CN110074752B - A cone cell imaging device - Google Patents
A cone cell imaging device Download PDFInfo
- Publication number
- CN110074752B CN110074752B CN201910325949.1A CN201910325949A CN110074752B CN 110074752 B CN110074752 B CN 110074752B CN 201910325949 A CN201910325949 A CN 201910325949A CN 110074752 B CN110074752 B CN 110074752B
- Authority
- CN
- China
- Prior art keywords
- light beam
- module
- light source
- oct
- scanning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 28
- 238000012014 optical coherence tomography Methods 0.000 claims abstract description 53
- 230000003287 optical effect Effects 0.000 claims abstract description 34
- 230000003044 adaptive effect Effects 0.000 claims abstract description 31
- 238000012545 processing Methods 0.000 claims abstract description 11
- 239000000835 fiber Substances 0.000 claims description 15
- 230000010287 polarization Effects 0.000 claims description 7
- 238000012937 correction Methods 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 6
- 239000013307 optical fiber Substances 0.000 claims 3
- 230000002457 bidirectional effect Effects 0.000 claims 2
- 230000001902 propagating effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 description 15
- 230000006872 improvement Effects 0.000 description 8
- 230000004075 alteration Effects 0.000 description 7
- 210000005036 nerve Anatomy 0.000 description 7
- 210000001525 retina Anatomy 0.000 description 7
- 230000002207 retinal effect Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 230000000638 stimulation Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 208000006992 Color Vision Defects Diseases 0.000 description 3
- NCYCYZXNIZJOKI-IOUUIBBYSA-N 11-cis-retinal Chemical compound O=C/C=C(\C)/C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-IOUUIBBYSA-N 0.000 description 2
- 102000004330 Rhodopsin Human genes 0.000 description 2
- 108090000820 Rhodopsin Proteins 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 108091008695 photoreceptors Proteins 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 201000007254 color blindness Diseases 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 201000000763 red color blindness Diseases 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/102—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/12—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Ophthalmology & Optometry (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Eye Examination Apparatus (AREA)
Abstract
Description
技术领域Technical Field
本发明一般涉及一种成像装置,特别地涉及一种视锥细胞成像装置。The present invention generally relates to an imaging device, and more particularly to a cone imaging device.
背景技术Background Art
自适应光学(AO)在眼科中的应用是通过波前感受器-波前控制器可自适应校正光学系统各种像差,大大提高系统横向分辨率。人眼本身是一个光学系统,光学系统在测量人眼的过程中往往存在各种像差,严重影响成像质量。在光学系统中引入自适应光学技术可解决这一问题。本专利将结合自适应光学扫描激光检眼镜(AOSLO)与光学相干层析成像技术(OCT)相结合,极大提高系统在二维空间上的分辨率,观测其视锥细胞级活动所引起的视网膜层活动情况,可评估视锥细胞活动能力。The application of adaptive optics (AO) in ophthalmology is to adaptively correct various aberrations of the optical system through the wavefront sensor-wavefront controller, greatly improving the lateral resolution of the system. The human eye itself is an optical system. Various aberrations often exist in the optical system during the measurement of the human eye, which seriously affects the imaging quality. Introducing adaptive optics technology in the optical system can solve this problem. This patent combines the adaptive optical scanning laser ophthalmoscope (AOSLO) with optical coherence tomography (OCT) technology to greatly improve the resolution of the system in two-dimensional space, observe the retinal layer activity caused by its cone cell level activity, and evaluate the activity ability of cone cells.
因为视锥细胞能接受光刺激,并将光能转换为神经冲动,内含有感光物质(视紫蓝质)。在光刺激下,感光物质可发生一系列的光化学变化和电位改变,使视锥细胞发生神经冲动。本发明可通过光源宽带光刺激视网膜上的视锥细胞层,观测视锥细胞发放神经冲动时对视网膜各层的运动情况。从采集得到的视网膜三维图像信息中提取其动态信息,分析细胞的活跃度,以达到评估视网膜光感受过程。Because cone cells can receive light stimulation and convert light energy into nerve impulses, and they contain photosensitive substances (rhodopsin). Under light stimulation, photosensitive substances can undergo a series of photochemical changes and potential changes, causing cone cells to generate nerve impulses. The present invention can stimulate the cone cell layer on the retina through broadband light from a light source, and observe the movement of the cone cells to each layer of the retina when the cone cells emit nerve impulses. The dynamic information is extracted from the collected retinal three-dimensional image information, and the activity of the cells is analyzed to evaluate the retinal light perception process.
视细胞是视网膜的感光神经,而视锥细胞是视细胞的重要部分,主要分布于中心凹区域,其重要功能是辨别颜色,视网膜中有三种对不同波长特别敏感的视锥细胞,一类的吸收峰值在420nm外,一类在531nm外,一类在558nm外,基本对应于蓝绿红三色光的波长。红绿色盲发病与视锥细胞活动息息相关,由此,观测视锥细胞的活动情况对于色盲疾病研究有着重要意义。Photoreceptors are the photosensitive nerves of the retina, and cones are an important part of photoreceptors, mainly distributed in the fovea. Their important function is to distinguish colors. There are three types of cones in the retina that are particularly sensitive to different wavelengths. One type has an absorption peak outside 420nm, one type outside 531nm, and one type outside 558nm, which basically corresponds to the wavelengths of blue, green, and red light. The onset of red and green color blindness is closely related to the activity of cones. Therefore, observing the activity of cones is of great significance for the study of color blindness.
与本发明接近的相关技术有:《一种基于自适应光学的激光衍射线扫描共焦检眼镜系统》(CN201210523966.4)、《具有自适应光学系统的扫描光学图像获取设备及其控制方法》(CN201080016622.3)中所提及的自适应光学激光检眼镜原理,但与上述系统应用不同,本专利与光学相干层析成像技术相结合,旨在观测由视锥细胞刺激引起的视网膜各层活动,弥补了在视锥细胞活动检测领域中的空白。Related technologies close to the present invention include: the adaptive optical laser ophthalmoscope principle mentioned in "A laser diffraction line scanning confocal ophthalmoscope system based on adaptive optics" (CN201210523966.4) and "Scanning optical image acquisition device with adaptive optical system and control method thereof" (CN201080016622.3). However, unlike the above-mentioned system applications, this patent is combined with optical coherence tomography technology to observe the activities of various layers of the retina caused by the stimulation of cone cells, filling the gap in the field of cone cell activity detection.
发明内容Summary of the invention
为了克服现有技术的缺陷,本发明提供了一种视锥细胞成像装置,可以实现清晰地观测到眼底的视锥细胞的活动情况。In order to overcome the defects of the prior art, the present invention provides a cone cell imaging device, which can clearly observe the activities of cone cells in the fundus.
为实现上述技术效果,本发明采用如下技术方案:In order to achieve the above technical effects, the present invention adopts the following technical solutions:
一种视锥细胞成像装置,所述装置包括自适应光学扫描激光检眼镜(AOSLO)、光学相干层析成像(OCT)和成像处理装置,其中自适应光学扫描激光检眼镜(AOSLO)包括第一光源模块、波前探测模块、校正控制模块、扫描模块;光学相干层析成像(OCT)包括第二光源模块、干涉模块以及干涉信号接收模块。A cone cell imaging device, the device includes an adaptive optical scanning laser ophthalmoscope (AOSLO), an optical coherence tomography (OCT) and an imaging processing device, wherein the adaptive optical scanning laser ophthalmoscope (AOSLO) includes a first light source module, a wavefront detection module, a correction control module, and a scanning module; the optical coherence tomography (OCT) includes a second light source module, an interference module and an interference signal receiving module.
作为上述技术方案的一种改进,其中自适应光学扫描激光检眼镜(AOSLO)还包括分束镜(BS)、聚焦透镜(FL)和光电倍增管(PMT)。As an improvement of the above technical solution, the adaptive optical scanning laser ophthalmoscope (AOSLO) further includes a beam splitter (BS), a focusing lens (FL) and a photomultiplier tube (PMT).
作为上述技术方案的一种改进,其中自适应光学扫描激光检眼镜(AOSLO)还包括4f系统和光电倍增管(PMT)。As an improvement of the above technical solution, the adaptive optical scanning laser ophthalmoscope (AOSLO) further includes a 4f system and a photomultiplier tube (PMT).
作为上述技术方案的一种改进,其中光源模块包括激光器和光纤耦合器。As an improvement of the above technical solution, the light source module includes a laser and a fiber coupler.
作为上述技术方案的一种改进,其中波前探测模块包括波前传感器。As an improvement of the above technical solution, the wavefront detection module includes a wavefront sensor.
作为上述技术方案的一种改进,其中校正控制模块包括变形镜,扫描模块包括扫描振镜,其中扫描振镜包括快速横向扫描振镜和慢速纵向扫描振镜。As an improvement of the above technical solution, the correction control module includes a deformable mirror, the scanning module includes a scanning galvanometer, and the scanning galvanometer includes a fast transverse scanning galvanometer and a slow longitudinal scanning galvanometer.
作为上述技术方案的一种改进,其中第二光源模块与第一光源模块相同或不相同。As an improvement of the above technical solution, the second light source module is the same as or different from the first light source module.
作为上述技术方案的一种改进,其中干涉模块包括偏振控制器和准直镜。As an improvement of the above technical solution, the interference module includes a polarization controller and a collimator.
作为上述技术方案的一种改进,其中干涉信号接收模块包括光谱仪模块和平衡探测器,光谱仪模块包括光栅、聚焦透镜和相机,其中光栅为衍射光栅,相机为线性相机,成像处理装置包括计算机。As an improvement of the above technical solution, the interference signal receiving module includes a spectrometer module and a balanced detector, the spectrometer module includes a grating, a focusing lens and a camera, wherein the grating is a diffraction grating, the camera is a linear camera, and the imaging processing device includes a computer.
技术效果:Technical effect:
本发明提供的一种视锥细胞成像装置,包括自适应光学扫描激光检眼镜(AOSLO)、光学相干层析成像(OCT)和成像处理装置,将通过光学相干层析成像(OCT)进行入眼底的视锥细胞的光束进行处理返回后,再与通过自适应光学扫描激光检眼镜(AOSLO)的光束处理后进行干涉处理,并把处理的干涉信号送至成像处理装置进行生成高精度的三维图像,能够实现清晰地观测到眼底的视锥细胞的活动情况。The present invention provides a cone cell imaging device, which includes an adaptive optical scanning laser ophthalmoscope (AOSLO), an optical coherence tomography (OCT) and an imaging processing device. After the light beam entering the cone cells of the fundus through the optical coherence tomography (OCT) is processed and returned, it is interfered with the light beam processed by the adaptive optical scanning laser ophthalmoscope (AOSLO), and the processed interference signal is sent to the imaging processing device to generate a high-precision three-dimensional image, which can realize clear observation of the activity of the cone cells in the fundus.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
以下和其他优点和特征将从以下参考附图的实施例的详细描述中得到更充分的理解,附图必须以说明性和非限制性的方式来考虑,其中:The following and other advantages and features will become more fully understood from the following detailed description of embodiments with reference to the accompanying drawings, which must be considered in an illustrative and non-limiting manner, in which:
图1为根据本发明的实施例的一种视锥细胞成像装置的结构图;FIG1 is a structural diagram of a cone cell imaging device according to an embodiment of the present invention;
图2为根据本发明的另一个实施例的一种视锥细胞成像装置示意图。FIG. 2 is a schematic diagram of a cone cell imaging device according to another embodiment of the present invention.
具体实施方式DETAILED DESCRIPTION
以下将结合实施例和附图对本发明的构思、具体结构及产生的技术效果进行清楚、完整的描述,以充分地理解本发明的目的、方案和效果。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。The following will be combined with the embodiments and drawings to clearly and completely describe the concept, specific structure and technical effects of the present invention, so as to fully understand the purpose, scheme and effect of the present invention. It should be noted that the embodiments and features in the embodiments of this application can be combined with each other without conflict.
需要说明的是,如无特殊说明,当某一特征被称为“固定”、“连接”在另一个特征,它可以直接固定、连接在另一个特征上,也可以间接地固定、连接在另一个特征上。此外,本发明中所使用的上、下、左、右等描述仅仅是相对于附图中本发明各组成部分的相互位置关系来说的。在本发明和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。It should be noted that, unless otherwise specified, when a feature is referred to as being "fixed" or "connected" to another feature, it may be directly fixed or connected to the other feature, or it may be indirectly fixed or connected to the other feature. In addition, the descriptions of up, down, left, right, etc. used in the present invention are only relative to the relative positional relationship of the components of the present invention in the accompanying drawings. The singular forms "a", "said", and "the" used in the present invention and the appended claims are also intended to include the plural forms, unless the context clearly indicates otherwise.
此外,除非另有定义,本文所使用的所有的技术和科学术语与本技术领域的技术人员通常理解的含义相同。本文说明书中所使用的术语只是为了描述具体的实施例,而不是为了限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的组合。In addition, unless otherwise defined, all technical and scientific terms used herein have the same meaning as those generally understood by those skilled in the art. The terms used in this specification are only for describing specific embodiments, not for limiting the present invention. The term "and/or" used herein includes any combination of one or more related listed items.
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种元件,但这些元件不应限于这些术语。这些术语仅用来将同一类型的元件彼此区分开。例如,在不脱离本公开范围的情况下,第一元件也可以被称为第二元件,类似地,第二元件也可以被称为第一元件。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”。It should be understood that, although the terms first, second, third, etc. may be used to describe various elements in the present disclosure, these elements should not be limited to these terms. These terms are only used to distinguish the same type of elements from each other. For example, without departing from the scope of the present disclosure, the first element may also be referred to as the second element, and similarly, the second element may also be referred to as the first element. Depending on the context, the word "if" as used herein may be interpreted as "at the time of" or "when...".
图1为根据本发明的实施例的一种系统的结构图。如图1所示,本发明提供的,所述装置包括自适应光学扫描激光检眼镜AOSLO、光学相干层析成像OCT和处理装置,其中自适应光学扫描激光检眼镜AOSLO包括第一光源模块、波前探测模块、校正控制模块和扫描模块;光学相干层析成像OCT包括第二光源模块、干涉模块以及干涉信号接收模块。Fig. 1 is a structural diagram of a system according to an embodiment of the present invention. As shown in Fig. 1, the present invention provides a device comprising an adaptive optical scanning laser ophthalmoscope AOSLO, an optical coherence tomography OCT and a processing device, wherein the adaptive optical scanning laser ophthalmoscope AOSLO comprises a first light source module, a wavefront detection module, a correction control module and a scanning module; the optical coherence tomography OCT comprises a second light source module, an interference module and an interference signal receiving module.
在本发明的一个实施例中,优选地,第一光源模块包括激光器和光纤耦合器,其中,激光器用于连续地发射光源,激光器可以是超辐射半导体激光器,激光器也可以是超连续光源SCL。In one embodiment of the present invention, preferably, the first light source module includes a laser and a fiber coupler, wherein the laser is used to continuously emit light source, and the laser may be a super luminescent semiconductor laser, or a supercontinuum light source SCL.
在本发明的一个实施例中,优选地,波前探测模块包括波前传感器WVS,用于获取波前像差。In one embodiment of the present invention, preferably, the wavefront detection module includes a wavefront sensor WVS for acquiring wavefront aberration.
在本发明的一个实施例中,优选地,其中校正控制模块包括变形镜DM,可以通过改变变形镜的镜面角度来控制光线的角度。In one embodiment of the present invention, preferably, the correction control module includes a deformable mirror DM, and the angle of the light can be controlled by changing the mirror angle of the deformable mirror.
在本发明的一个实施例中,优选地,其中扫描模块包括扫描振镜,其中扫描振镜包括快速横向扫描振镜FS和慢速纵向扫描振镜SS用于扫描眼底,快速横向扫描振镜FS和慢速纵向扫描振镜SS组合扫描后将光在眼底网膜层汇聚于视锥细胞层。In one embodiment of the present invention, preferably, the scanning module includes a scanning galvanometer, wherein the scanning galvanometer includes a fast transverse scanning galvanometer FS and a slow longitudinal scanning galvanometer SS for scanning the fundus, and the fast transverse scanning galvanometer FS and the slow longitudinal scanning galvanometer SS combine to scan and converge the light at the retinal layer of the fundus to the cone cell layer.
在本发明的一个实施例中,优选地,其中第二光源模块与第一光源模块相同。In one embodiment of the present invention, preferably, the second light source module is the same as the first light source module.
在本发明的另一个实施例中,优选地,其中第二光源模块与第一光源模块不相同。In another embodiment of the present invention, preferably, the second light source module is different from the first light source module.
在本发明的一个实施例中,优选地,其中干涉模块包括偏振控制器PC、准直镜CL。In one embodiment of the present invention, preferably, the interference module includes a polarization controller PC and a collimator CL.
在本发明的一个实施例中,优选地,其中干涉信号接收模块包括光栅、聚焦透镜和相机,其中光栅为衍射光栅,相机为线性相机。In one embodiment of the present invention, preferably, the interference signal receiving module comprises a grating, a focusing lens and a camera, wherein the grating is a diffraction grating and the camera is a linear camera.
在本发明的一个实施例中,优选地,其中成像处理装置包括计算机。In one embodiment of the present invention, preferably, the imaging processing device comprises a computer.
如图1所示,具体的光路走向如下:超连续光源SCL发出的宽带光首先进入光纤耦合器FOC后被分成两束光,第一束光进入自适应光学扫描激光检眼镜AOSLO(也称为参考臂),第二束光进入光学相干层析成像OCT。详细地,第一束光通过第三偏振控制器PC3,经过第一准直镜CL1进行准直第一光束,然后再经过第二聚焦透镜FL2进行聚焦处理,将光线传送至平面镜M,然后平面镜M将射来的第一光束根据反射原理,将第一光束原路返回至光纤耦合器FOC。As shown in Figure 1, the specific optical path is as follows: the broadband light emitted by the supercontinuum light source SCL first enters the fiber coupler FOC and is then divided into two beams of light. The first beam of light enters the adaptive optical scanning laser ophthalmoscope AOSLO (also known as the reference arm), and the second beam of light enters the optical coherence tomography OCT. In detail, the first beam of light passes through the third polarization controller PC3, and is collimated by the first collimator CL1, and then is focused by the second focusing lens FL2, and the light is transmitted to the plane mirror M, and then the plane mirror M returns the first beam of light to the fiber coupler FOC according to the reflection principle.
第二束光通过第一偏振控制器PC1进行处理,经过分色镜DRM和第一分束镜BS射入第一曲面镜CM1和第二曲面镜CM2,第一曲面镜CM1和第二曲面镜CM2组成第一共聚焦系统,用于消除系统杂散光,由共聚焦系统处理过的第二光束再射入变形镜DM,可通过控制改变变形镜DM的镜面角度来调节第二光束的入射角度,接着又通过第二个由第三曲面镜CM3和第四曲面镜CM4组成的第二共聚焦系统,接着经由快速横向扫描振镜FS和慢速纵向扫描振镜SS组合来处理第二光束,其中快速横向扫描振镜FS和慢速纵向扫描振镜SS之间还设置有第五曲面镜CM5和第六曲面镜CM6,再经过第七曲面镜CM7和第八曲面镜CM8将第二光束传送给第一平面镜FM1,接着通过第二平面镜FM2传送给视锥细胞。从眼底的视锥细胞返回来的第二光束原路返回至第一分束镜BS1,经第二分束镜BS2射入微透镜阵列LEA和波前传感器WVS,经波前传感器WVS获取波前像差,并返回控制变形镜校正波前像差,然后返回至光纤耦合器FOC。The second light beam is processed by the first polarization controller PC1, and is incident on the first curved mirror CM1 and the second curved mirror CM2 through the color splitter DRM and the first beam splitter BS. The first curved mirror CM1 and the second curved mirror CM2 form a first confocal system for eliminating system stray light. The second light beam processed by the confocal system is then incident on the deformable mirror DM. The incident angle of the second light beam can be adjusted by controlling the mirror angle of the deformable mirror DM. Then, it passes through the second confocal system composed of the third curved mirror CM3 and the fourth curved mirror CM4, and then is processed by a combination of a fast horizontal scanning galvanometer FS and a slow vertical scanning galvanometer SS, wherein a fifth curved mirror CM5 and a sixth curved mirror CM6 are arranged between the fast horizontal scanning galvanometer FS and the slow vertical scanning galvanometer SS. The second light beam is then transmitted to the first plane mirror FM1 through the seventh curved mirror CM7 and the eighth curved mirror CM8, and then transmitted to the cone cells through the second plane mirror FM2. The second light beam returning from the cone cells at the fundus returns to the first beam splitter BS1 along the original path, is incident on the microlens array LEA and the wavefront sensor WVS through the second beam splitter BS2, obtains the wavefront aberration through the wavefront sensor WVS, returns to control the deformable mirror to correct the wavefront aberration, and then returns to the fiber coupler FOC.
至此,从自适应光学扫描激光检眼镜AOSLO返回的第一光束与从光学相干层析成像OCT返回的第二光束进行干涉,通过第二偏振控制器PC2处理后,传送到第二准直镜CL2进行准直,再经由光栅G处理后传送至第一聚焦透镜FL1,再传送至相机,相机接收到数据后,再经由相机传送至计算机装置进行处理成视锥细胞三维成像。At this point, the first light beam returned from the adaptive optical scanning laser ophthalmoscope AOSLO interferes with the second light beam returned from the optical coherence tomography OCT, is processed by the second polarization controller PC2, and is transmitted to the second collimator CL2 for collimation, and then processed by the grating G and transmitted to the first focusing lens FL1, and then transmitted to the camera. After the camera receives the data, it is transmitted to the computer device through the camera to be processed into three-dimensional imaging of cone cells.
通过光学相干层析成像OCT和光学相干层析成像OCT的结合,能够将眼底的视网膜各层的运动情况通过自适应校正人眼像差的光信号,呈现高精度的人眼图像。Through the combination of optical coherence tomography (OCT) and optical coherence tomography (OCT), the movement of each retinal layer at the fundus can be presented through the light signal of adaptively correcting the aberration of the human eye, presenting a high-precision image of the human eye.
因为视锥细胞能接受光刺激,并将光能转换为神经冲动,内含有感光物质(视紫蓝质)。在光刺激下,感光物质可发生一系列的光化学变化和电位改变,使视锥细胞发放神经冲动。本发明可通过光源宽带光刺激视网膜上的视锥细胞层,观测视锥细胞发放神经冲动时对视网膜各层的运动情况。从采集得到的视网膜三维图像信息中提取其动态信息,分析细胞的活跃度,以达到评估视网膜光感受过程。Because cone cells can receive light stimulation and convert light energy into nerve impulses, and they contain photosensitive substances (rhodopsin). Under light stimulation, photosensitive substances can undergo a series of photochemical changes and potential changes, causing cone cells to emit nerve impulses. The present invention can stimulate the cone cell layer on the retina through broadband light from a light source, and observe the movement of cone cells to each layer of the retina when they emit nerve impulses. The dynamic information of the retinal three-dimensional image information collected is extracted, and the activity of the cells is analyzed to evaluate the retinal light perception process.
另外,自适应光路与激光检眼镜相结合。激光检眼镜系统包括光源SCL、准直透镜CL3、分束镜BS、聚焦透镜FL3以及光电倍增管PMT。由于光电倍增管PMT接收的是已经经过自适应光路校正过的人眼像差的光信号,因此,光电倍增管PMT可显著地倍增处理过的光信号,从而再经计算机处理后,可呈现高精度的人眼图像。In addition, the adaptive optical path is combined with a laser ophthalmoscope. The laser ophthalmoscope system includes a light source SCL, a collimating lens CL3, a beam splitter BS, a focusing lens FL3 and a photomultiplier tube PMT. Since the photomultiplier tube PMT receives the light signal of the human eye aberration that has been corrected by the adaptive optical path, the photomultiplier tube PMT can significantly multiply the processed light signal, so that after being processed by a computer, a high-precision human eye image can be presented.
图2为根据本发明的另一实施例的视锥细胞成像装置的示意图。所述视锥细胞成像装置包括自适应光学扫描激光检眼镜AOSLO和光学相干层析成像OCT。至人眼的光束分成两路,第一路光束来自自适应光学扫描激光检眼镜AOSLO,第二路光束来自光学相干层析成像OCT。Fig. 2 is a schematic diagram of a cone cell imaging device according to another embodiment of the present invention. The cone cell imaging device includes an adaptive optical scanning laser ophthalmoscope AOSLO and an optical coherence tomography OCT. The light beam to the human eye is divided into two paths, the first light beam comes from the adaptive optical scanning laser ophthalmoscope AOSLO, and the second light beam comes from the optical coherence tomography OCT.
自适应光学扫描激光检眼镜AOSLO包括光源、衰减器、分光镜、曲面镜、振镜、4f系统和光电倍增管。光学相干层析成像OCT包括扫描光源、光纤耦合器、平衡探测器、准直器和光栅。在自适应光学扫描激光检眼镜AOSLO模块内,第一路光束从光源+衰减器出发,沿分光镜、曲面镜、曲面镜、振镜、曲面镜、曲面镜、振镜进行双向地传播,并双向地传送至二向色镜,其中由分光镜分出一光束,并单向地向4f系统传播、光电倍增管依次传播。The adaptive optical scanning laser ophthalmoscope AOSLO includes a light source, an attenuator, a beam splitter, a curved mirror, a galvanometer, a 4f system and a photomultiplier tube. The optical coherence tomography OCT includes a scanning light source, a fiber coupler, a balanced detector, a collimator and a grating. In the adaptive optical scanning laser ophthalmoscope AOSLO module, the first light beam starts from the light source + attenuator, propagates bidirectionally along the beam splitter, curved mirror, curved mirror, galvanometer, curved mirror, curved mirror, galvanometer, and is bidirectionally transmitted to the dichroic mirror, where a beam is split by the beam splitter and propagates unidirectionally to the 4f system and the photomultiplier tube in sequence.
在光学相干层析成像OCT模块内,由扫频光源发射出光束传播至光纤耦合器,同时由光纤耦合器分成两路光束,第一路光束从光学相干层析成像OCT模块传播出去,依次传播至准直器、振镜、振镜、4f系统、二向色镜;第二路光束经由光纤耦合器进行传播。其中第二路光束分成第三光束和第四光束,第三光束双向地依次传播至准直器、光栅、准直器、光纤耦合器和平衡探测器,同理,第四光束双向地依次传播至光纤耦合器、准直器、光纤耦合器和平衡探测器。最后光束返回至要将光束传播出去的光纤耦合器中。In the optical coherence tomography (OCT) module, a light beam is emitted from a frequency-sweeping light source and propagates to a fiber coupler, and is simultaneously divided into two beams by the fiber coupler. The first beam propagates from the optical coherence tomography (OCT) module and sequentially propagates to the collimator, galvanometer, galvanometer, 4f system, and dichroic mirror; the second beam propagates through the fiber coupler. The second beam is divided into a third beam and a fourth beam. The third beam propagates bidirectionally to the collimator, grating, collimator, fiber coupler, and balanced detector in sequence. Similarly, the fourth beam propagates bidirectionally to the fiber coupler, collimator, fiber coupler, and balanced detector in sequence. Finally, the beam returns to the fiber coupler from which the beam is to be propagated.
分别通过自适应光学扫描激光检眼镜AOSLO和光学相干层析成像OCT的光束在二色向镜处交汇,双向地传播至人眼。The light beams passing through the adaptive optical scanning laser ophthalmoscope AOSLO and the optical coherence tomography OCT respectively intersect at the dichroic mirror and propagate bidirectionally to the human eye.
显然,上述实施例仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Obviously, the above embodiments are only examples for clear explanation, and are not intended to limit the implementation methods. For those skilled in the art, other different forms of changes or modifications can be made based on the above description. It is not necessary and impossible to list all the implementation methods here. The obvious changes or modifications derived from them are still within the protection scope of the invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910325949.1A CN110074752B (en) | 2019-04-23 | 2019-04-23 | A cone cell imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910325949.1A CN110074752B (en) | 2019-04-23 | 2019-04-23 | A cone cell imaging device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110074752A CN110074752A (en) | 2019-08-02 |
CN110074752B true CN110074752B (en) | 2024-09-03 |
Family
ID=67416048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910325949.1A Active CN110074752B (en) | 2019-04-23 | 2019-04-23 | A cone cell imaging device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110074752B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111436907A (en) * | 2020-04-17 | 2020-07-24 | 佛山科学技术学院 | A cerebral vascular imaging device based on swept-frequency adaptive optics OCT |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103070665A (en) * | 2012-10-12 | 2013-05-01 | 中国科学院光电技术研究所 | Self-adaptive frequency-sweeping optical coherence tomography system based on double wave front corrector |
CN104783755A (en) * | 2015-04-29 | 2015-07-22 | 中国科学院光电技术研究所 | Adaptive optical retinal imaging apparatus and method |
CN210408384U (en) * | 2019-04-23 | 2020-04-28 | 广东唯仁医疗科技有限公司 | Cone cell imaging device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010080576A1 (en) * | 2008-12-19 | 2010-07-15 | University Of Miami | System and method for early detection of diabetic retinopathy using optical coherence tomography |
WO2014160116A1 (en) * | 2013-03-13 | 2014-10-02 | University Of Washington Through Its Center For Commercialization | Methods and systems for imaging tissue motion using optical coherence tomography |
CN103815867B (en) * | 2014-02-26 | 2015-09-30 | 中国科学院光电技术研究所 | Continuously adjustable optical coherence tomography instrument with annulus illumination retina dark field |
-
2019
- 2019-04-23 CN CN201910325949.1A patent/CN110074752B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103070665A (en) * | 2012-10-12 | 2013-05-01 | 中国科学院光电技术研究所 | Self-adaptive frequency-sweeping optical coherence tomography system based on double wave front corrector |
CN104783755A (en) * | 2015-04-29 | 2015-07-22 | 中国科学院光电技术研究所 | Adaptive optical retinal imaging apparatus and method |
CN210408384U (en) * | 2019-04-23 | 2020-04-28 | 广东唯仁医疗科技有限公司 | Cone cell imaging device |
Also Published As
Publication number | Publication date |
---|---|
CN110074752A (en) | 2019-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hampson et al. | Adaptive optics for high-resolution imaging | |
Geng et al. | Optical properties of the mouse eye | |
CN104640497B (en) | Improvement in scanning laser ophthalmoscope or the improvement about scanning laser ophthalmoscope | |
US8506082B2 (en) | Ophthalmic apparatus, adaptive optical system, and image generating apparatus | |
CN102421351B (en) | Optical imaging apparatus and method for imaging an optical image | |
JP5553635B2 (en) | Compensating optical device, imaging device, compensating optical method, and imaging method | |
Euler et al. | Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina | |
CN103799975B (en) | Adaptive optics OCT retinal imager employing coherence gate wavefront sensor | |
CN105105707B (en) | Common-path interference adaptive optical OCT retina imager | |
US8979266B2 (en) | Devices and methods for polarization-sensitive optical coherence tomography and adaptive optics | |
CN108371542A (en) | A kind of eyeground multi-modal synchronization imaging system | |
CN110831489B (en) | System and method for multi-scale retinal imaging | |
CN105615824A (en) | Long-focus deep dark field retina OCT system adopting Bessel ring band illumination mode | |
Yu et al. | The Cousa objective: a long-working distance air objective for multiphoton imaging in vivo | |
CN102188231A (en) | A Zoom Multi-channel Human Eye Retina Microscopic Imaging System | |
Stirman et al. | Wide field-of-view, twin-region two-photon imaging across extended cortical networks | |
CN108567410A (en) | Optical coherence tomography and the confocal synchronous imaging system of spot scan | |
Wu et al. | Optical scanning endoscope via a single multimode optical fiber | |
CN110074752B (en) | A cone cell imaging device | |
Yang et al. | Time‐stretch Chromatic Confocal Microscopy for Multi‐Depth Imaging | |
CN203953620U (en) | Multispectral retina confocal scanning imaging system based on adaptive optics | |
CN106031629A (en) | A myopic eye scanning module used for an optical coherence tomography instrument | |
JP5827507B2 (en) | Ellipsometry system | |
CN210408384U (en) | Cone cell imaging device | |
CN212489859U (en) | Adaptive optics scanning laser fundus imaging system based on transmission optics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: A cone cell imaging device Granted publication date: 20240903 Pledgee: Shenyang Aimu Trading Co.,Ltd. Pledgor: GUANGDONG WEIREN MEDICAL TECHNOLOGY Co.,Ltd.|Weiren medical (Foshan) Co.,Ltd.|Weizhi medical technology (Foshan) Co.,Ltd. Registration number: Y2024980047105 |