为参考3803-3804描述的方法的替代,不是等待直到在设备控制器开始驱动设备至它的收回构型之前每个设备的最近端旋转连杆到达距离导向管远端的阈值距离“TH”,而是在接收指示在收回方向上期望移动的指令后,设备控制器中的每一个可立即开始驱动它的设备至收回构型。在该情况下,每个设备控制器都被配置以便以以下方式驱动它的设备至它的收回构型:该方式保证设备的任何旋转的连杆都被正确对齐,以便在它进入通道前自由进入该设备的通道,同时避免对患者的伤害和与其他设备的碰撞。
当驱动成像系统至它的收回构型时,记住成像系统控制器利用接收的关联器械的端受动器的位置信息以指令它的图像捕捉端的移动,从而保持端受动器在它的视野中是重要的。因为操作员观察显示器屏幕上的由图像捕捉端捕捉的图像,同时移动输入设备,所以该操作员为了正确地指令收回它的关联器械可变得不明方向和/或以不正确的方式移动输入设备。为了补偿这种非直观的经验,改变用于计算主从操纵器(即,图23的方块302和311)的运动学的参考标架(即图23的方块303和312),以便相对于由操作员看到的显示器屏幕的主操纵器的位置/朝向恒定地对应于相对于成像系统末端(例如,图像捕捉端上的点)的关联器械的末端(例如,端受动器上的点)的位置和朝向。
在设备控制器随后接收插入指令(即,在延伸远离导向管远端的方向上移动该设备的指令)的情况下,设备控制器可自动驱动设备至期望的操作构型。期望的操作构型可为在存储设备中保存的优选的构型,所述存储设备与执行本文描述的多种控制器和过程的一个或多个处理器相关联。可选地,它可为已经保存在存储设备中的先前假定的操作构型。作为后一情况的实例,正好在开始它们朝向导向管的收回之前的设备操作构型的设备接头位置可保存在存储设备中,以便如果外科医生决定再次插入设备(或在工具更换程序后的它们的替代设备),它们的设备控制器可自动驱动设备返回保存的操作构型。
在一些情况中,手术器械是可拆卸的并可用不同的手术器械取代,所述不同的手术器械具有类似于器械的结构但具有不同的端受动器以便实施不同手术任务。因此,单一导向管可用于一个或多个可更换的手术器械。在一种情况中,手术器械的端受动器是可拆卸的,以便它可容易地与另一个进行更换。在另一个情况中,可将手术配件诸如夹子或缝合材料提供给夹紧的端受动器,以便传递至工作部位,同时导向管保持在患者体内。实施这种端受动器更换(在本文中也被称为“工具更换”)或提供这种手术配件至收回的夹紧的端受动器的方便的方法是使用有孔导向管,其中一个或多个切口以部分向外延伸离开患者的方式提供在导向管中,同时导向管的另一个部分通过进入孔向内延伸入患者。
图39说明了以下实例:使用用于将医疗设备收回入有孔导向管的联动控制,以进行工具更换或其他目的,诸如传递手术配件至工作部位。在该实例中,包含成像系统和至少两个器械在内的多个设备延伸通过导向管的远端并且延伸超过导向管的远端。
在3901中,从与待收回的器械相关联的输入设备(在本文中也被称为“关联器械”)接收收回指令。收回指令由输入设备在以下方向上的移动指示:该方向将导致指令关联器械朝向导向管的远端被收回和/或进入导向管的远端。如先前参考图23和32描述的,输入设备的感测的接头移动由器械的主/从控制系统处理,并且产生的关联器械远末端的指令的状态在缩放和补偿方块的输出上被采集,并与识别关联器械的信息(具体地,它在导向管中的位置)一起通过连接方块提供至系统中其他设备的联动控制器方块。
在3902中,在联动控制器方块中的每一个内决定它的关联设备是否与关联器械一起被收回。在成像系统的联动控制器方块的情况中,该决定是肯定的,以便当它被收回入导向管时,操作员可连续观察关联器械的工作端。在其他设备的联动控制器方块的情况中,该决定考虑它们各自的器械是否将从要进行工具更换和提供手术配件的导向管的开口妨碍接近关联器械的端受动器。如果未收回的器械将妨碍通过该开口接近关联器械的端受动器,则联动控制器方块的妨碍器械的决定也将是肯定的。在另一方面,联动控制器方块的不妨碍器械的决定将为否定的。
在3903中,做出肯定决定的联动控制器方块随后将接收的收回指令转达至它们各自的控制器,各自的控制器又指令它们各自的设备操纵器在这时以期望的收回方向从它们的位置收回它们的设备(在本文中被称为“联动的设备”)。
在3904中,收回设备控制器(关联设备和联动的设备两者的)中的每一个确定何时它各自设备的最近端旋转连杆的近端以参考图38的3803描述的方式在距离导向管远端的阈值距离“TH”内。
在3905中,在确定它各自设备的最近端旋转连杆的近端以参考图38的3804描述的方式在距离导向管远端的阈值距离“TH”内(包含如本文描述的补偿移动成像系统)后,设备控制器中的每一个随后指令它各自的设备操纵器,以驱动它的设备至收回构型(即,允许设备完全收回入导向管的接头和连杆构型)。
在3906中,一旦通过它各自的设备控制器确定每个被收回的设备处于它的收回构型,则设备控制器允许它各自的设备收回入在导向管中它的通道,以响应从输入设备发出的收回指令。
在3907中,一旦操作员确定关联器械的端受动器处于相对于有孔导向管中开口的正确位置,则停止输入设备和因此的关联器械的移动。然而,成像系统可继续移动以保证关联器械的端受动器正确地处于它的视野中。另外,妨碍的器械继续移动直到它不再妨碍通过有孔导向管中的开口接近关联器械的端受动器。在接近关联器械的端受动器的通路与开孔畅通以后,则当成像系统观察关联器械的端受动器的活动时,可实施端受动器的更换和/或可将手术配件提供给端受动器。
图40说明了利用联动式控制以便将医疗设备延伸出导向管并将它插向工作部位的实例。尽管设备中的任一个都可被直接控制而其他被间接控制以便插向工作部位,但该实例假定成像系统被直接控制以便插入而器械通过联动式控制被间接控制,以跟随成像系统的图像捕捉端。使用成像系统引导插入是有利的,因为它允许外科医生看到朝向工作部位的通路。
以例如类似于在da手术系统中的遥控操纵的内窥镜控制的方式可实现在插入期间的控制——在一方面,外科医生用一个或两个主操纵器虚拟移动图像;她使用主操纵器从一边至另一边移动图像并将它拉向她自己,因此指令成像系统和它关联的器械组件(例如,柔性导向管)以引向输出显示器上的固定的中心点并在患者体内前进。在一方面,设计照相机控制以提供主操纵器对于图像是固定的印象,以便图像在移动主柄的相同方向上移动,如在da手术系统中那样。该设计使主操纵器位于正确的位置上,以便当外科医生离开照相机控制时控制器械,并且因此它避免了在开始或恢复器械控制之前连接(分离)、移动和分开(接合)主操纵器返回位置。在一些方面中,主操纵器位置可与插入速度成比例,以避免使用大的主工作区。可选地,外科医生可连接和分开主操纵器以利用棘轮效应作用以便插入。在一些方面中,可手动控制(例如,通过手操作轮)插入(例如,当经食管进入时经过声门),并且随后当手术器械组件的远端接近手术部位时,进行自动插入(例如,伺服发动机从动辊)。插入轨迹可用的患者的解剖结构和空间的手术前的或实时的图像数据(例如,MRI、X射线)可用于辅助插入。
在4001中,成像系统控制器从关联输入设备接收插入指令。在4002中,成像系统控制器指令成像系统操纵器移动成像系统,以响应插入指令,而在4003中,成像系统控制器提供移动指令至其他设备联动的控制器,以便它们也可指令它们各自的设备移动,以响应成像系统指令移动。在4004中,成像系统控制器确定成像系统的图像捕捉端是否已经到达它的期望的位置。该决定可基于编程标准自动实施或它可通过由外科医生采取的行动诸如在这时压下与成像系统相关联的输入设备上的按钮指示。在4005中,在成像系统控制器已经确定成像系统的图像捕捉端已经到达它的期望位置后,它提供这种指示至器械联动的控制器(例如,运动控制器2202或器械优化器/控制器2224a、2224b、2224c,这取决于哪个器械被部署和是否使用集中式或分布式联动模式体系),以便响应其的器械控制器指令它们各自的器械操纵器将它们的器械移入它们的最优操作配置。在该情况下,将设备置于它们的最优操作配置中通常涉及将器械的工作端置于成像系统的视野内并优化器械的工作区(诸如,例如图18中所示)。
如从本文描述的联动式控制模式实例显见的,不是提供给运动协调器或设备优化器/控制器的所有位置信息都使用。因此,多于必要的信息在设备控制器之间传送而它的一些被忽略,或仅必要的信息被传送。尽管图30-31的描述可指示前者,但应理解在此描述的执行方式也可应用于后者。
进一步注意,任何时间成像系统的图像捕捉端作为联动的设备移动,针对主/从遥控操作的由外科医生使用的图像参考标架都改变,并且这种改变可影响外科医生实施精确手术活动的能力。在这种情况下,可针对成像系统的成像捕捉端的大的运动采取很多行动。例如,触觉反馈可提供在输入设备上,以辅助外科医生采取适当的行动,或延伸出导向管远端的计算机产生的设备的辅助视图可从稳定的(例如,固定的)透视图提供并被外科医生所依赖以便主/从遥控操作,或可实时改变由成像系统捕捉的图像以保持直观正确的主/从设备绘图,其中改变的图像显示在外科医生控制台上。
不同微创手术系统、组件和器械的实例以及关联部件的这些描述不被看作限制性的。应当理解,结合本文描述的方面的很多变型是可能的。例如,刚性和柔性器械和器械部件的不同组合以及导向管和导向管部件的不同组合落入本说明书的范围。权利要求限定本发明。
Claims (20)
1.一种机器人系统,其包括:
主输入设备;
第一从操纵器和第二从操纵器;
当所述第一从操纵器响应于所述主输入设备的运动而移动时,用于命令所述第二从操纵器至少部分地响应于所述第一从操纵器的命令的运动而移动的装置;和
当所述第二从操纵器响应于所述主输入设备的运动而移动时,用于命令所述第一从操纵器至少部分地响应于所述第二从操纵器的命令的运动而移动的装置;
其中所述第一从操纵器适于移动连接到底座的器械或成像系统,
其中所述第二从操纵器适于移动所述底座,并且
其中当响应于所述主输入设备的运动而命令所述第一从操纵器移动所述器械或所述成像系统时,用于命令所述第二从操纵器的所述装置命令所述第二从操纵器移动所述底座以便优化所述器械的工作空间或所述成像系统的工作空间。
2.根据权利要求1所述的机器人系统,其中,当响应于所述主输入设备的运动而命令所述第二从操纵器移动所述底座时,用于命令所述第一从操纵器的所述装置命令所述第一从操纵器将所述器械的工作端保持在期望的位置和朝向。
3.根据权利要求1所述的机器人系统,其中当响应于所述主输入设备的运动而命令所述第二从操纵器移动所述底座时,用于命令所述第一从操纵器的所述装置命令所述第一从操纵器移动所述成像系统,以便将所述成像系统的图像捕获端保持在期望的位置和朝向。
4.一种处理器,其被配置为执行用于控制被连接到底座的一个或多个器械的运动使得所述一个或多个器械随着所述底座移动而移动的方法,所述方法包括:
由所述处理器命令操纵所述底座以优化第一器械的可操作工作空间;和
由所述处理器根据命令的运动而命令操纵所述第一器械,同时补偿所述底座的运动。
5.一种机器人系统,其包括:
多个第一从操纵器,所述多个第一从操纵器中的每个第一从操纵器配置成操纵多个器械的一个器械,所述多个器械中的每个连接到底座;
成像系统操纵器,其配置成操纵成像系统,所述成像系统连接到所述底座;
第二从操纵器,其配置成移动所述底座;
主输入设备;
当所述成像系统操纵器响应于所述主输入设备的运动而移动时,用于命令所述多个第一从操纵器响应于所述成像系统的运动而移动所述多个器械的装置;
当用于命令所述多个第一从操纵器的所述装置移动所述多个器械时,用于命令所述第二从操纵器以便优化所述多个器械的工作空间的装置。
6.根据权利要求5所述的机器人系统,其中用于命令所述多个第一从操纵器的所述装置包括多个子单元,其中所述多个子单元中的每个子单元连接到所述多个第一从操纵器中的对应第一从操纵器并且响应所述成像系统的运动而命令所述多个第一从操纵器的所述对应第一从操纵器移动。
7.根据权利要求5或6所述的机器人系统,还包括:
导向管,所述多个器械和所述成像系统通过所述导向管配置成设置在所述导向管的远端内并且可延伸超出所述导向管的远端。
8.根据权利要求7所述的机器人系统,还包括:
用于操纵所述导向管的导向管操纵器;和
其中所述机器人系统还包括当所述成像系统操纵器响应于所述主输入设备的运动而移动所述成像系统时,用于命令所述导向管操纵器移动以避免所述成像系统达到相对于所述导向管的边界界限的装置。
9.一种手术机器人系统,其包括:
第一从操纵器,其配置成移动连接到底座的器械或成像系统;
第二从操纵器,其配置成移动所述底座;
输入设备,其用于接收用于控制所述第一从操纵器和所述第二从操纵器的运动的输入;
当第一输入用于命令所述第一从操纵器移动所述器械或所述成像系统时,用于响应所述第一输入移动所述第二从操纵器以便优化所述器械的工作空间或所述成像系统的工作空间的装置,所述第一输入从所述输入设备接收;和
用于响应所述第一输入移动所述第一从操纵器的装置。
10.根据权利要求9所述的手术机器人系统,还包括:
用于响应第二输入移动所述第一从操纵器以便进一步移动所述第一从操纵器的装置,所述第二输入从所述输入设备接收;和
用于响应所述第二输入移动所述第一从操纵器以便进一步移动所述第二从操纵器以便优化所述器械的工作空间或所述成像系统的工作空间的装置。
11.根据权利要求9所述的手术机器人系统,还包括:
第三从操纵器,其配置成移动第二器械或第二成像系统;和
用于确定所述第三从操纵器的运动的装置,其实现避免组织碰撞的次要目标;和
用于根据确定的运动移动所述第三从操纵器的装置。
12.根据权利要求9至11中任一项所述的手术机器人系统,其中,
当所述底座移动时,用于响应所述第一输入而移动所述第一从操纵器的装置进一步移动所述第一从操纵器以将所述器械的工作端保持在第一位置。
13.根据权利要求9至11中任一项所述的手术机器人系统,其中,
当所述底座移动时,用于响应于所述第一输入而移动所述第一从操纵器的所述装置进一步移动所述第一从操纵器以将所述器械的工作端保持在第一朝向。
14.根据权利要求9至11中任一项所述的手术机器人系统,其中,
所述第一从操纵器适于移动所述成像系统;
当第二器械移动时,用于响应于所述第一输入而移动所述第一从操纵器的所述装置移动所述成像系统,以便将所述第二器械的工作端保持在所述成像系统的视野内。
15.根据权利要求9至11中任一项所述的手术机器人系统,其中,所述第一从操纵器适于移动所述成像系统,所述手术机器人系统进一步包括:
当所述第二从操纵器响应于所述第一输入而移动时,用于命令所述第一从操纵器移动以避免所述成像系统达到相对于所述底座的边界界限的装置。
16.一种处理器,其被配置为执行操作手术机器人系统的方法,所述手术机器人系统包括适用移动底座的第一从操纵器、适于移动连接到所述底座的器械或成像系统的第二从操纵器和输入设备,所述方法包括:
当所述第一从操纵器响应于所述输入设备的运动而移动时,由所述处理器命令所述第二从操纵器至少部分地响应所述第一从操纵器的命令的运动而移动;
当所述第二从操纵器响应于所述输入设备的运动而移动时,由所述处理器命令所述第一从操纵器至少部分地响应所述第二从操纵器的命令的运动而移动;
响应于在所述输入设备处接收第一输入以直接控制所述第二从操纵器的运动并且响应于所述第一输入,由所述处理器命令所述第二从操纵器的移动;
由所述处理器响应所述第一输入自动确定所述第一从操纵器的第一运动,所述第一运动实现次要目标,其中所述次要目标包括当响应于所述第一输入而命令所述第二从操纵器移动所述器械或成像系统时,所述第一从操纵器的所述第一运动优化所述器械的工作空间或所述成像系统的工作空间;和
由所述处理器根据所述第一运动自动命令移动所述第一从操纵器。
17.根据权利要求16所述的处理器,其中,所述次要目标进一步包括最小化与患者的解剖结构发生碰撞的机会。
18.根据权利要求16所述的处理器,其中,
所述次要目标进一步包括在移动所述底座时将所述器械的工作端保持位置和朝向。
19.根据权利要求16所述的处理器,其中,
所述次要目标进一步包括当所述底座移动时将所述器械的工作端保持在成像系统的视野内。
20.根据权利要求16至19中任一项所述的处理器,其中所述方法还包括:
在所述输入设备处接收第二输入以直接控制所述第一从操纵器的运动;
响应所述第二输入,移动所述第一从操纵器;
响应所述第二输入,自动确定所述第二从操纵器的第二运动,所述第二运动实现另一个次要目标;和
根据所述第二运动,自动移动所述第二从操纵器。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/780,071 US8620473B2 (en) | 2007-06-13 | 2010-05-14 | Medical robotic system with coupled control modes |
US12/780,071 | 2010-05-14 | ||
PCT/US2011/036109 WO2011143338A1 (en) | 2010-05-14 | 2011-05-11 | Medical robotic system with coupled control modes |
CN201180024113.XA CN102905641B (zh) | 2010-05-14 | 2011-05-11 | 具有联动式控制模式的医疗机器人系统 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180024113.XA Division CN102905641B (zh) | 2010-05-14 | 2011-05-11 | 具有联动式控制模式的医疗机器人系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110115630A CN110115630A (zh) | 2019-08-13 |
CN110115630B true CN110115630B (zh) | 2022-10-28 |
Family
ID=44317947
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180024113.XA Active CN102905641B (zh) | 2010-05-14 | 2011-05-11 | 具有联动式控制模式的医疗机器人系统 |
CN201910402911.XA Active CN110115630B (zh) | 2010-05-14 | 2011-05-11 | 具有联动式控制模式的医疗机器人系统 |
CN202211239720.4A Pending CN115553921A (zh) | 2010-05-14 | 2011-05-11 | 具有联动式控制模式的医疗机器人系统 |
CN201610089029.0A Active CN105616007B (zh) | 2010-05-14 | 2011-05-11 | 具有联动式控制模式的医疗机器人系统 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180024113.XA Active CN102905641B (zh) | 2010-05-14 | 2011-05-11 | 具有联动式控制模式的医疗机器人系统 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211239720.4A Pending CN115553921A (zh) | 2010-05-14 | 2011-05-11 | 具有联动式控制模式的医疗机器人系统 |
CN201610089029.0A Active CN105616007B (zh) | 2010-05-14 | 2011-05-11 | 具有联动式控制模式的医疗机器人系统 |
Country Status (5)
Country | Link |
---|---|
US (5) | US8620473B2 (zh) |
EP (3) | EP3459429B1 (zh) |
KR (6) | KR102168839B1 (zh) |
CN (4) | CN102905641B (zh) |
WO (1) | WO2011143338A1 (zh) |
Families Citing this family (759)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8527094B2 (en) * | 1998-11-20 | 2013-09-03 | Intuitive Surgical Operations, Inc. | Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures |
US8944070B2 (en) | 1999-04-07 | 2015-02-03 | Intuitive Surgical Operations, Inc. | Non-force reflecting method for providing tool force information to a user of a telesurgical system |
US10188471B2 (en) * | 1999-09-17 | 2019-01-29 | Intuitive Surgical Operations, Inc. | Tele-operative surgical systems and methods of control at joint limits using inverse kinematics |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US8496647B2 (en) | 2007-12-18 | 2013-07-30 | Intuitive Surgical Operations, Inc. | Ribbed force sensor |
US8465474B2 (en) | 2009-05-19 | 2013-06-18 | Intuitive Surgical Operations, Inc. | Cleaning of a surgical instrument force sensor |
US9789608B2 (en) | 2006-06-29 | 2017-10-17 | Intuitive Surgical Operations, Inc. | Synthetic representation of a surgical robot |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US7930065B2 (en) | 2005-12-30 | 2011-04-19 | Intuitive Surgical Operations, Inc. | Robotic surgery system including position sensors using fiber bragg gratings |
US9962066B2 (en) | 2005-12-30 | 2018-05-08 | Intuitive Surgical Operations, Inc. | Methods and apparatus to shape flexible entry guides for minimally invasive surgery |
US8628518B2 (en) | 2005-12-30 | 2014-01-14 | Intuitive Surgical Operations, Inc. | Wireless force sensor on a distal portion of a surgical instrument and method |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US20080071288A1 (en) | 2006-06-13 | 2008-03-20 | Intuitive Surgical, Inc. | Minimally invasive surgery guide tube |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US20090192523A1 (en) | 2006-06-29 | 2009-07-30 | Intuitive Surgical, Inc. | Synthetic representation of a surgical instrument |
US10008017B2 (en) | 2006-06-29 | 2018-06-26 | Intuitive Surgical Operations, Inc. | Rendering tool information as graphic overlays on displayed images of tools |
US9718190B2 (en) | 2006-06-29 | 2017-08-01 | Intuitive Surgical Operations, Inc. | Tool position and identification indicator displayed in a boundary area of a computer display screen |
US10258425B2 (en) | 2008-06-27 | 2019-04-16 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US8840603B2 (en) | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US8540128B2 (en) | 2007-01-11 | 2013-09-24 | Ethicon Endo-Surgery, Inc. | Surgical stapling device with a curved end effector |
US20090001130A1 (en) | 2007-03-15 | 2009-01-01 | Hess Christopher J | Surgical procedure using a cutting and stapling instrument having releasable staple-forming pockets |
US11672531B2 (en) | 2007-06-04 | 2023-06-13 | Cilag Gmbh International | Rotary drive systems for surgical instruments |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US9084623B2 (en) * | 2009-08-15 | 2015-07-21 | Intuitive Surgical Operations, Inc. | Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide |
US9469034B2 (en) | 2007-06-13 | 2016-10-18 | Intuitive Surgical Operations, Inc. | Method and system for switching modes of a robotic system |
US9138129B2 (en) | 2007-06-13 | 2015-09-22 | Intuitive Surgical Operations, Inc. | Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide |
US8620473B2 (en) | 2007-06-13 | 2013-12-31 | Intuitive Surgical Operations, Inc. | Medical robotic system with coupled control modes |
US9089256B2 (en) | 2008-06-27 | 2015-07-28 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide |
US8903546B2 (en) | 2009-08-15 | 2014-12-02 | Intuitive Surgical Operations, Inc. | Smooth control of an articulated instrument across areas with different work space conditions |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
US8561473B2 (en) | 2007-12-18 | 2013-10-22 | Intuitive Surgical Operations, Inc. | Force sensor temperature compensation |
US9043018B2 (en) * | 2007-12-27 | 2015-05-26 | Intuitive Surgical Operations, Inc. | Medical device with orientable tip for robotically directed laser cutting and biomaterial application |
BRPI0901282A2 (pt) | 2008-02-14 | 2009-11-17 | Ethicon Endo Surgery Inc | instrumento cirúrgico de corte e fixação dotado de eletrodos de rf |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US10390823B2 (en) | 2008-02-15 | 2019-08-27 | Ethicon Llc | End effector comprising an adjunct |
US8864652B2 (en) | 2008-06-27 | 2014-10-21 | Intuitive Surgical Operations, Inc. | Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US8315720B2 (en) * | 2008-09-26 | 2012-11-20 | Intuitive Surgical Operations, Inc. | Method for graphically providing continuous change of state directions to a user of a medical robotic system |
US9339342B2 (en) | 2008-09-30 | 2016-05-17 | Intuitive Surgical Operations, Inc. | Instrument interface |
US9259274B2 (en) | 2008-09-30 | 2016-02-16 | Intuitive Surgical Operations, Inc. | Passive preload and capstan drive for surgical instruments |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
CN102341048A (zh) | 2009-02-06 | 2012-02-01 | 伊西康内外科公司 | 动力手术缝合器的改进 |
US8918211B2 (en) | 2010-02-12 | 2014-12-23 | Intuitive Surgical Operations, Inc. | Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument |
US9492927B2 (en) | 2009-08-15 | 2016-11-15 | Intuitive Surgical Operations, Inc. | Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose |
ES2600279T3 (es) * | 2009-09-22 | 2017-02-08 | Advanced Osteotomy Tools - Aot Ag | Osteotomo de láser CARLO asistido por ordenador y guiado por robot |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
US8644988B2 (en) * | 2010-05-14 | 2014-02-04 | Intuitive Surgical Operations, Inc. | Drive force control in medical instrument providing position measurements |
US8746252B2 (en) | 2010-05-14 | 2014-06-10 | Intuitive Surgical Operations, Inc. | Surgical system sterile drape |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
US20150011830A1 (en) * | 2010-08-27 | 2015-01-08 | Massachusetts Institute Of Technology | Tip actuated disposable endoscope |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US9320523B2 (en) | 2012-03-28 | 2016-04-26 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising tissue ingrowth features |
US8657176B2 (en) | 2010-09-30 | 2014-02-25 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator for a surgical stapler |
US11925354B2 (en) | 2010-09-30 | 2024-03-12 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US9351730B2 (en) | 2011-04-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising channels |
US9788834B2 (en) | 2010-09-30 | 2017-10-17 | Ethicon Llc | Layer comprising deployable attachment members |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
US10238456B2 (en) * | 2010-10-14 | 2019-03-26 | Corindus, Inc. | Occlusion traversal robotic catheter system |
WO2012058533A2 (en) | 2010-10-29 | 2012-05-03 | The University Of North Carolina At Chapel Hill | Modular staged reality simulator |
US9805625B2 (en) | 2010-10-29 | 2017-10-31 | KindHeart, Inc. | Surgical simulation assembly |
EP2637594A4 (en) | 2010-11-11 | 2015-05-06 | Univ Johns Hopkins | ROBOT SYSTEMS FOR HUMAN MACHINE COLLABORATION |
US9258975B2 (en) | 2011-04-28 | 2016-02-16 | Technologies Holdings Corp. | Milking box with robotic attacher and vision system |
AU2012250197B2 (en) | 2011-04-29 | 2017-08-10 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising staples positioned within a compressible portion thereof |
US9572481B2 (en) * | 2011-05-13 | 2017-02-21 | Intuitive Surgical Operations, Inc. | Medical system with multiple operating modes for steering a medical instrument through linked body passages |
WO2012159123A2 (en) * | 2011-05-19 | 2012-11-22 | Alec Rivers | Automatically guided tools |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US9498231B2 (en) | 2011-06-27 | 2016-11-22 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
JP6259757B2 (ja) | 2011-06-27 | 2018-01-10 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | コンピュータ支援手術の搭載器具追跡システム |
US11911117B2 (en) | 2011-06-27 | 2024-02-27 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
JP6009840B2 (ja) | 2011-08-04 | 2016-10-19 | オリンパス株式会社 | 医療機器 |
JP6021484B2 (ja) | 2011-08-04 | 2016-11-09 | オリンパス株式会社 | 医療用マニピュレータ |
WO2013018861A1 (ja) | 2011-08-04 | 2013-02-07 | オリンパス株式会社 | 医療用マニピュレータおよびその制御方法 |
JP5936914B2 (ja) | 2011-08-04 | 2016-06-22 | オリンパス株式会社 | 操作入力装置およびこれを備えるマニピュレータシステム |
JP6000641B2 (ja) | 2011-08-04 | 2016-10-05 | オリンパス株式会社 | マニピュレータシステム |
CN103648425B (zh) * | 2011-08-04 | 2016-10-19 | 奥林巴斯株式会社 | 医疗用机械手和手术支援装置 |
JP5953058B2 (ja) | 2011-08-04 | 2016-07-13 | オリンパス株式会社 | 手術支援装置およびその着脱方法 |
JP6005950B2 (ja) | 2011-08-04 | 2016-10-12 | オリンパス株式会社 | 手術支援装置及びその制御方法 |
JP5931497B2 (ja) | 2011-08-04 | 2016-06-08 | オリンパス株式会社 | 手術支援装置およびその組立方法 |
JP6081061B2 (ja) | 2011-08-04 | 2017-02-15 | オリンパス株式会社 | 手術支援装置 |
JP6021353B2 (ja) | 2011-08-04 | 2016-11-09 | オリンパス株式会社 | 手術支援装置 |
EP2740433B1 (en) | 2011-08-04 | 2016-04-27 | Olympus Corporation | Surgical implement and medical treatment manipulator |
JP5841451B2 (ja) | 2011-08-04 | 2016-01-13 | オリンパス株式会社 | 手術器具およびその制御方法 |
US10866783B2 (en) * | 2011-08-21 | 2020-12-15 | Transenterix Europe S.A.R.L. | Vocally activated surgical control system |
US9387048B2 (en) | 2011-10-14 | 2016-07-12 | Intuitive Surgical Operations, Inc. | Catheter sensor systems |
WO2013056006A2 (en) * | 2011-10-14 | 2013-04-18 | Intuitive Surgical Operations, Inc. | Catheter systems |
US9452276B2 (en) | 2011-10-14 | 2016-09-27 | Intuitive Surgical Operations, Inc. | Catheter with removable vision probe |
US20130303944A1 (en) | 2012-05-14 | 2013-11-14 | Intuitive Surgical Operations, Inc. | Off-axis electromagnetic sensor |
US10238837B2 (en) | 2011-10-14 | 2019-03-26 | Intuitive Surgical Operations, Inc. | Catheters with control modes for interchangeable probes |
KR101828452B1 (ko) * | 2012-01-05 | 2018-02-12 | 삼성전자주식회사 | 서보 제어 장치 및 그 제어 방법 |
WO2013123310A1 (en) | 2012-02-15 | 2013-08-22 | Intuitive Surgical Operations, Inc. | User selection of robotic system operating modes using mode distinguishing operator actions |
CN104321024B (zh) | 2012-03-28 | 2017-05-24 | 伊西康内外科公司 | 包括多个层的组织厚度补偿件 |
BR112014024098B1 (pt) | 2012-03-28 | 2021-05-25 | Ethicon Endo-Surgery, Inc. | cartucho de grampos |
JP6301314B2 (ja) | 2012-04-26 | 2018-03-28 | シェイパー ツールズ, インク.Shaper Tools, Inc. | 材料に作業を実行するため又は材料の表面に対する装置の位置を特定するためのシステム及び方法 |
KR101372189B1 (ko) * | 2012-04-27 | 2014-03-07 | 한양대학교 에리카산학협력단 | 수술도구의 위치변경이 가능한 수술로봇 |
KR101691277B1 (ko) * | 2012-04-27 | 2016-12-29 | 쿠카 레보라토리즈 게엠베하 | 외과용 로봇 시스템 |
US9326823B2 (en) * | 2012-05-02 | 2016-05-03 | University Of Maryland, College Park | Real-time tracking and navigation system and method for minimally invasive surgical procedures |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
BR112014032776B1 (pt) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
US11202631B2 (en) | 2012-06-28 | 2021-12-21 | Cilag Gmbh International | Stapling assembly comprising a firing lockout |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
EP2866686A1 (en) | 2012-06-28 | 2015-05-06 | Ethicon Endo-Surgery, Inc. | Empty clip cartridge lockout |
US20140005678A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Rotary drive arrangements for surgical instruments |
EP2877097A4 (en) | 2012-07-27 | 2016-04-13 | Univ Leland Stanford Junior | MANIPULATION OF IMAGING SENSOR IN MEDICAL PROCEDURES |
KR102145801B1 (ko) * | 2012-08-15 | 2020-08-28 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 수술용 장착 플랫폼의 사용자 개시 브레이크-어웨이 클러칭 |
KR102255642B1 (ko) * | 2012-08-15 | 2021-05-25 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 로봇 암의 수동식 운동에 의해 제어되는 이동가능한 수술용 장착 플랫폼 |
WO2014043697A2 (en) | 2012-09-17 | 2014-03-20 | Omniguide, Inc. | Devices and methods for laser surgery |
FR3002047B1 (fr) * | 2013-02-08 | 2015-02-27 | Inst Nat Rech Inf Automat | Procede de commande d'un robot deformable, module et programme d'ordinateur associes |
US10507066B2 (en) | 2013-02-15 | 2019-12-17 | Intuitive Surgical Operations, Inc. | Providing information of tools by filtering image areas adjacent to or on displayed images of the tools |
BR112015021098B1 (pt) | 2013-03-01 | 2022-02-15 | Ethicon Endo-Surgery, Inc | Cobertura para uma junta de articulação e instrumento cirúrgico |
MX364729B (es) | 2013-03-01 | 2019-05-06 | Ethicon Endo Surgery Inc | Instrumento quirúrgico con una parada suave. |
CN104219991B (zh) * | 2013-03-08 | 2016-07-13 | 奥林巴斯株式会社 | 内窥镜的目镜装置以及内窥镜 |
US9649765B2 (en) | 2013-03-11 | 2017-05-16 | Siemens Aktiengesellschaft | Reducing energy consumption of industrial robots by using new methods for motion path programming |
KR20140112207A (ko) * | 2013-03-13 | 2014-09-23 | 삼성전자주식회사 | 증강현실 영상 표시 시스템 및 이를 포함하는 수술 로봇 시스템 |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
AU2014228789A1 (en) * | 2013-03-15 | 2015-10-29 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US10105149B2 (en) | 2013-03-15 | 2018-10-23 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
EP2969407B1 (en) * | 2013-03-15 | 2022-11-02 | Intuitive Surgical Operations, Inc. | System for managing multiple null-space objectives and sli behaviors |
KR102188100B1 (ko) * | 2013-03-15 | 2020-12-07 | 삼성전자주식회사 | 로봇 및 그 제어방법 |
KR102257034B1 (ko) | 2013-03-15 | 2021-05-28 | 에스알아이 인터내셔널 | 하이퍼덱스트러스 수술 시스템 |
WO2014156250A1 (ja) * | 2013-03-29 | 2014-10-02 | オリンパス株式会社 | マスタスレーブシステム |
KR20140121581A (ko) * | 2013-04-08 | 2014-10-16 | 삼성전자주식회사 | 수술 로봇 시스템 |
US9814460B2 (en) | 2013-04-16 | 2017-11-14 | Ethicon Llc | Modular motor driven surgical instruments with status indication arrangements |
BR112015026109B1 (pt) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | Instrumento cirúrgico |
DE102013206911A1 (de) * | 2013-04-17 | 2014-10-23 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zur stereoskopischen Darstellung von Bilddaten |
KR20140129702A (ko) * | 2013-04-30 | 2014-11-07 | 삼성전자주식회사 | 수술 로봇 시스템 및 그 제어방법 |
US11627865B2 (en) | 2013-05-31 | 2023-04-18 | Freshwater Bay Industries, Llc | Vaginal surgical apparatus |
US11154327B2 (en) | 2013-05-31 | 2021-10-26 | Freshwater Bay Industries, Llc | Vaginal surgical apparatus |
US20160278810A1 (en) | 2013-05-31 | 2016-09-29 | Mark Edmund Richey | Vaginal surgical apparatus |
KR20150017129A (ko) * | 2013-08-06 | 2015-02-16 | 삼성전자주식회사 | 수술 로봇 시스템 및 그 제어 방법 |
JP6382310B2 (ja) | 2013-08-09 | 2018-08-29 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 複数の遠位に収容されるモータを制御する遠隔電流コントローラを備える医療ロボットシステム |
JP6416260B2 (ja) | 2013-08-23 | 2018-10-31 | エシコン エルエルシー | 動力付き外科用器具のための発射部材後退装置 |
US9283054B2 (en) | 2013-08-23 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Interactive displays |
US10744646B2 (en) | 2013-08-29 | 2020-08-18 | Wayne State University | Camera control system and method |
WO2015055413A1 (en) | 2013-10-16 | 2015-04-23 | Koninklijke Philips N.V. | Interventional system |
US20150157408A1 (en) * | 2013-12-09 | 2015-06-11 | Stereotaxis, Inc. | Method and apparatus for automated control and multidimensional positioning of multiple localized medical devices with a single interventional remote navigation system |
EP3079608B8 (en) | 2013-12-11 | 2020-04-01 | Covidien LP | Wrist and jaw assemblies for robotic surgical systems |
US10687909B2 (en) | 2014-01-24 | 2020-06-23 | Koninklijke Philips N.V. | Robotic control of imaging devices with optical shape sensing |
US10945796B2 (en) * | 2014-02-12 | 2021-03-16 | Koninklijke Philips N.V. | Robotic control of surgical instrument visibility |
JP6218631B2 (ja) * | 2014-02-18 | 2017-10-25 | オリンパス株式会社 | マニピュレータ装置の作動方法 |
KR102412804B1 (ko) | 2014-03-17 | 2022-06-24 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 운동 범위 한계를 피하기 위한 자동 푸시 아웃 |
WO2015142947A1 (en) * | 2014-03-17 | 2015-09-24 | Intuitive Surgical Operations, Inc. | System and method for aligning with a reference target |
CN106132335B (zh) * | 2014-03-17 | 2019-08-30 | 直观外科手术操作公司 | 控制手术装配结构中的欠驱动关节的运动的方法 |
CN110236682B (zh) | 2014-03-17 | 2022-11-01 | 直观外科手术操作公司 | 用于对成像装置和输入控制装置重定中心的系统和方法 |
JP6872904B2 (ja) | 2014-03-17 | 2021-05-19 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 逆運動学を用いた関節制限における制御の遠隔操作手術システム及び方法 |
US9922144B2 (en) | 2014-03-26 | 2018-03-20 | Siemens Industry Software Ltd. | Energy and cycle time efficiency based method for robot positioning |
BR112016021943B1 (pt) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | Instrumento cirúrgico para uso por um operador em um procedimento cirúrgico |
US9826977B2 (en) | 2014-03-26 | 2017-11-28 | Ethicon Llc | Sterilization verification circuit |
JP6938369B2 (ja) * | 2014-03-28 | 2021-09-22 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 定量的な3次元イメージングに基づく触覚フィードバックを用いる手術システム |
US11266465B2 (en) | 2014-03-28 | 2022-03-08 | Intuitive Surgical Operations, Inc. | Quantitative three-dimensional visualization of instruments in a field of view |
EP3492036B1 (en) * | 2014-04-01 | 2024-05-01 | Intuitive Surgical Operations, Inc. | Control input accuracy for teleoperated surgical instrument |
BR112016023825B1 (pt) | 2014-04-16 | 2022-08-02 | Ethicon Endo-Surgery, Llc | Cartucho de grampos para uso com um grampeador cirúrgico e cartucho de grampos para uso com um instrumento cirúrgico |
US20150297225A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
JP6532889B2 (ja) | 2014-04-16 | 2019-06-19 | エシコン エルエルシーEthicon LLC | 締結具カートリッジ組立体及びステープル保持具カバー配置構成 |
US10426476B2 (en) | 2014-09-26 | 2019-10-01 | Ethicon Llc | Circular fastener cartridges for applying radially expandable fastener lines |
BR112016023698B1 (pt) | 2014-04-16 | 2022-07-26 | Ethicon Endo-Surgery, Llc | Cartucho de prendedores para uso com um instrumento cirúrgico |
US10743750B2 (en) | 2014-04-28 | 2020-08-18 | Massachusetts Institute Of Technology | Multi-link modular continuum robotic endoscope system |
WO2015171614A1 (en) | 2014-05-05 | 2015-11-12 | Vicarious Surgical Inc. | Virtual reality surgical device |
US9701011B2 (en) | 2014-05-08 | 2017-07-11 | Siemens Industry Software Ltd. | Method for robotic energy saving tool search |
JP6715823B2 (ja) * | 2014-07-15 | 2020-07-01 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | X線スイートにおける画像統合及びロボット内視鏡制御 |
USD779678S1 (en) | 2014-07-24 | 2017-02-21 | KindHeart, Inc. | Surgical tray |
JP6246093B2 (ja) * | 2014-07-25 | 2017-12-13 | オリンパス株式会社 | 処置具及び処置具システム |
US9469029B2 (en) | 2014-07-31 | 2016-10-18 | Siemens Industry Software Ltd. | Method and apparatus for saving energy and reducing cycle time by optimal ordering of the industrial robotic path |
US9815201B2 (en) | 2014-07-31 | 2017-11-14 | Siemens Industry Software Limited | Method and apparatus for industrial robotic energy saving optimization using fly-by |
US10759634B2 (en) * | 2014-08-08 | 2020-09-01 | GM Global Technology Operations LLC | Electromechanical system for interaction with an operator |
JP6734259B2 (ja) | 2014-08-13 | 2020-08-05 | コヴィディエン リミテッド パートナーシップ | 機械的利益把握のロボット制御 |
US9457469B2 (en) * | 2014-08-14 | 2016-10-04 | Siemens Industry Software Ltd. | Method and apparatus for automatic and efficient location generation for cooperative motion |
US10710246B2 (en) | 2014-08-15 | 2020-07-14 | Intuitive Surgical Operations, Inc. | Surgical system with variable entry guide configurations |
SI3188645T1 (sl) * | 2014-09-04 | 2020-08-31 | Memic Innovative Surgery Ltd. | Naprava in sistem, ki vključuje mehanske roke |
WO2016035406A1 (ja) * | 2014-09-05 | 2016-03-10 | オリンパス株式会社 | 内視鏡システム |
BR112017004361B1 (pt) | 2014-09-05 | 2023-04-11 | Ethicon Llc | Sistema eletrônico para um instrumento cirúrgico |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
US20160066913A1 (en) | 2014-09-05 | 2016-03-10 | Ethicon Endo-Surgery, Inc. | Local display of tissue parameter stabilization |
EP3193768A4 (en) | 2014-09-17 | 2018-05-09 | Intuitive Surgical Operations, Inc. | Systems and methods for utilizing augmented jacobian to control manipulator joint movement |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
CN107427300B (zh) | 2014-09-26 | 2020-12-04 | 伊西康有限责任公司 | 外科缝合支撑物和辅助材料 |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
JP6682512B2 (ja) | 2014-10-27 | 2020-04-15 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 一体化された手術台のシステム及び方法 |
KR102460203B1 (ko) | 2014-10-27 | 2022-10-31 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 통합 수술 테이블 아이콘을 위한 시스템 및 방법 |
EP3212105A4 (en) | 2014-10-27 | 2018-07-11 | Intuitive Surgical Operations, Inc. | System and method for monitoring control points during reactive motion |
CN115444567A (zh) | 2014-10-27 | 2022-12-09 | 直观外科手术操作公司 | 用于器械干扰补偿的系统和方法 |
CN107072729B (zh) | 2014-10-27 | 2020-03-20 | 直观外科手术操作公司 | 用于集成的手术台运动的系统和方法 |
CN107072864B (zh) | 2014-10-27 | 2019-06-14 | 直观外科手术操作公司 | 用于配准到手术台的系统及方法 |
CN107072727B (zh) | 2014-10-27 | 2020-01-24 | 直观外科手术操作公司 | 具有主动制动器释放控制装置的医疗装置 |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
CA2968609C (en) * | 2014-12-11 | 2017-09-26 | Titan Medical Inc. | Actuator and drive for manipulating a tool |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
BR112017012996B1 (pt) | 2014-12-18 | 2022-11-08 | Ethicon Llc | Instrumento cirúrgico com uma bigorna que é seletivamente móvel sobre um eixo geométrico imóvel distinto em relação a um cartucho de grampos |
US10245027B2 (en) | 2014-12-18 | 2019-04-02 | Ethicon Llc | Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US10232506B2 (en) * | 2014-12-26 | 2019-03-19 | Kawasaki Jukogyo Kabushiki Kaisha | Production system |
US10514687B2 (en) | 2015-01-08 | 2019-12-24 | Rethink Robotics Gmbh | Hybrid training with collaborative and conventional robots |
WO2016125398A1 (ja) * | 2015-02-03 | 2016-08-11 | オリンパス株式会社 | 医療用マニピュレータシステムとその制御方法 |
FR3032346B1 (fr) * | 2015-02-05 | 2021-10-15 | Univ Pierre Et Marie Curie Paris 6 | Procede d'assistance a la manipulation d'un instrument |
WO2016133633A1 (en) | 2015-02-19 | 2016-08-25 | Covidien Lp | Repositioning method of input device for robotic surgical system |
EP3261574A4 (en) * | 2015-02-26 | 2018-10-31 | Covidien LP | Robotically controlling remote center of motion with software and guide tube |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
JP2020121162A (ja) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | 測定の安定性要素、クリープ要素、及び粘弾性要素を決定するためのセンサデータの時間依存性評価 |
CA2977413A1 (en) | 2015-03-10 | 2016-09-15 | Covidien Lp | Measuring health of a connector member of a robotic surgical system |
US10213201B2 (en) | 2015-03-31 | 2019-02-26 | Ethicon Llc | Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw |
KR20170132737A (ko) * | 2015-04-02 | 2017-12-04 | 아지토 모션 시스템즈 엘티디 | 모션 관련 제어 시스템을 위한 중앙집중형 네트워크 연결된 토폴로지 |
US20180110406A1 (en) * | 2015-04-21 | 2018-04-26 | Swati SARNAIK | Three dimensional vision system for interventional surgery |
US20160314716A1 (en) | 2015-04-27 | 2016-10-27 | KindHeart, Inc. | Telerobotic surgery system for remote surgeon training using remote surgery station and party conferencing and associated methods |
EP3657279B1 (en) | 2015-05-13 | 2023-03-29 | Shaper Tools, Inc. | Systems, methods and apparatus for guided tools |
US10376335B2 (en) * | 2015-05-20 | 2019-08-13 | Siemens Healthcare Gmbh | Method and apparatus to provide updated patient images during robotic surgery |
US9622831B2 (en) * | 2015-05-20 | 2017-04-18 | Siemens Healthcare Gmbh | Method and apparatus to provide updated patient images during robotic surgery |
EP3302335A4 (en) | 2015-06-03 | 2019-02-20 | Covidien LP | OFFSET INSTRUMENT DRIVE UNIT |
WO2016201207A1 (en) * | 2015-06-10 | 2016-12-15 | Intuitive Surgical Operations, Inc. | Master-to-slave orientation mapping when misaligned |
EP3311181B1 (en) | 2015-06-16 | 2020-03-11 | Covidien LP | Robotic surgical system torque transduction sensing |
CN107708598A (zh) * | 2015-06-18 | 2018-02-16 | 奥林巴斯株式会社 | 医疗系统 |
CA2987643A1 (en) * | 2015-06-19 | 2016-12-22 | Covidien Lp | Robotic surgical assemblies |
AU2016284040B2 (en) | 2015-06-23 | 2020-04-30 | Covidien Lp | Robotic surgical assemblies |
EP3326566A4 (en) * | 2015-07-23 | 2019-07-03 | Olympus Corporation | MEDICAL SYSTEM AND METHOD FOR OPERATING IT |
EP3326510A4 (en) | 2015-07-23 | 2019-04-17 | Olympus Corporation | MANIPULATOR AND MEDICAL SYSTEM |
KR102039077B1 (ko) * | 2015-08-25 | 2019-11-01 | 카와사키 주코교 카부시키 카이샤 | 원격조작 로봇시스템 및 그 운전방법 |
CA2957362A1 (en) | 2015-09-04 | 2017-03-04 | Memic Innovative Surgery Ltd. | Actuation of a device comprising mechanical arms |
WO2017048922A1 (en) | 2015-09-16 | 2017-03-23 | KindHeart, Inc. | Surgical simulation system and associated methods |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
WO2017053363A1 (en) | 2015-09-25 | 2017-03-30 | Covidien Lp | Robotic surgical assemblies and instrument drive connectors thereof |
US11045273B2 (en) | 2015-09-25 | 2021-06-29 | Covidien Lp | Elastic surgical interface for robotic surgical systems |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
US10271849B2 (en) | 2015-09-30 | 2019-04-30 | Ethicon Llc | Woven constructs with interlocked standing fibers |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10307160B2 (en) | 2015-09-30 | 2019-06-04 | Ethicon Llc | Compressible adjunct assemblies with attachment layers |
WO2017059412A1 (en) * | 2015-10-02 | 2017-04-06 | Vanderbilt University | Concentric tube robot |
EP3878396A1 (en) | 2015-10-23 | 2021-09-15 | Covidien LP | Surgical system for detecting gradual changes in perfusion |
US10660714B2 (en) | 2015-11-19 | 2020-05-26 | Covidien Lp | Optical force sensor for robotic surgical system |
DE102015223921A1 (de) * | 2015-12-01 | 2017-06-01 | Siemens Healthcare Gmbh | Verfahren zum Betreiben eines medizinisch-robotischen Geräts sowie medizinisch-robotisches Gerät |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US9872738B2 (en) * | 2016-01-06 | 2018-01-23 | Ethicon Endo-Surgery, Llc | Methods, systems, and devices for control of surgical tools in a robotic surgical system |
JP2019503218A (ja) * | 2016-01-12 | 2019-02-07 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 制御状態同士の間の段階的な力フィードバック移行 |
US11376087B2 (en) | 2016-01-12 | 2022-07-05 | Intuitive Surgical Operations, Inc. | Uniform scaling of haptic actuators |
ITUB20169976A1 (it) * | 2016-01-14 | 2017-07-14 | Comau Spa | Sistema per il controllo assistito da robot di una sonda transrettale, ad esempio per impiego nell'esecuzione di una ecografia prostatica |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
JP6911054B2 (ja) | 2016-02-09 | 2021-07-28 | エシコン エルエルシーEthicon LLC | 非対称の関節構成を備えた外科用器具 |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10617481B2 (en) | 2016-03-09 | 2020-04-14 | Memic Innovative Surgey Ltd. | Modular device comprising mechanical arms |
US10213916B2 (en) * | 2016-03-23 | 2019-02-26 | Seiko Epson Corporation | Control apparatus and robot system |
CN109152519A (zh) * | 2016-03-31 | 2019-01-04 | 索尼奥林巴斯医疗解决方案公司 | 医疗观察装置、图像移动校正方法、及医疗观察系统 |
WO2017173524A1 (en) | 2016-04-07 | 2017-10-12 | Titan Medical Inc. | Camera positioning method and apparatus for capturing images during a medical procedure |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US10932856B2 (en) * | 2016-04-15 | 2021-03-02 | Kawasaki Jukogyo Kabushiki Kaisha | Surgical system control method and surgical system |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10433840B2 (en) | 2016-04-18 | 2019-10-08 | Ethicon Llc | Surgical instrument comprising a replaceable cartridge jaw |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
WO2017189317A1 (en) | 2016-04-26 | 2017-11-02 | KindHeart, Inc. | Telerobotic surgery system for remote surgeon training using robotic surgery station and remote surgeon station and an animating device |
US10736219B2 (en) | 2016-05-26 | 2020-08-04 | Covidien Lp | Instrument drive units |
US11547508B2 (en) | 2016-05-26 | 2023-01-10 | Covidien Lp | Robotic surgical assemblies |
US10874470B2 (en) | 2016-06-03 | 2020-12-29 | Covidien Lp | Passive axis system for robotic surgical systems |
EP3463163A4 (en) | 2016-06-03 | 2020-02-12 | Covidien LP | ROBOTIC SURGICAL SYSTEM WITH AN EMBEDDED IMAGER |
US11446099B2 (en) | 2016-06-03 | 2022-09-20 | Covidien Lp | Control arm for robotic surgical systems |
EP3463162A4 (en) | 2016-06-03 | 2020-06-24 | Covidien LP | SYSTEMS, METHODS AND COMPUTER READABLE PROGRAM PRODUCTS FOR CONTROLLING A ROBOT CONTROLLED MANIPULATOR |
JP6760370B2 (ja) * | 2016-06-09 | 2020-09-23 | 株式会社島津製作所 | 近赤外線イメージング装置 |
US10245112B2 (en) | 2016-06-27 | 2019-04-02 | Corindus, Inc. | Interlocking system and method for joysticks in a catheter procedure system |
CN109195544B (zh) | 2016-07-14 | 2021-07-20 | 直观外科手术操作公司 | 计算机辅助式远程操作系统中的次级器械控制 |
EP4375773A3 (en) | 2016-08-19 | 2024-07-17 | Shaper Tools, Inc. | Apparatus and method for guiding a tool positioned on the surface of a piece of material |
WO2018041197A1 (zh) * | 2016-08-31 | 2018-03-08 | 北京术锐技术有限公司 | 手术机器人的成像工具与手术工具展开实施、退出方法 |
CN106377316B (zh) * | 2016-09-18 | 2020-07-14 | 上海交通大学 | 一种甲状腺微创外科手术操作装备 |
US10099368B2 (en) | 2016-10-25 | 2018-10-16 | Brandon DelSpina | System for controlling light and for tracking tools in a three-dimensional space |
CN110114046B (zh) | 2016-11-28 | 2021-07-13 | 威博外科公司 | 减少非期望的振动的机器人外科系统 |
CN110049742B (zh) * | 2016-12-07 | 2023-01-03 | 皇家飞利浦有限公司 | 用于机器人控制的图像引导的运动缩放 |
US10918385B2 (en) | 2016-12-21 | 2021-02-16 | Ethicon Llc | Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system |
US10617414B2 (en) | 2016-12-21 | 2020-04-14 | Ethicon Llc | Closure member arrangements for surgical instruments |
JP6983893B2 (ja) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | 外科用エンドエフェクタ及び交換式ツールアセンブリのためのロックアウト構成 |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
BR112019011947A2 (pt) | 2016-12-21 | 2019-10-29 | Ethicon Llc | sistemas de grampeamento cirúrgico |
US20180168579A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical end effector with two separate cooperating opening features for opening and closing end effector jaws |
US20180168625A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with smart staple cartridges |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
JP7010956B2 (ja) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | 組織をステープル留めする方法 |
CN110114014B (zh) | 2016-12-21 | 2022-08-09 | 爱惜康有限责任公司 | 包括端部执行器闭锁件和击发组件闭锁件的外科器械系统 |
US11160551B2 (en) | 2016-12-21 | 2021-11-02 | Cilag Gmbh International | Articulatable surgical stapling instruments |
US10624635B2 (en) | 2016-12-21 | 2020-04-21 | Ethicon Llc | Firing members with non-parallel jaw engagement features for surgical end effectors |
US10537325B2 (en) | 2016-12-21 | 2020-01-21 | Ethicon Llc | Staple forming pocket arrangement to accommodate different types of staples |
CN108261167B (zh) * | 2017-01-03 | 2019-12-03 | 上银科技股份有限公司 | 内视镜操控系统 |
WO2018148394A1 (en) | 2017-02-09 | 2018-08-16 | Vicarious Surgical Inc. | Virtual reality surgical tools system |
EP3582708A4 (en) | 2017-02-15 | 2020-12-23 | Covidien LP | CRUSH PREVENTION SYSTEM AND DEVICE FOR MEDICAL ROBOTIC APPLICATIONS |
DE102017103721B4 (de) * | 2017-02-23 | 2022-07-21 | Karl Storz Se & Co. Kg | Vorrichtung zur Erfassung eines Stereobilds mit einer rotierbaren Blickrichtungseinrichtung |
US10813710B2 (en) | 2017-03-02 | 2020-10-27 | KindHeart, Inc. | Telerobotic surgery system using minimally invasive surgical tool with variable force scaling and feedback and relayed communications between remote surgeon and surgery station |
CN117885097A (zh) * | 2017-03-07 | 2024-04-16 | 直观外科手术操作公司 | 用于控制具有可铰接远侧部分的工具的系统和方法 |
US10973592B2 (en) | 2017-03-09 | 2021-04-13 | Memie Innovative Surgery Ltd. | Control console for surgical device with mechanical arms |
US11779410B2 (en) | 2017-03-09 | 2023-10-10 | Momentis Surgical Ltd | Control console including an input arm for control of a surgical mechanical arm |
US10368955B2 (en) * | 2017-03-31 | 2019-08-06 | Johnson & Johnson Innovation-Jjdc, Inc. | Multi-functional foot pedal assembly for controlling a robotic surgical system |
WO2018209042A2 (en) | 2017-05-10 | 2018-11-15 | Mako Surgical Corp. | Robotic spine surgery system and methods |
US11033341B2 (en) | 2017-05-10 | 2021-06-15 | Mako Surgical Corp. | Robotic spine surgery system and methods |
WO2018209518A1 (en) * | 2017-05-15 | 2018-11-22 | Bio-Medical Engineering (HK) Limited | Systems, devices, and methods for performing surgical actions via externally driven driving assemblies |
US10792119B2 (en) | 2017-05-22 | 2020-10-06 | Ethicon Llc | Robotic arm cart and uses therefor |
US10806532B2 (en) | 2017-05-24 | 2020-10-20 | KindHeart, Inc. | Surgical simulation system using force sensing and optical tracking and robotic surgery system |
US11717361B2 (en) | 2017-05-24 | 2023-08-08 | Covidien Lp | Electrosurgical robotic system having tool presence detection |
JP2020520745A (ja) | 2017-05-25 | 2020-07-16 | コヴィディエン リミテッド パートナーシップ | 自動誘導付きロボット外科システム |
US11553974B2 (en) | 2017-05-25 | 2023-01-17 | Covidien Lp | Systems and methods for detection of objects within a field of view of an image capture device |
US11510747B2 (en) | 2017-05-25 | 2022-11-29 | Covidien Lp | Robotic surgical systems and drapes for covering components of robotic surgical systems |
US10856948B2 (en) | 2017-05-31 | 2020-12-08 | Verb Surgical Inc. | Cart for robotic arms and method and apparatus for registering cart to surgical table |
US10485623B2 (en) | 2017-06-01 | 2019-11-26 | Verb Surgical Inc. | Robotic arm cart with fine position adjustment features and uses therefor |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10913145B2 (en) | 2017-06-20 | 2021-02-09 | Verb Surgical Inc. | Cart for robotic arms and method and apparatus for cartridge or magazine loading of arms |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US11090049B2 (en) | 2017-06-27 | 2021-08-17 | Cilag Gmbh International | Staple forming pocket arrangements |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
US11083455B2 (en) | 2017-06-28 | 2021-08-10 | Cilag Gmbh International | Surgical instrument comprising an articulation system ratio |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US11478242B2 (en) | 2017-06-28 | 2022-10-25 | Cilag Gmbh International | Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw |
EP4070740A1 (en) | 2017-06-28 | 2022-10-12 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US11419998B2 (en) * | 2017-06-30 | 2022-08-23 | Valam Corporation | Device for securing airway and ventilation during robotic surgery of the head and neck |
CN110996825B (zh) * | 2017-07-13 | 2023-12-05 | 直观外科手术操作公司 | 用于在多个器械臂之间切换控制权的系统和方法 |
EP3658057B1 (en) * | 2017-07-27 | 2023-08-30 | Intuitive Surgical Operations, Inc. | Association systems for manipulators |
EP3658059A4 (en) | 2017-07-27 | 2020-07-15 | Intuitive Surgical Operations Inc. | ASSIGNMENT METHOD AND RELATED SYSTEMS FOR MANIPULATORS |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US12029512B2 (en) | 2017-08-10 | 2024-07-09 | Intuitive Surgical Operations, Inc. | Increased usable instrument life in telesurgical systems |
US20200170731A1 (en) * | 2017-08-10 | 2020-06-04 | Intuitive Surgical Operations, Inc. | Systems and methods for point of interaction displays in a teleoperational assembly |
US10772703B2 (en) * | 2017-08-25 | 2020-09-15 | Titan Medical Inc. | Methods and apparatuses for positioning a camera of a surgical robotic system to capture images inside a body cavity of a patient during a medical procedure |
EP3678582A4 (en) | 2017-09-05 | 2021-06-02 | Covidien LP | CAMERA CONTROL FOR SURGICAL ROBOTIC SYSTEMS |
US11628022B2 (en) | 2017-09-05 | 2023-04-18 | Covidien Lp | Collision handling algorithms for robotic surgical systems |
WO2019050878A2 (en) | 2017-09-06 | 2019-03-14 | Covidien Lp | SCALE OF LIMITS OF SURGICAL ROBOTS |
WO2019051005A1 (en) * | 2017-09-08 | 2019-03-14 | Covidien Lp | HIGH PRECISION INSTRUMENT CONTROL MODE FOR ROBOTIC SURGICAL SYSTEMS |
CN111655115B (zh) | 2017-09-14 | 2023-10-13 | 维卡瑞斯外科手术股份有限公司 | 虚拟现实外科手术摄像机系统 |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
EP3691555A4 (en) | 2017-10-02 | 2021-07-14 | Intuitive Surgical Operations, Inc. | END EFFECTOR FORCE FEEDBACK TO A HIGHER-LEVEL CONTROL |
WO2019083886A1 (en) | 2017-10-25 | 2019-05-02 | Intuitive Surgical Operations, Inc. | SYSTEM AND METHOD FOR REPOSITIONING INPUT CONTROL DEVICES |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11819231B2 (en) | 2017-10-30 | 2023-11-21 | Cilag Gmbh International | Adaptive control programs for a surgical system comprising more than one type of cartridge |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11406390B2 (en) | 2017-10-30 | 2022-08-09 | Cilag Gmbh International | Clip applier comprising interchangeable clip reloads |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
EP3709921A1 (en) * | 2017-11-13 | 2020-09-23 | Koninklijke Philips N.V. | Multi-stage robot for anatomical structure interventions |
KR102482611B1 (ko) | 2017-11-14 | 2022-12-30 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 분할 브리지 회로 힘 센서 |
US10675107B2 (en) | 2017-11-15 | 2020-06-09 | Intuitive Surgical Operations, Inc. | Surgical instrument end effector with integral FBG |
US12029523B2 (en) | 2017-12-01 | 2024-07-09 | Covidien Lp | Drape management assembly for robotic surgical systems |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US10743868B2 (en) | 2017-12-21 | 2020-08-18 | Ethicon Llc | Surgical instrument comprising a pivotable distal head |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
US11612444B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Adjustment of a surgical device function based on situational awareness |
US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
US12127729B2 (en) | 2017-12-28 | 2024-10-29 | Cilag Gmbh International | Method for smoke evacuation for surgical hub |
US20190201087A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Smoke evacuation system including a segmented control circuit for interactive surgical platform |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
US11013563B2 (en) | 2017-12-28 | 2021-05-25 | Ethicon Llc | Drive arrangements for robot-assisted surgical platforms |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
US20190201042A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Determining the state of an ultrasonic electromechanical system according to frequency shift |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US10695081B2 (en) | 2017-12-28 | 2020-06-30 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US11045591B2 (en) | 2017-12-28 | 2021-06-29 | Cilag Gmbh International | Dual in-series large and small droplet filters |
US11026751B2 (en) | 2017-12-28 | 2021-06-08 | Cilag Gmbh International | Display of alignment of staple cartridge to prior linear staple line |
US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
US10595887B2 (en) | 2017-12-28 | 2020-03-24 | Ethicon Llc | Systems for adjusting end effector parameters based on perioperative information |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
WO2019133143A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical hub and modular device response adjustment based on situational awareness |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US20190201039A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Situational awareness of electrosurgical systems |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US20190201118A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Display arrangements for robot-assisted surgical platforms |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11234781B2 (en) * | 2017-12-31 | 2022-02-01 | Asensus Surgical Us, Inc. | Dynamic control of surgical instruments in a surgical robotic system |
CN111556735A (zh) | 2018-01-04 | 2020-08-18 | 柯惠Lp公司 | 将手术配件安装至机器人手术系统并且提供穿过其的通路的系统和组件 |
CN108186121B (zh) * | 2018-01-08 | 2020-09-11 | 苏风波 | 一种外科随动机器手臂 |
WO2019139949A1 (en) | 2018-01-10 | 2019-07-18 | Covidien Lp | Determining positions and conditions of tools of a robotic surgical system utilizing computer vision |
JP7463277B2 (ja) * | 2018-01-17 | 2024-04-08 | オーリス ヘルス インコーポレイテッド | 改善されたロボットアームを有する外科用ロボットシステム |
JP7541481B2 (ja) | 2018-01-26 | 2024-08-28 | マコ サージカル コーポレーション | 手術ロボットで案内されたプロテーゼ嵌入のためのエンドエフェクタおよびシステム |
US12102403B2 (en) | 2018-02-02 | 2024-10-01 | Coviden Lp | Robotic surgical systems with user engagement monitoring |
KR102690164B1 (ko) * | 2018-02-13 | 2024-08-02 | 아우리스 헬스, 인코포레이티드 | 의료 기구를 구동시키기 위한 시스템 및 방법 |
US11189379B2 (en) | 2018-03-06 | 2021-11-30 | Digital Surgery Limited | Methods and systems for using multiple data structures to process surgical data |
US11986233B2 (en) | 2018-03-08 | 2024-05-21 | Cilag Gmbh International | Adjustment of complex impedance to compensate for lost power in an articulating ultrasonic device |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11389188B2 (en) | 2018-03-08 | 2022-07-19 | Cilag Gmbh International | Start temperature of blade |
CN111787880A (zh) | 2018-03-08 | 2020-10-16 | 柯惠Lp公司 | 手术机器人系统 |
US11589865B2 (en) | 2018-03-28 | 2023-02-28 | Cilag Gmbh International | Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
US11129611B2 (en) | 2018-03-28 | 2021-09-28 | Cilag Gmbh International | Surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
EP3774195A4 (en) | 2018-03-29 | 2021-05-12 | Intuitive Surgical Operations, Inc. | JOINT WITH DOUBLE BRAKE |
JP7246751B2 (ja) * | 2018-04-15 | 2023-03-28 | 国立大学法人 筑波大学 | 行動推定装置、行動推定方法、および行動推定プログラム |
EP3781073A4 (en) | 2018-04-20 | 2022-01-26 | Covidien LP | COMPENSATION OF OBSERVER MOTION IN ROBOTIC SURGICAL SYSTEMS WITH STEREOSCOPIC DISPLAYS |
US11986261B2 (en) | 2018-04-20 | 2024-05-21 | Covidien Lp | Systems and methods for surgical robotic cart placement |
JP7085400B2 (ja) * | 2018-04-27 | 2022-06-16 | 川崎重工業株式会社 | 外科手術システム |
JP7085401B2 (ja) | 2018-04-27 | 2022-06-16 | 川崎重工業株式会社 | 外科手術システム |
CN111643191B (zh) * | 2018-04-27 | 2021-11-05 | 上海微创医疗机器人(集团)股份有限公司 | 手术机器人系统 |
EP3793465A4 (en) | 2018-05-18 | 2022-03-02 | Auris Health, Inc. | CONTROL DEVICES FOR ROBOTIC ACTIVATION REMOTE CONTROL SYSTEMS |
US11980504B2 (en) | 2018-05-25 | 2024-05-14 | Intuitive Surgical Operations, Inc. | Fiber Bragg grating end effector force sensor |
CN112105312A (zh) | 2018-07-03 | 2020-12-18 | 柯惠Lp公司 | 用于在手术程序期间检测图像退化的系统、方法和计算机可读介质 |
CN108982664B (zh) * | 2018-07-16 | 2020-06-19 | 北京理工大学 | 一种双机械手超声检测方法 |
US10888383B2 (en) | 2018-07-17 | 2021-01-12 | Verb Surgical Inc. | Robotic surgical pedal with integrated foot sensor |
US10503199B1 (en) | 2018-07-17 | 2019-12-10 | Verb Surgical Inc. | Pedal with sliding and locking mechanisms for surgical robots |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
JP6745306B2 (ja) * | 2018-08-28 | 2020-08-26 | 株式会社メディカロイド | アダプタおよび接続方法 |
CN112739282A (zh) | 2018-09-17 | 2021-04-30 | 柯惠Lp公司 | 手术机器人系统 |
WO2020069404A1 (en) | 2018-09-28 | 2020-04-02 | Auris Health, Inc. | Robotic systems and methods for concomitant endoscopic and percutaneous medical procedures |
US10624532B1 (en) | 2018-10-10 | 2020-04-21 | Titan Medical Inc. | Camera positioning system, method, and apparatus for capturing images during a medical procedure |
US11109746B2 (en) | 2018-10-10 | 2021-09-07 | Titan Medical Inc. | Instrument insertion system, method, and apparatus for performing medical procedures |
US12011245B2 (en) * | 2018-10-25 | 2024-06-18 | Tianjin University | Surgical robot mechanism with single-port and multi-port minimally invasive surgery functions |
GB2578791B (en) * | 2018-11-09 | 2022-08-17 | Cmr Surgical Ltd | Haptic control of a surgeon console |
WO2020102778A1 (en) | 2018-11-15 | 2020-05-22 | Intuitive Surgical Operations, Inc. | Strain sensor with contoured deflection surface |
CN109623833A (zh) * | 2018-11-30 | 2019-04-16 | 广州市机电高级技工学校(广州市机电技师学院、广州市机电高级职业技术培训学院) | 救援机器人 |
US11478318B2 (en) | 2018-12-28 | 2022-10-25 | Verb Surgical Inc. | Methods for actively engaging and disengaging teleoperation of a surgical robotic system |
US11586106B2 (en) | 2018-12-28 | 2023-02-21 | Titan Medical Inc. | Imaging apparatus having configurable stereoscopic perspective |
US11607283B2 (en) * | 2019-01-01 | 2023-03-21 | Asensus Surgical Us, Inc. | Dynamic control of surgical instruments in a surgical system using repulsion/attraction modes |
US20200222136A1 (en) * | 2019-01-10 | 2020-07-16 | John M. Abrahams, M.D. | Smart Robot-Assisted Brain & Spine Surgical System |
US11034026B2 (en) * | 2019-01-10 | 2021-06-15 | General Electric Company | Utilizing optical data to dynamically control operation of a snake-arm robot |
GB201901147D0 (en) * | 2019-01-28 | 2019-03-20 | Imperial Innovations Ltd | Trans-oral surgery device |
US11717355B2 (en) | 2019-01-29 | 2023-08-08 | Covidien Lp | Drive mechanisms for surgical instruments such as for use in robotic surgical systems |
KR102188210B1 (ko) | 2019-01-31 | 2020-12-09 | 한국과학기술원 | 위치 조절 암 |
US11576733B2 (en) | 2019-02-06 | 2023-02-14 | Covidien Lp | Robotic surgical assemblies including electrosurgical instruments having articulatable wrist assemblies |
CN114096383B (zh) * | 2019-02-11 | 2024-05-14 | 海别得公司 | 机器人系统中的运动分配 |
US11484372B2 (en) | 2019-02-15 | 2022-11-01 | Covidien Lp | Articulation mechanisms for surgical instruments such as for use in robotic surgical systems |
US11751872B2 (en) | 2019-02-19 | 2023-09-12 | Cilag Gmbh International | Insertable deactivator element for surgical stapler lockouts |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
US11291445B2 (en) | 2019-02-19 | 2022-04-05 | Cilag Gmbh International | Surgical staple cartridges with integral authentication keys |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11202683B2 (en) | 2019-02-22 | 2021-12-21 | Auris Health, Inc. | Surgical platform with motorized arms for adjustable arm supports |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US12090629B2 (en) * | 2019-04-16 | 2024-09-17 | University Of Louisville Research Foundation, Inc. | Adaptive robotic nursing assistant |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
IT201900006657A1 (it) * | 2019-05-08 | 2020-11-08 | Guido Danieli | Robot per chirurgia endovascolare dotato di sistema opto-aptico per misurare e rappresentare le forze che si oppongono all’avanzamento di un catetere o una guida all’interno del sistema endovascolare |
WO2020225839A1 (en) * | 2019-05-08 | 2020-11-12 | Guido Danieli | Opto-haptic system to measure and represent forces opposing catheter or guide wire penetration into the vascular system for robots for endovascular surgery |
US11586291B2 (en) * | 2019-05-12 | 2023-02-21 | NeuroHaptics, Inc. | Motion sickness reduction device |
US11275441B2 (en) * | 2019-05-12 | 2022-03-15 | Neurohaptics, Inc | Motion sickness reduction, directional indication, and neural rehabilitation device |
US11204640B2 (en) | 2019-05-17 | 2021-12-21 | Verb Surgical Inc. | Methods for determining if teleoperation should be disengaged based on the user's gaze |
US11337767B2 (en) | 2019-05-17 | 2022-05-24 | Verb Surgical Inc. | Interlock mechanisms to disengage and engage a teleoperation mode |
US11123146B2 (en) | 2019-05-30 | 2021-09-21 | Titan Medical Inc. | Surgical instrument apparatus, actuator, and drive |
EP3753519A1 (de) * | 2019-06-19 | 2020-12-23 | Karl Storz SE & Co. KG | Medizinische handhabungsvorrichtung zur steuerung einer handhabungsvorrichtung |
US11628020B2 (en) | 2019-06-19 | 2023-04-18 | Virtuoso Surgical, Inc. | Insertable robot for minimally invasive surgery |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
US11625107B2 (en) | 2019-06-27 | 2023-04-11 | Intuitive Surgical Operations, Inc. | System and method for motion mode management |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11853835B2 (en) | 2019-06-28 | 2023-12-26 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11229437B2 (en) | 2019-06-28 | 2022-01-25 | Cilag Gmbh International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
EP3983042A4 (en) | 2019-07-15 | 2023-01-11 | Corindus, Inc. | SYSTEMS AND METHODS FOR A CONTROL STATION FOR ROBOTIC INTERVENTIONAL PROCEDURES USING A VARIETY OF ELONGATED MEDICAL DEVICES |
WO2021015990A1 (en) * | 2019-07-19 | 2021-01-28 | Corindus, Inc. | Load sensing of elongated medical device in robotic actuation |
JP7451686B2 (ja) * | 2019-08-30 | 2024-03-18 | オーリス ヘルス インコーポレイテッド | 器具画像信頼性システム及び方法 |
CN110464472B (zh) * | 2019-09-10 | 2020-12-01 | 深圳市精锋医疗科技有限公司 | 手术机器人及其末端器械的控制方法、控制装置 |
CN110559083B (zh) * | 2019-09-10 | 2020-08-25 | 深圳市精锋医疗科技有限公司 | 手术机器人及其末端器械的控制方法、控制装置 |
WO2021047520A1 (zh) * | 2019-09-10 | 2021-03-18 | 深圳市精锋医疗科技有限公司 | 手术机器人及其末端器械的控制方法、控制装置 |
WO2021055509A2 (en) | 2019-09-17 | 2021-03-25 | Intuitive Surgical Operations, Inc. | Symmetric trimming of strain gauges |
US11958183B2 (en) | 2019-09-19 | 2024-04-16 | The Research Foundation For The State University Of New York | Negotiation-based human-robot collaboration via augmented reality |
US11070762B2 (en) | 2019-10-10 | 2021-07-20 | Titan Medical Inc. | Imaging apparatus for use in a robotic surgery system |
CN115087407A (zh) * | 2019-12-05 | 2022-09-20 | 迈米克创新手术有限公司 | 机械外科手术臂的双重控制 |
US11925347B2 (en) | 2019-12-13 | 2024-03-12 | Dinesh Vyas | Stapler apparatus and methods for use |
US20220008068A1 (en) * | 2019-12-13 | 2022-01-13 | Dinesh Vyas | Stapler apparatus and methods for use |
US20230056943A1 (en) * | 2019-12-13 | 2023-02-23 | Dinesh Vyas | Stapler apparatus and methods for use |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
WO2021138577A1 (en) * | 2019-12-31 | 2021-07-08 | Human Mode, LLC | Proxy controller suit with optional dual range kinematics |
EP4084722A4 (en) | 2019-12-31 | 2024-01-10 | Auris Health, Inc. | ALIGNMENT INTERFACES FOR PERCUTANE ACCESS |
WO2021173541A1 (en) | 2020-02-24 | 2021-09-02 | Intuitive Surgical Operations, Inc. | Systems and methods for registration feature integrity checking |
GB2592378B (en) * | 2020-02-25 | 2024-04-03 | Cmr Surgical Ltd | Controlling movement of a surgical robot arm |
GB2593741B (en) * | 2020-03-31 | 2024-05-15 | Cmr Surgical Ltd | Configuring a surgical robotic system |
CN111419405B (zh) * | 2020-04-27 | 2024-07-05 | 西安交通大学医学院第一附属医院 | 一种磁引导式呼吸道气管插管机器人系统及其使用方法 |
US12030195B2 (en) | 2020-05-27 | 2024-07-09 | Covidien Lp | Tensioning mechanisms and methods for articulating surgical instruments such as for use in robotic surgical systems |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
CN115916080A (zh) | 2020-06-16 | 2023-04-04 | 格雷美国责任公司 | 握力衰减器 |
USD963851S1 (en) | 2020-07-10 | 2022-09-13 | Covidien Lp | Port apparatus |
US20220031320A1 (en) | 2020-07-28 | 2022-02-03 | Cilag Gmbh International | Surgical instruments with flexible firing member actuator constraint arrangements |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US11650670B2 (en) * | 2020-11-30 | 2023-05-16 | Logitech Europe S.A. | Combining electropermanent magnets and magnetorheological fluid to modify an operation of an input device |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
EP4066770A1 (en) * | 2021-04-02 | 2022-10-05 | Robeaute | Delivery and gathering system comprising a microrobot |
KR20230119150A (ko) * | 2020-12-16 | 2023-08-16 | 로보테 | 마이크로로봇을 포함하는 전달 및 수집 시스템 |
CN112618029A (zh) * | 2021-01-06 | 2021-04-09 | 深圳市精锋医疗科技有限公司 | 手术机器人及其引导手术臂移动的方法、控制装置 |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
WO2022197694A1 (en) * | 2021-03-15 | 2022-09-22 | Ohio State Innovation Foundation | Robotically-assisted cochlear implant system |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US12042241B2 (en) | 2021-03-31 | 2024-07-23 | Moon Surgical Sas | Co-manipulation surgical system having automated preset robot arm configurations |
US11812938B2 (en) | 2021-03-31 | 2023-11-14 | Moon Surgical Sas | Co-manipulation surgical system having a coupling mechanism removeably attachable to surgical instruments |
CA3212211A1 (en) | 2021-03-31 | 2022-10-06 | David Paul Noonan | Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery |
US11723662B2 (en) | 2021-05-28 | 2023-08-15 | Cilag Gmbh International | Stapling instrument comprising an articulation control display |
US11948226B2 (en) | 2021-05-28 | 2024-04-02 | Covidien Lp | Systems and methods for clinical workspace simulation |
CN113413211B (zh) * | 2021-06-09 | 2023-01-31 | 宁波久天激光科技有限公司 | 一种用于肿瘤治疗的手术系统 |
US12076099B2 (en) * | 2021-07-06 | 2024-09-03 | Verb Surgical Inc. | Projection operator for inverse kinematics of a surgical robot for low degree of freedom tools |
US12035989B2 (en) | 2021-08-02 | 2024-07-16 | Corindus, Inc. | Systems and methods for a control station for robotic interventional procedures using a plurality of elongated medical devices |
EP4389362A4 (en) * | 2021-08-16 | 2024-10-16 | F Med Co Ltd | FINE WORKING DEVICE |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
KR102651160B1 (ko) * | 2021-11-15 | 2024-03-28 | 주식회사 로엔서지컬 | 도구 스위칭이 가능한 내시경 장치 |
KR20240134850A (ko) | 2021-11-30 | 2024-09-10 | 엔도퀘스트 로보틱스 인코포레이티드 | 로봇 수술 시스템용 마스터 제어 시스템 |
WO2023101968A1 (en) | 2021-11-30 | 2023-06-08 | Endoquest Robotics, Inc. | Steerable overtube assemblies for robotic surgical systems |
WO2023100177A1 (en) * | 2021-12-01 | 2023-06-08 | Tamar Robotics Ltd | Dual robotic endoscope configuration for tissue removal |
WO2023114136A1 (en) * | 2021-12-13 | 2023-06-22 | Genesis Medtech (USA) Inc. | Dynamic 3d scanning robotic laparoscope |
US11701191B1 (en) * | 2022-04-24 | 2023-07-18 | Shenzhen Institute Of Advanced Biomedical Robot Co., Ltd. | Interventional robot system, and control method and readable-storage medium thereof |
IT202200010883A1 (it) * | 2022-05-25 | 2023-11-25 | Medical Microinstruments Inc | Metodo e sistema per controllare un dispositivo slave, in un sistema robotico master-slave per teleoperazione chirurgica, a limiti fisici di movimento del dispositivo slave |
US11986165B1 (en) | 2023-01-09 | 2024-05-21 | Moon Surgical Sas | Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery while estimating hold force |
US11832910B1 (en) | 2023-01-09 | 2023-12-05 | Moon Surgical Sas | Co-manipulation surgical system having adaptive gravity compensation |
US11844585B1 (en) | 2023-02-10 | 2023-12-19 | Distalmotion Sa | Surgical robotics systems and devices having a sterile restart, and methods thereof |
CN118105590B (zh) * | 2024-02-22 | 2024-09-27 | 复旦大学附属华山医院 | 自动喉镜插管系统 |
Family Cites Families (454)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US120188A (en) * | 1871-10-24 | Improvement in grate-bars | ||
US1762185A (en) | 1929-06-24 | 1930-06-10 | American Fixture & Showcase Mf | Display stand |
US3628535A (en) | 1969-11-12 | 1971-12-21 | Nibot Corp | Surgical instrument for implanting a prosthetic heart valve or the like |
US3818284A (en) | 1972-12-07 | 1974-06-18 | Marotta Scientific Controls | Valve control with pulse width modulation |
US3890552A (en) | 1972-12-29 | 1975-06-17 | George C Devol | Dual-armed multi-axes program controlled manipulators |
US3923166A (en) | 1973-10-11 | 1975-12-02 | Nasa | Remote manipulator system |
US3905215A (en) | 1974-06-26 | 1975-09-16 | John R Wright | Ultrasensitive force measuring instrument employing torsion balance |
US4150326A (en) | 1977-09-19 | 1979-04-17 | Unimation, Inc. | Trajectory correlation and error detection method and apparatus |
US4349837A (en) | 1979-07-03 | 1982-09-14 | Spar Aerospace Limited | Satellite servicing |
US5493595A (en) | 1982-02-24 | 1996-02-20 | Schoolman Scientific Corp. | Stereoscopically displayed three dimensional medical imaging |
US4588348A (en) | 1983-05-27 | 1986-05-13 | At&T Bell Laboratories | Robotic system utilizing a tactile sensor array |
US4577621A (en) | 1984-12-03 | 1986-03-25 | Patel Jayendrakumar I | Endoscope having novel proximate and distal portions |
JPS61230895A (ja) | 1985-04-04 | 1986-10-15 | 三菱重工業株式会社 | マニプレ−タ干渉防止装置 |
US4673988A (en) | 1985-04-22 | 1987-06-16 | E.I. Du Pont De Nemours And Company | Electronic mosaic imaging process |
US4672963A (en) | 1985-06-07 | 1987-06-16 | Israel Barken | Apparatus and method for computer controlled laser surgery |
US4644237A (en) * | 1985-10-17 | 1987-02-17 | International Business Machines Corp. | Collision avoidance system |
US4722056A (en) | 1986-02-18 | 1988-01-26 | Trustees Of Dartmouth College | Reference display systems for superimposing a tomagraphic image onto the focal plane of an operating microscope |
JPH085018B2 (ja) | 1986-02-26 | 1996-01-24 | 株式会社日立製作所 | 遠隔マニピユレ−シヨン方法及び装置 |
US4762456A (en) | 1986-06-11 | 1988-08-09 | Nelson Arthur J | Accommodations to exchange containers between vessels |
JPH0766290B2 (ja) * | 1986-06-26 | 1995-07-19 | 東芝機械株式会社 | 工具経路生成方法 |
US4791934A (en) * | 1986-08-07 | 1988-12-20 | Picker International, Inc. | Computer tomography assisted stereotactic surgery system and method |
GB2194656B (en) | 1986-09-03 | 1991-10-09 | Ibm | Method and system for solid modelling |
US4759074A (en) | 1986-10-28 | 1988-07-19 | General Motors Corporation | Method for automatically inspecting parts utilizing machine vision and system utilizing same |
JPH0829509B2 (ja) | 1986-12-12 | 1996-03-27 | 株式会社日立製作所 | マニピユレ−タの制御装置 |
US4839838A (en) | 1987-03-30 | 1989-06-13 | Labiche Mitchell | Spatial input apparatus |
US4860215A (en) | 1987-04-06 | 1989-08-22 | California Institute Of Technology | Method and apparatus for adaptive force and position control of manipulators |
US4863133A (en) | 1987-05-26 | 1989-09-05 | Leonard Medical | Arm device for adjustable positioning of a medical instrument or the like |
US4762455A (en) | 1987-06-01 | 1988-08-09 | Remote Technology Corporation | Remote manipulator |
US4831549A (en) * | 1987-07-28 | 1989-05-16 | Brigham Young University | Device and method for correction of robot inaccuracy |
US4833383A (en) | 1987-08-13 | 1989-05-23 | Iowa State University Research Foundation, Inc. | Means and method of camera space manipulation |
US5170347A (en) | 1987-11-27 | 1992-12-08 | Picker International, Inc. | System to reformat images for three-dimensional display using unique spatial encoding and non-planar bisectioning |
US5079699A (en) | 1987-11-27 | 1992-01-07 | Picker International, Inc. | Quick three-dimensional display |
EP0326768A3 (en) | 1988-02-01 | 1991-01-23 | Faro Medical Technologies Inc. | Computer-aided surgery apparatus |
US4815450A (en) | 1988-02-01 | 1989-03-28 | Patel Jayendra I | Endoscope having variable flexibility |
US5251127A (en) * | 1988-02-01 | 1993-10-05 | Faro Medical Technologies Inc. | Computer-aided surgery apparatus |
US5046022A (en) | 1988-03-10 | 1991-09-03 | The Regents Of The University Of Michigan | Tele-autonomous system and method employing time/position synchrony/desynchrony |
US5187796A (en) | 1988-03-29 | 1993-02-16 | Computer Motion, Inc. | Three-dimensional vector co-processor having I, J, and K register files and I, J, and K execution units |
US4989253A (en) | 1988-04-15 | 1991-01-29 | The Montefiore Hospital Association Of Western Pennsylvania | Voice activated microscope |
US4979949A (en) * | 1988-04-26 | 1990-12-25 | The Board Of Regents Of The University Of Washington | Robot-aided system for surgery |
US4891767A (en) | 1988-06-02 | 1990-01-02 | Combustion Engineering, Inc. | Machine vision system for position sensing |
JPH01310875A (ja) | 1988-06-07 | 1989-12-14 | Fujitsu Ltd | 双腕マニピュレータの遠隔操作方法 |
US4984157A (en) | 1988-09-21 | 1991-01-08 | General Electric Company | System and method for displaying oblique planar cross sections of a solid body using tri-linear interpolation to determine pixel position dataes |
GB2226245A (en) | 1988-11-18 | 1990-06-27 | Alan Crockard | Endoscope, remote actuator and aneurysm clip applicator. |
US4942539A (en) | 1988-12-21 | 1990-07-17 | Gmf Robotics Corporation | Method and system for automatically determining the position and orientation of an object in 3-D space |
US5099846A (en) | 1988-12-23 | 1992-03-31 | Hardy Tyrone L | Method and apparatus for video presentation from a variety of scanner imaging sources |
US5098426A (en) | 1989-02-06 | 1992-03-24 | Phoenix Laser Systems, Inc. | Method and apparatus for precision laser surgery |
US5184009A (en) | 1989-04-10 | 1993-02-02 | Wright Scott M | Optical attenuator movement detection system |
US5053976A (en) | 1989-05-22 | 1991-10-01 | Honda Giken Kogyo Kabushiki Kaisha | Method of teaching a robot |
US5257203A (en) | 1989-06-09 | 1993-10-26 | Regents Of The University Of Minnesota | Method and apparatus for manipulating computer-based representations of objects of complex and unique geometry |
DE3935256C1 (zh) | 1989-10-23 | 1991-01-03 | Bauerfeind, Peter, Dr., 8264 Waldkraiburg, De | |
US5181823A (en) | 1989-10-27 | 1993-01-26 | Grumman Aerospace Corporation | Apparatus and method for producing a video display |
EP0427358B1 (en) * | 1989-11-08 | 1996-03-27 | George S. Allen | Mechanical arm for and interactive image-guided surgical system |
US5086401A (en) * | 1990-05-11 | 1992-02-04 | International Business Machines Corporation | Image-directed robotic system for precise robotic surgery including redundant consistency checking |
DE69131681T2 (de) | 1990-11-22 | 2000-06-08 | Kabushiki Kaisha Toshiba, Kawasaki | Rechnergestütztes System zur Diagnose für medizinischen Gebrauch |
US5217003A (en) | 1991-03-18 | 1993-06-08 | Wilk Peter J | Automated surgical system and apparatus |
US5217453A (en) | 1991-03-18 | 1993-06-08 | Wilk Peter J | Automated surgical system and apparatus |
US5176702A (en) | 1991-04-04 | 1993-01-05 | Symbiosis Corporation | Ratchet locking mechanism for surgical instruments |
US5251611A (en) | 1991-05-07 | 1993-10-12 | Zehel Wendell E | Method and apparatus for conducting exploratory procedures |
US5313306A (en) | 1991-05-13 | 1994-05-17 | Telerobotics International, Inc. | Omniview motionless camera endoscopy system |
US5181514A (en) | 1991-05-21 | 1993-01-26 | Hewlett-Packard Company | Transducer positioning system |
US5266875A (en) | 1991-05-23 | 1993-11-30 | Massachusetts Institute Of Technology | Telerobotic system |
US5279309A (en) | 1991-06-13 | 1994-01-18 | International Business Machines Corporation | Signaling device and method for monitoring positions in a surgical operation |
US5417210A (en) * | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
US5182641A (en) | 1991-06-17 | 1993-01-26 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Composite video and graphics display for camera viewing systems in robotics and teleoperation |
US5261404A (en) | 1991-07-08 | 1993-11-16 | Mick Peter R | Three-dimensional mammal anatomy imaging system and method |
US5184601A (en) | 1991-08-05 | 1993-02-09 | Putman John M | Endoscope stabilizer |
US5889670A (en) | 1991-10-24 | 1999-03-30 | Immersion Corporation | Method and apparatus for tactilely responsive user interface |
US5230623A (en) | 1991-12-10 | 1993-07-27 | Radionics, Inc. | Operating pointer with interactive computergraphics |
US5531742A (en) | 1992-01-15 | 1996-07-02 | Barken; Israel | Apparatus and method for computer controlled cryosurgery |
US6963792B1 (en) | 1992-01-21 | 2005-11-08 | Sri International | Surgical method |
WO1993013916A1 (en) | 1992-01-21 | 1993-07-22 | Sri International | Teleoperator system and method with telepresence |
US5631973A (en) * | 1994-05-05 | 1997-05-20 | Sri International | Method for telemanipulation with telepresence |
DE4204397C2 (de) | 1992-02-14 | 2001-08-30 | Sinz Dirk Peter | Transportbehälter |
US5430643A (en) | 1992-03-11 | 1995-07-04 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Configuration control of seven degree of freedom arms |
US5737500A (en) | 1992-03-11 | 1998-04-07 | California Institute Of Technology | Mobile dexterous siren degree of freedom robot arm with real-time control system |
US5321353A (en) | 1992-05-13 | 1994-06-14 | Storage Technolgy Corporation | System and method for precisely positioning a robotic tool |
US5482029A (en) | 1992-06-26 | 1996-01-09 | Kabushiki Kaisha Toshiba | Variable flexibility endoscope system |
US5361768A (en) | 1992-06-30 | 1994-11-08 | Cardiovascular Imaging Systems, Inc. | Automated longitudinal position translator for ultrasonic imaging probes, and methods of using same |
US5239246A (en) | 1992-07-08 | 1993-08-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Force reflection with compliance control |
AT399647B (de) | 1992-07-31 | 1995-06-26 | Truppe Michael | Anordnung zur darstellung des inneren von körpern |
US5754741A (en) | 1992-08-10 | 1998-05-19 | Computer Motion, Inc. | Automated endoscope for optimal positioning |
US5515478A (en) | 1992-08-10 | 1996-05-07 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
US5762458A (en) | 1996-02-20 | 1998-06-09 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US5524180A (en) | 1992-08-10 | 1996-06-04 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
US5657429A (en) | 1992-08-10 | 1997-08-12 | Computer Motion, Inc. | Automated endoscope system optimal positioning |
US5397323A (en) | 1992-10-30 | 1995-03-14 | International Business Machines Corporation | Remote center-of-motion robot for surgery |
US5788688A (en) | 1992-11-05 | 1998-08-04 | Bauer Laboratories, Inc. | Surgeon's command and control |
US5629594A (en) | 1992-12-02 | 1997-05-13 | Cybernet Systems Corporation | Force feedback system |
DE9302650U1 (de) | 1993-02-24 | 1993-04-15 | Karl Storz GmbH & Co, 7200 Tuttlingen | Medizinische Zange |
AU687045B2 (en) | 1993-03-31 | 1998-02-19 | Luma Corporation | Managing information in an endoscopy system |
JP2665052B2 (ja) | 1993-05-14 | 1997-10-22 | エスアールアイ インターナショナル | 遠隔中心位置決め装置 |
US5791231A (en) | 1993-05-17 | 1998-08-11 | Endorobotics Corporation | Surgical robotic system and hydraulic actuator therefor |
WO1995001757A1 (en) | 1993-07-07 | 1995-01-19 | Cornelius Borst | Robotic system for close inspection and remote treatment of moving parts |
US5382885A (en) | 1993-08-09 | 1995-01-17 | The University Of British Columbia | Motion scaling tele-operating system with force feedback suitable for microsurgery |
US5343385A (en) * | 1993-08-17 | 1994-08-30 | International Business Machines Corporation | Interference-free insertion of a solid body into a cavity |
US5503320A (en) | 1993-08-19 | 1996-04-02 | United States Surgical Corporation | Surgical apparatus with indicator |
FR2709656B1 (fr) | 1993-09-07 | 1995-12-01 | Deemed Int Sa | Installation pour opération de microchirurgie assistée par ordinateur et procédés mis en Óoeuvre par ladite installation. |
SE9303253D0 (sv) | 1993-10-05 | 1993-10-05 | Siemens Elema Ab | Instrument för titthålskirurgi |
JPH08107875A (ja) | 1994-08-18 | 1996-04-30 | Olympus Optical Co Ltd | 内視鏡形状検出装置 |
US6059718A (en) | 1993-10-18 | 2000-05-09 | Olympus Optical Co., Ltd. | Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope |
US5876325A (en) | 1993-11-02 | 1999-03-02 | Olympus Optical Co., Ltd. | Surgical manipulation system |
US5842473A (en) | 1993-11-29 | 1998-12-01 | Life Imaging Systems | Three-dimensional imaging system |
WO1995016396A1 (en) | 1993-12-15 | 1995-06-22 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
US6241725B1 (en) | 1993-12-15 | 2001-06-05 | Sherwood Services Ag | High frequency thermal ablation of cancerous tumors and functional targets with image data assistance |
JP3419869B2 (ja) * | 1993-12-28 | 2003-06-23 | オリンパス光学工業株式会社 | 医療器具 |
JPH07184923A (ja) | 1993-12-28 | 1995-07-25 | Hitachi Ltd | 遠隔微細手術支援装置 |
US5454827A (en) | 1994-05-24 | 1995-10-03 | Aust; Gilbert M. | Surgical instrument |
US5835693A (en) | 1994-07-22 | 1998-11-10 | Lynch; James D. | Interactive system for simulation and display of multi-body systems in three dimensions |
US6115053A (en) | 1994-08-02 | 2000-09-05 | New York University | Computer animation method and system for synthesizing human-like gestures and actions |
NO300407B1 (no) | 1994-08-30 | 1997-05-26 | Vingmed Sound As | Apparat for endoskop- eller gastroskopundersökelse av pasienter |
US6120433A (en) * | 1994-09-01 | 2000-09-19 | Olympus Optical Co., Ltd. | Surgical manipulator system |
US5528955A (en) * | 1994-09-08 | 1996-06-25 | Hannaford; Blake | Five axis direct-drive mini-robot having fifth actuator located at non-adjacent joint |
JP3695779B2 (ja) | 1994-09-27 | 2005-09-14 | オリンパス株式会社 | マニピュレータシステム |
US5765561A (en) | 1994-10-07 | 1998-06-16 | Medical Media Systems | Video-based surgical targeting system |
JPH08132372A (ja) | 1994-11-08 | 1996-05-28 | Toshiba Corp | ロボットの制御方法 |
US5649032A (en) | 1994-11-14 | 1997-07-15 | David Sarnoff Research Center, Inc. | System for automatically aligning images to form a mosaic image |
JP3642812B2 (ja) | 1994-11-17 | 2005-04-27 | 株式会社町田製作所 | 医療用観察装置 |
JP3640087B2 (ja) | 1994-11-29 | 2005-04-20 | 豊田工機株式会社 | 工作機械 |
JPH08154321A (ja) | 1994-11-29 | 1996-06-11 | Tokyo Electric Power Co Inc:The | 遠隔操作ロボット |
JPH08164148A (ja) * | 1994-12-13 | 1996-06-25 | Olympus Optical Co Ltd | 内視鏡下手術装置 |
US5575764A (en) | 1994-12-14 | 1996-11-19 | Van Dyne; Leonard A. | Prosthetic joint with dynamic torque compensator |
JP3539645B2 (ja) | 1995-02-16 | 2004-07-07 | 株式会社日立製作所 | 遠隔手術支援装置 |
JPH08224241A (ja) | 1995-02-22 | 1996-09-03 | Olympus Optical Co Ltd | 医療用マニピュレータ |
US6019724A (en) | 1995-02-22 | 2000-02-01 | Gronningsaeter; Aage | Method for ultrasound guidance during clinical procedures |
US5836880A (en) | 1995-02-27 | 1998-11-17 | Micro Chemical, Inc. | Automated system for measuring internal tissue characteristics in feed animals |
US5797849A (en) | 1995-03-28 | 1998-08-25 | Sonometrics Corporation | Method for carrying out a medical procedure using a three-dimensional tracking and imaging system |
US5817022A (en) | 1995-03-28 | 1998-10-06 | Sonometrics Corporation | System for displaying a 2-D ultrasound image within a 3-D viewing environment |
JPH08275958A (ja) | 1995-04-07 | 1996-10-22 | Olympus Optical Co Ltd | 手術用マニピュレータ装置 |
US5887121A (en) | 1995-04-21 | 1999-03-23 | International Business Machines Corporation | Method of constrained Cartesian control of robotic mechanisms with active and passive joints |
JP3986099B2 (ja) | 1995-05-02 | 2007-10-03 | オリンパス株式会社 | 手術用マニピュレータシステム |
US5759151A (en) | 1995-06-07 | 1998-06-02 | Carnegie Mellon University | Flexible steerable device for conducting exploratory procedures |
US5814038A (en) | 1995-06-07 | 1998-09-29 | Sri International | Surgical manipulator for a telerobotic system |
US5649956A (en) | 1995-06-07 | 1997-07-22 | Sri International | System and method for releasably holding a surgical instrument |
US5551432A (en) | 1995-06-19 | 1996-09-03 | New York Eye & Ear Infirmary | Scanning control system for ultrasound biomicroscopy |
JPH10505286A (ja) * | 1995-06-20 | 1998-05-26 | シン ング、ワン | 医療処置のための関節アーム |
US6702736B2 (en) | 1995-07-24 | 2004-03-09 | David T. Chen | Anatomical visualization system |
US6256529B1 (en) | 1995-07-26 | 2001-07-03 | Burdette Medical Systems, Inc. | Virtual reality 3D visualization for surgical procedures |
DE19529950C1 (de) * | 1995-08-14 | 1996-11-14 | Deutsche Forsch Luft Raumfahrt | Verfahren zum Nachführen eines Stereo-Laparoskops in der minimalinvasiven Chirurgie |
US5638819A (en) | 1995-08-29 | 1997-06-17 | Manwaring; Kim H. | Method and apparatus for guiding an instrument to a target |
US5784542A (en) | 1995-09-07 | 1998-07-21 | California Institute Of Technology | Decoupled six degree-of-freedom teleoperated robot system |
US5825982A (en) | 1995-09-15 | 1998-10-20 | Wright; James | Head cursor control interface for an automated endoscope system for optimal positioning |
US5601085A (en) | 1995-10-02 | 1997-02-11 | Nycomed Imaging As | Ultrasound imaging |
JPH09141580A (ja) | 1995-11-22 | 1997-06-03 | Yaskawa Electric Corp | 直接教示ロボットの動作範囲制限装置 |
US5987591A (en) * | 1995-12-27 | 1999-11-16 | Fanuc Limited | Multiple-sensor robot system for obtaining two-dimensional image and three-dimensional position information |
US5624398A (en) | 1996-02-08 | 1997-04-29 | Symbiosis Corporation | Endoscopic robotic surgical tools and methods |
US6699177B1 (en) | 1996-02-20 | 2004-03-02 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US6436107B1 (en) | 1996-02-20 | 2002-08-20 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US5971976A (en) | 1996-02-20 | 1999-10-26 | Computer Motion, Inc. | Motion minimization and compensation system for use in surgical procedures |
US6063095A (en) | 1996-02-20 | 2000-05-16 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US5855583A (en) | 1996-02-20 | 1999-01-05 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
DE69732566T2 (de) | 1996-05-17 | 2006-01-12 | Biosense Webster, Inc., Diamond Bar | Selbstausrichtender katheter |
US6786896B1 (en) | 1997-09-19 | 2004-09-07 | Massachusetts Institute Of Technology | Robotic apparatus |
US5797900A (en) | 1996-05-20 | 1998-08-25 | Intuitive Surgical, Inc. | Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5792135A (en) | 1996-05-20 | 1998-08-11 | Intuitive Surgical, Inc. | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5807377A (en) | 1996-05-20 | 1998-09-15 | Intuitive Surgical, Inc. | Force-reflecting surgical instrument and positioning mechanism for performing minimally invasive surgery with enhanced dexterity and sensitivity |
DE19623223C2 (de) | 1996-06-11 | 2001-05-17 | Roland Man Druckmasch | Antrieb für eine Druckmaschine |
US6167296A (en) | 1996-06-28 | 2000-12-26 | The Board Of Trustees Of The Leland Stanford Junior University | Method for volumetric image navigation |
GB9616261D0 (en) | 1996-08-02 | 1996-09-11 | Philips Electronics Nv | Virtual environment manipulation device modelling and control |
US6642836B1 (en) | 1996-08-06 | 2003-11-04 | Computer Motion, Inc. | General purpose distributed operating room control system |
JP3550966B2 (ja) | 1996-09-18 | 2004-08-04 | 株式会社日立製作所 | 手術装置 |
US7302288B1 (en) | 1996-11-25 | 2007-11-27 | Z-Kat, Inc. | Tool position indicator |
DE19649082C1 (de) * | 1996-11-27 | 1998-01-08 | Fraunhofer Ges Forschung | Vorrichtung zur Fernsteuerung eines Werkzeugs |
US5810008A (en) | 1996-12-03 | 1998-09-22 | Isg Technologies Inc. | Apparatus and method for visualizing ultrasonic images |
US7666191B2 (en) * | 1996-12-12 | 2010-02-23 | Intuitive Surgical, Inc. | Robotic surgical system with sterile surgical adaptor |
US6331181B1 (en) | 1998-12-08 | 2001-12-18 | Intuitive Surgical, Inc. | Surgical robotic tools, data architecture, and use |
US5853367A (en) | 1997-03-17 | 1998-12-29 | General Electric Company | Task-interface and communications system and method for ultrasound imager control |
US6656110B1 (en) | 1997-04-16 | 2003-12-02 | Karl Storz Gmbh & Co. Kg | Endoscopic system |
KR100223601B1 (ko) | 1997-05-29 | 1999-10-15 | 윤종용 | 액정 표시 장치 |
US5938678A (en) | 1997-06-11 | 1999-08-17 | Endius Incorporated | Surgical instrument |
JPH11309A (ja) | 1997-06-12 | 1999-01-06 | Hitachi Ltd | 画像処理装置 |
US6231565B1 (en) * | 1997-06-18 | 2001-05-15 | United States Surgical Corporation | Robotic arm DLUs for performing surgical tasks |
WO1999010137A1 (en) | 1997-08-28 | 1999-03-04 | Microdexterity Systems | Parallel mechanism |
US6002184A (en) | 1997-09-17 | 1999-12-14 | Coactive Drive Corporation | Actuator with opposing repulsive magnetic forces |
US6714839B2 (en) | 1998-12-08 | 2004-03-30 | Intuitive Surgical, Inc. | Master having redundant degrees of freedom |
US5993391A (en) | 1997-09-25 | 1999-11-30 | Kabushiki Kaisha Toshiba | Ultrasound diagnostic apparatus |
JP2001522641A (ja) | 1997-11-07 | 2001-11-20 | ヒル−ロム,インコーポレイティド | 患者用温度調節システム |
US6129670A (en) | 1997-11-24 | 2000-10-10 | Burdette Medical Systems | Real time brachytherapy spatial registration and visualization system |
US6358749B1 (en) | 1997-12-02 | 2002-03-19 | Ozo Diversified Automation, Inc. | Automated system for chromosome microdissection and method of using same |
US5842993A (en) | 1997-12-10 | 1998-12-01 | The Whitaker Corporation | Navigable ultrasonic imaging probe assembly |
US6292712B1 (en) | 1998-01-29 | 2001-09-18 | Northrop Grumman Corporation | Computer interface system for a robotic system |
WO1999038646A1 (en) | 1998-02-03 | 1999-08-05 | Hexel Corporation | Systems and methods employing a rotary track for machining and manufacturing |
DE69922791T2 (de) | 1998-02-19 | 2005-12-08 | California Institute Of Technology, Pasadena | Gerät zur bereitstellung eines spherischen sehfeldes während endoskopischen eingriffen |
US6810281B2 (en) | 2000-12-21 | 2004-10-26 | Endovia Medical, Inc. | Medical mapping system |
US7297142B2 (en) | 1998-02-24 | 2007-11-20 | Hansen Medical, Inc. | Interchangeable surgical instrument |
JP3582348B2 (ja) | 1998-03-19 | 2004-10-27 | 株式会社日立製作所 | 手術装置 |
US5980461A (en) | 1998-05-01 | 1999-11-09 | Rajan; Subramaniam D. | Ultrasound imaging apparatus for medical diagnostics |
EP2289423A1 (en) * | 1998-05-14 | 2011-03-02 | David N. Krag | System for bracketing tissue |
US6425865B1 (en) | 1998-06-12 | 2002-07-30 | The University Of British Columbia | Robotically assisted medical ultrasound |
US6184868B1 (en) | 1998-09-17 | 2001-02-06 | Immersion Corp. | Haptic feedback control devices |
AU5391999A (en) * | 1998-08-04 | 2000-02-28 | Intuitive Surgical, Inc. | Manipulator positioning linkage for robotic surgery |
US6383951B1 (en) | 1998-09-03 | 2002-05-07 | Micron Technology, Inc. | Low dielectric constant material for integrated circuit fabrication |
US5993390A (en) | 1998-09-18 | 1999-11-30 | Hewlett- Packard Company | Segmented 3-D cardiac ultrasound imaging method and apparatus |
JP4101951B2 (ja) * | 1998-11-10 | 2008-06-18 | オリンパス株式会社 | 手術用顕微鏡 |
US6665554B1 (en) | 1998-11-18 | 2003-12-16 | Steve T. Charles | Medical manipulator for use with an imaging device |
US6398726B1 (en) * | 1998-11-20 | 2002-06-04 | Intuitive Surgical, Inc. | Stabilizer for robotic beating-heart surgery |
US6852107B2 (en) | 2002-01-16 | 2005-02-08 | Computer Motion, Inc. | Minimally invasive surgical training using robotics and tele-collaboration |
US6659939B2 (en) * | 1998-11-20 | 2003-12-09 | Intuitive Surgical, Inc. | Cooperative minimally invasive telesurgical system |
US6459926B1 (en) | 1998-11-20 | 2002-10-01 | Intuitive Surgical, Inc. | Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery |
US6468265B1 (en) * | 1998-11-20 | 2002-10-22 | Intuitive Surgical, Inc. | Performing cardiac surgery without cardioplegia |
US6951535B2 (en) * | 2002-01-16 | 2005-10-04 | Intuitive Surgical, Inc. | Tele-medicine system that transmits an entire state of a subsystem |
US8527094B2 (en) | 1998-11-20 | 2013-09-03 | Intuitive Surgical Operations, Inc. | Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures |
US6342889B1 (en) | 1998-11-27 | 2002-01-29 | Dicomit Dicom Information Technologies Corp. | Method and system for selecting at least one optimal view of a three dimensional image |
US6770081B1 (en) * | 2000-01-07 | 2004-08-03 | Intuitive Surgical, Inc. | In vivo accessories for minimally invasive robotic surgery and methods |
US6522906B1 (en) * | 1998-12-08 | 2003-02-18 | Intuitive Surgical, Inc. | Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure |
US6325808B1 (en) * | 1998-12-08 | 2001-12-04 | Advanced Realtime Control Systems, Inc. | Robotic system, docking station, and surgical tool for collaborative control in minimally invasive surgery |
US6493608B1 (en) * | 1999-04-07 | 2002-12-10 | Intuitive Surgical, Inc. | Aspects of a control system of a minimally invasive surgical apparatus |
US6620173B2 (en) * | 1998-12-08 | 2003-09-16 | Intuitive Surgical, Inc. | Method for introducing an end effector to a surgical site in minimally invasive surgery |
US6799065B1 (en) | 1998-12-08 | 2004-09-28 | Intuitive Surgical, Inc. | Image shifting apparatus and method for a telerobotic system |
JP2000193893A (ja) | 1998-12-28 | 2000-07-14 | Suzuki Motor Corp | 検査用挿入管の屈曲装置 |
US6224542B1 (en) * | 1999-01-04 | 2001-05-01 | Stryker Corporation | Endoscopic camera system with non-mechanical zoom |
US6394998B1 (en) | 1999-01-22 | 2002-05-28 | Intuitive Surgical, Inc. | Surgical tools for use in minimally invasive telesurgical applications |
US6602185B1 (en) | 1999-02-18 | 2003-08-05 | Olympus Optical Co., Ltd. | Remote surgery support system |
US6084371A (en) | 1999-02-19 | 2000-07-04 | Lockheed Martin Energy Research Corporation | Apparatus and methods for a human de-amplifier system |
KR100555391B1 (ko) | 1999-02-25 | 2006-03-03 | 테쯔야 코레나가 | 전기요법 치료기 |
US7324081B2 (en) | 1999-03-02 | 2008-01-29 | Siemens Aktiengesellschaft | Augmented-reality system for situation-related support of the interaction between a user and an engineering apparatus |
US6243624B1 (en) | 1999-03-19 | 2001-06-05 | Northwestern University | Non-Linear muscle-like compliant controller |
US6569084B1 (en) | 1999-03-31 | 2003-05-27 | Olympus Optical Co., Ltd. | Endoscope holder and endoscope device |
US6424885B1 (en) * | 1999-04-07 | 2002-07-23 | Intuitive Surgical, Inc. | Camera referenced control in a minimally invasive surgical apparatus |
US8944070B2 (en) | 1999-04-07 | 2015-02-03 | Intuitive Surgical Operations, Inc. | Non-force reflecting method for providing tool force information to a user of a telesurgical system |
US6594552B1 (en) | 1999-04-07 | 2003-07-15 | Intuitive Surgical, Inc. | Grip strength with tactile feedback for robotic surgery |
JP2000300579A (ja) | 1999-04-26 | 2000-10-31 | Olympus Optical Co Ltd | 多機能マニピュレータ |
JP4354042B2 (ja) * | 1999-04-30 | 2009-10-28 | オリンパス株式会社 | 医療用マニピュレータ装置 |
JP3668865B2 (ja) | 1999-06-21 | 2005-07-06 | 株式会社日立製作所 | 手術装置 |
US7637905B2 (en) | 2003-01-15 | 2009-12-29 | Usgi Medical, Inc. | Endoluminal tool deployment system |
US8574243B2 (en) | 1999-06-25 | 2013-11-05 | Usgi Medical, Inc. | Apparatus and methods for forming and securing gastrointestinal tissue folds |
JP4302246B2 (ja) | 1999-08-25 | 2009-07-22 | 住友ベークライト株式会社 | 医療用処置具挿入具 |
US8004229B2 (en) | 2005-05-19 | 2011-08-23 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US8768516B2 (en) | 2009-06-30 | 2014-07-01 | Intuitive Surgical Operations, Inc. | Control of medical robotic system manipulator about kinematic singularities |
US7594912B2 (en) * | 2004-09-30 | 2009-09-29 | Intuitive Surgical, Inc. | Offset remote center manipulator for robotic surgery |
JP3454235B2 (ja) | 1999-10-06 | 2003-10-06 | 株式会社日立製作所 | 生体磁場計測装置 |
JP2001104333A (ja) | 1999-10-07 | 2001-04-17 | Hitachi Ltd | 手術支援装置 |
US6312435B1 (en) | 1999-10-08 | 2001-11-06 | Intuitive Surgical, Inc. | Surgical instrument with extended reach for use in minimally invasive surgery |
US6654031B1 (en) | 1999-10-15 | 2003-11-25 | Hitachi Kokusai Electric Inc. | Method of editing a video program with variable view point of picked-up image and computer program product for displaying video program |
JP2001202531A (ja) | 1999-10-15 | 2001-07-27 | Hitachi Kokusai Electric Inc | 動画像編集方法 |
US6442417B1 (en) | 1999-11-29 | 2002-08-27 | The Board Of Trustees Of The Leland Stanford Junior University | Method and apparatus for transforming view orientations in image-guided surgery |
US6204620B1 (en) | 1999-12-10 | 2001-03-20 | Fanuc Robotics North America | Method of controlling an intelligent assist device |
US20190090967A1 (en) | 1999-12-14 | 2019-03-28 | Intuitive Surgical Operations, Inc. | Display of computer generated image of an out-of-view portion of a medical device adjacent a real-time image of an in-view portion of the medical device |
DE19961971B4 (de) * | 1999-12-22 | 2009-10-22 | Forschungszentrum Karlsruhe Gmbh | Vorrichtung zum sicheren automatischen Nachführen eines Endoskops und Verfolgen eines Instruments |
US6847922B1 (en) | 2000-01-06 | 2005-01-25 | General Motors Corporation | Method for computer-aided layout of manufacturing cells |
JP2001287183A (ja) | 2000-01-31 | 2001-10-16 | Matsushita Electric Works Ltd | 自動搬送ロボット |
DE10004264C2 (de) | 2000-02-01 | 2002-06-13 | Storz Karl Gmbh & Co Kg | Vorrichtung zur intrakorporalen, minimal-invasiven Behandlung eines Patienten |
US6817973B2 (en) | 2000-03-16 | 2004-11-16 | Immersion Medical, Inc. | Apparatus for controlling force for manipulation of medical instruments |
US7819799B2 (en) | 2000-03-16 | 2010-10-26 | Immersion Medical, Inc. | System and method for controlling force applied to and manipulation of medical instruments |
DE10015826A1 (de) * | 2000-03-30 | 2001-10-11 | Siemens Ag | System und Verfahren zur Erzeugung eines Bildes |
US6984203B2 (en) | 2000-04-03 | 2006-01-10 | Neoguide Systems, Inc. | Endoscope with adjacently positioned guiding apparatus |
US20010055062A1 (en) | 2000-04-20 | 2001-12-27 | Keiji Shioda | Operation microscope |
DE10025285A1 (de) * | 2000-05-22 | 2001-12-06 | Siemens Ag | Vollautomatische, robotergestützte Kameraführung unter Verwendung von Positionssensoren für laparoskopische Eingriffe |
US6645196B1 (en) * | 2000-06-16 | 2003-11-11 | Intuitive Surgical, Inc. | Guided tool change |
US6599247B1 (en) | 2000-07-07 | 2003-07-29 | University Of Pittsburgh | System and method for location-merging of real-time tomographic slice images with human vision |
EP1182541A3 (de) | 2000-08-22 | 2005-11-30 | Siemens Aktiengesellschaft | System und Verfahren zum kombinierten Einsatz verschiedener Display-/Gerätetypen mit systemgesteuerter kontextabhängiger Informationsdarstellung |
JP4765155B2 (ja) | 2000-09-28 | 2011-09-07 | ソニー株式会社 | オーサリング・システム及びオーサリング方法、並びに記憶媒体 |
US7194118B1 (en) * | 2000-11-10 | 2007-03-20 | Lucid, Inc. | System for optically sectioning and mapping surgically excised tissue |
US6718194B2 (en) | 2000-11-17 | 2004-04-06 | Ge Medical Systems Global Technology Company, Llc | Computer assisted intramedullary rod surgery system with enhanced features |
DE10063089C1 (de) | 2000-12-18 | 2002-07-25 | Siemens Ag | Anwendergesteuerte Verknüpfung von Informationen innerhalb eines Augmented-Reality-Systems |
US7892243B2 (en) * | 2001-01-16 | 2011-02-22 | Microdexterity Systems, Inc. | Surgical manipulator |
US6676669B2 (en) | 2001-01-16 | 2004-01-13 | Microdexterity Systems, Inc. | Surgical manipulator |
US7766894B2 (en) | 2001-02-15 | 2010-08-03 | Hansen Medical, Inc. | Coaxial catheter system |
US6765569B2 (en) | 2001-03-07 | 2004-07-20 | University Of Southern California | Augmented-reality tool employing scene-feature autocalibration during camera motion |
JP3769469B2 (ja) | 2001-03-28 | 2006-04-26 | 株式会社東芝 | 操作訓練用装置 |
US6456901B1 (en) | 2001-04-20 | 2002-09-24 | Univ Michigan | Hybrid robot motion task level control system |
US6862561B2 (en) | 2001-05-29 | 2005-03-01 | Entelos, Inc. | Method and apparatus for computer modeling a joint |
US7607440B2 (en) * | 2001-06-07 | 2009-10-27 | Intuitive Surgical, Inc. | Methods and apparatus for surgical planning |
US6887245B2 (en) | 2001-06-11 | 2005-05-03 | Ge Medical Systems Global Technology Company, Llc | Surgical drill for use with a computer assisted surgery system |
WO2002100285A1 (en) | 2001-06-13 | 2002-12-19 | Volume Interactions Pte Ltd | A guide system and a probe therefor |
DE60130264T2 (de) | 2001-06-13 | 2008-05-21 | Volume Interactions Pte. Ltd. | Führungssystem |
US6817974B2 (en) | 2001-06-29 | 2004-11-16 | Intuitive Surgical, Inc. | Surgical tool having positively positionable tendon-actuated multi-disk wrist joint |
US20040243147A1 (en) | 2001-07-03 | 2004-12-02 | Lipow Kenneth I. | Surgical robot and robotic controller |
WO2003007129A2 (en) | 2001-07-13 | 2003-01-23 | Broks Automation, Inc. | Trajectory planning and motion control strategies for a planar three-degree-of-freedom robotic arm |
US6550757B2 (en) | 2001-08-07 | 2003-04-22 | Hewlett-Packard Company | Stapler having selectable staple size |
JP3579379B2 (ja) | 2001-08-10 | 2004-10-20 | 株式会社東芝 | 医療用マニピュレータシステム |
US6587750B2 (en) | 2001-09-25 | 2003-07-01 | Intuitive Surgical, Inc. | Removable infinite roll master grip handle and touch sensor for robotic surgery |
US20040238732A1 (en) * | 2001-10-19 | 2004-12-02 | Andrei State | Methods and systems for dynamic virtual convergence and head mountable display |
JP3529373B2 (ja) | 2001-11-09 | 2004-05-24 | ファナック株式会社 | 作業機械のシミュレーション装置 |
US6663559B2 (en) | 2001-12-14 | 2003-12-16 | Endactive, Inc. | Interface for a variable direction of view endoscope |
US6941192B2 (en) | 2002-01-31 | 2005-09-06 | Abb Research Ltd. | Robot machining tool position and orientation calibration |
US7831292B2 (en) * | 2002-03-06 | 2010-11-09 | Mako Surgical Corp. | Guidance system and method for surgical procedures with improved feedback |
US8010180B2 (en) * | 2002-03-06 | 2011-08-30 | Mako Surgical Corp. | Haptic guidance system and method |
US8095200B2 (en) | 2002-03-06 | 2012-01-10 | Mako Surgical Corp. | System and method for using a haptic device as an input device |
JP2003300444A (ja) | 2002-04-11 | 2003-10-21 | Hitachi Ltd | 移動体の運転支援装置 |
JP4056791B2 (ja) | 2002-05-22 | 2008-03-05 | 策雄 米延 | 骨折整復誘導装置 |
US6678582B2 (en) | 2002-05-30 | 2004-01-13 | Kuka Roboter Gmbh | Method and control device for avoiding collisions between cooperating robots |
US6837847B2 (en) | 2002-06-13 | 2005-01-04 | Usgi Medical, Inc. | Shape lockable apparatus and method for advancing an instrument through unsupported anatomy |
CA2633137C (en) | 2002-08-13 | 2012-10-23 | The Governors Of The University Of Calgary | Microsurgical robot system |
US20040176751A1 (en) * | 2002-08-14 | 2004-09-09 | Endovia Medical, Inc. | Robotic medical instrument system |
US20040044295A1 (en) | 2002-08-19 | 2004-03-04 | Orthosoft Inc. | Graphical user interface for computer-assisted surgery |
JP4169549B2 (ja) | 2002-09-06 | 2008-10-22 | オリンパス株式会社 | 内視鏡 |
US7331967B2 (en) * | 2002-09-09 | 2008-02-19 | Hansen Medical, Inc. | Surgical instrument coupling mechanism |
JP2004105638A (ja) | 2002-09-20 | 2004-04-08 | Shimadzu Corp | 超音波診断装置 |
US20040077940A1 (en) | 2002-10-11 | 2004-04-22 | Kienzle Thomas C. | Instrument guide for use with a tracking system |
US6899672B2 (en) | 2002-11-08 | 2005-05-31 | Scimed Life Systems, Inc. | Endoscopic imaging system including removable deflection device |
JP2004174662A (ja) | 2002-11-27 | 2004-06-24 | Fanuc Ltd | ロボットの動作状態解析装置 |
EP2901958B1 (en) | 2002-12-06 | 2019-02-06 | Intuitive Surgical Operations, Inc. | Flexible wrist for surgical tool |
SE0203908D0 (sv) | 2002-12-30 | 2002-12-30 | Abb Research Ltd | An augmented reality system and method |
JP2004223128A (ja) | 2003-01-27 | 2004-08-12 | Hitachi Ltd | 医療行為支援装置および方法 |
FR2850775B1 (fr) | 2003-01-30 | 2005-07-22 | Ge Med Sys Global Tech Co Llc | Dispositif d'imagerie medicale a reorientation semi-automatique d'objet radiologique |
JP3972854B2 (ja) | 2003-04-10 | 2007-09-05 | ソニー株式会社 | ロボットの運動制御装置 |
US7381183B2 (en) | 2003-04-21 | 2008-06-03 | Karl Storz Development Corp. | Method for capturing and displaying endoscopic maps |
JP3975959B2 (ja) | 2003-04-23 | 2007-09-12 | トヨタ自動車株式会社 | ロボット動作規制方法とその装置およびそれを備えたロボット |
US7491198B2 (en) | 2003-04-28 | 2009-02-17 | Bracco Imaging S.P.A. | Computer enhanced surgical navigation imaging system (camera probe) |
GB2417090A (en) * | 2003-04-28 | 2006-02-15 | Stephen James Crampton | CMM arm with exoskeleton |
US8365633B2 (en) * | 2003-05-21 | 2013-02-05 | The Johns Hopkins University | Devices, systems and methods for minimally invasive surgery of the throat and other portions of mammalian body |
JP2007523757A (ja) * | 2003-06-20 | 2007-08-23 | ファナック ロボティクス アメリカ,インコーポレイティド | 複数のロボットアームの追従及び鏡映ジョグ |
US8753262B2 (en) | 2003-07-29 | 2014-06-17 | Hoya Corporation | Internal treatment apparatus having circumferential side holes |
US20050054895A1 (en) | 2003-09-09 | 2005-03-10 | Hoeg Hans David | Method for using variable direction of view endoscopy in conjunction with image guided surgical systems |
DE202004014857U1 (de) | 2003-09-29 | 2005-04-21 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung zur virtuellen Lagebetrachtung wenigstens eines in einen Körper intrakorporal eingebrachten medizinischen Instruments |
JP2005110878A (ja) | 2003-10-06 | 2005-04-28 | Olympus Corp | 手術支援システム |
JP3708097B2 (ja) | 2003-10-08 | 2005-10-19 | ファナック株式会社 | ロボットの手動送り装置 |
EP1689290A2 (en) | 2003-10-21 | 2006-08-16 | The Board of Trustees of The Leland Stanford Junior University | Systems and methods for intraoperative targeting |
US20050096502A1 (en) * | 2003-10-29 | 2005-05-05 | Khalili Theodore M. | Robotic surgical device |
JP3732494B2 (ja) | 2003-10-31 | 2006-01-05 | ファナック株式会社 | シミュレーション装置 |
US20050107680A1 (en) * | 2003-11-18 | 2005-05-19 | Kopf J. D. | Stereotaxic instrument with linear coordinate scales coupled to split-image microscopic image display system |
US7774044B2 (en) | 2004-02-17 | 2010-08-10 | Siemens Medical Solutions Usa, Inc. | System and method for augmented reality navigation in a medical intervention procedure |
US20050267359A1 (en) | 2004-05-27 | 2005-12-01 | General Electric Company | System, method, and article of manufacture for guiding an end effector to a target position within a person |
DE102004026813A1 (de) | 2004-06-02 | 2005-12-29 | Kuka Roboter Gmbh | Verfahren und Vorrichtung zum Steuern von Handhabungsgeräten |
US20060013523A1 (en) | 2004-07-16 | 2006-01-19 | Luna Innovations Incorporated | Fiber optic position and shape sensing device and method relating thereto |
CA2513202C (en) * | 2004-07-23 | 2015-03-31 | Mehran Anvari | Multi-purpose robotic operating system and method |
US8480566B2 (en) | 2004-09-24 | 2013-07-09 | Vivid Medical, Inc. | Solid state illumination for endoscopy |
US7238056B2 (en) * | 2004-10-12 | 2007-07-03 | Dekko Technologies, Inc. | Electrical connector |
DE602005008271D1 (de) | 2004-10-25 | 2008-08-28 | Univ Dayton | Verfahren und system zum ermöglichen von erhöhter genauigkeit bei mehrfachverbundenen robotern durch berechnung der kinematischen robotermodellparameter |
US20060149129A1 (en) | 2005-01-05 | 2006-07-06 | Watts H D | Catheter with multiple visual elements |
US8872906B2 (en) | 2005-01-05 | 2014-10-28 | Avantis Medical Systems, Inc. | Endoscope assembly with a polarizing filter |
US7763015B2 (en) * | 2005-01-24 | 2010-07-27 | Intuitive Surgical Operations, Inc. | Modular manipulator support for robotic surgery |
US7837674B2 (en) | 2005-01-24 | 2010-11-23 | Intuitive Surgical Operations, Inc. | Compact counter balance for robotic surgical systems |
WO2006091494A1 (en) | 2005-02-22 | 2006-08-31 | Mako Surgical Corp. | Haptic guidance system and method |
EP1876942A4 (en) * | 2005-04-18 | 2009-04-08 | M S T Medical Surgery Technolo | MEDIUM AND METHOD FOR IMPROVING LAPAROSCOPIC SURGERY |
US9295379B2 (en) * | 2005-04-18 | 2016-03-29 | M.S.T. Medical Surgery Technologies Ltd. | Device and methods of improving laparoscopic surgery |
US8208988B2 (en) * | 2005-05-13 | 2012-06-26 | General Electric Company | System and method for controlling a medical imaging device |
US8108072B2 (en) | 2007-09-30 | 2012-01-31 | Intuitive Surgical Operations, Inc. | Methods and systems for robotic instrument tool tracking with adaptive fusion of kinematics information and image information |
US8073528B2 (en) | 2007-09-30 | 2011-12-06 | Intuitive Surgical Operations, Inc. | Tool tracking systems, methods and computer products for image guided surgery |
US8971597B2 (en) | 2005-05-16 | 2015-03-03 | Intuitive Surgical Operations, Inc. | Efficient vision and kinematic data fusion for robotic surgical instruments and other applications |
US10555775B2 (en) * | 2005-05-16 | 2020-02-11 | Intuitive Surgical Operations, Inc. | Methods and system for performing 3-D tool tracking by fusion of sensor and/or camera derived data during minimally invasive robotic surgery |
US9789608B2 (en) * | 2006-06-29 | 2017-10-17 | Intuitive Surgical Operations, Inc. | Synthetic representation of a surgical robot |
US9526587B2 (en) | 2008-12-31 | 2016-12-27 | Intuitive Surgical Operations, Inc. | Fiducial marker design and detection for locating surgical instrument in images |
US9492240B2 (en) | 2009-06-16 | 2016-11-15 | Intuitive Surgical Operations, Inc. | Virtual measurement tool for minimally invasive surgery |
JP2006321027A (ja) | 2005-05-20 | 2006-11-30 | Hitachi Ltd | マスタ・スレーブ式マニピュレータシステム及びその操作入力装置 |
US8398541B2 (en) * | 2006-06-06 | 2013-03-19 | Intuitive Surgical Operations, Inc. | Interactive user interfaces for robotic minimally invasive surgical systems |
ATE540634T1 (de) * | 2005-06-06 | 2012-01-15 | Intuitive Surgical Operations | Laparoskopisches ultraschall-robotersystem für chirurgische zwecke |
CN101321606B (zh) | 2005-06-30 | 2013-04-17 | 直观外科手术操作公司 | 多臂机器人远程外科手术中工具状态通信的指示器 |
US20070005002A1 (en) | 2005-06-30 | 2007-01-04 | Intuitive Surgical Inc. | Robotic surgical instruments for irrigation, aspiration, and blowing |
JP2007029232A (ja) | 2005-07-25 | 2007-02-08 | Hitachi Medical Corp | 内視鏡手術操作支援システム |
JP5074394B2 (ja) * | 2005-07-25 | 2012-11-14 | オットー、カール | 放射線治療の計画及び照射方法並びに装置 |
JP2009507617A (ja) | 2005-09-14 | 2009-02-26 | ネオガイド システムズ, インコーポレイテッド | 経腔的及び他の操作を行うための方法及び装置 |
JP4728075B2 (ja) | 2005-09-28 | 2011-07-20 | オリンパスメディカルシステムズ株式会社 | 内視鏡システム |
JP2007090481A (ja) | 2005-09-28 | 2007-04-12 | Fanuc Ltd | ロボットシミュレーション装置 |
US20070106307A1 (en) | 2005-09-30 | 2007-05-10 | Restoration Robotics, Inc. | Methods for implanting follicular units using an automated system |
US8111904B2 (en) | 2005-10-07 | 2012-02-07 | Cognex Technology And Investment Corp. | Methods and apparatus for practical 3D vision system |
EP1937176B1 (en) | 2005-10-20 | 2019-04-17 | Intuitive Surgical Operations, Inc. | Auxiliary image display and manipulation on a computer display in a medical robotic system |
US20070106147A1 (en) * | 2005-11-01 | 2007-05-10 | Altmann Andres C | Controlling direction of ultrasound imaging catheter |
US8303505B2 (en) | 2005-12-02 | 2012-11-06 | Abbott Cardiovascular Systems Inc. | Methods and apparatuses for image guided medical procedures |
US8190238B2 (en) | 2005-12-09 | 2012-05-29 | Hansen Medical, Inc. | Robotic catheter system and methods |
US20070265495A1 (en) * | 2005-12-15 | 2007-11-15 | Medivision, Inc. | Method and apparatus for field of view tracking |
KR101337278B1 (ko) * | 2005-12-20 | 2013-12-09 | 인튜어티브 서지컬 인코포레이티드 | 로봇 수술 시스템의 기구 인터페이스 |
US7453227B2 (en) | 2005-12-20 | 2008-11-18 | Intuitive Surgical, Inc. | Medical robotic system with sliding mode control |
WO2007111749A2 (en) | 2005-12-20 | 2007-10-04 | Intuitive Surgical, Inc. | Method for handling an operator command exceeding a medical device state limitation in a medical robotic system |
US7819859B2 (en) * | 2005-12-20 | 2010-10-26 | Intuitive Surgical Operations, Inc. | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
US7741802B2 (en) | 2005-12-20 | 2010-06-22 | Intuitive Surgical Operations, Inc. | Medical robotic system with programmably controlled constraints on error dynamics |
US7689320B2 (en) * | 2005-12-20 | 2010-03-30 | Intuitive Surgical Operations, Inc. | Robotic surgical system with joint motion controller adapted to reduce instrument tip vibrations |
US9266239B2 (en) | 2005-12-27 | 2016-02-23 | Intuitive Surgical Operations, Inc. | Constraint based control in a minimally invasive surgical apparatus |
US9962066B2 (en) | 2005-12-30 | 2018-05-08 | Intuitive Surgical Operations, Inc. | Methods and apparatus to shape flexible entry guides for minimally invasive surgery |
US7930065B2 (en) | 2005-12-30 | 2011-04-19 | Intuitive Surgical Operations, Inc. | Robotic surgery system including position sensors using fiber bragg gratings |
US7835823B2 (en) * | 2006-01-05 | 2010-11-16 | Intuitive Surgical Operations, Inc. | Method for tracking and reporting usage events to determine when preventive maintenance is due for a medical robotic system |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
EP1815950A1 (en) | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Robotic surgical system for performing minimally invasive medical procedures |
EP1815949A1 (en) | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Medical robotic system with manipulator arm of the cylindrical coordinate type |
US8167823B2 (en) | 2009-03-24 | 2012-05-01 | Biomet Manufacturing Corp. | Method and apparatus for aligning and securing an implant relative to a patient |
ITMI20060443A1 (it) | 2006-03-13 | 2007-09-14 | Ethicon Endo Surgery Inc | Dispositivo per la manipolazione di tessuto corporeo |
US8016749B2 (en) | 2006-03-21 | 2011-09-13 | Boston Scientific Scimed, Inc. | Vision catheter having electromechanical navigation |
JP4382052B2 (ja) | 2006-03-28 | 2009-12-09 | 川崎重工業株式会社 | 駆動体の制御装置および制御方法 |
JP2007276052A (ja) * | 2006-04-06 | 2007-10-25 | Sony Corp | 制御システム、記録システム、情報処理装置および方法、プログラム、並びに記録媒体 |
US8518024B2 (en) | 2006-04-24 | 2013-08-27 | Transenterix, Inc. | System and method for multi-instrument surgical access using a single access port |
CA2650474A1 (en) | 2006-04-24 | 2007-11-08 | Synecor, Llc | Natural orifice surgical system |
JP4883563B2 (ja) * | 2006-04-27 | 2012-02-22 | 学校法人慶應義塾 | マニピュレータ装置 |
US8924021B2 (en) | 2006-04-27 | 2014-12-30 | Honda Motor Co., Ltd. | Control of robots from human motion descriptors |
US20080140087A1 (en) | 2006-05-17 | 2008-06-12 | Hansen Medical Inc. | Robotic instrument system |
CA2651782C (en) | 2006-05-19 | 2018-03-06 | Mako Surgical Corp. | System and method for verifying calibration of a surgical device |
CN101449229B (zh) | 2006-05-19 | 2011-10-12 | 马科外科公司 | 用于控制触觉装置的方法和设备 |
WO2007137208A2 (en) * | 2006-05-19 | 2007-11-29 | Neoguide Systems, Inc. | Methods and apparatus for displaying three-dimensional orientation of a steerable distal tip of an endoscope |
US8029516B2 (en) * | 2006-06-13 | 2011-10-04 | Intuitive Surgical Operations, Inc. | Bracing of bundled medical devices for single port entry, robotically assisted medical procedures |
US20080071288A1 (en) | 2006-06-13 | 2008-03-20 | Intuitive Surgical, Inc. | Minimally invasive surgery guide tube |
US8597280B2 (en) | 2006-06-13 | 2013-12-03 | Intuitive Surgical Operations, Inc. | Surgical instrument actuator |
US8419717B2 (en) * | 2006-06-13 | 2013-04-16 | Intuitive Surgical Operations, Inc. | Control system configured to compensate for non-ideal actuator-to-joint linkage characteristics in a medical robotic system |
US8517933B2 (en) | 2006-06-13 | 2013-08-27 | Intuitive Surgical Operations, Inc. | Retraction of tissue for single port entry, robotically assisted medical procedures |
US8377045B2 (en) * | 2006-06-13 | 2013-02-19 | Intuitive Surgical Operations, Inc. | Extendable suction surface for bracing medial devices during robotically assisted medical procedures |
US20090192523A1 (en) | 2006-06-29 | 2009-07-30 | Intuitive Surgical, Inc. | Synthetic representation of a surgical instrument |
US10258425B2 (en) | 2008-06-27 | 2019-04-16 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide |
US9718190B2 (en) | 2006-06-29 | 2017-08-01 | Intuitive Surgical Operations, Inc. | Tool position and identification indicator displayed in a boundary area of a computer display screen |
US10008017B2 (en) | 2006-06-29 | 2018-06-26 | Intuitive Surgical Operations, Inc. | Rendering tool information as graphic overlays on displayed images of tools |
DE102006046689A1 (de) * | 2006-09-29 | 2008-04-10 | Siemens Ag | Medizintechnisches Behandlungssystem |
US7831096B2 (en) | 2006-11-17 | 2010-11-09 | General Electric Company | Medical navigation system with tool and/or implant integration into fluoroscopic image projections and method of use |
WO2008065581A2 (en) * | 2006-11-28 | 2008-06-05 | Koninklijke Philips Electronics N.V. | Apparatus for determining a position of a first object within a second object |
US8715270B2 (en) * | 2006-12-01 | 2014-05-06 | Boston Scientific Scimed, Inc. | Multi-part instrument systems and methods |
US8814779B2 (en) | 2006-12-21 | 2014-08-26 | Intuitive Surgical Operations, Inc. | Stereoscopic endoscope |
DE102006061178A1 (de) * | 2006-12-22 | 2008-06-26 | Siemens Ag | System zur Durchführung und Überwachung minimal-invasiver Eingriffe |
JP4911701B2 (ja) * | 2007-01-19 | 2012-04-04 | 株式会社日立製作所 | マスタ・スレーブ式マニピュレータシステム |
US20080243142A1 (en) | 2007-02-20 | 2008-10-02 | Gildenberg Philip L | Videotactic and audiotactic assisted surgical methods and procedures |
JP5030639B2 (ja) * | 2007-03-29 | 2012-09-19 | オリンパスメディカルシステムズ株式会社 | 内視鏡装置の処置具位置制御装置 |
JP4891823B2 (ja) | 2007-03-29 | 2012-03-07 | オリンパスメディカルシステムズ株式会社 | 内視鏡装置 |
JP5543331B2 (ja) | 2007-04-16 | 2014-07-09 | ニューロアーム サージカル リミテッド | マニピュレータのツールの一軸に沿った移動を非機械的に制限および/またはプログラミングする方法、装置、およびシステム |
EP2148629B1 (en) | 2007-04-16 | 2012-06-06 | NeuroArm Surgical, Ltd. | Frame mapping and force feedback methods, devices and systems |
JP2010524547A (ja) | 2007-04-16 | 2010-07-22 | ニューロアーム サージカル リミテッド | 医療用ロボットに関する自動化された動作のための方法、装置、及びシステム |
US8814856B2 (en) | 2007-04-30 | 2014-08-26 | Medtronic, Inc. | Extension and retraction mechanism for a hand-held device |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US9469034B2 (en) | 2007-06-13 | 2016-10-18 | Intuitive Surgical Operations, Inc. | Method and system for switching modes of a robotic system |
US8620473B2 (en) | 2007-06-13 | 2013-12-31 | Intuitive Surgical Operations, Inc. | Medical robotic system with coupled control modes |
US9138129B2 (en) | 2007-06-13 | 2015-09-22 | Intuitive Surgical Operations, Inc. | Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide |
US8903546B2 (en) | 2009-08-15 | 2014-12-02 | Intuitive Surgical Operations, Inc. | Smooth control of an articulated instrument across areas with different work space conditions |
US9089256B2 (en) | 2008-06-27 | 2015-07-28 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide |
US9084623B2 (en) | 2009-08-15 | 2015-07-21 | Intuitive Surgical Operations, Inc. | Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide |
JP2009006410A (ja) | 2007-06-26 | 2009-01-15 | Fuji Electric Systems Co Ltd | 遠隔操作支援装置および遠隔操作支援プログラム |
DE102007029884A1 (de) | 2007-06-28 | 2009-01-15 | Siemens Ag | Verfahren und Einrichtung zum Erzeugen eines aus einer Mehrzahl von endoskopischen Einzelbildern zusammengesetztes Gesamtbildes von einer Innenoberfläche eines Körperhohlraums |
JP2009012106A (ja) | 2007-07-03 | 2009-01-22 | Fuji Electric Systems Co Ltd | 遠隔操作支援装置および遠隔操作支援プログラム |
JP2009039814A (ja) | 2007-08-08 | 2009-02-26 | Toyota Motor Corp | パワーアシスト装置及びその制御方法 |
EP2796102B1 (en) | 2007-10-05 | 2018-03-14 | Ethicon LLC | Ergonomic surgical instruments |
US9037295B2 (en) | 2008-03-07 | 2015-05-19 | Perception Raisonnement Action En Medecine | Dynamic physical constraint for hard surface emulation |
GB0804633D0 (en) * | 2008-03-12 | 2008-04-16 | Prosurgics Ltd | a telescopic support |
US8808164B2 (en) | 2008-03-28 | 2014-08-19 | Intuitive Surgical Operations, Inc. | Controlling a robotic surgical tool with a display monitor |
US8155479B2 (en) | 2008-03-28 | 2012-04-10 | Intuitive Surgical Operations Inc. | Automated panning and digital zooming for robotic surgical systems |
US20090259105A1 (en) | 2008-04-10 | 2009-10-15 | Miyano Hiromichi | Medical treatment system and suturing method |
JP5384178B2 (ja) | 2008-04-21 | 2014-01-08 | 株式会社森精機製作所 | 加工シミュレーション方法及び加工シミュレーション装置 |
US8315738B2 (en) | 2008-05-21 | 2012-11-20 | Fanuc Robotics America, Inc. | Multi-arm robot system interference check via three dimensional automatic zones |
EP2138366B1 (en) | 2008-06-26 | 2013-03-20 | Kawasaki Jukogyo Kabushiki Kaisha | Slip suppression control system for vehicle |
US20220354600A1 (en) | 2008-06-27 | 2022-11-10 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide |
US8864652B2 (en) | 2008-06-27 | 2014-10-21 | Intuitive Surgical Operations, Inc. | Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip |
US8414469B2 (en) * | 2008-06-27 | 2013-04-09 | Intuitive Surgical Operations, Inc. | Medical robotic system having entry guide controller with instrument tip velocity limiting |
US9179832B2 (en) * | 2008-06-27 | 2015-11-10 | Intuitive Surgical Operations, Inc. | Medical robotic system with image referenced camera control using partitionable orientational and translational modes |
US8130907B2 (en) * | 2008-09-12 | 2012-03-06 | Accuray Incorporated | Controlling X-ray imaging based on target motion |
US8315720B2 (en) * | 2008-09-26 | 2012-11-20 | Intuitive Surgical Operations, Inc. | Method for graphically providing continuous change of state directions to a user of a medical robotic system |
DE102008051111B4 (de) * | 2008-10-09 | 2013-01-24 | Reiner Kunz | Halterungs- und Führungseinrichtung für ein endoskopisches Instrument |
US8126642B2 (en) | 2008-10-24 | 2012-02-28 | Gray & Company, Inc. | Control and systems for autonomously driven vehicles |
US20100331856A1 (en) | 2008-12-12 | 2010-12-30 | Hansen Medical Inc. | Multiple flexible and steerable elongate instruments for minimally invasive operations |
US8774969B2 (en) | 2008-12-17 | 2014-07-08 | Kuka Laboratories Gmbh | Method for allowing a manipulator to cover a predetermined trajectory, and control device for carrying out said method |
US8335590B2 (en) * | 2008-12-23 | 2012-12-18 | Intuitive Surgical Operations, Inc. | System and method for adjusting an image capturing device attribute using an unused degree-of-freedom of a master control device |
US8594841B2 (en) | 2008-12-31 | 2013-11-26 | Intuitive Surgical Operations, Inc. | Visual force feedback in a minimally invasive surgical procedure |
US8306656B1 (en) | 2009-01-12 | 2012-11-06 | Titan Medical Inc. | Method and system for performing medical procedure |
US20100298839A1 (en) | 2009-01-15 | 2010-11-25 | Salvatore Castro | Peelable Sheath and Method of Use |
US8423182B2 (en) | 2009-03-09 | 2013-04-16 | Intuitive Surgical Operations, Inc. | Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems |
US8120301B2 (en) * | 2009-03-09 | 2012-02-21 | Intuitive Surgical Operations, Inc. | Ergonomic surgeon control console in robotic surgical systems |
US8337397B2 (en) | 2009-03-26 | 2012-12-25 | Intuitive Surgical Operations, Inc. | Method and system for providing visual guidance to an operator for steering a tip of an endoscopic device toward one or more landmarks in a patient |
JP2011013294A (ja) | 2009-06-30 | 2011-01-20 | Toshiba Corp | 情報処理装置および輝度制御方法 |
US8918211B2 (en) | 2010-02-12 | 2014-12-23 | Intuitive Surgical Operations, Inc. | Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument |
US9492927B2 (en) | 2009-08-15 | 2016-11-15 | Intuitive Surgical Operations, Inc. | Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose |
US8244402B2 (en) | 2009-09-22 | 2012-08-14 | GM Global Technology Operations LLC | Visual perception system and method for a humanoid robot |
WO2011100110A1 (en) | 2010-02-11 | 2011-08-18 | Intuitive Surgical Operations, Inc. | Method and system for automatically maintaining an operator selected roll orientation at a distal tip of a robotic endoscope |
US8589814B2 (en) | 2010-04-16 | 2013-11-19 | Honeywell International Inc. | System and method for visual presentation of information in a process control system |
JP5782515B2 (ja) | 2010-08-02 | 2015-09-24 | ザ・ジョンズ・ホプキンス・ユニバーシティ | ロボットの協働制御および音声フィードバックを用いて力覚センサ情報を提示する方法 |
WO2013005862A1 (en) * | 2011-07-07 | 2013-01-10 | Olympus Corporation | Medical master slave manipulator |
US9387048B2 (en) | 2011-10-14 | 2016-07-12 | Intuitive Surgical Operations, Inc. | Catheter sensor systems |
KR20130080909A (ko) | 2012-01-06 | 2013-07-16 | 삼성전자주식회사 | 수술 로봇 및 그 제어 방법 |
US8891924B2 (en) | 2012-04-26 | 2014-11-18 | Bio-Medical Engineering (HK) Limited | Magnetic-anchored robotic system |
KR101800189B1 (ko) | 2012-04-30 | 2017-11-23 | 삼성전자주식회사 | 수술 로봇의 힘 제어 장치 및 방법 |
US10507066B2 (en) | 2013-02-15 | 2019-12-17 | Intuitive Surgical Operations, Inc. | Providing information of tools by filtering image areas adjacent to or on displayed images of the tools |
KR102115447B1 (ko) * | 2013-03-27 | 2020-05-27 | 한양대학교 에리카산학협력단 | 내시경 장치 |
US9949798B2 (en) | 2016-01-06 | 2018-04-24 | Ethicon Endo-Surgery, Llc | Methods, systems, and devices for controlling movement of a robotic surgical system |
CA3087094A1 (en) * | 2017-12-28 | 2019-07-04 | Orbsurgical Ltd. | Microsurgery-specific haptic hand controller |
-
2010
- 2010-05-14 US US12/780,071 patent/US8620473B2/en active Active
-
2011
- 2011-05-11 EP EP18205738.0A patent/EP3459429B1/en active Active
- 2011-05-11 KR KR1020197022941A patent/KR102168839B1/ko active IP Right Grant
- 2011-05-11 CN CN201180024113.XA patent/CN102905641B/zh active Active
- 2011-05-11 KR KR1020187000865A patent/KR101887889B1/ko active IP Right Grant
- 2011-05-11 KR KR1020187022667A patent/KR102009226B1/ko active IP Right Grant
- 2011-05-11 KR KR1020127024075A patent/KR101819531B1/ko active IP Right Grant
- 2011-05-11 CN CN201910402911.XA patent/CN110115630B/zh active Active
- 2011-05-11 EP EP11731556.4A patent/EP2568912B1/en active Active
- 2011-05-11 KR KR1020217029135A patent/KR102436722B1/ko active IP Right Grant
- 2011-05-11 EP EP23154997.3A patent/EP4193904A3/en active Pending
- 2011-05-11 WO PCT/US2011/036109 patent/WO2011143338A1/en active Application Filing
- 2011-05-11 CN CN202211239720.4A patent/CN115553921A/zh active Pending
- 2011-05-11 CN CN201610089029.0A patent/CN105616007B/zh active Active
- 2011-05-11 KR KR1020207029643A patent/KR102303363B1/ko active IP Right Grant
-
2013
- 2013-12-03 US US14/095,011 patent/US9333042B2/en active Active
-
2016
- 2016-04-08 US US15/094,721 patent/US10188472B2/en active Active
-
2018
- 2018-12-06 US US16/211,864 patent/US11399908B2/en active Active
-
2021
- 2021-05-27 US US17/332,928 patent/US12097002B2/en active Active
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12097002B2 (en) | Medical robotic system with coupled control modes | |
US11957304B2 (en) | Minimally invasive surgical system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190813 Assignee: Intuitive medical Co. Assignor: INTUITIVE SURGICAL OPERATIONS, Inc. Contract record no.: X2022990000315 Denomination of invention: Medical robot system with linkage control mode License type: Common License Record date: 20220620 |
|
GR01 | Patent grant | ||
GR01 | Patent grant |