CN110084844A - 一种基于深度相机的机场道面裂缝检测方法 - Google Patents
一种基于深度相机的机场道面裂缝检测方法 Download PDFInfo
- Publication number
- CN110084844A CN110084844A CN201910338449.1A CN201910338449A CN110084844A CN 110084844 A CN110084844 A CN 110084844A CN 201910338449 A CN201910338449 A CN 201910338449A CN 110084844 A CN110084844 A CN 110084844A
- Authority
- CN
- China
- Prior art keywords
- grid
- pixel
- surface model
- depth
- crack
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 48
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 2
- 240000007594 Oryza sativa Species 0.000 claims 1
- 235000007164 Oryza sativa Nutrition 0.000 claims 1
- 210000000988 bone and bone Anatomy 0.000 claims 1
- 238000005457 optimization Methods 0.000 claims 1
- 235000009566 rice Nutrition 0.000 claims 1
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 238000005286 illumination Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 238000003708 edge detection Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/181—Segmentation; Edge detection involving edge growing; involving edge linking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/187—Segmentation; Edge detection involving region growing; involving region merging; involving connected component labelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30132—Masonry; Concrete
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- Quality & Reliability (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910338449.1A CN110084844B (zh) | 2019-04-25 | 2019-04-25 | 一种基于深度相机的机场道面裂缝检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910338449.1A CN110084844B (zh) | 2019-04-25 | 2019-04-25 | 一种基于深度相机的机场道面裂缝检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110084844A true CN110084844A (zh) | 2019-08-02 |
CN110084844B CN110084844B (zh) | 2023-03-28 |
Family
ID=67416697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910338449.1A Active CN110084844B (zh) | 2019-04-25 | 2019-04-25 | 一种基于深度相机的机场道面裂缝检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110084844B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112053331A (zh) * | 2020-08-28 | 2020-12-08 | 西安电子科技大学 | 一种图像叠加和裂缝信息融合的桥梁裂缝检测方法 |
CN112666167A (zh) * | 2020-12-22 | 2021-04-16 | 成都圭目机器人有限公司 | 一种评估水泥混凝土道面裂缝产生fod风险的方法和装置 |
CN112726360A (zh) * | 2020-12-24 | 2021-04-30 | 中铁建设集团基础设施建设有限公司 | 一种机场混凝土道面裂缝修补方法 |
CN113911673A (zh) * | 2020-11-12 | 2022-01-11 | 泉州冰点科技有限公司 | 一种大型输送带表面裂纹检测方法及系统 |
CN116664582A (zh) * | 2023-08-02 | 2023-08-29 | 四川公路桥梁建设集团有限公司 | 一种基于神经视觉网络的路面检测方法及装置 |
CN118628845A (zh) * | 2024-08-13 | 2024-09-10 | 杭州申昊科技股份有限公司 | 基于深度学习的轨道缝隙异常检测方法、装置、终端及介质 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102183525A (zh) * | 2011-01-20 | 2011-09-14 | 单宝华 | 基于ccd阵列摄像技术的桥梁表观状态自动检测装置及其方法 |
US20130155061A1 (en) * | 2011-12-16 | 2013-06-20 | University Of Southern California | Autonomous pavement condition assessment |
CN105113375A (zh) * | 2015-05-15 | 2015-12-02 | 南京航空航天大学 | 一种基于线结构光的路面裂缝检测系统及其检测方法 |
CN105133471A (zh) * | 2015-05-15 | 2015-12-09 | 南京航空航天大学 | 一种基于线结构光路面检测系统的路面深度图像生产方法 |
CA2914020A1 (en) * | 2014-12-10 | 2016-06-10 | Dassault Systemes | Texturing a 3d modeled object |
CN107290346A (zh) * | 2017-04-10 | 2017-10-24 | 南京航空航天大学 | 基于二维图像和线结构光传感器的路面裂缝检测系统 |
CN107507170A (zh) * | 2017-07-28 | 2017-12-22 | 中国民航大学 | 一种基于多尺度图像信息融合的机场跑道裂缝检测方法 |
CN107633516A (zh) * | 2017-09-21 | 2018-01-26 | 武汉武大卓越科技有限责任公司 | 一种识别路面变形类病害的方法和装置 |
CN108921076A (zh) * | 2018-09-21 | 2018-11-30 | 南京信息工程大学 | 基于图像的道面裂缝病害自适应恒虚警检测方法 |
-
2019
- 2019-04-25 CN CN201910338449.1A patent/CN110084844B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102183525A (zh) * | 2011-01-20 | 2011-09-14 | 单宝华 | 基于ccd阵列摄像技术的桥梁表观状态自动检测装置及其方法 |
US20130155061A1 (en) * | 2011-12-16 | 2013-06-20 | University Of Southern California | Autonomous pavement condition assessment |
CA2914020A1 (en) * | 2014-12-10 | 2016-06-10 | Dassault Systemes | Texturing a 3d modeled object |
CN105113375A (zh) * | 2015-05-15 | 2015-12-02 | 南京航空航天大学 | 一种基于线结构光的路面裂缝检测系统及其检测方法 |
CN105133471A (zh) * | 2015-05-15 | 2015-12-09 | 南京航空航天大学 | 一种基于线结构光路面检测系统的路面深度图像生产方法 |
CN107290346A (zh) * | 2017-04-10 | 2017-10-24 | 南京航空航天大学 | 基于二维图像和线结构光传感器的路面裂缝检测系统 |
CN107507170A (zh) * | 2017-07-28 | 2017-12-22 | 中国民航大学 | 一种基于多尺度图像信息融合的机场跑道裂缝检测方法 |
CN107633516A (zh) * | 2017-09-21 | 2018-01-26 | 武汉武大卓越科技有限责任公司 | 一种识别路面变形类病害的方法和装置 |
CN108921076A (zh) * | 2018-09-21 | 2018-11-30 | 南京信息工程大学 | 基于图像的道面裂缝病害自适应恒虚警检测方法 |
Non-Patent Citations (3)
Title |
---|
宋葵阳等: "基于结构光的路面裂缝检测方法研究", 《机械制造与自动化》 * |
张德津等: "基于空间聚集特征的沥青路面裂缝检测方法", 《自动化学报》 * |
朱春省: "《基于结构光的路面裂缝检测关键技术研究》", 《工程科技II辑》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112053331A (zh) * | 2020-08-28 | 2020-12-08 | 西安电子科技大学 | 一种图像叠加和裂缝信息融合的桥梁裂缝检测方法 |
CN112053331B (zh) * | 2020-08-28 | 2023-04-07 | 西安电子科技大学 | 一种图像叠加和裂缝信息融合的桥梁裂缝检测方法 |
CN113911673A (zh) * | 2020-11-12 | 2022-01-11 | 泉州冰点科技有限公司 | 一种大型输送带表面裂纹检测方法及系统 |
CN112666167A (zh) * | 2020-12-22 | 2021-04-16 | 成都圭目机器人有限公司 | 一种评估水泥混凝土道面裂缝产生fod风险的方法和装置 |
CN112726360A (zh) * | 2020-12-24 | 2021-04-30 | 中铁建设集团基础设施建设有限公司 | 一种机场混凝土道面裂缝修补方法 |
CN116664582A (zh) * | 2023-08-02 | 2023-08-29 | 四川公路桥梁建设集团有限公司 | 一种基于神经视觉网络的路面检测方法及装置 |
CN116664582B (zh) * | 2023-08-02 | 2023-10-27 | 四川公路桥梁建设集团有限公司 | 一种基于神经视觉网络的路面检测方法及装置 |
CN118628845A (zh) * | 2024-08-13 | 2024-09-10 | 杭州申昊科技股份有限公司 | 基于深度学习的轨道缝隙异常检测方法、装置、终端及介质 |
Also Published As
Publication number | Publication date |
---|---|
CN110084844B (zh) | 2023-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110084844B (zh) | 一种基于深度相机的机场道面裂缝检测方法 | |
Wang et al. | Pavement crack image acquisition methods and crack extraction algorithms: A review | |
Balado et al. | Automatic classification of urban ground elements from mobile laser scanning data | |
CN110246130B (zh) | 基于红外和可见光图像数据融合的机场道面裂缝检测方法 | |
Garilli et al. | Automatic detection of stone pavement's pattern based on UAV photogrammetry | |
Lafarge et al. | Creating large-scale city models from 3D-point clouds: a robust approach with hybrid representation | |
CN105373135B (zh) | 一种基于机器视觉的飞机入坞引导和机型识别的方法及系统 | |
CN108898085A (zh) | 一种基于手机视频的道路病害智能检测方法 | |
Tan et al. | Vehicle detection in high resolution satellite remote sensing images based on deep learning | |
Liang et al. | Research on concrete cracks recognition based on dual convolutional neural network | |
CN103035006A (zh) | 一种LiDAR辅助下基于LEGION的高分辨率航空影像分割方法 | |
CN106779054A (zh) | 一种基于雾天图像的pm2.5估计方法 | |
Zou et al. | Automatic segmentation, inpainting, and classification of defective patterns on ancient architecture using multiple deep learning algorithms | |
Che et al. | Fast edge detection and segmentation of terrestrial laser scans through normal variation analysis | |
Rolfsen et al. | The use of the BIM-model and scanning in quality assurance of bridge constructions | |
CN105910585A (zh) | 基于倾斜摄影技术的违法建筑物快速巡查测量方法 | |
Cao | Research on crack detection of bridge deck based on computer vision | |
Gao et al. | Intelligent crack damage detection system in shield tunnel using combination of retinanet and optimal adaptive selection | |
Xu et al. | Crack width recognition of tunnel tube sheet based on yolov8 algorithm and 3d imaging | |
CN113762247A (zh) | 一种基于显著实例分割算法的道路裂缝自动检测方法 | |
Safaei | Pixel and region-based image processing algorithms for detection and classification of pavement cracks | |
Huang et al. | Crack fundamental element (CFE) for multi-scale crack classification | |
CN106991404B (zh) | 基于众源地理数据的地表覆盖更新方法及系统 | |
CN116958837A (zh) | 基于无人机的市政设施故障检测系统 | |
Yuan et al. | Automatic detection of pavement surface defects using consumer depth camera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190802 Assignee: TIANJIN JIUYUE TECHNOLOGY Co.,Ltd. Assignor: CIVIL AVIATION University OF CHINA Contract record no.: X2024980001620 Denomination of invention: A crack detection method for airport pavement based on depth camera Granted publication date: 20230328 License type: Common License Record date: 20240130 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190802 Assignee: Zhongke Qingyan (Tianjin) Technology Co.,Ltd. Assignor: CIVIL AVIATION University OF CHINA Contract record no.: X2024980003284 Denomination of invention: A crack detection method for airport pavement based on depth camera Granted publication date: 20230328 License type: Common License Record date: 20240321 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190802 Assignee: FITOW (TIANJIN) DETECTION TECHNOLOGY CO.,LTD. Assignor: CIVIL AVIATION University OF CHINA Contract record no.: X2024980003591 Denomination of invention: A crack detection method for airport pavement based on depth camera Granted publication date: 20230328 License type: Common License Record date: 20240327 |