CN110071284B - Protection method of lithium metal electrode - Google Patents
Protection method of lithium metal electrode Download PDFInfo
- Publication number
- CN110071284B CN110071284B CN201910155722.7A CN201910155722A CN110071284B CN 110071284 B CN110071284 B CN 110071284B CN 201910155722 A CN201910155722 A CN 201910155722A CN 110071284 B CN110071284 B CN 110071284B
- Authority
- CN
- China
- Prior art keywords
- lithium
- sheet
- lithium metal
- antimony trifluoride
- metal electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 281
- 238000000034 method Methods 0.000 title claims abstract description 81
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 186
- ODNBVEIAQAZNNM-UHFFFAOYSA-N 1-(6-chloroimidazo[1,2-b]pyridazin-3-yl)ethanone Chemical compound C1=CC(Cl)=NN2C(C(=O)C)=CN=C21 ODNBVEIAQAZNNM-UHFFFAOYSA-N 0.000 claims abstract description 74
- GUNJVIDCYZYFGV-UHFFFAOYSA-K Antimony trifluoride Inorganic materials F[Sb](F)F GUNJVIDCYZYFGV-UHFFFAOYSA-K 0.000 claims abstract description 74
- 238000006243 chemical reaction Methods 0.000 claims abstract description 20
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims abstract description 17
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 claims description 92
- 239000000243 solution Substances 0.000 claims description 58
- BZHNHDOWFCBZNK-UHFFFAOYSA-N antimony lithium Chemical compound [Li].[Sb] BZHNHDOWFCBZNK-UHFFFAOYSA-N 0.000 claims description 37
- 229910001245 Sb alloy Inorganic materials 0.000 claims description 35
- 239000002140 antimony alloy Substances 0.000 claims description 35
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 29
- 229910001416 lithium ion Inorganic materials 0.000 claims description 29
- 239000003792 electrolyte Substances 0.000 claims description 28
- 239000011241 protective layer Substances 0.000 claims description 28
- 239000011521 glass Substances 0.000 claims description 24
- 239000010935 stainless steel Substances 0.000 claims description 24
- 229910001220 stainless steel Inorganic materials 0.000 claims description 24
- 239000002131 composite material Substances 0.000 claims description 23
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims description 16
- -1 lithium hexafluorophosphate Chemical compound 0.000 claims description 12
- 229910003002 lithium salt Inorganic materials 0.000 claims description 11
- 159000000002 lithium salts Chemical class 0.000 claims description 11
- 238000006011 modification reaction Methods 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 11
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims description 10
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims description 10
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 claims description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 claims description 8
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 8
- 230000002745 absorbent Effects 0.000 claims description 8
- 239000002250 absorbent Substances 0.000 claims description 8
- 239000011259 mixed solution Substances 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 8
- 239000004743 Polypropylene Substances 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000012528 membrane Substances 0.000 claims description 7
- 239000003960 organic solvent Substances 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 229920001155 polypropylene Polymers 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 239000012046 mixed solvent Substances 0.000 claims description 2
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical group FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 claims 1
- XKTYXVDYIKIYJP-UHFFFAOYSA-N 3h-dioxole Chemical compound C1OOC=C1 XKTYXVDYIKIYJP-UHFFFAOYSA-N 0.000 claims 1
- 229910013872 LiPF Inorganic materials 0.000 claims 1
- 101150058243 Lipf gene Proteins 0.000 claims 1
- 238000004140 cleaning Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 238000005303 weighing Methods 0.000 claims 1
- 230000010287 polarization Effects 0.000 abstract description 24
- 210000001787 dendrite Anatomy 0.000 abstract description 23
- 239000000956 alloy Substances 0.000 abstract description 12
- 229910045601 alloy Inorganic materials 0.000 abstract description 11
- 230000001681 protective effect Effects 0.000 abstract description 3
- 238000005275 alloying Methods 0.000 abstract description 2
- 230000002401 inhibitory effect Effects 0.000 abstract description 2
- 235000012431 wafers Nutrition 0.000 abstract 2
- 239000013078 crystal Substances 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 24
- 239000002184 metal Substances 0.000 description 24
- 239000010410 layer Substances 0.000 description 15
- 239000012300 argon atmosphere Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000007599 discharging Methods 0.000 description 6
- 238000000840 electrochemical analysis Methods 0.000 description 6
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical group [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000001351 cycling effect Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- VQKFNUFAXTZWDK-UHFFFAOYSA-N 2-Methylfuran Chemical compound CC1=CC=CO1 VQKFNUFAXTZWDK-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910001512 metal fluoride Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- IDYFACFOJYNFAX-UHFFFAOYSA-J tetrafluoroantimony Chemical compound F[Sb](F)(F)F IDYFACFOJYNFAX-UHFFFAOYSA-J 0.000 description 2
- PHUSKQCRZLGYQY-UHFFFAOYSA-N trifluoro(trifluoromethylsulfonylsulfinylsulfonyl)methane Chemical compound S(=O)(=O)(C(F)(F)F)S(=O)S(=O)(=O)C(F)(F)F PHUSKQCRZLGYQY-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- AFRJJFRNGGLMDW-UHFFFAOYSA-N lithium amide Chemical compound [Li+].[NH2-] AFRJJFRNGGLMDW-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种锂离子电池的制备方法,特别是涉及一种锂离子电池的电极的制备方法和维护方法,应用于锂离子电池技术领域。The invention relates to a preparation method of a lithium ion battery, in particular to a preparation method and a maintenance method of an electrode of the lithium ion battery, and is applied to the technical field of lithium ion batteries.
背景技术Background technique
近年来,化石能源的不断消耗及其衍生的环境污染问题日益受到人们的重视。为了缓解上述问题,替代煤炭、石油、天然气等传统能源的太阳能和风能等可再生清洁能源的开发和有效利用已经成为重要的研究课题,新能源产业的发展势头也日益强劲。但太阳能和风能等新能源存在间歇性的特点,无法为电网提供持续稳定的能源供应。由于具有高能量密度和稳定的循环性能等优点,除了被广泛应用于手机、笔记本电脑、电动汽车等领域,锂离子电池在存储太阳能和风能等间歇性新能源方面也具有潜在的应用前景。In recent years, the continuous consumption of fossil energy and the resulting environmental pollution have been paid more and more attention by people. In order to alleviate the above problems, the development and effective utilization of renewable and clean energy such as solar energy and wind energy, which can replace traditional energy sources such as coal, oil, and natural gas, has become an important research topic, and the development momentum of the new energy industry is also growing stronger. However, new energy sources such as solar energy and wind energy are intermittent and cannot provide a continuous and stable energy supply to the grid. Due to the advantages of high energy density and stable cycle performance, in addition to being widely used in mobile phones, notebook computers, electric vehicles and other fields, lithium-ion batteries also have potential application prospects in storing intermittent new energy such as solar energy and wind energy.
伴随着全球范围内混合动力汽车和电动汽车的逐渐普及,可充放式锂电池也逐渐深入到人们的日常生活中。然而,即使锂离子电池系统的能量密度已经通过模块化电池的电极材料、电解质、集流体等每个组件进行了优化,接近其理论值,但它仍然无法满足人们对新一代高容量锂离子电池的需求。造成这种尴尬的主要原因之一,在于电池充放电循环时的单离子插层反应严重限制了含锂正极的容量。高能量密度的电能存储器件的需求使得研究者们将目光投向了锂金属负极。With the gradual popularization of hybrid vehicles and electric vehicles around the world, rechargeable lithium batteries have gradually penetrated into people's daily life. However, even though the energy density of the lithium-ion battery system has been optimized by each component of the modular battery, such as electrode materials, electrolytes, current collectors, etc., and is close to its theoretical value, it still cannot meet people's expectations for a new generation of high-capacity lithium-ion batteries. demand. One of the main reasons for this embarrassment is that the single-ion intercalation reaction during battery charge-discharge cycles severely limits the capacity of lithium-containing cathodes. The demand for high-energy-density electrical energy storage devices has led researchers to turn their attention to lithium metal anodes.
目前商业化的锂离子电池负极为石墨化碳。相比于传统的石墨负极,锂金属负极拥有极高的能量密度,3800mAh/g,较低的电位,-3.045V。但锂金属负极也存在一个致命的问题—锂枝晶的产生,锂离子在锂负极表面析出及沉积的过程中,容易在锂负极表面生成纳米线一样的枝晶,导致电池的短路甚至爆炸。如何抑制锂枝晶的产生,实现对锂金属负极的有效保护,是关键技术之一。目前国内外主要研究者们主要通过电解液的优化与改进、金属锂负极的表面改性等手段来实现锂金属负极的保护。电解液的优化主要从添加剂方面入手,添加剂的使用极大地优化了金属锂负极SEI膜的均匀性和稳定性,添加剂主要包含2-甲基呋喃,CO2、SO2和N2O气体分子、VC以及含氟化合物等。金属锂负极的表面改性则主要涉及人造SEI膜和界面纳米化改性。界面纳米化改性过程复杂,仅限于实验室阶段,没有工业化基础。Linda F.Nazar发现使用贵金属铟在锂表面形成一层氟化锂及合金物质,锂枝晶的产生得到有效抑制的现象,可以实现锂电池稳定性的显著提高,但成本较高,不够经济。因此,寻求对锂金属负极更加有效、过程更加简单的保护措施显得尤为重要,成为亟待解决的技术问题。The current commercial lithium-ion battery anode is graphitized carbon. Compared with the traditional graphite anode, the lithium metal anode has a very high energy density, 3800mAh/g, and a lower potential, -3.045V. However, the lithium metal negative electrode also has a fatal problem - the formation of lithium dendrites. During the precipitation and deposition of lithium ions on the surface of the lithium negative electrode, nanowire-like dendrites are easily formed on the surface of the lithium negative electrode, resulting in short circuit or even explosion of the battery. How to suppress the generation of lithium dendrites and achieve effective protection of lithium metal anodes is one of the key technologies. At present, the main researchers at home and abroad mainly realize the protection of lithium metal anode by means of optimization and improvement of electrolyte and surface modification of metal lithium anode. The optimization of the electrolyte mainly starts from the additives. The use of the additives greatly optimizes the uniformity and stability of the SEI film of the metal lithium anode. The additives mainly include 2-methylfuran, CO 2 , SO 2 and N 2 O gas molecules, VC and fluorine-containing compounds, etc. The surface modification of metal lithium anode mainly involves artificial SEI film and interface nano-modification. The interfacial nano-modification process is complex, limited to the laboratory stage, and has no industrial basis. Linda F. Nazar found that the use of precious metal indium to form a layer of lithium fluoride and alloy substances on the surface of lithium, the phenomenon of effectively inhibiting the formation of lithium dendrites, can significantly improve the stability of lithium batteries, but the cost is high and not economical. Therefore, it is particularly important to seek more effective and simpler protection measures for lithium metal anodes, which has become an urgent technical problem to be solved.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术问题,本发明的目的在于克服已有技术存在的不足,提供一种锂金属电极的保护方法,能实现简单有效地锂金属负极的保护,通过锂金属与三氟化锑(SbF3)反应的方法,在锂金属负极表面生成一种合金和氟化锂,利用价格低廉的金属氟化物三氟化锑来防止锂负极枝晶的产生,可以减少锂负极所带来的极化,本发明工艺过程简单,效果明显,成本低廉,易于实现产业化,有望实现锂负极的实际应用。In order to solve the problems of the prior art, the object of the present invention is to overcome the deficiencies existing in the prior art, and provide a protection method for a lithium metal electrode, which can realize the protection of the lithium metal negative electrode simply and effectively, through lithium metal and antimony trifluoride ( SbF 3 ) reaction method, an alloy and lithium fluoride are formed on the surface of the lithium metal negative electrode, and the low-cost metal fluoride antimony trifluoride is used to prevent the generation of dendrites of the lithium negative electrode, which can reduce the negative electrode caused by the lithium negative electrode. The process of the invention is simple, the effect is obvious, the cost is low, the industrialization is easy to be realized, and the practical application of the lithium negative electrode is expected to be realized.
为达到上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种锂金属电极的保护方法,运用低浓度的三氟化锑溶液与锂金属电极表层的金属锂反应,生成锂锑合金和氟化锂,从而在锂金属电极表面形成一层致密的锂锑合金和氟化锂的复合保护层,其中三氟化锑溶液中的三氟化锑的浓度为0.05~0.2摩尔每升。A method for protecting lithium metal electrodes. A low-concentration antimony trifluoride solution is used to react with metal lithium on the surface of the lithium metal electrode to generate lithium antimony alloy and lithium fluoride, thereby forming a dense layer of lithium antimony on the surface of the lithium metal electrode. The composite protective layer of alloy and lithium fluoride, wherein the concentration of antimony trifluoride in the antimony trifluoride solution is 0.05-0.2 mole per liter.
作为本发明优选的技术方案,锂金属电极的保护方法,包括如下步骤:As the preferred technical solution of the present invention, the protection method of the lithium metal electrode comprises the following steps:
a.称取53.6-107.2毫克的三氟化锑,倒入20毫升带盖玻璃瓶中,并用移液枪加入3-6毫升的碳酸丙烯酯作为溶剂,搅拌使三氟化锑在碳酸丙烯酯中充分溶解,得到三氟化锑溶液,备用;a. Weigh 53.6-107.2 mg of antimony trifluoride, pour it into a 20 ml glass bottle with a lid, add 3-6 ml of propylene carbonate as a solvent with a pipette, stir to make antimony trifluoride in propylene carbonate is fully dissolved in the solution to obtain an antimony trifluoride solution, which is for subsequent use;
b.制备圆片状锂片,控制锂片直径不大于12毫米,锂片厚度不高于0.2毫米,备用;b. Prepare a disc-shaped lithium sheet, control the diameter of the lithium sheet to be no greater than 12 mm, and the thickness of the lithium sheet to be no greater than 0.2 mm, for use;
c.将在所述b中的锂片压在不锈钢垫片上,使锂片与不锈钢垫片充分粘连和贴合;c. Press the lithium sheet in the b on the stainless steel gasket, so that the lithium sheet and the stainless steel gasket are fully adhered and bonded;
d.将在所述c中处理好的锂片连同不锈钢垫片放入在所述步骤a中使用的玻璃瓶中,使锂片浸没在玻璃瓶中的三氟化锑溶液中,在进行金属锂负极的表面改性反应3~6分钟后,再将锂片从三氟化锑溶液中取出,然后用吸水纸将锂片表面残留的溶液清理干净,从而得到具有锂锑合金和氟化锂的复合保护层的锂金属电极。d. Put the lithium sheet processed in the c. together with the stainless steel gasket into the glass bottle used in the step a, so that the lithium sheet is immersed in the antimony trifluoride solution in the glass bottle. After 3 to 6 minutes of surface modification reaction of the lithium negative electrode, the lithium sheet is taken out from the antimony trifluoride solution, and then the residual solution on the surface of the lithium sheet is cleaned with absorbent paper, thereby obtaining a lithium antimony alloy and lithium fluoride. The composite protective layer of the lithium metal electrode.
作为本发明优选的技术方案,采用三氟化锑的浓度为0.1摩尔每升的三氟化锑溶液作为反应溶液,与锂金属电极表层的金属锂进行金属锂负极的表面改性反应。As a preferred technical solution of the present invention, an antimony trifluoride solution with an antimony trifluoride concentration of 0.1 mol per liter is used as the reaction solution, and the surface modification reaction of the metal lithium negative electrode is carried out with the metal lithium on the surface of the lithium metal electrode.
作为本发明优选的技术方案,选用至少一种锂盐溶解于有机溶剂中,配制锂离子电解液,以具有锂锑合金和氟化锂的复合保护层的锂金属电极作为负极,组装成为金属锂对称电池,电池的组装过程在氩气环境下进行,并控制氩气环境气氛环境中的水<0.01ppm,氧<0.01ppm。As a preferred technical solution of the present invention, at least one lithium salt is selected to be dissolved in an organic solvent, a lithium ion electrolyte is prepared, and a lithium metal electrode having a composite protective layer of lithium antimony alloy and lithium fluoride is used as the negative electrode to assemble into metal lithium Symmetrical battery, the battery assembly process is carried out in an argon atmosphere, and the water in the argon atmosphere is controlled to <0.01ppm and oxygen <0.01ppm.
作为本发明优选的技术方案,在锂离子电解液配制过程中,选取的锂盐为二(三氟甲基磺酰)亚胺锂(LiTFSI)或六氟磷酸锂(LiPF6),电解液的锂离子浓度为不低于1.0摩尔每升。As a preferred technical solution of the present invention, in the preparation process of the lithium ion electrolyte, the selected lithium salt is lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) or lithium hexafluorophosphate (LiPF 6 ). Not less than 1.0 moles per liter.
作为本发明优选的技术方案,在锂离子电解液配制过程中,在锂离子电解液中锂盐的基础上继续加入硝酸锂,使锂离子电解液的硝酸锂浓度不低于0.01摩尔每升。As a preferred technical solution of the present invention, during the preparation process of the lithium ion electrolyte, lithium nitrate is continuously added on the basis of the lithium salt in the lithium ion electrolyte, so that the lithium nitrate concentration of the lithium ion electrolyte is not less than 0.01 mol per liter.
作为本发明优选的技术方案,在锂离子电解液配制过程中,有机混合溶剂为体积比为1:1的1,3-二氧戊环(DOL)和乙二醇二甲醚(DME)混合溶液,或者为体积比为1:1的碳酸乙烯酯(EC)和碳酸二乙酯(DEC)的混合溶液。As a preferred technical solution of the present invention, during the preparation process of the lithium ion electrolyte, the organic mixed solvent is a mixture of 1,3-dioxolane (DOL) and ethylene glycol dimethyl ether (DME) in a volume ratio of 1:1 solution, or a mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 1:1.
作为本发明优选的技术方案,在金属锂对称电池组装过程中,采用聚丙烯多空膜为隔膜。As a preferred technical solution of the present invention, in the process of assembling the metal-lithium symmetrical battery, a polypropylene hollow membrane is used as the separator.
作为本发明优选的技术方案,实施锂金属电极的保护方法的全过程皆在氩气填充的手套箱中进行。As a preferred technical solution of the present invention, the entire process of implementing the lithium metal electrode protection method is carried out in an argon-filled glove box.
本发明锂金属负极的保护方法在锂金属负极表面上形成保护层。称取一定量三氟化锑,倒入带盖玻璃瓶中,加入一定量碳酸丙烯酯,搅拌使三氟化锑充分溶解。取15.6毫米直径的锂片,压成厚度约为0.2毫米厚度的片状,切成直径为12毫米的圆片。将处理后的锂片轻轻压在不锈钢垫片上,使锂片与不锈钢垫片充分粘连。将处理后的锂片连同不锈钢垫片轻轻放入玻璃瓶中,使锂片浸没在玻璃瓶中的三氟化锑溶液里,反应一段时间后将其取出,用吸水纸将其表面溶液处理干净。The protection method of the lithium metal negative electrode of the present invention forms a protective layer on the surface of the lithium metal negative electrode. Weigh a certain amount of antimony trifluoride, pour it into a glass bottle with a lid, add a certain amount of propylene carbonate, and stir to fully dissolve the antimony trifluoride. Take a lithium sheet with a diameter of 15.6 mm, press it into a sheet with a thickness of about 0.2 mm, and cut it into a circular sheet with a diameter of 12 mm. Lightly press the treated lithium sheet on the stainless steel gasket to fully adhere the lithium sheet to the stainless steel gasket. Put the treated lithium sheet together with the stainless steel gasket into the glass bottle gently, so that the lithium sheet is immersed in the antimony trifluoride solution in the glass bottle, take it out after a period of reaction, and treat its surface solution with absorbent paper clean.
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:Compared with the prior art, the present invention has the following obvious outstanding substantive features and significant advantages:
1.本发明方法利用三氟化锑与锂金属反应生成一层致密的锂锑合金及氟化锂层并置于锂负极表面,有助于锂离子的均匀脱出和沉积,防止锂枝晶的产生,从而提高锂电池和稳定性和安全性能;1. The method of the present invention utilizes antimony trifluoride and lithium metal to react to generate a layer of dense lithium antimony alloy and lithium fluoride layer and place it on the surface of the lithium negative electrode, which is helpful for the uniform extraction and deposition of lithium ions and prevents the formation of lithium dendrites. produced, thereby improving the stability and safety performance of lithium batteries;
2.本发明方法利用一种价格低廉的金属氟化物三氟化锑(SbF3)来防止锂负极枝晶的产生,该实验过程简单,效果明显,可以减少锂负极所带来的极化,有望实现锂负极的实际应用;2. The method of the present invention utilizes an inexpensive metal fluoride antimony trifluoride (SbF 3 ) to prevent the generation of dendrites of the lithium negative electrode, the experimental process is simple, the effect is obvious, and the polarization brought by the lithium negative electrode can be reduced, It is expected to realize the practical application of lithium anode;
3.本发明方法在提高电池电极寿命的同时,也提升了电池的整体寿命和质量;3. The method of the present invention improves the overall life and quality of the battery while improving the life of the battery electrode;
4.本发明方法的关键是通过低浓度长时间的反应可以在锂金属表面生成一层致密的锂锑合金及氟化锂层。经过电化学测试可知,本发明方法可以充分降低锂金属负极的极化,在1毫安时每平方厘米充放电1小时后极化降低至50毫伏,循环稳定性好,表明锂枝晶的产生得到了有效抑制,得到稳定的锂金属负极,运用于锂电池中,可以提高锂电池的循环性能和安全性能,具有潜在的商业化应用价值。4. The key of the method of the present invention is that a dense layer of lithium antimony alloy and lithium fluoride can be formed on the surface of lithium metal through a low concentration and long time reaction. It can be seen from electrochemical tests that the method of the present invention can fully reduce the polarization of the lithium metal negative electrode, and the polarization is reduced to 50 mV after charging and discharging per square centimeter at 1 mA for 1 hour, and the cycle stability is good, indicating that the lithium dendrites The generation is effectively suppressed, and a stable lithium metal negative electrode is obtained, which can be used in lithium batteries to improve the cycle performance and safety performance of lithium batteries, and has potential commercial application value.
附图说明Description of drawings
图1为本发明采用的锂片及处理后的锂片和最终组装的对称纽扣电池对比图,其中的图a为锂片,图b为经过金属锂负极的表面改性反应处理后得到的锂片,图c为最终组装的对称纽扣电池。Fig. 1 is the lithium sheet adopted in the present invention, the treated lithium sheet and the final assembled symmetrical button battery comparison diagram, wherein the figure a is the lithium sheet, and the figure b is the lithium obtained after the surface modification reaction treatment of the metal lithium negative electrode Figure c shows the final assembled symmetrical coin cell battery.
图2为本发明实施例一的锂片与三氟化锑反应后制备的锂锑合金和氟化锂的复合保护层的粉末X射线衍射图。FIG. 2 is a powder X-ray diffraction pattern of a composite protective layer of lithium antimony alloy and lithium fluoride prepared by reacting the lithium sheet with antimony trifluoride in Example 1 of the present invention.
图3为本发明实施例一组装的金属锂对称电池的电化学性能曲线。FIG. 3 is the electrochemical performance curve of the metal lithium symmetrical battery assembled in Example 1 of the present invention.
图4为本发明实施例二组装的金属锂对称电池的电化学性能曲线。FIG. 4 is the electrochemical performance curve of the metal lithium symmetrical battery assembled in Example 2 of the present invention.
图5为本发明实施例三组装的金属锂对称电池的电化学性能曲线。FIG. 5 is the electrochemical performance curve of the metal lithium symmetrical battery assembled in Example 3 of the present invention.
图6为本发明实施例四组装的金属锂对称电池的电化学性能曲线。FIG. 6 is the electrochemical performance curve of the metal lithium symmetrical battery assembled in Example 4 of the present invention.
图7为本发明实施例五组装的金属锂对称电池的电化学性能曲线。FIG. 7 is the electrochemical performance curve of the metal lithium symmetric battery assembled in Example 5 of the present invention.
具体实施方式Detailed ways
以下结合具体的实施例子对上述方案做进一步说明,本发明的优选实施例详述如下:The above scheme will be further described below in conjunction with specific embodiments, and preferred embodiments of the present invention are described in detail as follows:
实施例一:Example 1:
在本实施例中,参见图1~图3,一种锂金属电极的保护方法,包括如下步骤:In this embodiment, referring to FIGS. 1 to 3 , a method for protecting lithium metal electrodes includes the following steps:
a.称取53.6毫克的三氟化锑,倒入20毫升带盖玻璃瓶中,并用移液枪加入3毫升的碳酸丙烯酯作为溶剂,搅拌使三氟化锑在碳酸丙烯酯中充分溶解,得到三氟化锑溶液,备用;a. Weigh 53.6 mg of antimony trifluoride, pour it into a 20 ml glass bottle with a lid, add 3 ml of propylene carbonate as a solvent with a pipette, stir to fully dissolve antimony trifluoride in propylene carbonate, Obtain antimony trifluoride solution, standby;
b.取15.6毫米直径的锂片,用光滑的圆柱将其压成厚度为0.2毫米厚度的片状,再用模具切成直径为12毫米的圆片,备用;b. Take a lithium sheet with a diameter of 15.6 mm, press it into a sheet with a thickness of 0.2 mm with a smooth cylinder, and then cut it into a circular sheet with a diameter of 12 mm with a die for use;
c.将在所述b中的锂片压在不锈钢垫片上,使锂片与不锈钢垫片充分粘连和贴合;c. Press the lithium sheet in the b on the stainless steel gasket, so that the lithium sheet and the stainless steel gasket are fully adhered and bonded;
d.将在所述c中处理好的锂片连同不锈钢垫片放入在所述步骤a中使用的玻璃瓶中,使锂片浸没在玻璃瓶中的三氟化锑溶液中,在进行金属锂负极的表面改性反应5分钟后,再将锂片从三氟化锑溶液中取出,然后用吸水纸将锂片表面残留的溶液清理干净,从而得到具有锂锑合金和氟化锂的复合保护层的锂金属电极;d. Put the lithium sheet processed in the c. together with the stainless steel gasket into the glass bottle used in the step a, so that the lithium sheet is immersed in the antimony trifluoride solution in the glass bottle. After the surface modification reaction of the lithium negative electrode for 5 minutes, the lithium sheet was taken out from the antimony trifluoride solution, and then the residual solution on the surface of the lithium sheet was cleaned with absorbent paper to obtain a composite with lithium antimony alloy and lithium fluoride. Lithium metal electrode with protective layer;
e.将在所述d中制备好的锂金属电极放入CR2032电池壳中,选用聚丙烯多空膜为隔膜,电解液选用1摩尔每升的二(三氟甲基磺酰)亚胺锂(LiTFSI)溶解在体积比为1:1的1,3-二氧戊环(DOL)/乙二醇二甲醚(DME)混合溶液中,同时加入硝酸锂,使所制备的锂离子电解液的硝酸锂浓度为0.01摩尔每升。本实施例选用锂盐溶解于有机溶剂中,配制锂离子电解液,以具有锂锑合金和氟化锂的复合保护层的锂金属电极作为负极,组装成为金属锂对称电池,电池的组装过程在氩气环境下进行,并控制氩气环境气氛环境中的水<0.01ppm,氧<0.01ppm。e. Put the lithium metal electrode prepared in the d into the CR2032 battery shell, select the polypropylene hollow membrane as the diaphragm, and select 1 mole per liter of lithium bis(trifluoromethylsulfonyl)imide for the electrolyte. (LiTFSI) was dissolved in a 1:1 volume ratio of 1,3-dioxolane (DOL)/ethylene glycol dimethyl ether (DME) mixed solution, and lithium nitrate was added at the same time to make the prepared lithium ion electrolyte The lithium nitrate concentration is 0.01 moles per liter. In this example, a lithium salt is selected to be dissolved in an organic solvent to prepare a lithium ion electrolyte, and a lithium metal electrode with a composite protective layer of lithium antimony alloy and lithium fluoride is used as the negative electrode to assemble a metal lithium symmetrical battery. The battery assembly process is as follows: It is carried out in an argon atmosphere, and the water in the argon atmosphere is controlled to be <0.01ppm and oxygen <0.01ppm.
实验测试分析:Experimental test analysis:
对本实施例方法采用的锂片及处理后的锂片和最终组装的对称纽扣电池参见图1,其中的图a为锂片,图b为经过金属锂负极的表面改性反应处理后得到的锂片,图c为最终组装的对称纽扣电池。对本实施例方法的锂片与三氟化锑反应后制备的锂锑合金和氟化锂的复合保护层的粉末进行X射线衍射实验分析,参见图2,由图2可知人工保护膜中分别含有LiF与Li3Sb。对本实施例方法组装的金属锂对称电池进行电化学性能测试,得到金属锂对称电池的电化学性能曲线,测试条件选用以1mA/cm-2电流密度充放电1小时,参见图3,由图3可知在循环600小时后极化仍然小于100mV并且由插图可以发现在恒电流充放电过程中电压一直处于平稳状态,表明在充放电过程中锂枝晶的产生得到了有效抑制。本实施例利用低浓度的三氟化锑溶液与锂金属电极表层的金属锂反应,生成锂锑合金和氟化锂,从而在锂金属电极表面形成一层致密的锂锑合金和氟化锂的复合保护层。本实施例利用一种简单的合金法,利用三氟化锑(SbF3)在锂负极表面形成一种合金和氟化锂物质,可以有效降低锂负极的极化以及抑制枝晶的产生。本实施例方法主要利用三氟化锑与锂反应生成一层致密的合金和氟化锂保护层,主要方法为:首先将三氟化锑溶解在碳酸丙烯酯中制得均一溶液。对锂片表面进行预处理除去表面被氧化的锂,切成直径12毫米的圆片,将所得圆片浸入三氟化锑溶液中反应得到处理后的锂电极,最后组装成对称电池。该方法的关键是通过低浓度长时间的反应可以在锂金属表面生成一层致密的合金和氟化锂层。经过电化学测试可知,该方法可以充分降低锂金属负极的极化,在1毫安时每平方厘米充放电1小时后极化降低至50毫伏,循环稳定性好,表明锂枝晶的产生得到了有效抑制,得到稳定的锂金属负极,运用于锂电池中,可以提高锂电池的循环性能和安全性能,具有潜在的商业化应用价值。Refer to Figure 1 for the lithium sheet used in the method of this embodiment, the treated lithium sheet and the final assembled symmetrical button battery, where Figure a is the lithium sheet, and Figure b is the lithium obtained after the surface modification reaction treatment of the metal lithium negative electrode Figure c shows the final assembled symmetrical coin cell battery. The powder of the composite protective layer of lithium antimony alloy and lithium fluoride prepared by reacting the lithium sheet with antimony trifluoride in the method of this embodiment is analyzed by X-ray diffraction experiment. Referring to FIG. 2, it can be seen from FIG. 2 that the artificial protective film contains LiF and Li 3 Sb. The electrochemical performance of the lithium metal symmetric battery assembled by the method of this embodiment is tested, and the electrochemical performance curve of the metal lithium symmetric battery is obtained. It can be seen that the polarization is still less than 100 mV after cycling for 600 hours, and it can be seen from the inset that the voltage has been in a stable state during the galvanostatic charge-discharge process, indicating that the generation of lithium dendrites during the charge-discharge process has been effectively suppressed. In this example, a low-concentration antimony trifluoride solution is used to react with metallic lithium on the surface of the lithium metal electrode to generate lithium antimony alloy and lithium fluoride, thereby forming a dense layer of lithium antimony alloy and lithium fluoride on the surface of the lithium metal electrode. Composite protective layer. In this embodiment, a simple alloying method is used to form an alloy and a lithium fluoride substance on the surface of the lithium negative electrode by using antimony trifluoride (SbF 3 ), which can effectively reduce the polarization of the lithium negative electrode and suppress the generation of dendrites. The method of this embodiment mainly utilizes the reaction of antimony trifluoride and lithium to form a dense alloy and a lithium fluoride protective layer. The surface of the lithium sheet was pretreated to remove the oxidized lithium on the surface, cut into a 12 mm diameter disc, and the obtained disc was immersed in an antimony trifluoride solution to react to obtain a treated lithium electrode, and finally assembled into a symmetrical battery. The key to this method is that a dense layer of alloy and lithium fluoride can be formed on the surface of lithium metal through a low concentration and long time reaction. Electrochemical tests show that this method can fully reduce the polarization of the lithium metal negative electrode. The polarization is reduced to 50 mV after charging and discharging per square centimeter at 1 mA for 1 hour, and the cycle stability is good, indicating the formation of lithium dendrites. It is effectively inhibited to obtain a stable lithium metal negative electrode, which can be used in lithium batteries to improve the cycle performance and safety performance of lithium batteries, and has potential commercial application value.
实施例二:Embodiment 2:
本实施例与实施例一基本相同,特别之处在于:This embodiment is basically the same as the first embodiment, and the special features are:
在本实施例中,参见图4,一种锂金属电极的保护方法,包括如下步骤:In this embodiment, referring to FIG. 4 , a method for protecting lithium metal electrodes includes the following steps:
a.称取107.2毫克的三氟化锑,倒入20毫升带盖玻璃瓶中,并用移液枪加入6毫升的碳酸丙烯酯作为溶剂,搅拌使三氟化锑在碳酸丙烯酯中充分溶解,得到三氟化锑溶液,备用;a. Weigh 107.2 mg of antimony trifluoride, pour it into a 20 ml glass bottle with a lid, add 6 ml of propylene carbonate as a solvent with a pipette, stir to fully dissolve antimony trifluoride in propylene carbonate, Obtain antimony trifluoride solution, standby;
b.取15.6毫米直径的锂片,用光滑的圆柱将其压成厚度为0.2毫米厚度的片状,再用模具切成直径为12毫米的圆片,备用;b. Take a lithium sheet with a diameter of 15.6 mm, press it into a sheet with a thickness of 0.2 mm with a smooth cylinder, and then cut it into a circular sheet with a diameter of 12 mm with a die for use;
c.将在所述b中的锂片压在不锈钢垫片上,使锂片与不锈钢垫片充分粘连和贴合;c. Press the lithium sheet in the b on the stainless steel gasket, so that the lithium sheet and the stainless steel gasket are fully adhered and bonded;
d.将在所述c中处理好的锂片连同不锈钢垫片放入在所述步骤a中使用的玻璃瓶中,使锂片浸没在玻璃瓶中的三氟化锑溶液中,在进行金属锂负极的表面改性反应5分钟后,再将锂片从三氟化锑溶液中取出,然后用吸水纸将锂片表面残留的溶液清理干净,从而得到具有锂锑合金和氟化锂的复合保护层的锂金属电极;d. Put the lithium sheet processed in the c. together with the stainless steel gasket into the glass bottle used in the step a, so that the lithium sheet is immersed in the antimony trifluoride solution in the glass bottle. After the surface modification reaction of the lithium negative electrode for 5 minutes, the lithium sheet was taken out from the antimony trifluoride solution, and then the residual solution on the surface of the lithium sheet was cleaned with absorbent paper to obtain a composite with lithium antimony alloy and lithium fluoride. Lithium metal electrode with protective layer;
e.将在所述d中制备好的锂金属电极放入CR2032电池壳中,选用聚丙烯多空膜为隔膜,电解液选用浓度为1摩尔每升的二(三氟甲基磺酰)亚胺锂(LiTFSI)溶解在体积比为1:1的1,3-二氧戊环(DOL)/乙二醇二甲醚(DME)混合溶液中。本实施例选用锂盐溶解于有机溶剂中,配制锂离子电解液,以具有锂锑合金和氟化锂的复合保护层的锂金属电极作为负极,组装成为金属锂对称电池,电池的组装过程在氩气环境下进行,并控制氩气环境气氛环境中的水<0.01ppm,氧<0.01ppm。e. Put the lithium metal electrode prepared in the described d into the CR2032 battery shell, select the polypropylene hollow membrane as the diaphragm, and select the bis(trifluoromethylsulfonyl)sulfoxide with a concentration of 1 mole per liter for the electrolyte. Lithium amide (LiTFSI) was dissolved in a 1:1 volume ratio of 1,3-dioxolane (DOL)/ethylene glycol dimethyl ether (DME) mixed solution. In this example, a lithium salt is selected to be dissolved in an organic solvent to prepare a lithium ion electrolyte, and a lithium metal electrode with a composite protective layer of lithium antimony alloy and lithium fluoride is used as the negative electrode to assemble a metal lithium symmetrical battery. The battery assembly process is as follows: It is carried out in an argon atmosphere, and the water in the argon atmosphere is controlled to be <0.01ppm and oxygen <0.01ppm.
实验测试分析:Experimental test analysis:
对本实施例方法组装的金属锂对称电池进行电化学性能测试,得到金属锂对称电池的电化学性能曲线,测试条件选用以1mA/cm-2电流密度充放电1小时,参见图4,由图4可知在循环140小时后极化仍然小于100mV并且由插图可以发现在恒电流充放电过程中电压一直处于平稳状态,表明在充放电过程中锂枝晶的产生得到了有效抑制。本实施例利用低浓度的三氟化锑溶液与锂金属电极表层的金属锂反应,生成锂锑合金和氟化锂,从而在锂金属电极表面形成一层致密的锂锑和氟化锂保护层。本实施例利用一种简单的溶剂反应法,利用三氟化锑(SbF3)在锂负极表面形成合金和氟化锂,可以有效降低锂负极的极化以及抑制枝晶的产生。本实施例方法主要利用三氟化锑与锂反应生成一层致密的合金保护层,主要方法为:首先将三氟化锑溶解在碳酸丙烯酯中制得均一溶液。对锂片表面进行预处理除去表面被氧化的锂,切成直径12毫米的圆片,将所得圆片浸入三氟化锑溶液中反应得到处理后的锂电极,最后组装成对称电池。该方法的关键是通过低浓度长时间的反应可以在锂金属表面生成一层致密的合金层。经过电化学测试可知,该方法可以充分降低锂金属负极的极化,在1毫安时每平方厘米充放电1小时后极化降低至50毫伏,循环稳定性好,表明锂枝晶的产生得到了有效抑制,得到稳定的锂金属负极,运用于锂电池中,可以提高锂电池的循环性能和安全性能,具有潜在的商业化应用价值。The electrochemical performance of the lithium metal symmetric battery assembled by the method of this embodiment is tested, and the electrochemical performance curve of the metal lithium symmetric battery is obtained. It can be seen that the polarization is still less than 100mV after 140 hours of cycling, and the inset shows that the voltage has been in a stable state during the galvanostatic charge-discharge process, indicating that the generation of lithium dendrites during the charge-discharge process has been effectively suppressed. In this example, a low-concentration antimony trifluoride solution is used to react with metallic lithium on the surface of the lithium metal electrode to generate a lithium antimony alloy and lithium fluoride, thereby forming a dense protective layer of lithium antimony and lithium fluoride on the surface of the lithium metal electrode . In this embodiment, a simple solvent reaction method is used, and antimony trifluoride (SbF 3 ) is used to form an alloy and lithium fluoride on the surface of the lithium negative electrode, which can effectively reduce the polarization of the lithium negative electrode and suppress the generation of dendrites. The method of this embodiment mainly utilizes the reaction of antimony trifluoride and lithium to form a dense alloy protective layer. The main method is as follows: firstly, dissolving antimony trifluoride in propylene carbonate to obtain a uniform solution. The surface of the lithium sheet was pretreated to remove the oxidized lithium on the surface, cut into a 12 mm diameter disc, and the obtained disc was immersed in an antimony trifluoride solution to react to obtain a treated lithium electrode, and finally assembled into a symmetrical battery. The key to this method is that a dense alloy layer can be formed on the surface of lithium metal through a long-term reaction at a low concentration. Electrochemical tests show that this method can fully reduce the polarization of the lithium metal negative electrode. The polarization is reduced to 50 mV after charging and discharging per square centimeter at 1 mA for 1 hour, and the cycle stability is good, indicating the formation of lithium dendrites. It is effectively inhibited to obtain a stable lithium metal negative electrode, which can be used in lithium batteries to improve the cycle performance and safety performance of lithium batteries, and has potential commercial application value.
实施例三:Embodiment three:
本实施例与前述实施例基本相同,特别之处在于:This embodiment is basically the same as the previous embodiment, and the special features are:
在本实施例中,参见图5,一种锂金属电极的保护方法,包括如下步骤:In this embodiment, referring to FIG. 5 , a method for protecting lithium metal electrodes includes the following steps:
a.称取53.6毫克的三氟化锑,倒入20毫升带盖玻璃瓶中,并用移液枪加入3毫升的碳酸丙烯酯作为溶剂,搅拌使三氟化锑在碳酸丙烯酯中充分溶解,得到三氟化锑溶液,备用;a. Weigh 53.6 mg of antimony trifluoride, pour it into a 20 ml glass bottle with a lid, add 3 ml of propylene carbonate as a solvent with a pipette, stir to fully dissolve antimony trifluoride in propylene carbonate, Obtain antimony trifluoride solution, standby;
b.取15.6毫米直径的锂片,用光滑的圆柱将其压成厚度为0.2毫米厚度的片状,再用模具切成直径为12毫米的圆片,备用;b. Take a lithium sheet with a diameter of 15.6 mm, press it into a sheet with a thickness of 0.2 mm with a smooth cylinder, and then cut it into a circular sheet with a diameter of 12 mm with a die for use;
c.将在所述b中的锂片压在不锈钢垫片上,使锂片与不锈钢垫片充分粘连和贴合;c. Press the lithium sheet in the b on the stainless steel gasket, so that the lithium sheet and the stainless steel gasket are fully adhered and bonded;
d.将在所述c中处理好的锂片连同不锈钢垫片放入在所述步骤a中使用的玻璃瓶中,使锂片浸没在玻璃瓶中的三氟化锑溶液中,在进行金属锂负极的表面改性反应5分钟后,再将锂片从三氟化锑溶液中取出,然后用吸水纸将锂片表面残留的溶液清理干净,从而得到具有锂锑合金和氟化锂的复合保护层的锂金属电极;d. Put the lithium sheet processed in the c. together with the stainless steel gasket into the glass bottle used in the step a, so that the lithium sheet is immersed in the antimony trifluoride solution in the glass bottle. After the surface modification reaction of the lithium negative electrode for 5 minutes, the lithium sheet was taken out from the antimony trifluoride solution, and then the residual solution on the surface of the lithium sheet was cleaned with absorbent paper to obtain a composite with lithium antimony alloy and lithium fluoride. Lithium metal electrode with protective layer;
e.将在所述d中制备好的锂金属电极放入CR2032电池壳中,选用聚丙烯多空膜为隔膜,电解液选用浓度为1摩尔每升的二(三氟甲基磺酰)亚胺锂(LiTFSI)溶解在体积比为1:1的1,3-二氧戊环(DOL)/乙二醇二甲醚(DME)混合溶液中,同时加入硝酸锂,使所制备的锂离子电解液的硝酸锂浓度为0.01摩尔每升。本实施例选用锂盐溶解于有机溶剂中,配制锂离子电解液,以具有锂锑合金和氟化锂的复合保护层的锂金属电极作为负极,组装成为金属锂对称电池,电池的组装过程在氩气环境下进行,并控制氩气环境气氛环境中的水<0.01ppm,氧<0.01ppm。e. Put the lithium metal electrode prepared in the described d into the CR2032 battery shell, select the polypropylene hollow membrane as the diaphragm, and select the bis(trifluoromethylsulfonyl)sulfoxide with a concentration of 1 mole per liter for the electrolyte. Lithium amine (LiTFSI) was dissolved in a 1:1 volume ratio of 1,3-dioxolane (DOL)/ethylene glycol dimethyl ether (DME) mixed solution, while adding lithium nitrate to make the prepared lithium ion The lithium nitrate concentration of the electrolyte solution was 0.01 moles per liter. In this example, a lithium salt is used to dissolve in an organic solvent to prepare a lithium ion electrolyte, and a lithium metal electrode with a composite protective layer of lithium antimony alloy and lithium fluoride is used as the negative electrode to assemble a metal lithium symmetrical battery. The battery assembly process is as follows: It is carried out in an argon atmosphere, and the water in the argon atmosphere is controlled to be <0.01ppm and oxygen <0.01ppm.
实验测试分析:Experimental test analysis:
对本实施例方法组装的金属锂对称电池进行电化学性能测试,得到金属锂对称电池的电化学性能曲线,测试条件选用以0.25mA/cm-2、0.5mA/cm-2、0.75mA/cm-2、1mA/cm-2、1.5mA/cm-2电流密度各充放电1小时,测试电化学性能,参见图5,由图5可知在不同电流密度下处理后的锂片均表现出稳定性。本实施例利用低浓度的三氟化锑溶液与锂金属电极表层的金属锂反应,生成锂锑合金和氟化锂,从而在锂金属电极表面形成一层致密的锂锑合金和氟化锂的复合保护层。本实施例利用一种简单的溶剂反应法,利用三氟化锑(SbF3)在锂负极表面形成锂锑合金及氟化锂,可以有效降低锂负极的极化以及抑制枝晶的产生。本实施例方法主要利用三氟化锑与锂反应生成一层致密的合金及氟化锂保护层,主要方法为:首先将三氟化锑溶解在碳酸丙烯酯中制得均一溶液。对锂片表面进行预处理除去表面被氧化的锂,切成直径12毫米的圆片,将所得圆片浸入三氟化锑溶液中反应得到处理后的锂电极,最后组装成对称电池。该方法的关键是通过低浓度长时间的反应可以在锂金属表面生成一层致密的合金及氟化锂层。经过电化学测试可知,该方法可以充分降低锂金属负极的极化,在1毫安时每平方厘米充放电1小时后极化降低至50毫伏,循环稳定性好,表明锂枝晶的产生得到了有效抑制,得到稳定的锂金属负极,运用于锂电池中,可以提高锂电池的循环性能和安全性能,具有潜在的商业化应用价值。The electrochemical performance test of the lithium metal symmetrical battery assembled by the method of the present embodiment is carried out, and the electrochemical performance curve of the metal lithium symmetrical battery is obtained . 2 , 1mA/cm -2 , 1.5mA/cm -2 current densities for each charge and discharge for 1 hour, test the electrochemical performance, see Figure 5, it can be seen from Figure 5 that the lithium sheets treated at different current densities show stability . In this example, a low-concentration antimony trifluoride solution is used to react with metallic lithium on the surface of the lithium metal electrode to generate lithium antimony alloy and lithium fluoride, thereby forming a dense layer of lithium antimony alloy and lithium fluoride on the surface of the lithium metal electrode. Composite protective layer. In this embodiment, a simple solvent reaction method is used, and antimony trifluoride (SbF 3 ) is used to form lithium antimony alloy and lithium fluoride on the surface of the lithium negative electrode, which can effectively reduce the polarization of the lithium negative electrode and suppress the generation of dendrites. The method of this embodiment mainly utilizes the reaction of antimony trifluoride and lithium to form a dense alloy and a lithium fluoride protective layer. The surface of the lithium sheet was pretreated to remove the oxidized lithium on the surface, cut into a 12 mm diameter disc, and the obtained disc was immersed in an antimony trifluoride solution to react to obtain a treated lithium electrode, and finally assembled into a symmetrical battery. The key to this method is that a dense alloy and lithium fluoride layer can be formed on the surface of lithium metal through a low-concentration and long-term reaction. Electrochemical tests show that this method can fully reduce the polarization of the lithium metal negative electrode. The polarization is reduced to 50 mV after charging and discharging per square centimeter at 1 mA for 1 hour, and the cycle stability is good, indicating the formation of lithium dendrites. It is effectively inhibited to obtain a stable lithium metal negative electrode, which can be used in lithium batteries to improve the cycle performance and safety performance of lithium batteries, and has potential commercial application value.
实施例四:Embodiment 4:
本实施例与前述实施例基本相同,特别之处在于:This embodiment is basically the same as the previous embodiment, and the special features are:
在本实施例中,参见图6,一种锂金属电极的保护方法,包括如下步骤:In this embodiment, referring to FIG. 6 , a method for protecting lithium metal electrodes includes the following steps:
a.称取53.6毫克的三氟化锑,倒入20毫升带盖玻璃瓶中,并用移液枪加入3毫升的碳酸丙烯酯作为溶剂,搅拌使三氟化锑在碳酸丙烯酯中充分溶解,得到三氟化锑溶液,备用;a. Weigh 53.6 mg of antimony trifluoride, pour it into a 20 ml glass bottle with a lid, add 3 ml of propylene carbonate as a solvent with a pipette, stir to fully dissolve antimony trifluoride in propylene carbonate, Obtain antimony trifluoride solution, standby;
b.取15.6毫米直径的锂片,用光滑的圆柱将其压成厚度为0.2毫米厚度的片状,再用模具切成直径为12毫米的圆片,备用;b. Take a lithium sheet with a diameter of 15.6 mm, press it into a sheet with a thickness of 0.2 mm with a smooth cylinder, and then cut it into a circular sheet with a diameter of 12 mm with a die for use;
c.将在所述b中的锂片压在不锈钢垫片上,使锂片与不锈钢垫片充分粘连和贴合;c. Press the lithium sheet in the b on the stainless steel gasket, so that the lithium sheet and the stainless steel gasket are fully adhered and bonded;
d.将在所述c中处理好的锂片连同不锈钢垫片放入在所述步骤a中使用的玻璃瓶中,使锂片浸没在玻璃瓶中的三氟化锑溶液中,在进行金属锂负极的表面改性反应5分钟后,再将锂片从三氟化锑溶液中取出,然后用吸水纸将锂片表面残留的溶液清理干净,从而得到具有锂锑合金和氟化锂的复合保护层的锂金属电极;d. Put the lithium sheet processed in the c. together with the stainless steel gasket into the glass bottle used in the step a, so that the lithium sheet is immersed in the antimony trifluoride solution in the glass bottle. After the surface modification reaction of the lithium negative electrode for 5 minutes, the lithium sheet was taken out from the antimony trifluoride solution, and then the residual solution on the surface of the lithium sheet was cleaned with absorbent paper to obtain a composite with lithium antimony alloy and lithium fluoride. Lithium metal electrode with protective layer;
e.将在所述d中制备好的锂金属电极放入CR2032电池壳中,选用聚丙烯多空膜为隔膜,电解液选用浓度为1摩尔每升的六氟磷酸锂(LiPF6)溶解在体积比为1:1的碳酸乙烯酯(EC)、碳酸二乙酯(DEC)混合溶液中。本实施例选用锂盐溶解于有机溶剂中,配制锂离子电解液,以具有锂锑合金和氟化锂的复合保护层的锂金属电极作为负极,组装成为金属锂对称电池,电池的组装过程在氩气环境下进行,并控制氩气环境气氛环境中的水<0.01ppm,氧<0.01ppm。e. put the lithium metal electrode prepared in the described d into the CR2032 battery shell, select the polypropylene hollow membrane as the diaphragm, and select the lithium hexafluorophosphate (LiPF 6 ) with a concentration of 1 mole per liter to dissolve the electrolyte in the volume ratio of 1:1 mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC). In this example, a lithium salt is used to dissolve in an organic solvent to prepare a lithium ion electrolyte, and a lithium metal electrode with a composite protective layer of lithium antimony alloy and lithium fluoride is used as the negative electrode to assemble a metal lithium symmetrical battery. The battery assembly process is as follows: It is carried out in an argon atmosphere, and the water in the argon atmosphere is controlled to be <0.01ppm and oxygen <0.01ppm.
实验测试分析:Experimental test analysis:
对本实施例方法组装的金属锂对称电池进行电化学性能测试,得到金属锂对称电池的电化学性能曲线,测试条件选用以0.5mA/cm-2电流密度充放电0.5小时,测试电化学性能,参见图6,由图6可知在工业化的酯类电解液中,在循环250小时后任然具有较低的极化,由插图可以看出在恒电流充放电过程中电压始终维持平稳状态说明锂枝晶的产生的到了有效抑制。本实施例利用低浓度的三氟化锑溶液与锂金属电极表层的金属锂反应,生成锂锑合金和氟化锂,从而在锂金属电极表面形成一层致密的锂锑合金和氟化锂的复合保护层。本实施例利用一种简单的溶剂反应法,利用三氟化锑(SbF3)在锂负极表面形成锂锑合金及氟化锂的复合物,可以有效降低锂负极的极化以及抑制枝晶的产生。本实施例方法主要利用三氟化锑与锂反应生成一层致密的锂锑合金及氟化锂复合保护层,主要方法为:首先将三氟化锑溶解在碳酸丙烯酯中制得均一溶液。对锂片表面进行预处理除去表面被氧化的锂,切成直径12毫米的圆片,将所得圆片浸入三氟化锑溶液中反应得到处理后的锂电极,最后组装成对称电池。该方法的关键是通过低浓度长时间的反应可以在锂金属表面生成一层致密的锂锑合金及氟化锂层。经过电化学测试可知,该方法可以充分降低锂金属负极的极化,在1毫安时每平方厘米充放电1小时后极化降低至50毫伏,循环稳定性好,表明锂枝晶的产生得到了有效抑制,得到稳定的锂金属负极,运用于锂电池中,可以提高锂电池的循环性能和安全性能,具有潜在的商业化应用价值。The electrochemical performance of the lithium metal symmetric battery assembled by the method of this example is tested to obtain the electrochemical performance curve of the metal lithium symmetric battery. Fig. 6. It can be seen from Fig. 6 that in the industrialized ester electrolyte, the polarization is still low after 250 hours of cycling. It can be seen from the inset that the voltage remains stable during the galvanostatic charge-discharge process, indicating that lithium dendrites production is effectively suppressed. In this example, a low-concentration antimony trifluoride solution is used to react with metallic lithium on the surface of the lithium metal electrode to generate lithium antimony alloy and lithium fluoride, thereby forming a dense layer of lithium antimony alloy and lithium fluoride on the surface of the lithium metal electrode. Composite protective layer. In this example, a simple solvent reaction method is used, and antimony trifluoride (SbF 3 ) is used to form a composite of lithium antimony alloy and lithium fluoride on the surface of the lithium negative electrode, which can effectively reduce the polarization of the lithium negative electrode and suppress the dendrite. produce. The method of this embodiment mainly utilizes antimony trifluoride and lithium to react to form a dense lithium-antimony alloy and lithium fluoride composite protective layer. The surface of the lithium sheet was pretreated to remove the oxidized lithium on the surface, cut into a 12 mm diameter disc, and the obtained disc was immersed in an antimony trifluoride solution to react to obtain a treated lithium electrode, and finally assembled into a symmetrical battery. The key to this method is that a dense layer of lithium antimony alloy and lithium fluoride can be formed on the surface of lithium metal through a low concentration and long time reaction. Electrochemical tests show that this method can fully reduce the polarization of the lithium metal negative electrode. The polarization is reduced to 50 mV after charging and discharging per square centimeter at 1 mA for 1 hour, and the cycle stability is good, indicating the formation of lithium dendrites. It is effectively inhibited to obtain a stable lithium metal negative electrode, which can be used in lithium batteries to improve the cycle performance and safety performance of lithium batteries, and has potential commercial application value.
实施例五:Embodiment 5:
本实施例与前述实施例基本相同,特别之处在于:This embodiment is basically the same as the previous embodiment, and the special features are:
在本实施例中,参见图7,一种锂金属电极的保护方法,包括如下步骤:In this embodiment, referring to FIG. 7 , a method for protecting lithium metal electrodes includes the following steps:
a.称取53.6毫克的三氟化锑,倒入20毫升带盖玻璃瓶中,并用移液枪加入3毫升的碳酸丙烯酯作为溶剂,搅拌使三氟化锑在碳酸丙烯酯中充分溶解,得到三氟化锑溶液,备用;a. Weigh 53.6 mg of antimony trifluoride, pour it into a 20 ml glass bottle with a lid, add 3 ml of propylene carbonate as a solvent with a pipette, stir to fully dissolve antimony trifluoride in propylene carbonate, Obtain antimony trifluoride solution, standby;
b.取15.6毫米直径的锂片,用光滑的圆柱将其压成厚度为0.2毫米厚度的片状,再用模具切成直径为12毫米的圆片,备用;b. Take a lithium sheet with a diameter of 15.6 mm, press it into a sheet with a thickness of 0.2 mm with a smooth cylinder, and then cut it into a circular sheet with a diameter of 12 mm with a die for use;
c.将在所述b中的锂片压在不锈钢垫片上,使锂片与不锈钢垫片充分粘连和贴合;c. Press the lithium sheet in the b on the stainless steel gasket, so that the lithium sheet and the stainless steel gasket are fully adhered and bonded;
d.将在所述c中处理好的锂片连同不锈钢垫片放入在所述步骤a中使用的玻璃瓶中,使锂片浸没在玻璃瓶中的三氟化锑溶液中,在进行金属锂负极的表面改性反应5分钟后,再将锂片从三氟化锑溶液中取出,然后用吸水纸将锂片表面残留的溶液清理干净,从而得到具有锂锑合金和氟化锂的复合保护层的锂金属电极;d. Put the lithium sheet processed in the c. together with the stainless steel gasket into the glass bottle used in the step a, so that the lithium sheet is immersed in the antimony trifluoride solution in the glass bottle. After the surface modification reaction of the lithium negative electrode for 5 minutes, the lithium sheet was taken out from the antimony trifluoride solution, and then the residual solution on the surface of the lithium sheet was cleaned with absorbent paper to obtain a composite with lithium antimony alloy and lithium fluoride. Lithium metal electrode with protective layer;
e.将在所述d中制备好的锂金属电极放入CR2032电池壳中,选用聚丙烯多空膜为隔膜,电解液选用浓度为1摩尔每升的六氟磷酸锂(LiPF6)溶解在体积比为1:1的碳酸乙烯酯(EC)、碳酸二乙酯(DEC)混合溶液中。本实施例选用锂盐溶解于有机溶剂中,配制锂离子电解液,以具有锂锑合金和氟化锂的复合保护层的锂金属电极作为负极,组装成为金属锂对称电池,电池的组装过程在氩气环境下进行,并控制氩气环境气氛环境中的水<0.01ppm,氧<0.01ppm。e. put the lithium metal electrode prepared in the described d into the CR2032 battery shell, select the polypropylene hollow membrane as the diaphragm, and select the lithium hexafluorophosphate (LiPF 6 ) with a concentration of 1 mole per liter to dissolve the electrolyte in the volume ratio of 1:1 mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC). In this example, a lithium salt is used to dissolve in an organic solvent to prepare a lithium ion electrolyte, and a lithium metal electrode with a composite protective layer of lithium antimony alloy and lithium fluoride is used as the negative electrode to assemble a metal lithium symmetrical battery. The battery assembly process is as follows: It is carried out in an argon atmosphere, and the water in the argon atmosphere is controlled to be <0.01ppm and oxygen <0.01ppm.
实验测试分析:Experimental test analysis:
对本实施例方法组装的金属锂对称电池进行电化学性能测试,得到金属锂对称电池的电化学性能曲线,测试条件选用以0.25mA/cm-2电流密度充放电1小时,测试电化学性能,参见图7,由图7可知在230小时左右的充放电循环过程中极化始终维持平稳,由插图可以看出在恒电流充放电过程中电压始终维持平稳状态说明锂枝晶的产生的到了有效抑制。本实施例利用低浓度的三氟化锑溶液与锂金属电极表层的金属锂反应,生成锂锑合金和氟化锂,从而在锂金属电极表面形成一层致密的锂锑合金和氟化锂的复合保护层。本实施例利用一种简单的溶剂反应法,利用三氟化锑(SbF3)在锂负极表面形成锂锑合金及氟化锂层,可以有效降低锂负极的极化以及抑制枝晶的产生。本实施例方法主要利用三氟化锑与锂反应生成一层致密的锂锑合金及氟化锂保护层,主要方法为:首先将三氟化锑溶解在碳酸丙烯酯中制得均一溶液。对锂片表面进行预处理除去表面被氧化的锂,切成直径12毫米的圆片,将所得圆片浸入三氟化锑溶液中反应得到处理后的锂电极,最后组装成对称电池。该方法的关键是通过低浓度长时间的反应可以在锂金属表面生成一层致密的锂锑合金及氟化锂层。经过电化学测试可知,该方法可以充分降低锂金属负极的极化,在1毫安时每平方厘米充放电1小时后极化降低至50毫伏,循环稳定性好,表明锂枝晶的产生得到了有效抑制,得到稳定的锂金属负极,运用于锂电池中,可以提高锂电池的循环性能和安全性能,具有潜在的商业化应用价值。The electrochemical performance of the lithium metal symmetric battery assembled by the method of this embodiment is tested to obtain the electrochemical performance curve of the metal lithium symmetric battery. Figure 7. It can be seen from Figure 7 that the polarization remains stable during the charge-discharge cycle of about 230 hours. It can be seen from the illustration that the voltage remains stable during the constant current charge-discharge process, indicating that the generation of lithium dendrites has been effectively suppressed. . In this example, a low-concentration antimony trifluoride solution is used to react with metallic lithium on the surface of the lithium metal electrode to generate lithium antimony alloy and lithium fluoride, thereby forming a dense layer of lithium antimony alloy and lithium fluoride on the surface of the lithium metal electrode. Composite protective layer. In this embodiment, a simple solvent reaction method is used, and antimony trifluoride (SbF 3 ) is used to form a lithium antimony alloy and a lithium fluoride layer on the surface of the lithium negative electrode, which can effectively reduce the polarization of the lithium negative electrode and suppress the generation of dendrites. The method of this embodiment mainly utilizes the reaction of antimony trifluoride and lithium to form a dense lithium antimony alloy and a lithium fluoride protective layer. The surface of the lithium sheet was pretreated to remove the oxidized lithium on the surface, cut into a 12 mm diameter disc, and the obtained disc was immersed in an antimony trifluoride solution to react to obtain a treated lithium electrode, and finally assembled into a symmetrical battery. The key to this method is that a dense layer of lithium antimony alloy and lithium fluoride can be formed on the surface of lithium metal through a low concentration and long time reaction. Electrochemical tests show that this method can fully reduce the polarization of the lithium metal negative electrode. The polarization is reduced to 50 mV after charging and discharging per square centimeter at 1 mA for 1 hour, and the cycle stability is good, indicating the formation of lithium dendrites. It is effectively inhibited to obtain a stable lithium metal negative electrode, which can be used in lithium batteries to improve the cycle performance and safety performance of lithium batteries, and has potential commercial application value.
上面对本发明实施例结合附图进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合或简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明锂金属电极的保护方法的技术原理和发明构思,都属于本发明的保护范围。The embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to the above-mentioned embodiments, and various changes can also be made according to the purpose of the invention and creation of the present invention. Changes, modifications, substitutions, combinations or simplifications should be equivalent replacement methods, as long as they meet the purpose of the present invention, as long as they do not deviate from the technical principles and inventive concepts of the protection method for lithium metal electrodes of the present invention, all belong to the present invention. scope of protection.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910155722.7A CN110071284B (en) | 2019-03-01 | 2019-03-01 | Protection method of lithium metal electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910155722.7A CN110071284B (en) | 2019-03-01 | 2019-03-01 | Protection method of lithium metal electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110071284A CN110071284A (en) | 2019-07-30 |
CN110071284B true CN110071284B (en) | 2022-06-14 |
Family
ID=67366026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910155722.7A Active CN110071284B (en) | 2019-03-01 | 2019-03-01 | Protection method of lithium metal electrode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110071284B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112436140A (en) * | 2019-08-26 | 2021-03-02 | 青岛九环新越新能源科技股份有限公司 | Composite material for inhibiting dendritic crystal growth |
KR20210155086A (en) * | 2020-06-15 | 2021-12-22 | 주식회사 엘지에너지솔루션 | Methode for manufacturing the lithum metal electrode and lithium metal secondary battery |
CN112421136A (en) * | 2020-11-25 | 2021-02-26 | 河南大学 | A lithium sheet with a dual-phase surface protective layer, its preparation method and application |
CN113140812A (en) * | 2021-03-04 | 2021-07-20 | 恒大新能源技术(深圳)有限公司 | Lithium metal negative electrode, preparation method thereof and lithium secondary battery |
CN115036465A (en) * | 2021-03-04 | 2022-09-09 | 上海卡耐新能源有限公司 | Lithium metal negative electrode, preparation method thereof and lithium secondary battery |
CN113346045A (en) * | 2021-05-28 | 2021-09-03 | 电子科技大学 | Lithium metal anode modified by composite SEI layer and preparation method thereof |
CN113793920B (en) * | 2021-08-09 | 2023-07-25 | 华中科技大学 | Construction method and application of in-situ lithium aluminum alloy layer on surface of metal lithium |
CN114421029B (en) * | 2021-12-29 | 2023-09-01 | 华中科技大学 | A construction method and application of an in-situ alloy-SEI layer on a lithium metal surface |
CN114464872B (en) * | 2022-01-24 | 2023-08-29 | 西安交通大学 | Application of a Halogen-doped Antimony Nanosheet in Lithium-ion Batteries |
CN114784237A (en) * | 2022-04-02 | 2022-07-22 | 合肥工业大学 | Silicon-based negative electrode, preparation method and application thereof |
CN114824178A (en) * | 2022-04-21 | 2022-07-29 | 贵州梅岭电源有限公司 | Composite modification method for lithium metal negative electrode |
CN115036469A (en) * | 2022-06-02 | 2022-09-09 | 重庆大学 | Preparation method of metal magnesium negative electrode artificial SEI capable of reversibly circulating in traditional electrolyte and product |
CN115295765A (en) * | 2022-07-29 | 2022-11-04 | 欣旺达电子股份有限公司 | Secondary batteries and electrical equipment |
CN115425276A (en) * | 2022-10-18 | 2022-12-02 | 欣旺达电子股份有限公司 | Solid-state battery, preparation method and electric equipment |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3147991A1 (en) * | 2015-09-25 | 2017-03-29 | Samsung Electronics Co., Ltd. | Electrolyte for lithium air battery and lithium air battery including the same |
CN106784629A (en) * | 2017-01-19 | 2017-05-31 | 武汉大学 | A kind of lithium metal battery cathode interface method of modifying |
CN107394115A (en) * | 2016-04-29 | 2017-11-24 | 三星电子株式会社 | Negative pole for lithium metal battery and the lithium metal battery including it |
CN108011079A (en) * | 2017-11-07 | 2018-05-08 | 电子科技大学 | A kind of surface modification method of lithium anode and application |
CN108431997A (en) * | 2015-07-13 | 2018-08-21 | 新罗纳米技术有限公司 | The fluorination lithium based cathodes of stabilization for metal and metal ion battery |
CN108736056A (en) * | 2017-04-20 | 2018-11-02 | 中国科学院宁波材料技术与工程研究所 | A kind of lithium metal interface protection structure and its preparation and application |
CN109155391A (en) * | 2016-05-09 | 2019-01-04 | 巴斯夫欧洲公司 | Method for producing a protected lithium anode for a lithium ion battery |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100413796B1 (en) * | 2001-05-31 | 2004-01-03 | 삼성에스디아이 주식회사 | Method of manufacturing lithium metal anode protective layer for lithium battery |
CN105702918A (en) * | 2014-11-25 | 2016-06-22 | 江苏合志锂硫电池技术有限公司 | Lithium metal electrode and preparation method thereof, and lithium secondary battery |
EP3442055B1 (en) * | 2016-12-01 | 2021-02-03 | LG Chem, Ltd. | Negative electrode for lithium metal secondary battery and method for manufacturing same negative electrode |
-
2019
- 2019-03-01 CN CN201910155722.7A patent/CN110071284B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108431997A (en) * | 2015-07-13 | 2018-08-21 | 新罗纳米技术有限公司 | The fluorination lithium based cathodes of stabilization for metal and metal ion battery |
EP3147991A1 (en) * | 2015-09-25 | 2017-03-29 | Samsung Electronics Co., Ltd. | Electrolyte for lithium air battery and lithium air battery including the same |
CN107394115A (en) * | 2016-04-29 | 2017-11-24 | 三星电子株式会社 | Negative pole for lithium metal battery and the lithium metal battery including it |
CN109155391A (en) * | 2016-05-09 | 2019-01-04 | 巴斯夫欧洲公司 | Method for producing a protected lithium anode for a lithium ion battery |
CN106784629A (en) * | 2017-01-19 | 2017-05-31 | 武汉大学 | A kind of lithium metal battery cathode interface method of modifying |
CN108736056A (en) * | 2017-04-20 | 2018-11-02 | 中国科学院宁波材料技术与工程研究所 | A kind of lithium metal interface protection structure and its preparation and application |
CN108011079A (en) * | 2017-11-07 | 2018-05-08 | 电子科技大学 | A kind of surface modification method of lithium anode and application |
Non-Patent Citations (1)
Title |
---|
Artificial Protection Film on Lithium Metal Anode toward Long-Cycle-Life Lithium-Oxygen Batteries;Liu, Qing-Chao等;《ADVANCED MATERIALS》;20150812;第27卷(第35期);第5241-5247页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110071284A (en) | 2019-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110071284B (en) | Protection method of lithium metal electrode | |
CN111900388B (en) | Zinc ion battery negative electrode material, preparation and application thereof | |
Zhang et al. | Study of zinc electrodes for single flow zinc/nickel battery application | |
CN109728291A (en) | A high specific energy lithium metal battery | |
CN109659487A (en) | A kind of prelithiation method for lithium an- ode protection | |
CN101465441B (en) | Preparation method of lithium sulphur battery using graphite as cathode | |
Jiang et al. | In situ growth of CuO submicro-sheets on optimized Cu foam to induce uniform Li deposition and stripping for stable Li metal batteries | |
CN114373982B (en) | Liquid ether organic electrolyte-based low-negative electrode secondary sodium battery and preparation method thereof | |
CN110911689A (en) | Current collector and preparation method thereof, electrode sheet and secondary battery | |
CN112421115B (en) | Copper selenide in-situ coated copper foam as lithium metal carrier lithium metal-based battery and preparation method thereof | |
CN108598365B (en) | Negative electrode for lithium secondary battery, preparation method thereof and lithium secondary battery | |
CN108063241B (en) | Method for inhibiting lithium dendrite generation on lithium metal surface | |
CN114242989A (en) | A kind of composite electrode material and its preparation method and application | |
CN114203976A (en) | Mixed solution capable of improving stability of metal lithium cathode, preparation method and application | |
CN114284553A (en) | A kind of negative electrode-free lithium metal battery and preparation method thereof | |
CN111900373A (en) | Preparation method of lithium dendrite-resistant lithium metal battery cathode side separator material | |
CN109326771B (en) | Preparation method of metal lithium cathode and lithium iron phosphate battery | |
CN117558890A (en) | Tin-based interface modified metal anode material and preparation method and application thereof | |
CN113659135B (en) | Application of iron sulfide in lithium iron phosphate secondary battery | |
CN116470003A (en) | Pre-lithiated negative electrode piece and lithium ion battery | |
CN115881915A (en) | Large-scale preparation method for in-situ construction of zinc cathode metal composite protective layer by ultrafast microwave technology and application thereof | |
CN115233062A (en) | Li-containing material 3 Lithium alloy of N/LiF, electrode and battery thereof | |
CN114552017A (en) | Electrolyte additive stabilized lithium metal cathode | |
CN209016215U (en) | Rechargeable battery | |
CN113130854A (en) | Preparation method of dendrite-free lithium metal-graphene paper composite negative electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |