CN118974997A - Electricity storage element and electricity storage device - Google Patents
Electricity storage element and electricity storage device Download PDFInfo
- Publication number
- CN118974997A CN118974997A CN202380030046.5A CN202380030046A CN118974997A CN 118974997 A CN118974997 A CN 118974997A CN 202380030046 A CN202380030046 A CN 202380030046A CN 118974997 A CN118974997 A CN 118974997A
- Authority
- CN
- China
- Prior art keywords
- positive electrode
- active material
- electrode active
- negative electrode
- material layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003860 storage Methods 0.000 title claims abstract description 121
- 230000005611 electricity Effects 0.000 title description 6
- 239000007774 positive electrode material Substances 0.000 claims abstract description 98
- 239000011148 porous material Substances 0.000 claims abstract description 72
- 239000007773 negative electrode material Substances 0.000 claims abstract description 51
- 238000003475 lamination Methods 0.000 claims abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 44
- 229910002804 graphite Inorganic materials 0.000 claims description 23
- 239000010439 graphite Substances 0.000 claims description 23
- 229910052744 lithium Inorganic materials 0.000 claims description 19
- 150000001875 compounds Chemical class 0.000 claims description 16
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 15
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 13
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 claims description 12
- 229910010774 LiFexMn(1-x)PO4 Inorganic materials 0.000 claims 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 64
- 239000000758 substrate Substances 0.000 description 36
- 238000000034 method Methods 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 24
- 238000007600 charging Methods 0.000 description 23
- 230000014759 maintenance of location Effects 0.000 description 22
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 19
- 229910001416 lithium ion Inorganic materials 0.000 description 19
- 239000002245 particle Substances 0.000 description 19
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 18
- -1 for example Substances 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 16
- 150000002500 ions Chemical class 0.000 description 15
- 239000000463 material Substances 0.000 description 15
- 239000006258 conductive agent Substances 0.000 description 13
- 239000007789 gas Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 238000003825 pressing Methods 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- 239000002131 composite material Substances 0.000 description 10
- 150000005676 cyclic carbonates Chemical class 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- 238000009826 distribution Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 9
- 239000001569 carbon dioxide Substances 0.000 description 9
- 229910002092 carbon dioxide Inorganic materials 0.000 description 9
- 239000003792 electrolyte Substances 0.000 description 9
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 9
- 239000011149 active material Substances 0.000 description 8
- 239000003125 aqueous solvent Substances 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 8
- 150000005678 chain carbonates Chemical class 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000011888 foil Substances 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 238000004146 energy storage Methods 0.000 description 7
- 238000010030 laminating Methods 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000007784 solid electrolyte Substances 0.000 description 7
- 239000002562 thickening agent Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 6
- 238000012790 confirmation Methods 0.000 description 6
- 239000000945 filler Substances 0.000 description 6
- 229910003002 lithium salt Inorganic materials 0.000 description 6
- 159000000002 lithium salts Chemical class 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000003575 carbonaceous material Substances 0.000 description 5
- 238000010280 constant potential charging Methods 0.000 description 5
- 238000010277 constant-current charging Methods 0.000 description 5
- 239000011889 copper foil Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- DSMUTQTWFHVVGQ-UHFFFAOYSA-N 4,5-difluoro-1,3-dioxolan-2-one Chemical compound FC1OC(=O)OC1F DSMUTQTWFHVVGQ-UHFFFAOYSA-N 0.000 description 4
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 4
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 150000002484 inorganic compounds Chemical class 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 230000000452 restraining effect Effects 0.000 description 4
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 4
- RBYFNZOIUUXJQD-UHFFFAOYSA-J tetralithium oxalate Chemical compound [Li+].[Li+].[Li+].[Li+].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O RBYFNZOIUUXJQD-UHFFFAOYSA-J 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 2
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- GUUVPOWQJOLRAS-UHFFFAOYSA-N Diphenyl disulfide Chemical compound C=1C=CC=CC=1SSC1=CC=CC=C1 GUUVPOWQJOLRAS-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 229910052586 apatite Inorganic materials 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 2
- 229910001632 barium fluoride Inorganic materials 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- 229910001593 boehmite Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 2
- 229910001634 calcium fluoride Inorganic materials 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 2
- TXCDCPKCNAJMEE-UHFFFAOYSA-N dibenzofuran Chemical compound C1=CC=C2C3=CC=CC=C3OC2=C1 TXCDCPKCNAJMEE-UHFFFAOYSA-N 0.000 description 2
- DGTVXEHQMSJRPE-UHFFFAOYSA-M difluorophosphinate Chemical compound [O-]P(F)(F)=O DGTVXEHQMSJRPE-UHFFFAOYSA-M 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052901 montmorillonite Inorganic materials 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010450 olivine Substances 0.000 description 2
- 229910052609 olivine Inorganic materials 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002203 sulfidic glass Substances 0.000 description 2
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- YTZKOQUCBOVLHL-UHFFFAOYSA-N tert-butylbenzene Chemical compound CC(C)(C)C1=CC=CC=C1 YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- QGVDSWMSHDZOMW-UHFFFAOYSA-N 1,3,2-dioxathiolane Chemical compound C1COSO1 QGVDSWMSHDZOMW-UHFFFAOYSA-N 0.000 description 1
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- IOBWAHRFIPQEQL-UHFFFAOYSA-N 1,3-difluoro-2-methoxybenzene Chemical compound COC1=C(F)C=CC=C1F IOBWAHRFIPQEQL-UHFFFAOYSA-N 0.000 description 1
- OTGQPYSISUUHAF-UHFFFAOYSA-N 1,3-difluoro-5-methoxybenzene Chemical compound COC1=CC(F)=CC(F)=C1 OTGQPYSISUUHAF-UHFFFAOYSA-N 0.000 description 1
- HUDMAQLYMUKZOZ-UHFFFAOYSA-N 1,4-difluoro-2-methoxybenzene Chemical compound COC1=CC(F)=CC=C1F HUDMAQLYMUKZOZ-UHFFFAOYSA-N 0.000 description 1
- GUYHXQLLIISBQF-UHFFFAOYSA-N 1-cyclohexyl-2-fluorobenzene Chemical compound FC1=CC=CC=C1C1CCCCC1 GUYHXQLLIISBQF-UHFFFAOYSA-N 0.000 description 1
- YAOIFBJJGFYYFI-UHFFFAOYSA-N 1-cyclohexyl-4-fluorobenzene Chemical compound C1=CC(F)=CC=C1C1CCCCC1 YAOIFBJJGFYYFI-UHFFFAOYSA-N 0.000 description 1
- MBDUIEKYVPVZJH-UHFFFAOYSA-N 1-ethylsulfonylethane Chemical compound CCS(=O)(=O)CC MBDUIEKYVPVZJH-UHFFFAOYSA-N 0.000 description 1
- KLECYOQFQXJYBC-UHFFFAOYSA-N 1-fluoro-2-phenylbenzene Chemical group FC1=CC=CC=C1C1=CC=CC=C1 KLECYOQFQXJYBC-UHFFFAOYSA-N 0.000 description 1
- CRMJLJFDPNJIQA-UHFFFAOYSA-N 2,4-difluoro-1-methoxybenzene Chemical compound COC1=CC=C(F)C=C1F CRMJLJFDPNJIQA-UHFFFAOYSA-N 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- QHTJSSMHBLGUHV-UHFFFAOYSA-N 2-methylbutan-2-ylbenzene Chemical compound CCC(C)(C)C1=CC=CC=C1 QHTJSSMHBLGUHV-UHFFFAOYSA-N 0.000 description 1
- HHCHLHOEAKKCAB-UHFFFAOYSA-N 2-oxaspiro[3.5]nonane-1,3-dione Chemical compound O=C1OC(=O)C11CCCCC1 HHCHLHOEAKKCAB-UHFFFAOYSA-N 0.000 description 1
- SYIUWAVTBADRJG-UHFFFAOYSA-N 2H-pyran-2,6(3H)-dione Chemical compound O=C1CC=CC(=O)O1 SYIUWAVTBADRJG-UHFFFAOYSA-N 0.000 description 1
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- SROHGOJDCAODGI-UHFFFAOYSA-N 4,5-diphenyl-1,3-dioxol-2-one Chemical compound O1C(=O)OC(C=2C=CC=CC=2)=C1C1=CC=CC=C1 SROHGOJDCAODGI-UHFFFAOYSA-N 0.000 description 1
- OYOKPDLAMOMTEE-UHFFFAOYSA-N 4-chloro-1,3-dioxolan-2-one Chemical compound ClC1COC(=O)O1 OYOKPDLAMOMTEE-UHFFFAOYSA-N 0.000 description 1
- SJHAYVFVKRXMKG-UHFFFAOYSA-N 4-methyl-1,3,2-dioxathiolane 2-oxide Chemical compound CC1COS(=O)O1 SJHAYVFVKRXMKG-UHFFFAOYSA-N 0.000 description 1
- VMAJRFCXVOIAAS-UHFFFAOYSA-N 4-phenyl-1,3-dioxol-2-one Chemical compound O1C(=O)OC=C1C1=CC=CC=C1 VMAJRFCXVOIAAS-UHFFFAOYSA-N 0.000 description 1
- ZKOGUIGAVNCCKH-UHFFFAOYSA-N 4-phenyl-1,3-dioxolan-2-one Chemical compound O1C(=O)OCC1C1=CC=CC=C1 ZKOGUIGAVNCCKH-UHFFFAOYSA-N 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- WIFIDUXRMNIDGH-UHFFFAOYSA-N CS(OCC1OSOC1)(=O)=O Chemical compound CS(OCC1OSOC1)(=O)=O WIFIDUXRMNIDGH-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 229910005933 Ge—P Inorganic materials 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910018130 Li 2 S-P 2 S 5 Inorganic materials 0.000 description 1
- 229910013375 LiC Inorganic materials 0.000 description 1
- 229910010835 LiI-Li2S-P2S5 Inorganic materials 0.000 description 1
- 229910010840 LiI—Li2S—P2S5 Inorganic materials 0.000 description 1
- 229910013131 LiN Inorganic materials 0.000 description 1
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 description 1
- 229910013392 LiN(SO2CF3)(SO2C4F9) Inorganic materials 0.000 description 1
- 229910013406 LiN(SO2CF3)2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910012265 LiPO2F2 Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 229910006095 SO2F Inorganic materials 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- JBDIVCUIIIVNHR-UHFFFAOYSA-M [Li]F.OP(O)(O)=O Chemical compound [Li]F.OP(O)(O)=O JBDIVCUIIIVNHR-UHFFFAOYSA-M 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical class COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- WLLOZRDOFANZMZ-UHFFFAOYSA-N bis(2,2,2-trifluoroethyl) carbonate Chemical compound FC(F)(F)COC(=O)OCC(F)(F)F WLLOZRDOFANZMZ-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- ZTCLFSRIWSZUHZ-UHFFFAOYSA-N but-1-yne;carbonic acid Chemical compound CCC#C.OC(O)=O ZTCLFSRIWSZUHZ-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- SYLNJGIBLUVXCG-UHFFFAOYSA-N carbonic acid;prop-1-yne Chemical compound CC#C.OC(O)=O SYLNJGIBLUVXCG-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- CCAFPWNGIUBUSD-UHFFFAOYSA-N diethyl sulfoxide Chemical compound CCS(=O)CC CCAFPWNGIUBUSD-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- YNQRWVCLAIUHHI-UHFFFAOYSA-L dilithium;oxalate Chemical class [Li+].[Li+].[O-]C(=O)C([O-])=O YNQRWVCLAIUHHI-UHFFFAOYSA-L 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- BDUPRNVPXOHWIL-UHFFFAOYSA-N dimethyl sulfite Chemical compound COS(=O)OC BDUPRNVPXOHWIL-UHFFFAOYSA-N 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical compound C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- RBBXSUBZFUWCAV-UHFFFAOYSA-N ethenyl hydrogen sulfite Chemical compound OS(=O)OC=C RBBXSUBZFUWCAV-UHFFFAOYSA-N 0.000 description 1
- VEWLDLAARDMXSB-UHFFFAOYSA-N ethenyl sulfate;hydron Chemical compound OS(=O)(=O)OC=C VEWLDLAARDMXSB-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- XVOCEVMHNRHJMX-UHFFFAOYSA-N ethyl-hydroxy-oxogermane Chemical compound CC[Ge](O)=O XVOCEVMHNRHJMX-UHFFFAOYSA-N 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical compound O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000008282 halocarbons Chemical group 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- GBPVMEKUJUKTBA-UHFFFAOYSA-N methyl 2,2,2-trifluoroethyl carbonate Chemical compound COC(=O)OCC(F)(F)F GBPVMEKUJUKTBA-UHFFFAOYSA-N 0.000 description 1
- VUQUOGPMUUJORT-UHFFFAOYSA-N methyl 4-methylbenzenesulfonate Chemical compound COS(=O)(=O)C1=CC=C(C)C=C1 VUQUOGPMUUJORT-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- MBABOKRGFJTBAE-UHFFFAOYSA-N methyl methanesulfonate Chemical compound COS(C)(=O)=O MBABOKRGFJTBAE-UHFFFAOYSA-N 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- MHYFEEDKONKGEB-UHFFFAOYSA-N oxathiane 2,2-dioxide Chemical compound O=S1(=O)CCCCO1 MHYFEEDKONKGEB-UHFFFAOYSA-N 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- YVBBRRALBYAZBM-UHFFFAOYSA-N perfluorooctane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YVBBRRALBYAZBM-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229920005608 sulfonated EPDM Polymers 0.000 description 1
- 150000003459 sulfonic acid esters Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- ISXOBTBCNRIIQO-UHFFFAOYSA-N tetrahydrothiophene 1-oxide Chemical compound O=S1CCCC1 ISXOBTBCNRIIQO-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- HNKJADCVZUBCPG-UHFFFAOYSA-N thioanisole Chemical compound CSC1=CC=CC=C1 HNKJADCVZUBCPG-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 1
- YZYKZHPNRDIPFA-UHFFFAOYSA-N tris(trimethylsilyl) borate Chemical compound C[Si](C)(C)OB(O[Si](C)(C)C)O[Si](C)(C)C YZYKZHPNRDIPFA-UHFFFAOYSA-N 0.000 description 1
- QJMMCGKXBZVAEI-UHFFFAOYSA-N tris(trimethylsilyl) phosphate Chemical compound C[Si](C)(C)OP(=O)(O[Si](C)(C)C)O[Si](C)(C)C QJMMCGKXBZVAEI-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/46—Metal oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及蓄电元件和蓄电装置。The present invention relates to an electricity storage element and an electricity storage device.
背景技术Background Art
以锂离子二次电池为代表的非水电解质二次电池由于能量密度高,多用于个人计算机、通信终端等电子设备、汽车等。上述非水电解质二次电池一般具有包括一对电极和隔离件的电极体、非水电解质以及收纳这些电极体和非水电解质的容器,构成为通过在两电极间进行电荷输送离子的授受而充放电。另外,作为非水电解质二次电池以外的非水电解质蓄电元件,锂离子电容器、双电层电容器等电容器也广泛得到了普及。The non-aqueous electrolyte secondary battery represented by the lithium ion secondary battery is widely used in electronic equipment such as personal computers, communication terminals, and automobiles due to its high energy density. The above-mentioned non-aqueous electrolyte secondary battery generally has an electrode body including a pair of electrodes and a separator, a non-aqueous electrolyte, and a container for accommodating these electrode bodies and the non-aqueous electrolyte, and is configured to charge and discharge by giving and receiving charge transport ions between the two electrodes. In addition, as non-aqueous electrolyte storage elements other than non-aqueous electrolyte secondary batteries, capacitors such as lithium ion capacitors and double electric layer capacitors have also been widely popularized.
以往,作为非水电解质蓄电元件的负极所含的活性物质,使用石墨等碳材料等,为了提高非水电解质蓄电元件的充放电特性等,一直在开发活性物质。作为非水电解质蓄电元件的一个例子,专利文献1中公开了使用磷酸铁锂作为正极活性物质、使用石墨等作为负极活性物质的非水电解质二次电池。In the past, carbon materials such as graphite were used as active materials contained in the negative electrode of non-aqueous electrolyte storage elements, and active materials have been developed to improve the charge and discharge characteristics of non-aqueous electrolyte storage elements. As an example of a non-aqueous electrolyte storage element, Patent Document 1 discloses a non-aqueous electrolyte secondary battery using lithium iron phosphate as a positive electrode active material and graphite as a negative electrode active material.
现有技术文献Prior art literature
专利文献Patent Literature
专利文献1:国际公开第2015/170561号Patent Document 1: International Publication No. 2015/170561
发明内容Summary of the invention
正极活性物质使用磷酸铁锂、负极活性物质使用石墨的非水电解质二次电池中,伴随充电状态的变化的电压的变化在充电状态的宽范围内呈平坦的特性(电压平坦性)优异。但是,具有电压平坦性的非水电解质二次电池在电极间的距离不均匀等情况下,在电极体内容易产生充放电反应的偏差。如果电极体内的充放电反应产生偏差,则在充放电反应集中的部位,在充电时锂金属等容易在负极表面析出,因此有伴随充放电循环而容量维持率等大幅降低的风险。In a non-aqueous electrolyte secondary battery using lithium iron phosphate as the positive active material and graphite as the negative active material, the change in voltage accompanying the change in the state of charge is excellent in a flat characteristic (voltage flatness) over a wide range of the state of charge. However, in a non-aqueous electrolyte secondary battery with voltage flatness, when the distance between the electrodes is uneven, etc., it is easy to produce deviations in the charge and discharge reactions in the electrode body. If the charge and discharge reactions in the electrode body are biased, lithium metal and the like are easily precipitated on the negative electrode surface during charging at the location where the charge and discharge reactions are concentrated, so there is a risk of a significant reduction in the capacity retention rate and the like accompanying the charge and discharge cycle.
本发明是鉴于以上实际情况而完成的,其目的在于提供一种能够抑制充放电循环时的容量维持率的降低的蓄电元件和蓄电装置。The present invention has been made in view of the above-mentioned actual circumstances, and an object of the present invention is to provide an electric storage element and an electric storage device capable of suppressing a decrease in the capacity retention rate during charge and discharge cycles.
本发明的一个方面的蓄电元件具备将具有正极活性物质层的正极和具有负极活性物质层的负极层叠而成的电极体以及用于收纳上述电极体的可密封的容器,上述电极体为在上述正极和上述负极的层叠方向上被按压的状态,上述正极活性物质层的孔径50nm的微分孔容为0.0030cm3/(g·nm)以上,SOC30%的开路电压与SOC70%的开路电压之差为0.2V以下。A storage element according to one aspect of the present invention comprises an electrode body formed by laminating a positive electrode having a positive electrode active material layer and a negative electrode having a negative electrode active material layer, and a sealable container for housing the electrode body, wherein the electrode body is in a state of being pressed in a laminating direction of the positive electrode and the negative electrode, the differential pore volume of the positive electrode active material layer at a pore diameter of 50 nm is 0.0030 cm 3 /(g·nm) or more, and the difference between the open circuit voltage at SOC 30% and the open circuit voltage at SOC 70% is 0.2 V or less.
本发明的另一个方面的蓄电元件具备将具有正极活性物质层的正极和具有负极活性物质层的负极层叠而成的电极体以及用于收纳上述电极体的可密封的容器,上述电极体为在上述正极和上述负极的层叠方向上被按压的状态,上述正极活性物质层的孔径50nm的微分孔容为0.0030cm3/(g·nm)以上,上述正极活性物质包含下述式1所表示的化合物或锰酸锂,上述负极活性物质包含石墨或钛酸锂。A storage element according to another aspect of the present invention comprises an electrode body formed by laminating a positive electrode having a positive electrode active material layer and a negative electrode having a negative electrode active material layer, and a sealable container for accommodating the electrode body, wherein the electrode body is in a state of being pressed in the lamination direction of the positive electrode and the negative electrode, the differential pore volume of the positive electrode active material layer at a pore diameter of 50 nm is 0.0030 cm 3 /(g·nm) or more, the positive electrode active material comprises a compound represented by the following formula 1 or lithium manganate, and the negative electrode active material comprises graphite or lithium titanate.
LiFexMn(1-x)PO4(0≤x≤1)···1LiFe x Mn (1-x) PO 4 (0≤x≤1)···1
本发明的另一个方面的蓄电装置具备两个以上的蓄电元件,并且具备一个以上的本发明的一个方面的蓄电元件。A power storage device according to another aspect of the present invention includes two or more power storage elements and includes one or more power storage elements according to one aspect of the present invention.
本发明的一个方面的蓄电元件和蓄电装置能够抑制充放电循环时的容量维持率的降低。The electric storage element and the electric storage device according to one aspect of the present invention can suppress a decrease in the capacity retention rate during charge and discharge cycles.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是表示用于说明电压平坦性的蓄电元件的放电曲线的一个例子的坐标图。FIG. 1 is a graph showing an example of a discharge curve of an electric storage element for explaining voltage flatness.
图2是表示蓄电元件的一个实施方式的透视立体图。FIG. 2 is a perspective view showing an embodiment of an electric storage element.
图3是表示将多个蓄电元件集合而构成的蓄电装置的一个实施方式的概略图。FIG. 3 is a schematic diagram showing an embodiment of an electric storage device including a plurality of electric storage elements assembled together.
图4是实施例1和比较例3的正极活性物质层的微分孔容分布曲线。FIG. 4 is a differential pore volume distribution curve of the positive electrode active material layer of Example 1 and Comparative Example 3.
具体实施方式DETAILED DESCRIPTION
本发明的一个实施方式提供以下各项的方式。One embodiment of the present invention provides the following aspects.
项1.Item 1.
本发明的一个实施方式的蓄电元件具备将具有正极活性物质层的正极和具有负极活性物质层的负极层叠而成的电极体以及用于收纳上述电极体的可密封的容器,上述电极体为在上述正极和上述负极的层叠方向上被按压的状态,上述正极活性物质层的孔径50nm的微分孔容为0.0030cm3/(g·nm)以上,SOC30%的开路电压与SOC70%的开路电压之差为0.2V以下。An electric storage element according to one embodiment of the present invention comprises an electrode body formed by stacking a positive electrode having a positive electrode active material layer and a negative electrode having a negative electrode active material layer, and a sealable container for housing the electrode body, the electrode body being in a state of being pressed in a stacking direction of the positive electrode and the negative electrode, the differential pore volume of the positive electrode active material layer having a pore diameter of 50 nm being not less than 0.0030 cm 3 /(g·nm), and the difference between an open circuit voltage at SOC 30% and an open circuit voltage at SOC 70% being not more than 0.2 V.
上述项1所述的蓄电元件能够抑制充放电循环时的容量维持率的降低。The electric storage device described in the above Item 1 can suppress a decrease in the capacity retention rate during charge and discharge cycles.
项2.Item 2.
本发明的另一个实施方式的蓄电元件具备将具有正极活性物质层的正极和具有负极活性物质层的负极层叠而成的电极体以及用于收纳上述电极体的可密封的容器,上述电极体为在上述正极和上述负极的层叠方向上被按压的状态,上述正极活性物质层的孔径50nm的微分孔容为0.0030cm3/(g·nm)以上,上述正极活性物质包含下述式1所表示的化合物或锰酸锂,上述负极活性物质包含石墨或钛酸锂。A storage element according to another embodiment of the present invention comprises an electrode body formed by laminating a positive electrode having a positive electrode active material layer and a negative electrode having a negative electrode active material layer, and a sealable container for accommodating the electrode body, the electrode body being in a state of being pressed in the lamination direction of the positive electrode and the negative electrode, the differential pore volume of the positive electrode active material layer with a pore diameter of 50 nm is 0.0030 cm 3 /(g·nm) or more, the positive electrode active material comprises a compound represented by the following formula 1 or lithium manganate, and the negative electrode active material comprises graphite or lithium titanate.
LiFexMn(1-x)PO4(0≤x≤1)···1LiFe x Mn (1-x) PO 4 (0≤x≤1)···1
上述项2所述的蓄电元件能够抑制充放电循环时的容量维持率的降低。The electric storage device described in the above Item 2 can suppress a decrease in the capacity retention rate during charge and discharge cycles.
项3.Item 3.
上述项1或2所述的蓄电元件中,上述容器的内部可以为负压状态。In the electric storage device according to the above Item 1 or 2, the interior of the container may be in a negative pressure state.
根据上述项3所述的蓄电元件,能够进一步抑制充放电循环时的容量维持率的降低。According to the electric storage device described in the above Item 3, it is possible to further suppress a decrease in the capacity retention rate during charge and discharge cycles.
项4.Item 4.
本发明的另一个实施方式的蓄电装置具备两个以上的蓄电元件,并且具备一个以上的上述项1~3中任一项所述的蓄电元件。A power storage device according to another embodiment of the present invention includes two or more power storage elements and includes one or more power storage elements according to any one of Items 1 to 3 above.
根据上述项4所述的蓄电装置,能够抑制充放电循环时的容量维持率的降低。According to the power storage device described in the above Item 4, it is possible to suppress a decrease in the capacity retention rate during charge and discharge cycles.
首先,对本说明书公开的蓄电元件和蓄电装置的概要进行说明。First, the outline of the power storage element and the power storage device disclosed in this specification will be described.
本发明的一个方面的蓄电元件具备将具有正极活性物质层的正极和具有负极活性物质层的负极层叠而成的电极体以及用于收纳上述电极体的可密封的容器,上述电极体为在上述正极和上述负极的层叠方向上被按压的状态,上述正极活性物质层的孔径50nm的微分孔容为0.0030cm3/(g·nm)以上,SOC30%的开路电压与SOC70%的开路电压之差为0.2V以下。A storage element according to one aspect of the present invention comprises an electrode body formed by laminating a positive electrode having a positive electrode active material layer and a negative electrode having a negative electrode active material layer, and a sealable container for housing the electrode body, wherein the electrode body is in a state of being pressed in a laminating direction of the positive electrode and the negative electrode, the differential pore volume of the positive electrode active material layer at a pore diameter of 50 nm is 0.0030 cm 3 /(g·nm) or more, and the difference between the open circuit voltage at SOC 30% and the open circuit voltage at SOC 70% is 0.2 V or less.
该蓄电元件能够抑制充放电循环时的容量维持率的降低。该理由推测为以下。This electric storage element can suppress a decrease in the capacity retention rate during charge and discharge cycles. The reason for this is presumably as follows.
该蓄电元件由于SOC30%的开路电压与SOC70%的开路电压之差为0.2V以下,所以具有伴随充电状态的变化的电压的变化呈平坦的电压平坦性。这里,为了说明“电压平坦性”,图1表示以横轴为SOC(%)、纵轴为电池电压(V)的蓄电元件的放电曲线的一个例子。电池电压(V)是设为放电电流0.1C并在25℃下进行恒定电流放电时的蓄电元件的闭路电压(CCV)。在图1中,LFP/Gr是正极使用磷酸铁锂(LFP)、负极使用石墨(Gr)的锂离子二次电池,NCM/Gr是正极使用包含Ni、Co和Mn的复合氧化物(NCM)、负极使用石墨(Gr)的锂离子二次电池,NCA/Gr是正极使用包含Ni、Co和Al的复合氧化物(NCA)、负极使用石墨(Gr)的锂离子二次电池。在图1中,NCM/Gr和NCA/Gr的电池电压(V)从SOC70%到SOC30%单调降低,而LFP/Gr的电池电压(V)从SOC70%到SOC30%大致恒定。即,图1的LFP/Gr具有电压平坦性。Since the difference between the open circuit voltage at SOC30% and the open circuit voltage at SOC70% is less than 0.2V, the storage element has voltage flatness in which the voltage changes flatly with the change of the state of charge. Here, in order to illustrate the "voltage flatness", FIG. 1 shows an example of a discharge curve of the storage element with the horizontal axis being SOC (%) and the vertical axis being the battery voltage (V). The battery voltage (V) is the closed circuit voltage (CCV) of the storage element when the discharge current is set to 0.1C and constant current discharge is performed at 25°C. In FIG. 1, LFP/Gr is a lithium ion secondary battery using lithium iron phosphate (LFP) for the positive electrode and graphite (Gr) for the negative electrode, NCM/Gr is a lithium ion secondary battery using a composite oxide (NCM) containing Ni, Co and Mn for the positive electrode and graphite (Gr) for the negative electrode, and NCA/Gr is a lithium ion secondary battery using a composite oxide (NCA) containing Ni, Co and Al for the positive electrode and graphite (Gr) for the negative electrode. In Fig. 1 , the battery voltage (V) of NCM/Gr and NCA/Gr decreases monotonically from SOC 70% to SOC 30%, while the battery voltage (V) of LFP/Gr is substantially constant from SOC 70% to SOC 30%. That is, LFP/Gr of Fig. 1 has voltage flatness.
另一方面,以往的蓄电元件具有上述电压平坦性时,在电极体内锂离子等电荷输送离子的分布产生偏差的情况下,推测通过正极活性物质层和负极活性物质层内的电位之差而消除该偏差的力难以发挥作用。特别是,在电极体的厚度大或者两电极间的距离不均匀等的情况下,锂离子等电荷输送离子的扩散容易变得不均匀,另外在电极体内容易维持充放电反应的偏差。因此,有如下风险:充电时锂金属等容易在负极表面局部析出,伴随充放电循环而容量维持率降低。On the other hand, when the conventional storage element has the above-mentioned voltage flatness, when the distribution of charge transport ions such as lithium ions in the electrode body is biased, it is presumed that the force to eliminate the deviation through the difference in potential between the positive electrode active material layer and the negative electrode active material layer is difficult to work. In particular, when the thickness of the electrode body is large or the distance between the two electrodes is uneven, the diffusion of charge transport ions such as lithium ions tends to become uneven, and the deviation of the charge and discharge reaction is easily maintained in the electrode body. Therefore, there is the following risk: lithium metal and the like are easily precipitated locally on the negative electrode surface during charging, and the capacity retention rate decreases with the charge and discharge cycle.
与此相对,本发明的一个方面的蓄电元件中,通过在正极和负极的层叠方向上按压电极体,容易使两电极间的距离均匀化,另外,由于正极活性物质层的孔径50nm的微分孔容为0.0030cm3/(g·nm)以上,所以在正极活性物质层内促进锂离子等电荷输送离子的顺利且均匀的移动。因此,电极体内的充放电反应不易产生偏差,其结果,能够抑制充放电循环时的容量维持率的降低。In contrast, in the storage element of one aspect of the present invention, by pressing the electrode body in the stacking direction of the positive electrode and the negative electrode, the distance between the two electrodes can be easily uniformized, and since the differential pore volume of the positive electrode active material layer with a pore diameter of 50 nm is 0.0030 cm 3 / (g·nm) or more, the smooth and uniform movement of charge transport ions such as lithium ions is promoted in the positive electrode active material layer. Therefore, the charge and discharge reaction in the electrode body is not easily deviated, and as a result, the reduction in the capacity retention rate during the charge and discharge cycle can be suppressed.
本发明的另一个方面的蓄电元件具备将具有正极活性物质层的正极和具有负极活性物质层的负极层叠而成的电极体以及用于收纳上述电极体的可密封的容器,上述电极体为在上述正极和上述负极的层叠方向上被按压的状态,上述正极活性物质层的孔径50nm的微分孔容为0.0030cm3/(g·nm)以上,上述正极活性物质包含下述式1所表示的化合物或锰酸锂,上述负极活性物质包含石墨或钛酸锂。A storage element according to another aspect of the present invention comprises an electrode body formed by laminating a positive electrode having a positive electrode active material layer and a negative electrode having a negative electrode active material layer, and a sealable container for accommodating the electrode body, wherein the electrode body is in a state of being pressed in the lamination direction of the positive electrode and the negative electrode, the differential pore volume of the positive electrode active material layer at a pore diameter of 50 nm is 0.0030 cm 3 /(g·nm) or more, the positive electrode active material comprises a compound represented by the following formula 1 or lithium manganate, and the negative electrode active material comprises graphite or lithium titanate.
LiFexMn(1-x)PO4(0≤x≤1)···1LiFe x Mn (1-x) PO 4 (0≤x≤1)···1
该蓄电元件中,由于上述正极活性物质包含上述式1所表示的化合物或锰酸锂,上述负极活性物质包含石墨或钛酸锂,所以具有伴随充电状态的变化的电压的变化呈平坦的电压平坦性。另一方面,通过在正极和负极的层叠方向上按压上述电极体,容易使两电极间的距离均匀化,另外,由于正极活性物质层的孔径50nm的微分孔容为0.0030cm3/(g·nm)以上,所以在正极活性物质层内促进锂离子等电荷输送离子的顺利且均匀的移动。因此,电极体内的充放电反应不易产生偏差,其结果,能够抑制充放电循环时的容量维持率的降低。In this storage element, since the positive electrode active material includes the compound represented by the above formula 1 or lithium manganate, and the negative electrode active material includes graphite or lithium titanate, the voltage flatness is flat with the change of the voltage accompanying the change of the charging state. On the other hand, by pressing the electrode body in the stacking direction of the positive electrode and the negative electrode, it is easy to make the distance between the two electrodes uniform. In addition, since the differential pore volume of the pore diameter 50nm of the positive electrode active material layer is 0.0030cm3 /(g·nm) or more, the smooth and uniform movement of charge transport ions such as lithium ions is promoted in the positive electrode active material layer. Therefore, the charge and discharge reaction in the electrode body is not easy to deviate, and as a result, the reduction of the capacity retention rate during the charge and discharge cycle can be suppressed.
上述容器的内部可以为负压状态。这样,通过上述容器的内部为负压状态,能够更容易地使两电极间的距离均匀化。The interior of the container may be in a negative pressure state. Thus, by making the interior of the container in a negative pressure state, the distance between the two electrodes can be more easily made uniform.
应予说明,在本发明中,“正极和负极的层叠方向”是指层叠正极和负极的方向,“在层叠方向上被按压的状态”是指在电极体的层叠的各层之间的距离变小的方向上施加压力的状态。另外,在本发明中,“负压状态”是指,收纳电极体的容器的内部的压力比容器的外部的压力低的状态。“SOC”是State Of Charge的缩写,以当时的剩余容量与满充电状态的容量的比率表示蓄电元件的充电状态,将满充电状态标记为SOC100%。这里,“满充电状态”是对于该蓄电元件采用推荐或指定的充电条件充电至达到上限电压的状态。进而,“SOC30%的开路电压与SOC70%的开路电压之差”是指将蓄电元件在25℃下以放电电流0.1C进行恒定电流放电,达到SOC30%和SOC70%后,在未施加电流的状态下经过30分钟时分别测定的开路电压(OCV)之差的绝对值。It should be noted that, in the present invention, "the stacking direction of the positive electrode and the negative electrode" refers to the direction in which the positive electrode and the negative electrode are stacked, and "the state of being pressed in the stacking direction" refers to the state in which pressure is applied in the direction in which the distance between the stacked layers of the electrode body becomes smaller. In addition, in the present invention, "negative pressure state" refers to a state in which the pressure inside the container that stores the electrode body is lower than the pressure outside the container. "SOC" is the abbreviation of State Of Charge, and the charging state of the storage element is expressed by the ratio of the remaining capacity at that time to the capacity of the fully charged state, and the fully charged state is marked as SOC100%. Here, "fully charged state" is a state in which the storage element is charged to the upper limit voltage using the recommended or specified charging conditions. Furthermore, "the difference between the open circuit voltage of SOC30% and the open circuit voltage of SOC70%" refers to the absolute value of the difference in open circuit voltage (OCV) measured after 30 minutes when the storage element is discharged at a constant current of 0.1C at 25°C and reaches SOC30% and SOC70%, respectively, without applying current.
在本发明中,“孔径50nm的微分孔容”是从使用氮气吸附法的吸附等温线通过BJH法求出的值。具体而言,微分孔容通过以下方法测定。将被测定试样(正极活性物质层)的粉体1.00g放入测定用的样品管,在120℃下进行12小时真空干燥,由此将测定试样中的水分充分除去。接下来,通过使用液氮的氮气吸附法,在相对压力P/P0(P0=约770mmHg)为0~1的范围内测定吸附侧和离去侧的等温线。然后,使用离去侧的等温线并通过BJH法进行计算,由此评价微分孔容分布,求出孔径50nm的微分孔容。上述微分孔容的测定利用Quantachrome公司制的气体吸附量测定装置“autosorb iQ”和数据分析软件“ASiQwin”进行。In the present invention, "differential pore volume at a pore size of 50 nm" is a value obtained by the BJH method from the adsorption isotherm using the nitrogen adsorption method. Specifically, the differential pore volume is measured by the following method. 1.00 g of the powder of the sample to be measured (positive electrode active material layer) is placed in a sample tube for measurement and vacuum dried at 120°C for 12 hours to fully remove the moisture in the sample to be measured. Next, by a nitrogen adsorption method using liquid nitrogen, the isotherms on the adsorption side and the departure side are measured in the range of relative pressure P/P0 (P0 = about 770 mmHg) of 0 to 1. Then, the isotherm on the departure side is used and calculated by the BJH method to evaluate the differential pore volume distribution and calculate the differential pore volume at a pore size of 50 nm. The above-mentioned differential pore volume is measured using the gas adsorption amount measuring device "autosorb iQ" and the data analysis software "ASiQwin" manufactured by Quantachrome.
本发明的另一个方面的蓄电装置具备两个以上的蓄电元件,并且具备一个以上的上述本发明的一个方面的蓄电元件。该蓄电装置由于具备上述本发明的一个方面的蓄电元件,所以能够抑制充放电循环时的容量维持率的降低。A power storage device according to another aspect of the present invention includes two or more power storage elements and one or more power storage elements according to the one aspect of the present invention. The power storage device includes the power storage element according to the one aspect of the present invention, and thus can suppress a decrease in capacity retention during charge and discharge cycles.
详细叙述本发明的一个实施方式的蓄电元件的构成、蓄电装置的构成和蓄电元件的制造方法、以及其它实施方式。应予说明,各实施方式中使用的各构成部件(各构成要素)的名称有时与背景技术中使用的各构成部件(各构成要素)的名称不同。The structure of a storage element, the structure of a storage device, and a method for manufacturing a storage element according to an embodiment of the present invention are described in detail, as well as other embodiments. It should be noted that the names of the components (components) used in each embodiment are sometimes different from the names of the components (components) used in the background art.
<蓄电元件的构成><Structure of energy storage element>
本发明的一个实施方式的蓄电元件具备:具有正极、负极和隔离件的电极体、非水电解质以及用于收纳上述电极体和非水电解质的可密封的容器。电极体具有多个正极和多个负极介由隔离件而层叠的构成。作为电极体的构成,例如可举出层叠型或以正极和负极介由隔离件而层叠的状态卷绕的卷绕型等。电极体为在正极和负极的层叠方向上被按压的状态。非水电解质以包含在正极、负极和隔离件中的状态存在。作为蓄电元件的一个例子,对非水电解质二次电池(以下也简称为“二次电池”)进行说明。The storage element of one embodiment of the present invention comprises: an electrode body having a positive electrode, a negative electrode and a separator, a nonaqueous electrolyte and a sealable container for accommodating the electrode body and the nonaqueous electrolyte. The electrode body has a structure in which a plurality of positive electrodes and a plurality of negative electrodes are stacked via a separator. As the structure of the electrode body, for example, a stacked type or a winding type in which a positive electrode and a negative electrode are stacked via a separator can be cited. The electrode body is in a state of being pressed in the stacking direction of the positive electrode and the negative electrode. The nonaqueous electrolyte exists in a state contained in the positive electrode, the negative electrode and the separator. As an example of a storage element, a nonaqueous electrolyte secondary battery (hereinafter also referred to as a "secondary battery") is described.
在本发明的一个实施方式中,SOC30%的开路电压与SOC70%的开路电压之差的上限为0.2V,更优选为0.15V,进一步优选为0.10V。通过使SOC30%的开路电压与SOC70%的开路电压之差为上述上限以下,能够使伴随充电状态的变化的电压的变化变得平坦的充电状态的范围相对扩大(能够提高电压平坦性)。另一方面,SOC30%的开路电压与SOC70%的开路电压之差的下限没有特别限定,例如可以为0.01V,也可以为0.05V。SOC30%的开路电压与SOC70%的开路电压之差可以为上述任一下限以上且上述任一上限以下。In one embodiment of the present invention, the upper limit of the difference between the open circuit voltage of SOC30% and the open circuit voltage of SOC70% is 0.2V, more preferably 0.15V, and further preferably 0.10V. By making the difference between the open circuit voltage of SOC30% and the open circuit voltage of SOC70% below the above upper limit, the range of the charging state in which the change of the voltage accompanying the change of the charging state becomes flat can be relatively expanded (the voltage flatness can be improved). On the other hand, the lower limit of the difference between the open circuit voltage of SOC30% and the open circuit voltage of SOC70% is not particularly limited, for example, it can be 0.01V or 0.05V. The difference between the open circuit voltage of SOC30% and the open circuit voltage of SOC70% can be above any of the above lower limits and below any of the above upper limits.
(正极)(positive electrode)
正极具有正极基材和在该正极基材上直接或介由中间层配置的正极活性物质层。The positive electrode includes a positive electrode substrate and a positive electrode active material layer disposed on the positive electrode substrate directly or via an intermediate layer.
正极基材具有导电性。是否具有“导电性”是以依据JIS-H-0505(1975年)测定的体积电阻率107Ω·cm为阈值进行判定的。作为正极基材的材质,可使用铝、钛、钽、不锈钢等金属或它们的合金。这些之中,从耐电位性、导电性高和成本的观点出发,优选铝或铝合金。作为正极基材,可举出箔、蒸镀膜、网、多孔材料等,从成本的观点出发,优选箔。因此,作为正极基材,优选铝箔或铝合金箔。作为铝或铝合金,可例示JIS-H-4000(2014年)或JIS-H-4160(2006年)中规定的A1085、A3003、A1N30等。The positive electrode substrate has conductivity. Whether it has "conductivity" is determined based on the volume resistivity of 10 7 Ω·cm measured in accordance with JIS-H-0505 (1975) as a threshold value. As the material of the positive electrode substrate, metals such as aluminum, titanium, tantalum, stainless steel, or their alloys can be used. Among these, aluminum or aluminum alloys are preferred from the viewpoints of potential resistance, high conductivity and cost. As the positive electrode substrate, foil, vapor-deposited film, mesh, porous material, etc. can be cited. From the viewpoint of cost, foil is preferred. Therefore, as the positive electrode substrate, aluminum foil or aluminum alloy foil is preferred. As aluminum or aluminum alloy, A1085, A3003, A1N30, etc. specified in JIS-H-4000 (2014) or JIS-H-4160 (2006) can be exemplified.
正极基材的平均厚度优选为3μm~50μm,更优选为5μm~40μm,进一步优选8μm~30μm,特别优选为10μm~25μm。通过使正极基材的平均厚度为上述范围,能够提高正极基材的强度,并且提高二次电池的单位体积的能量密度。The average thickness of the positive electrode substrate is preferably 3 μm to 50 μm, more preferably 5 μm to 40 μm, further preferably 8 μm to 30 μm, and particularly preferably 10 μm to 25 μm. By setting the average thickness of the positive electrode substrate to the above range, the strength of the positive electrode substrate can be increased, and the energy density per unit volume of the secondary battery can be increased.
中间层是配置在正极基材与正极活性物质层之间的层。中间层通过包含碳粒子等导电剂来降低正极基材与正极活性物质层的接触电阻。中间层的构成没有特别限定,例如包含粘合剂和导电剂。The intermediate layer is a layer disposed between the positive electrode substrate and the positive electrode active material layer. The intermediate layer reduces the contact resistance between the positive electrode substrate and the positive electrode active material layer by including a conductive agent such as carbon particles. The composition of the intermediate layer is not particularly limited, and for example, includes a binder and a conductive agent.
在本发明的一个实施方式中,正极活性物质包含下述式1所表示的化合物或锰酸锂。In one embodiment of the present invention, the positive electrode active material includes a compound represented by the following formula 1 or lithium manganate.
LiFexMn(1-x)PO4(0≤x≤1)···1LiFe x Mn (1-x) PO 4 (0≤x≤1)···1
正极活性物质可以包含上述式1所表示的化合物和锰酸锂这两者。另外,正极活性物质可以仅包含一种上述式1所表示的化合物,也可以包含Fe的摩尔比(x)相对于Fe与Mn的摩尔数之和不同的两种以上的上述式1所表示的化合物。上述式1所表示的化合物或锰酸锂可以被由其它元素构成的原子或阴离子物质部分取代,也可以被其它材料被覆。The positive electrode active material may include both the compound represented by the above formula 1 and lithium manganate. In addition, the positive electrode active material may include only one compound represented by the above formula 1, or may include two or more compounds represented by the above formula 1 having different molar ratios (x) of Fe relative to the sum of the molar numbers of Fe and Mn. The compound represented by the above formula 1 or the lithium manganate may be partially substituted by atoms or anionic substances composed of other elements, or may be coated with other materials.
相对于所有正极活性物质的上述式1所表示的化合物和锰酸锂的合计含量的下限优选为70质量%,更优选为80质量%,进一步优选为90质量%。通过上述合计含量为上述下限以上,容易减小SOC30%的开路电压与SOC70%的开路电压之差。另一方面,相对于所有正极活性物质的上述式1所表示的化合物和锰酸锂的合计含量可以为100质量%。The lower limit of the total content of the compound represented by the above formula 1 and lithium manganate relative to all positive electrode active materials is preferably 70% by mass, more preferably 80% by mass, and further preferably 90% by mass. By making the above total content above the above lower limit, it is easy to reduce the difference between the open circuit voltage of SOC30% and the open circuit voltage of SOC70%. On the other hand, the total content of the compound represented by the above formula 1 and lithium manganate relative to all positive electrode active materials can be 100% by mass.
正极活性物质优选包含磷酸铁锂(LiFePO4)作为上述式1所表示的化合物。相对于所有正极活性物质的磷酸铁锂的含量的下限优选为70质量%,更优选为80质量%,进一步优选为90质量%。通过相对于所有正极活性物质的磷酸铁锂的含量为上述下限以上,容易进一步减小SOC30%的开路电压与SOC70%的开路电压之差。另一方面,相对于所有正极活性物质的磷酸铁锂的含量可以为100质量%。The positive electrode active material preferably contains lithium iron phosphate (LiFePO 4 ) as the compound represented by the above formula 1. The lower limit of the content of lithium iron phosphate relative to all positive electrode active materials is preferably 70% by mass, more preferably 80% by mass, and further preferably 90% by mass. By making the content of lithium iron phosphate relative to all positive electrode active materials greater than the above lower limit, it is easy to further reduce the difference between the open circuit voltage of SOC30% and the open circuit voltage of SOC70%. On the other hand, the content of lithium iron phosphate relative to all positive electrode active materials can be 100% by mass.
正极活性物质通常为粒子(粉体)。正极活性物质的平均粒径例如优选为0.1μm~20μm。通过使正极活性物质的平均粒径为上述下限以上,正极活性物质的制造或处理会变得容易。通过使正极活性物质的平均粒径为上述上限以下,正极活性物质层的电子传导性提高。应予说明,当使用正极活性物质与其它材料的复合物时,将该复合物的平均粒径作为正极活性物质的平均粒径。“平均粒径”是指依据JIS-Z-8825(2013年),根据对粒子在溶剂中稀释后的稀释液通过激光衍射·散射法测定的粒径分布,并依据JIS-Z-8819-2(2001年)计算的体积基准累积分布为50%的值。The positive electrode active material is usually a particle (powder). The average particle size of the positive electrode active material is preferably, for example, 0.1 μm to 20 μm. By making the average particle size of the positive electrode active material above the above lower limit, the manufacture or handling of the positive electrode active material becomes easy. By making the average particle size of the positive electrode active material below the above upper limit, the electron conductivity of the positive electrode active material layer is improved. It should be noted that when a composite of a positive electrode active material and other materials is used, the average particle size of the composite is taken as the average particle size of the positive electrode active material. "Average particle size" refers to the particle size distribution measured by a laser diffraction/scattering method based on a dilution solution after diluting the particles in a solvent in accordance with JIS-Z-8825 (2013), and the volume-based cumulative distribution calculated in accordance with JIS-Z-8819-2 (2001) is 50%.
为了以规定的粒径得到粉体,可使用粉碎机、分级机等。作为粉碎方法,例如可举出研钵、球磨机、砂磨机、振动球磨机、行星式球磨机、喷射磨机、反向喷射磨机、旋转气流型喷射磨机或筛子等的方法。粉碎时也可以使用使水或己烷等有机溶剂共存的湿式粉碎。作为分级方法,可以根据需要与干式、湿式一起使用筛子、风力分级机等。In order to obtain a powder with a predetermined particle size, a pulverizer, a classifier, etc. can be used. As a pulverization method, for example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a reverse jet mill, a rotating airflow jet mill, or a sieve can be cited. During pulverization, wet pulverization in which an organic solvent such as water or hexane coexists can also be used. As a classification method, a sieve, a wind classifier, etc. can be used together with a dry method or a wet method as needed.
正极活性物质层中的正极活性物质的含量优选为50质量%~99质量%,更优选为70质量%~98质量%,进一步优选为80质量%~95质量%。通过使正极活性物质的含量为上述范围,能够兼顾正极活性物质层的高能量密度化和制造性。The content of the positive electrode active material in the positive electrode active material layer is preferably 50% to 99% by mass, more preferably 70% to 98% by mass, and further preferably 80% to 95% by mass. By making the content of the positive electrode active material within the above range, both high energy density and manufacturability of the positive electrode active material layer can be achieved.
导电剂只要是具有导电性的材料就没有特别限定。作为这样的导电剂,例如可举出碳质材料、金属、导电性陶瓷等。作为碳质材料,可举出石墨、非石墨质碳、石墨烯系碳等。作为非石墨质碳,可举出碳纳米纤维、沥青系碳纤维、炭黑等。作为炭黑,可举出炉法炭黑、乙炔黑、科琴黑等。作为石墨烯系碳,可举出石墨烯、碳纳米管(CNT)、富勒烯等。作为导电剂的形状,可举出粉状、纤维状等。作为导电剂,可以单独使用这些材料中的一种,也可以混合两种以上使用。另外,也可以将这些材料复合化而使用。例如,可以使用炭黑与CNT复合化后的材料。这些之中,从电子传导性和涂敷性的观点出发,优选炭黑,其中优选乙炔黑。The conductive agent is not particularly limited as long as it is a material with conductivity. As such a conductive agent, for example, carbonaceous materials, metals, conductive ceramics, etc. can be mentioned. As carbonaceous materials, graphite, non-graphite carbon, graphene-based carbon, etc. can be mentioned. As non-graphite carbon, carbon nanofibers, pitch-based carbon fibers, carbon black, etc. can be mentioned. As carbon black, furnace black, acetylene black, Ketjen black, etc. can be mentioned. As graphene-based carbon, graphene, carbon nanotubes (CNT), fullerene, etc. can be mentioned. As the shape of the conductive agent, powder, fiber, etc. can be mentioned. As the conductive agent, one of these materials can be used alone, or two or more can be mixed and used. In addition, these materials can also be used in a composite. For example, a material after carbon black and CNT composite can be used. Among these, from the viewpoint of electronic conductivity and coating properties, carbon black is preferred, and acetylene black is preferred.
正极活性物质层中的导电剂的含量优选为1质量%~10质量%,更优选为3质量%~9质量%。通过使导电剂的含量为上述范围,能够提高二次电池的能量密度。The content of the conductive agent in the positive electrode active material layer is preferably 1% to 10% by mass, and more preferably 3% to 9% by mass. When the content of the conductive agent is within the above range, the energy density of the secondary battery can be increased.
作为粘合剂,例如可举出氟树脂(聚四氟乙烯(PTFE)、聚偏二氟乙烯(PVDF)等)、聚乙烯、聚丙烯、聚丙烯酸、聚亚胺等热塑性树脂;乙烯-丙烯-二烯橡胶(EPDM)、磺化EPDM、苯乙烯丁二烯橡胶(SBR)、氟橡胶等弹性体;多糖类高分子等。Examples of adhesives include thermoplastic resins such as fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), polyethylene, polypropylene, polyacrylic acid, polyimide, etc.; elastomers such as ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, styrene-butadiene rubber (SBR), fluororubber, etc.; polysaccharide polymers, etc.
正极活性物质层中的粘合剂的含量优选为1质量%~10质量%,更优选为3质量%~9质量%。通过使粘合剂的含量为上述范围,能够稳定地保持活性物质。The content of the binder in the positive electrode active material layer is preferably 1% by mass to 10% by mass, and more preferably 3% by mass to 9% by mass. When the content of the binder is within the above range, the active material can be stably retained.
作为增稠剂,例如可举出羧甲基纤维素(CMC)、甲基纤维素等多糖类高分子。在增稠剂具有与锂等反应的官能团的情况下,可以预先通过甲基化等使该官能团失活。Examples of the thickener include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose. When the thickener has a functional group that reacts with lithium or the like, the functional group may be inactivated in advance by methylation or the like.
填料没有特别限定。作为填料,可举出聚丙烯、聚乙烯等聚烯烃、二氧化硅、氧化铝、二氧化钛、氧化钙、氧化锶、氧化钡、氧化镁、铝硅酸盐等无机氧化物、氢氧化镁、氢氧化钙、氢氧化铝等氢氧化物、碳酸钙等碳酸盐、氟化钙、氟化钡、硫酸钡等难溶性的离子晶体、氮化铝、氮化硅等氮化物、滑石、蒙脱石、勃姆石、沸石、磷灰石、高岭土、莫来石、尖晶石、橄榄石、绢云母、膨润土、云母等来自矿物资源的物质或它们的人造物等。The filler is not particularly limited. As the filler, there can be mentioned polyolefins such as polypropylene and polyethylene, inorganic oxides such as silicon dioxide, aluminum oxide, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, and aluminosilicate, hydroxides such as magnesium hydroxide, calcium hydroxide, and aluminum hydroxide, carbonates such as calcium carbonate, insoluble ionic crystals such as calcium fluoride, barium fluoride, and barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, mica, and other materials derived from mineral resources or their artificial products, etc.
正极活性物质层可以含有B、N、P、F、Cl、Br、I等典型非金属元素,Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等典型金属元素,Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Nb、W等过渡金属元素作为正极活性物质、导电剂、粘合剂、增稠剂、填料以外的成分。The positive electrode active material layer may contain typical non-metallic elements such as B, N, P, F, Cl, Br, I, typical metal elements such as Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, and transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, and W as components other than the positive electrode active material, conductive agent, binder, thickener, and filler.
正极活性物质层的孔径50nm的微分孔容的下限为0.0030cm3/(g·nm),优选为0.0040cm3/(g·nm),更优选为0.0050cm3/(g·nm)。通过上述微分孔容为上述下限以上,非水电解质容易渗透到正极活性物质层中,因此容易使正极活性物质层中的锂离子等电荷输送离子的移动均匀化。另一方面,从制造的容易性的观点出发,上述微分孔容的上限优选为0.0100cm3/(g·nm),更优选为0.0080cm3/(g·nm)。上述微分孔容由于难以以充放电为主要原因而变化,所以例如可以是对使基于上述正极活性物质制作的蓄电元件进行充放电后将该蓄电元件解体而取出的上述正极活性物质层进行测定而得的值。应予说明,正极活性物质层的孔径50nm的微分孔容例如可以通过改变正极活性物质的前体制作时的制造条件、或改变活性物质制作时的烧制温度等来调整。The lower limit of the differential pore volume of the positive electrode active material layer with a pore size of 50 nm is 0.0030 cm 3 / (g·nm), preferably 0.0040 cm 3 / (g·nm), and more preferably 0.0050 cm 3 / (g·nm). By making the differential pore volume above the lower limit, the non-aqueous electrolyte easily penetrates into the positive electrode active material layer, and thus it is easy to make the movement of charge transport ions such as lithium ions in the positive electrode active material layer uniform. On the other hand, from the viewpoint of ease of manufacture, the upper limit of the differential pore volume is preferably 0.0100 cm 3 / (g·nm), and more preferably 0.0080 cm 3 / (g·nm). Since the differential pore volume is difficult to change mainly due to charge and discharge, it can be, for example, a value obtained by measuring the positive electrode active material layer after disassembling the storage element made based on the positive electrode active material and taking it out. The differential pore volume of the positive electrode active material layer at a pore diameter of 50 nm can be adjusted by, for example, changing the production conditions when preparing the precursor of the positive electrode active material or changing the firing temperature when preparing the active material.
正极活性物质层优选在通过上述方法评价的微分孔容分布曲线中,在孔径25nm~75nm的范围内具有至少一个峰,并且在孔径25nm~75nm的范围内具有最大的峰。另外,正极活性物质层更优选在上述微分孔容分布曲线中,在孔径45nm~55nm的范围内具有至少一个峰,并且在孔径45nm~55nm的范围内具有最大的峰。这样,正极活性物质层在微分孔容分布曲线中,在上述范围内具有至少一个峰,并且在上述范围内具有最大的峰,由此容易使非水电解质向正极活性物质层的渗透以及正极活性物质层中的锂离子等电荷输送离子的移动均匀化。The positive electrode active material layer preferably has at least one peak in the range of pore diameter 25nm to 75nm in the differential pore volume distribution curve evaluated by the above method, and has the largest peak in the range of pore diameter 25nm to 75nm. In addition, the positive electrode active material layer more preferably has at least one peak in the range of pore diameter 45nm to 55nm in the above differential pore volume distribution curve, and has the largest peak in the range of pore diameter 45nm to 55nm. In this way, the positive electrode active material layer has at least one peak in the differential pore volume distribution curve in the above range, and has the largest peak in the above range, thereby making it easy to uniformize the penetration of non-aqueous electrolyte into the positive electrode active material layer and the movement of charge transport ions such as lithium ions in the positive electrode active material layer.
作为正极活性物质层的每单位面积的质量的下限,从提高能量密度的观点出发,优选为1mg/cm2,更优选为5mg/cm2,进一步优选为10mg/cm2。另一方面,作为正极活性物质层的每单位面积的质量的上限,优选为30mg/cm2,更优选为25mg/cm2,进一步优选为20mg/cm2。如果正极活性物质层的每单位面积的质量为上述上限以下,则容易使锂离子等电荷输送离子均匀地扩散。应予说明,“正极活性物质层的每单位面积的质量”是指将正极活性物质层的固体成分换算的质量除以在正极基材表面中直接或介由中间层配置有正极活性物质层的区域的面积而得的值。在正极活性物质层配置于正极基材的两面的情况下,为由正极基材的一个面的正极活性物质层的每单位面积的质量和面积求出的值。As the lower limit of the mass per unit area of the positive electrode active material layer, from the viewpoint of improving the energy density, it is preferably 1 mg/ cm2 , more preferably 5 mg/ cm2 , and further preferably 10 mg/ cm2 . On the other hand, as the upper limit of the mass per unit area of the positive electrode active material layer, it is preferably 30 mg/ cm2 , more preferably 25 mg/ cm2 , and further preferably 20 mg/ cm2 . If the mass per unit area of the positive electrode active material layer is below the above upper limit, it is easy to make the charge transport ions such as lithium ions diffuse uniformly. It should be noted that "the mass per unit area of the positive electrode active material layer" refers to the value obtained by dividing the mass converted by the solid content of the positive electrode active material layer by the area of the region where the positive electrode active material layer is directly or via the intermediate layer on the surface of the positive electrode substrate. In the case where the positive electrode active material layer is arranged on both sides of the positive electrode substrate, it is a value obtained by the mass per unit area and the area of the positive electrode active material layer on one side of the positive electrode substrate.
(负极)(negative electrode)
负极具有负极基材和在该负极基材上直接或介由中间层配置的负极活性物质层。中间层的构成没有特别限定,例如可以从上述正极中例示的构成中选择。The negative electrode comprises a negative electrode substrate and a negative electrode active material layer disposed on the negative electrode substrate directly or via an intermediate layer. The structure of the intermediate layer is not particularly limited, and can be selected from the structures exemplified in the above-mentioned positive electrode.
负极基材具有导电性。作为负极基材的材质,可使用铜、镍、不锈钢、镀镍钢、铝等金属或它们的合金、碳质材料等。这些之中,优选铜或铜合金。作为负极基材,可举出箔、蒸镀膜、网、多孔材料等,从成本的观点出发,优选箔。因此,作为负极基材,优选铜箔或铜合金箔。作为铜箔的例子,可举出轧制铜箔、电解铜箔等。The negative electrode substrate has conductivity. As the material of the negative electrode substrate, metals such as copper, nickel, stainless steel, nickel-plated steel, aluminum, or their alloys, carbonaceous materials, etc. can be used. Among these, copper or copper alloys are preferred. As the negative electrode substrate, foil, vapor-deposited film, net, porous material, etc. can be cited. From the perspective of cost, foil is preferred. Therefore, as the negative electrode substrate, copper foil or copper alloy foil is preferred. As examples of copper foil, rolled copper foil, electrolytic copper foil, etc. can be cited.
负极基材的平均厚度优选为2μm~35μm,更优选为3μm~30μm,进一步优选为4μm~25μm,特别优选为5μm~20μm。通过使负极基材的平均厚度为上述范围,能够提高负极基材的强度,并且提高二次电池的单位体积的能量密度。The average thickness of the negative electrode substrate is preferably 2 μm to 35 μm, more preferably 3 μm to 30 μm, further preferably 4 μm to 25 μm, and particularly preferably 5 μm to 20 μm. By setting the average thickness of the negative electrode substrate to the above range, the strength of the negative electrode substrate can be increased, and the energy density per unit volume of the secondary battery can be increased.
负极活性物质层包含负极活性物质。负极活性物质层根据需要包含导电剂、粘合剂、增稠剂、填料等任意成分。导电剂、粘合剂、增稠剂、填料等任意成分可以从上述正极中例示的材料中选择。The negative electrode active material layer contains a negative electrode active material. The negative electrode active material layer contains any component such as a conductive agent, a binder, a thickener, and a filler as needed. The conductive agent, the binder, the thickener, the filler, and any component can be selected from the materials exemplified in the positive electrode.
负极活性物质层可以含有B、N、P、F、Cl、Br、I等典型非金属元素,Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等典型金属元素,Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等过渡金属元素作为负极活性物质、导电剂、粘合剂、增稠剂、填料以外的成分。The negative electrode active material layer may contain typical non-metallic elements such as B, N, P, F, Cl, Br, I, typical metal elements such as Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, and transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, and W as components other than the negative electrode active material, conductive agent, binder, thickener, and filler.
在本发明的一个实施方式中,负极活性物质包含石墨或钛酸锂。这里,“石墨”是指在充放电前或放电状态下,通过X射线衍射法确定的(002)面的平均格子面间隔(d002)为0.33nm以上且小于0.34nm的碳材料。作为石墨,可举出天然石墨、人造石墨。从可以得到稳定的物性的材料的观点出发,优选人造石墨。另外,负极的“放电状态”是指从负极活性物质中以伴随充放电而能够吸留释放的锂离子等电荷输送离子充分释放的方式进行放电的状态。例如为如下状态:将包含石墨作为负极活性物质的负极作为作用电极,将金属Li作为对电极使用的单极电池中,开路电压为0.7V以上。In one embodiment of the present invention, the negative electrode active material comprises graphite or lithium titanate. Here, "graphite" refers to a carbon material having an average lattice plane spacing (d 002 ) of 0.33 nm or more and less than 0.34 nm on the (002) plane determined by X-ray diffraction method before charge and discharge or in a discharge state. As graphite, natural graphite and artificial graphite can be cited. From the viewpoint of a material with stable physical properties, artificial graphite is preferred. In addition, the "discharge state" of the negative electrode refers to a state in which the charge transport ions such as lithium ions that can be absorbed and released accompanying charge and discharge are fully released from the negative electrode active material. For example, the following state: in a monopolar battery using a negative electrode containing graphite as a negative electrode active material as a working electrode and metal Li as a counter electrode, the open circuit voltage is 0.7 V or more.
相对于所有负极活性物质的石墨或钛酸锂的含量的下限优选为70质量%,更优选为80质量%,进一步优选为90质量%。通过石墨或钛酸锂的含量为上述下限以上,容易减小SOC30%的开路电压与SOC70%的开路电压之差。另一方面,相对于所有负极活性物质的石墨或钛酸锂的含量可以为100质量%。The lower limit of the content of graphite or lithium titanate relative to all negative electrode active materials is preferably 70% by mass, more preferably 80% by mass, and further preferably 90% by mass. When the content of graphite or lithium titanate is above the above lower limit, the difference between the open circuit voltage of SOC30% and the open circuit voltage of SOC70% can be easily reduced. On the other hand, the content of graphite or lithium titanate relative to all negative electrode active materials can be 100% by mass.
负极活性物质通常为粒子(粉体)。负极活性物质的平均粒径例如可以为1nm~100μm。负极活性物质的平均粒径也可以为1μm~100μm。通过使负极活性物质的平均粒径为上述下限以上,负极活性物质的制造或处理会变得容易。通过使负极活性物质的平均粒径为上述上限以下,活性物质层的电子传导性提高。为了以规定的粒径得到粉体,可使用粉碎机、分级机等。粉碎方法和分级方法例如可以从上述正极中例示的方法中选择。The negative electrode active material is usually a particle (powder). The average particle size of the negative electrode active material can be, for example, 1 nm to 100 μm. The average particle size of the negative electrode active material can also be 1 μm to 100 μm. By making the average particle size of the negative electrode active material above the above lower limit, the manufacture or handling of the negative electrode active material becomes easy. By making the average particle size of the negative electrode active material below the above upper limit, the electronic conductivity of the active material layer is improved. In order to obtain a powder with a specified particle size, a pulverizer, a classifier, etc. can be used. The pulverization method and the classification method can be selected from the methods exemplified in the above-mentioned positive electrode, for example.
负极活性物质层中的负极活性物质的含量优选为60质量%~99质量%,更优选为90质量%~98质量%。通过使负极活性物质的含量为上述范围,能够兼顾负极活性物质层的高能量密度化和制造性。The content of the negative electrode active material in the negative electrode active material layer is preferably 60% to 99% by mass, more preferably 90% to 98% by mass. When the content of the negative electrode active material is within the above range, both high energy density and manufacturability of the negative electrode active material layer can be achieved.
作为负极活性物质层的每单位面积的质量的下限,从提高能量密度的观点出发,优选为1mg/cm2,更优选为3mg/cm2,进一步优选为5mg/cm2。另一方面,作为负极活性物质层的每单位面积的质量的上限,优选为20mg/cm2,更优选为15mg/cm2,进一步优选为12mg/cm2。如果负极活性物质层的每单位面积的质量为上述上限以下,则容易使锂离子等电荷输送离子均匀地扩散。应予说明,“负极活性物质层的每单位面积的质量”是指将负极活性物质层的固体成分换算的质量除以在负极基材表面直接或介由中间层配置有负极活性物质层的区域的面积而得的值。在负极活性物质层配置于负极基材的两面的情况下,为由负极基材的一个面的负极活性物质层的每单位面积的质量和面积求出的值。As the lower limit of the mass per unit area of the negative electrode active material layer, from the viewpoint of improving the energy density, it is preferably 1 mg/cm 2 , more preferably 3 mg/cm 2 , and further preferably 5 mg/cm 2. On the other hand, as the upper limit of the mass per unit area of the negative electrode active material layer, it is preferably 20 mg/cm 2 , more preferably 15 mg/cm 2 , and further preferably 12 mg/cm 2. If the mass per unit area of the negative electrode active material layer is below the above upper limit, it is easy to make the charge transport ions such as lithium ions diffuse uniformly. It should be noted that "the mass per unit area of the negative electrode active material layer" refers to the value obtained by dividing the mass converted from the solid content of the negative electrode active material layer by the area of the region where the negative electrode active material layer is arranged directly or via an intermediate layer on the surface of the negative electrode substrate. In the case where the negative electrode active material layer is arranged on both sides of the negative electrode substrate, it is a value obtained by the mass per unit area and the area of the negative electrode active material layer on one side of the negative electrode substrate.
(隔离件)(Isolator)
隔离件可以从公知的隔离件中适当选择。作为隔离件,例如可以使用仅由基材层构成的隔离件、在基材层的一个面或两个面形成包含耐热粒子和粘合剂的耐热层的隔离件等。作为隔离件的基材层的形状,例如可举出织布、无纺布、多孔树脂膜等。这些形状中,从强度的观点出发,优选多孔树脂膜,从非水电解质的保液性的观点出发,优选无纺布。作为隔离件的基材层的材料,从切断功能的观点出发,例如优选聚乙烯、聚丙烯等聚烯烃,从耐氧化分解性的观点出发,例如优选聚亚胺、芳族聚酰胺等。作为隔离件的基材层,也可以使用由这些树脂复合而成的材料。The separator can be appropriately selected from known separators. As the separator, for example, a separator consisting only of a substrate layer, a separator in which a heat-resistant layer containing heat-resistant particles and an adhesive is formed on one or both surfaces of the substrate layer, etc. can be used. As the shape of the substrate layer of the separator, for example, woven fabrics, non-woven fabrics, porous resin films, etc. can be cited. Among these shapes, porous resin films are preferred from the viewpoint of strength, and non-woven fabrics are preferred from the viewpoint of liquid retention of non-aqueous electrolytes. As the material of the substrate layer of the separator, from the viewpoint of the cutting function, for example, polyolefins such as polyethylene and polypropylene are preferred, and from the viewpoint of resistance to oxidative decomposition, for example, polyimide, aromatic polyamide, etc. are preferred. As the substrate layer of the separator, a material composited with these resins can also be used.
对于耐热层所含的耐热粒子,在1个气压的空气气氛下,优选从室温升温至500℃时的质量减少为5%以下,进一步优选从室温升温至800℃时的质量减少为5%以下。作为质量减少为规定以下的材料,可举出无机化合物。作为无机化合物,例如可举出氧化铁、氧化硅、氧化铝、氧化钛、氧化锆、氧化钙、氧化锶、氧化钡、氧化镁、铝硅酸盐等氧化物;氮化铝、氮化硅等氮化物;碳酸钙等碳酸盐;硫酸钡等硫酸盐;氟化钙、氟化钡、钛酸钡等难溶性的离子晶体;硅、金刚石等共价晶体;滑石、蒙脱石、勃姆石、沸石、磷灰石、高岭土、莫来石、尖晶石、橄榄石、绢云母、膨润土、云母等来自矿物资源的物质或它们的人造物等。作为无机化合物,可以单独使用这些物质的单体或复合物,也可以混合两种以上使用。这些无机化合物中,从蓄电元件的安全性的观点出发,优选氧化硅、氧化铝或铝硅酸盐。For the heat-resistant particles contained in the heat-resistant layer, the mass reduction when the temperature is increased from room temperature to 500°C is preferably 5% or less in an air atmosphere of 1 atmosphere, and the mass reduction when the temperature is increased from room temperature to 800°C is more preferably 5% or less. As materials whose mass reduction is less than the prescribed value, inorganic compounds can be cited. As inorganic compounds, for example, oxides such as iron oxide, silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, and aluminum silicate; nitrides such as aluminum nitride and silicon nitride; carbonates such as calcium carbonate; sulfates such as barium sulfate; insoluble ionic crystals such as calcium fluoride, barium fluoride, and barium titanate; covalent crystals such as silicon and diamond; talc, montmorillonite, boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, mica, and other mineral resources or their artificial products, etc. As inorganic compounds, monomers or composites of these substances can be used alone, or two or more can be mixed and used. Among these inorganic compounds, silicon oxide, aluminum oxide, or aluminosilicate is preferred from the viewpoint of safety of the electric storage element.
隔离件的孔隙率从强度的观点出发,优选为80体积%以下,从放电性能的观点出发,优选为20体积%以上。这里,“孔隙率”是体积基准的值,是指使用压汞仪的测定值。The porosity of the separator is preferably 80% by volume or less from the viewpoint of strength, and is preferably 20% by volume or more from the viewpoint of discharge performance. Here, the "porosity" is a value based on volume, and refers to a value measured using a mercury porosimeter.
作为隔离件,可以使用由聚合物和非水电解质构成的聚合物凝胶。作为聚合物,例如可举出聚丙烯腈、聚环氧乙烷、聚环氧丙烷、聚甲基丙烯酸甲酯、聚乙酸乙烯酯、聚乙烯吡咯烷酮、聚偏二氟乙烯等。如果使用聚合物凝胶,则有抑制漏液的效果。作为隔离件,也可以将如上所述的多孔树脂膜或无纺布等与聚合物凝胶并用。As a separator, a polymer gel composed of a polymer and a non-aqueous electrolyte can be used. As polymers, for example, polyacrylonitrile, polyethylene oxide, polypropylene oxide, polymethyl methacrylate, polyvinyl acetate, polyvinyl pyrrolidone, polyvinylidene fluoride, etc. can be cited. If a polymer gel is used, it has the effect of suppressing leakage. As a separator, a porous resin film or nonwoven fabric as described above can also be used together with a polymer gel.
(非水电解质)(Non-aqueous electrolyte)
作为非水电解质,可以从公知的非水电解质中适当选择。非水电解质也可以使用非水电解液。非水电解液包含非水溶剂和溶解于该非水溶剂的电解质盐。The non-aqueous electrolyte may be appropriately selected from known non-aqueous electrolytes. A non-aqueous electrolyte solution may also be used. The non-aqueous electrolyte solution includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
作为非水溶剂,可以从公知的非水溶剂中适当选择。作为非水溶剂,可举出环状碳酸酯、链状碳酸酯、羧酸酯、磷酸酯、磺酸酯、醚、酰胺、腈等。作为非水溶剂,也可以使用这些化合物所含的氢原子的一部分被卤素取代的溶剂。As nonaqueous solvent, it can be suitably selected from known nonaqueous solvents. As nonaqueous solvent, cyclic carbonate, linear carbonate, carboxylate, phosphoric acid ester, sulfonic acid ester, ether, amides, nitrile etc. can be enumerated. As nonaqueous solvent, it is also possible to use a solvent whose part of the hydrogen atom contained by these compounds is replaced by halogen.
作为环状碳酸酯,碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸丁烯酯(BC)、碳酸亚乙烯酯(VC)、乙烯基碳酸乙烯酯(VEC)、氯代碳酸乙烯酯、氟代碳酸乙烯酯(FEC)、二氟代碳酸乙烯酯(DFEC)、碳酸苯乙烯酯、碳酸-1-苯基亚乙烯酯、碳酸-1,2-二苯基亚乙烯酯等。这些之中,优选EC。Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), difluoroethylene carbonate (DFEC), styrene carbonate, 1-phenylvinylene carbonate, and 1,2-diphenylvinylene carbonate. Among these, EC is preferred.
作为链状碳酸酯,可举出碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸二苯酯、碳酸三氟乙基甲基酯、碳酸双(三氟乙基)酯等。这些之中,优选EMC。Examples of the chain carbonate include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diphenyl carbonate, trifluoroethyl methyl carbonate, bis(trifluoroethyl) carbonate, etc. Among these, EMC is preferred.
作为非水溶剂,优选使用环状碳酸酯或链状碳酸酯,更优选并用环状碳酸酯和链状碳酸酯。通过使用环状碳酸酯,能够促进电解质盐的解离,提高非水电解液的离子传导度。通过使用链状碳酸酯,能够将非水电解液的粘度抑制得低。在并用环状碳酸酯和链状碳酸酯的情况下,作为环状碳酸酯与链状碳酸酯的体积比率(环状碳酸酯:链状碳酸酯),例如优选为5:95~50:50的范围。As the non-aqueous solvent, preferably a cyclic carbonate or a chain carbonate is used, and more preferably a cyclic carbonate and a chain carbonate are used in combination. By using a cyclic carbonate, the dissociation of the electrolyte salt can be promoted and the ion conductivity of the non-aqueous electrolyte can be improved. By using a chain carbonate, the viscosity of the non-aqueous electrolyte can be suppressed to a low level. In the case of using a cyclic carbonate and a chain carbonate in combination, the volume ratio of the cyclic carbonate to the chain carbonate (cyclic carbonate: chain carbonate) is preferably in the range of 5:95 to 50:50, for example.
作为电解质盐,可以从公知的电解质盐中适当选择。作为电解质盐,可举出锂盐、钠盐、钾盐、镁盐、盐等。这些之中,优选锂盐。The electrolyte salt can be appropriately selected from known electrolyte salts. Examples of the electrolyte salt include lithium salts, sodium salts, potassium salts, magnesium salts, Salts, etc. Among these, lithium salts are preferred.
作为锂盐,可举出LiPF6、LiPO2F2、LiBF4、LiClO4、LiN(SO2F)2等无机锂盐、双(草酸)硼酸锂(LiBOB)、二氟草酸硼酸锂(LiFOB)、双(草酸)二氟磷酸锂(LiFOP)等草酸锂盐、LiSO3CF3、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiN(SO2CF3)(SO2C4F9)、LiC(SO2CF3)3、LiC(SO2C2F5)3等具有卤化烃基的锂盐等。这些之中,优选无机锂盐,更优选LiPF6。Examples of the lithium salt include inorganic lithium salts such as LiPF6 , LiPO2F2 , LiBF4 , LiClO4 , and LiN( SO2F ) 2 ; lithium oxalate salts such as lithium bis(oxalate)borate (LiBOB), lithium difluorooxalatoborate (LiFOB), and lithium bis ( oxalate )difluorophosphate (LiFOP) ; and lithium salts having a halogenated hydrocarbon group such as LiSO3CF3, LiN(SO2CF3)2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 )( SO2C4F9 ) , LiC( SO2CF3 ) 3 , and LiC( SO2C2F5 ) 3 . Among these, inorganic lithium salts are preferred , and LiPF6 is more preferred.
非水电解液中的电解质盐的含量在20℃、1个气压下,优选为0.1mol/dm3~2.5mol/dm3,更优选为0.3mol/dm3~2.0mol/dm3,进一步优选为0.5mol/dm3~1.7mol/dm3,特别优选为0.7mol/dm3~1.5mol/dm3。通过使电解质盐的含量为上述范围,能够提高非水电解液的离子传导度。The content of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol/dm 3 to 2.5 mol/dm 3 , more preferably 0.3 mol/dm 3 to 2.0 mol/dm 3 , further preferably 0.5 mol/dm 3 to 1.7 mol/dm 3 , and particularly preferably 0.7 mol/dm 3 to 1.5 mol/dm 3 at 20° C. and 1 atmosphere. When the content of the electrolyte salt is within the above range, the ion conductivity of the non-aqueous electrolyte can be improved.
非水电解液除了非水溶剂和电解质盐以外,还可以包含添加剂。作为添加剂,例如可举出氟代碳酸乙烯酯(FEC)、二氟代碳酸乙烯酯(DFEC)等卤代碳酸酯;双(草酸)硼酸锂(LiBOB)、二氟草酸硼酸锂(LiFOB)、双(草酸)二氟磷酸锂(LiFOP)等草酸盐;双(氟磺酰基)亚胺锂(LiFSI)等亚胺盐;联苯、烷基联苯、三联苯、三联苯的部分氢化物、环己基苯、叔丁基苯、叔戊基苯、二苯醚、二苯并呋喃等芳香族化合物;2-氟联苯、邻环己基氟苯、对环己基氟苯等上述芳香族化合物的部分卤化物;2,4-二氟苯甲醚、2,5-二氟苯甲醚、2,6-二氟苯甲醚、3,5-二氟苯甲醚等卤化苯甲醚化合物;碳酸亚乙烯酯,甲基碳酸亚乙烯酯、乙基碳酸亚乙烯酯、琥珀酸酐、戊二酸酐、马来酸酐、柠康酸酐、戊烯二酸酐、衣康酸酐、环己烷二羧酸酐;亚硫酸乙烯酯、亚硫酸丙烯酯、亚硫酸二甲酯、甲磺酸甲酯、白消安、甲苯磺酸甲酯、硫酸二甲酯、硫酸乙烯酯、环丁砜、二甲基砜、二乙基砜、二甲基亚砜、二乙基亚砜、四亚甲基亚砜、二苯硫醚、4,4’-双(2,2-二氧杂-1,3,2-二氧杂硫杂环戊烷)、4-甲基磺酰氧基甲基-2,2-二氧杂-1,3,2-二氧杂硫杂环戊烷、硫代苯甲醚、二苯基二硫醚、二吡啶二硫醚、1,3-丙烯磺内酯、1,3-丙烷磺内酯、1,4-丁烷磺内酯、1,4-丁烯磺内酯、全氟辛烷、硼酸三(三甲基甲硅烷基)酯、磷酸三(三甲基甲硅烷基)酯、钛酸四(三甲基甲硅烷基)酯、单氟磷酸锂、二氟磷酸锂等。这些添加剂可以单独使用一种,也可以混合两种以上使用。In addition to the non-aqueous solvent and the electrolyte salt, the non-aqueous electrolyte may also contain additives. Examples of additives include halogenated carbonates such as fluoroethylene carbonate (FEC) and difluoroethylene carbonate (DFEC); oxalates such as lithium bis(oxalate)borate (LiBOB), lithium difluorooxalateborate (LiFOB), and lithium bis(oxalate)difluorophosphate (LiFOP); imide salts such as lithium bis(fluorosulfonyl)imide (LiFSI); aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partial hydride of terphenyl, cyclohexylbenzene, tert-butylbenzene, tert-amylbenzene, diphenyl ether, and dibenzofuran; partial halides of the above aromatic compounds such as 2-fluorobiphenyl, o-cyclohexylfluorobenzene, and p-cyclohexylfluorobenzene; 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoro Anisole and other halogenated anisole compounds; vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride; vinyl sulfite, propylene sulfite, dimethyl sulfite, methyl methanesulfonate, busulfan, methyl toluenesulfonate, dimethyl sulfate, vinyl sulfate, sulfolane, dimethyl sulfone, diethyl sulfone, dimethyl sulfoxide, diethyl sulfoxide, tetramethylene sulfoxide, diphenyl sulfide, 4,4'-bis(2,2-dioxa-1,3,2-dioxathiolane), 4-methylsulfonyloxymethyl-2,2-dioxa-1,3,2-dioxathiolane, thioanisole, diphenyl disulfide, bipyridine disulfide, 1,3-propylene sultone, 1,3-propane sultone, 1,4-butane sultone, 1,4-butene sultone, perfluorooctane, tris(trimethylsilyl)borate, tris(trimethylsilyl)phosphate, tetrakis(trimethylsilyl)titanate, monofluorolithium phosphate, difluorolithium phosphate, etc. These additives may be used alone or in combination of two or more.
非水电解液所含的添加剂的含量相对于非水电解液整体的质量,优选为0.01质量%~10质量%,更优选为0.1质量%~7质量%,进一步优选为0.2质量%~5质量%,特别优选为0.3质量%~3质量%。通过使添加剂的含量为上述范围,能够提高高温保存后的容量维持性能或循环性能,或者进一步提高安全性。The content of the additive contained in the non-aqueous electrolyte is preferably 0.01% to 10% by mass, more preferably 0.1% to 7% by mass, further preferably 0.2% to 5% by mass, and particularly preferably 0.3% to 3% by mass, relative to the mass of the entire non-aqueous electrolyte. By making the content of the additive within the above range, the capacity retention performance or cycle performance after high temperature storage can be improved, or the safety can be further improved.
非水电解质可以使用固体电解质,也可以并用非水电解液和固体电解质。A solid electrolyte may be used as the non-aqueous electrolyte, or a non-aqueous electrolyte solution and a solid electrolyte may be used in combination.
作为固体电解质,可以从锂、钠、钙等具有离子传导性、且常温(例如15℃~25℃)下为固体的任意的材料中选择。作为固体电解质,例如可举出硫化物固体电解质、氧化物固体电解质和氮化物固体电解质、聚合物固体电解质等。The solid electrolyte can be selected from any material that has ion conductivity and is solid at room temperature (e.g., 15° C. to 25° C.), such as lithium, sodium, and calcium. Examples of the solid electrolyte include sulfide solid electrolytes, oxide solid electrolytes, nitride solid electrolytes, and polymer solid electrolytes.
作为硫化物固体电解质,在锂离子二次电池的情况下,例如可举出Li2S-P2S5、LiI-Li2S-P2S5、Li10Ge-P2S12等。In the case of a lithium ion secondary battery, examples of the sulfide solid electrolyte include Li 2 S—P 2 S 5 , LiI—Li 2 S—P 2 S 5 , and Li 10 Ge—P 2 S 12 .
对于本实施方式的蓄电元件的形状,没有特别限定,例如可举出圆筒型电池、方型电池、扁平型电池、硬币型电池、纽扣型电池等。The shape of the electric storage element of the present embodiment is not particularly limited, and examples thereof include cylindrical batteries, square batteries, flat batteries, coin batteries, and button batteries.
图2表示作为方型电池的一个例子的蓄电元件1(非水电解质二次电池)。应予说明,该图是透视容器内部的图。具有夹住隔离件而卷绕的正极和负极的电极体2被收纳在方型的容器3中。另外,容器3在添加有非水电解质的状态下被密封。作为容器3,可以使用通常作为蓄电元件的容器使用的公知的金属容器、树脂容器等。作为容器3,从容易通过后述的方法使电极体2处于按压状态的观点出发,优选层叠有金属层和树脂膜层的复合膜制的容器等薄且具有挠性的容器。FIG. 2 shows an electric storage element 1 (non-aqueous electrolyte secondary battery) as an example of a square battery. It should be noted that the figure is a perspective view of the inside of the container. An electrode body 2 having a positive electrode and a negative electrode wound with a separator clamped therebetween is housed in a square container 3. In addition, the container 3 is sealed in a state in which a non-aqueous electrolyte is added. As the container 3, a well-known metal container, resin container, etc., which are generally used as containers for electric storage elements, can be used. As the container 3, from the viewpoint of making it easy to put the electrode body 2 in a pressed state by the method described later, a thin and flexible container such as a composite film container laminated with a metal layer and a resin film layer is preferred.
正极介由正极引线41而与正极端子4电连接。负极介由负极引线51而与负极端子5电连接。在图2中,将蓄电元件1中的电极体2的卷绕的轴线方向表示为X方向,将蓄电元件1的厚度方向表示为Y方向,将与上述轴线方向(X方向)垂直且与上述厚度方向(Y方向)垂直的方向表示为Z方向。应予说明,Z方向与蓄电元件1中的电极体2的平坦部(即平坦部的表面)平行,且与上述平坦部的电极体2的卷绕方向一致。这里,蓄电元件1的厚度方向与电极体2的厚度方向一致。电极体2的厚度方向相当于正极、负极和隔离件的层叠方向,另外,也相当于与这些正极、负极和隔离件的表面垂直的方向。The positive electrode is electrically connected to the positive terminal 4 via the positive electrode lead 41. The negative electrode is electrically connected to the negative terminal 5 via the negative electrode lead 51. In FIG2 , the axial direction of the winding of the electrode body 2 in the energy storage element 1 is represented as the X direction, the thickness direction of the energy storage element 1 is represented as the Y direction, and the direction perpendicular to the above-mentioned axial direction (X direction) and perpendicular to the above-mentioned thickness direction (Y direction) is represented as the Z direction. It should be noted that the Z direction is parallel to the flat portion (i.e., the surface of the flat portion) of the electrode body 2 in the energy storage element 1, and is consistent with the winding direction of the electrode body 2 in the above-mentioned flat portion. Here, the thickness direction of the energy storage element 1 is consistent with the thickness direction of the electrode body 2. The thickness direction of the electrode body 2 is equivalent to the stacking direction of the positive electrode, the negative electrode, and the separator, and is also equivalent to the direction perpendicular to the surfaces of these positive electrodes, negative electrodes, and separators.
如上所述,蓄电元件1的电极体2为在正极和负极的层叠方向(Y方向)上被按压的状态。但是,电极体2的一部分(例如,电极体2的平坦部的两端的一对曲面部等)可以不被按压。这样,通过电极体2为在正极和负极的层叠方向上被按压的状态(按压状态),容易使两电极间的距离均匀化,其结果,在电极体2内促进锂离子等电荷输送离子的顺利且均匀的移动。As described above, the electrode body 2 of the storage element 1 is in a state of being pressed in the stacking direction (Y direction) of the positive electrode and the negative electrode. However, a portion of the electrode body 2 (for example, a pair of curved surface portions at both ends of the flat portion of the electrode body 2, etc.) may not be pressed. In this way, by putting the electrode body 2 in a state of being pressed in the stacking direction of the positive electrode and the negative electrode (pressed state), it is easy to make the distance between the two electrodes uniform, and as a result, the smooth and uniform movement of charge transport ions such as lithium ions in the electrode body 2 is promoted.
作为使电极体2为按压状态的方法,优选使容器3的内部为负压状态(将容器3的内部的压力维持为负压的同时密封容器3)的方法。这样,通过使容器3的内部为负压状态,容器3变形(在正极和负极的层叠方向上凹陷),并且在正极和负极的层叠方向上按压电极体2。其结果,能够容易使电极体2中的正极和负极之间的距离均匀化。As a method for pressing the electrode body 2, it is preferable to make the inside of the container 3 a negative pressure state (sealing the container 3 while maintaining the pressure inside the container 3 at a negative pressure). In this way, by making the inside of the container 3 a negative pressure state, the container 3 is deformed (depressed in the stacking direction of the positive electrode and the negative electrode), and the electrode body 2 is pressed in the stacking direction of the positive electrode and the negative electrode. As a result, the distance between the positive electrode and the negative electrode in the electrode body 2 can be easily made uniform.
在密封容器3之前的状态下,作为容器3的内部空间的上述层叠方向的最小宽度(Y方向的最小宽度)相对于电极体2的层叠方向的厚度(Y方向的厚度)的比率的上限,优选为1.20,更优选为1.10。如果上述比率为上述上限以下,则通过容器3的变形,容器3容易在层叠方向上按压电极体2。应予说明,作为上述比率的下限,没有特别限定,例如可以为1.05。In the state before the container 3 is sealed, the upper limit of the ratio of the minimum width in the stacking direction (the minimum width in the Y direction) of the internal space of the container 3 to the thickness in the stacking direction (the thickness in the Y direction) of the electrode body 2 is preferably 1.20, and more preferably 1.10. If the above ratio is below the above upper limit, the container 3 is easily pressed in the stacking direction by the deformation of the container 3. It should be noted that the lower limit of the above ratio is not particularly limited, and may be 1.05, for example.
优选在容器3的内部收纳有可溶于非水电解质的气体。在容器3的内部收纳可溶于非水电解质的气体,该气体溶解于非水电解质,由此能够容易地使容器3的内部为负压状态。这里,可溶于非水电解质的气体是指在1个气压下、25℃的非水溶剂1cm3中的溶解度为1cm3以上的气体。作为上述气体,在使用环状碳酸酯或链状碳酸酯作为非水电解质的非水溶剂的情况下,优选二氧化碳。It is preferred that a gas soluble in a non-aqueous electrolyte is contained in the container 3. The gas soluble in a non-aqueous electrolyte is contained in the container 3, and the gas dissolves in the non-aqueous electrolyte, thereby making it easy to make the inside of the container 3 a negative pressure state. Here, the gas soluble in a non-aqueous electrolyte refers to a gas having a solubility of 1 cm 3 or more in 1 cm 3 of a non-aqueous solvent at 1 atmosphere and 25° C. As the above-mentioned gas, when a cyclic carbonate or a chain carbonate is used as the non-aqueous solvent of the non-aqueous electrolyte, carbon dioxide is preferred.
收纳于容器3内部的可溶于非水电解质的气体的体积(1个气压下、25℃)可以通过收纳于容器3内部的非水电解质的体积和可溶于非水电解质的气体在非水电解质中的溶解度来决定。例如,在使用环状碳酸酯或链状碳酸酯作为非水电解质的非水溶剂、且使用二氧化碳作为可溶于非水电解质的气体的情况下,从提高负压效果的观点出发,二氧化碳的体积相对于收纳于容器3内部的非水电解质的体积的下限优选为10%,更优选为20%。另一方面,从缩短密封容器3后到溶解二氧化碳为止的时间的观点出发,二氧化碳的体积相对于上述非水电解质的体积的上限优选为400%,更优选为200%,进一步优选为100%。The volume of the gas soluble in the non-aqueous electrolyte contained in the container 3 (under 1 atmosphere, 25° C.) can be determined by the volume of the non-aqueous electrolyte contained in the container 3 and the solubility of the gas soluble in the non-aqueous electrolyte in the non-aqueous electrolyte. For example, when a cyclic carbonate or a chain carbonate is used as a non-aqueous solvent for the non-aqueous electrolyte and carbon dioxide is used as a gas soluble in the non-aqueous electrolyte, from the viewpoint of improving the negative pressure effect, the lower limit of the volume of carbon dioxide relative to the volume of the non-aqueous electrolyte contained in the container 3 is preferably 10%, and more preferably 20%. On the other hand, from the viewpoint of shortening the time from sealing the container 3 to dissolving the carbon dioxide, the upper limit of the volume of carbon dioxide relative to the volume of the above-mentioned non-aqueous electrolyte is preferably 400%, more preferably 200%, and further preferably 100%.
从减小容器3内的压力的观点出发,收纳于容器3内部的可溶于非水电解质的气体的体积(1个气压下、25℃)相对于容器3内的剩余空间的体积的下限优选为40%,更优选为70%,进一步优选为95%。另一方面,上述体积相对于容器3内的剩余空间的体积的上限可以为100%。这里,“容器3内的剩余空间的体积”是指从容器3的内容积中减去电极体2和非水电解质等结构体的体积而得的体积。另外,电极体2的体积是指电极体的构成要素(活性物质层、隔离件等)的表观体积,不包含在活性物质层间和隔离件内存在的空隙。From the viewpoint of reducing the pressure in the container 3, the lower limit of the volume of the gas soluble in the non-aqueous electrolyte contained in the container 3 (at 1 atmosphere, 25°C) relative to the volume of the remaining space in the container 3 is preferably 40%, more preferably 70%, and further preferably 95%. On the other hand, the upper limit of the above volume relative to the volume of the remaining space in the container 3 can be 100%. Here, the "volume of the remaining space in the container 3" refers to the volume obtained by subtracting the volume of the structure such as the electrode body 2 and the non-aqueous electrolyte from the internal volume of the container 3. In addition, the volume of the electrode body 2 refers to the apparent volume of the constituent elements of the electrode body (active material layer, separator, etc.), and does not include the voids between the active material layers and in the separator.
<蓄电装置的构成><Configuration of power storage device>
本实施方式的蓄电元件可以作为集合多个蓄电元件而构成的蓄电单元(电池模块)搭载于电动汽车(EV)、混合动力汽车(HEV)、插电式混合动力汽车(PHEV)等汽车用电源、个人计算机、通信终端等电子设备用电源或储电用电源等。在该情况下,对蓄电单元所含的至少一个蓄电元件应用本发明的技术即可。The storage element of this embodiment can be installed as a storage unit (battery module) composed of a plurality of storage elements in a vehicle power source such as an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), a power source for electronic equipment such as a personal computer, a communication terminal, or a power source for storing electricity. In this case, the technology of the present invention can be applied to at least one storage element contained in the storage unit.
本发明的另一个实施方式的蓄电装置具有两个以上的蓄电元件,并且具备一个以上的上述本发明的一个实施方式的蓄电元件(以下称为“第二实施方式”)。对于第二实施方式的蓄电装置所含的至少一个蓄电元件,只要应用本发明的一个实施方式的技术即可,可以具备一个上述本发明的一个实施方式的蓄电元件、且具备一个以上的非上述本发明的一个实施方式的蓄电元件,也可以具备两个以上的上述本发明的一个实施方式的蓄电元件。图3表示将电连接的两个以上的蓄电元件1集合而成的蓄电单元20进一步集合而成的蓄电装置30的一个例子。第二实施方式的蓄电装置30可以具备将两个以上的蓄电元件1电连接的汇流排(未图示)、将两个以上的蓄电单元20电连接的汇流排(未图示)等。蓄电单元20或蓄电装置30可以具备监视一个以上的蓄电元件的状态的状态监视装置(未图示)。A power storage device according to another embodiment of the present invention has two or more power storage elements and has one or more power storage elements of the above-mentioned one embodiment of the present invention (hereinafter referred to as the "second embodiment"). As for at least one power storage element contained in the power storage device of the second embodiment, as long as the technology of one embodiment of the present invention is applied, it can have one power storage element of the above-mentioned one embodiment of the present invention, and one or more power storage elements other than the above-mentioned one embodiment of the present invention, or it can have two or more power storage elements of the above-mentioned one embodiment of the present invention. FIG. 3 shows an example of a power storage device 30 formed by further integrating a power storage unit 20 formed by integrating two or more electrically connected power storage elements 1. The power storage device 30 of the second embodiment can include a bus (not shown) that electrically connects the two or more power storage elements 1, a bus (not shown) that electrically connects the two or more power storage units 20, and the like. The power storage unit 20 or the power storage device 30 can include a state monitoring device (not shown) that monitors the state of one or more power storage elements.
<蓄电元件的制造方法><Method for manufacturing energy storage device>
本实施方式的蓄电元件的制造方法可以从公知的方法中适当选择。该制造方法例如具备:准备电极体、准备非水电解质、以及将电极体和非水电解质收纳于容器。准备电极体具备:准备正极和负极、以及将正极和负极介由隔离件层叠或卷绕而形成电极体。本实施方式的蓄电元件的制造方法进一步具备在正极和负极的层叠方向上按压电极体。作为在正极和负极的层叠方向上按压电极体,优选具备将可溶于非水电解质的气体容纳于容器。The manufacturing method of the storage element of the present embodiment can be appropriately selected from known methods. The manufacturing method, for example, comprises: preparing an electrode body, preparing a non-aqueous electrolyte, and storing the electrode body and the non-aqueous electrolyte in a container. Preparing the electrode body comprises: preparing a positive electrode and a negative electrode, and stacking or winding the positive electrode and the negative electrode through an isolating member to form an electrode body. The manufacturing method of the storage element of the present embodiment further comprises pressing the electrode body in the stacking direction of the positive electrode and the negative electrode. As for pressing the electrode body in the stacking direction of the positive electrode and the negative electrode, it is preferred to contain a gas soluble in the non-aqueous electrolyte in a container.
将非水电解质容纳于容器可以从公知的方法中适当选择。例如,在使用非水电解液作为非水电解质的情况下,在从形成在容器上的注入口注入非水电解液后密封注入口即可。The non-aqueous electrolyte may be contained in the container by any known method. For example, when a non-aqueous electrolyte is used as the non-aqueous electrolyte, the non-aqueous electrolyte may be injected from an injection port formed in the container and then the injection port may be sealed.
<其它实施方式><Other embodiments>
应予说明,本发明的蓄电元件不限于上述实施方式,在不脱离本发明的要旨的范围内可以进行各种变更。例如,可以在一个实施方式的构成中追加其它实施方式的构成,另外,可以将一个实施方式的构成的一部分替换为其它实施方式的构成或公知技术。进而,可以删除一个实施方式的构成的一部分。另外,可以对一个实施方式的构成附加公知技术。It should be noted that the storage element of the present invention is not limited to the above-mentioned embodiment, and various changes can be made within the scope of the gist of the present invention. For example, the structure of another embodiment can be added to the structure of one embodiment, and a part of the structure of one embodiment can be replaced with the structure of another embodiment or a known technology. Furthermore, a part of the structure of one embodiment can be deleted. In addition, a known technology can be added to the structure of one embodiment.
在上述实施方式中,对蓄电元件用作可充放电的非水电解质二次电池(例如锂离子二次电池)的情况进行了说明,但蓄电元件的种类、形状、尺寸、容量等是任意的。本发明可以应用于各种二次电池、双电层电容器或锂离子电容器等电容器。In the above embodiment, the case where the storage element is used as a rechargeable non-aqueous electrolyte secondary battery (e.g., a lithium ion secondary battery) is described, but the type, shape, size, capacity, etc. of the storage element are arbitrary. The present invention can be applied to various secondary batteries, double-layer capacitors, or capacitors such as lithium ion capacitors.
在上述实施方式中,对将正极和负极介由隔离件层叠而成的电极体进行了说明,但电极体也可以不具备隔离件。例如,可以以在正极或负极的活性物质层上形成没有导电性的层的状态,直接连接正极和负极。In the above embodiment, the electrode body is described as a stacked positive electrode and a negative electrode with a separator interposed therebetween, but the electrode body may not have a separator. For example, the positive electrode and the negative electrode may be directly connected with a non-conductive layer formed on the active material layer of the positive electrode or the negative electrode.
在上述实施方式中,对正极活性物质包含上述式1所表示的化合物或锰酸锂且负极活性物质包含石墨或钛酸锂的情况进行了说明,但正极活性物质和负极活性物质的构成不限于上述实施方式。例如,可以为如下构成:选择上述式1所表示的化合物或锰酸锂以外作为正极活性物质,选择石墨或钛酸锂以外作为负极活性物质,并且SOC30%的开路电压与SOC70%的开路电压之差为0.2V以下。In the above embodiment, the case where the positive electrode active material includes the compound represented by the above formula 1 or lithium manganate and the negative electrode active material includes graphite or lithium titanate is described, but the composition of the positive electrode active material and the negative electrode active material is not limited to the above embodiment. For example, it can be composed as follows: the compound represented by the above formula 1 or lithium manganate is selected as the positive electrode active material, graphite or lithium titanate is selected as the negative electrode active material, and the difference between the open circuit voltage of SOC30% and the open circuit voltage of SOC70% is 0.2V or less.
在上述实施方式中,对使容器的内部为负压状态的方法作为使电极体为按压状态的方法进行了说明,但也可以采用除使容器的内部为负压状态的方法以外的方法作为使电极体为按压状态的方法。例如,通过使用以往公知的约束部件等以在正极和负极的层叠方向(Y方向)上按压的状态约束蓄电元件,能够使电极体为按压状态。作为约束部件,只要能够按压(加压)蓄电元件即可,没有特别限定。作为使用约束部件等按压电极体的方式,可举出以施加于蓄电元件的按压力成为恒定值的方式利用约束部件按压蓄电元件(恒压约束)等。蓄电元件的外表面的被约束部件等按压的区域(按压区域)的面积和形状没有特别限定,可以考虑抑制充放电循环时的容量维持率降低的效果和蓄电元件的特性来适当设定。作为上述容器,优选其厚度薄且具有挠性。另外,从能够从初始使施加于上述电极体的压力成为恒定值的状态的观点出发,优选在上述约束部件与上述容器之间配置公知的缓冲部件。In the above embodiment, the method of making the inside of the container a negative pressure state is described as a method of making the electrode body a pressed state, but a method other than the method of making the inside of the container a negative pressure state can also be used as a method of making the electrode body a pressed state. For example, by using a previously known constraint component, etc. to constrain the storage element in a state of pressing in the stacking direction (Y direction) of the positive and negative electrodes, the electrode body can be made into a pressed state. As a constraint component, as long as it can press (pressurize) the storage element, there is no particular limitation. As a method of pressing the electrode body using a constraint component, etc., there can be cited a method of pressing the storage element using a constraint component in a manner that the pressing force applied to the storage element becomes a constant value (constant pressure constraint), etc. The area and shape of the region (pressing region) of the outer surface of the storage element pressed by the constraint component, etc. are not particularly limited, and can be appropriately set in consideration of the effect of suppressing the reduction of the capacity retention rate during the charge and discharge cycle and the characteristics of the storage element. As the above-mentioned container, it is preferably thin and flexible. In addition, from the viewpoint of being able to maintain the pressure applied to the electrode assembly at a constant value from the initial stage, it is preferable to arrange a known buffer member between the restraining member and the container.
利用约束部件等施加于电极体的压力没有特别限定,可以适当设定。例如,作为施加于电极体的压力的下限,有时优选为0.5MPa,更优选为0.7MPa,进一步优选为0.9MPa,更进一步优选为1.0MPa。通过上述压力为上述下限以上,更显著地发挥抑制充放电循环时的容量维持率降低的效果。另一方面,作为上述压力的上限,有时优选为3.7MPa,更优选为3.5MPa,进一步优选为3.3MPa,更进一步优选为3.0MPa。通过上述压力为上述上限以下,能够抑制因施加过大压力而引起的隔离件的孔隙的堵塞等。施加于电极体的压力为放电状态下的压力。作为测定施加于电极体的压力的方法,可举出如下得到的值作为施加于电极体的压力:在放电状态下将蓄电元件与约束部件等分离,用自动记录仪压迫蓄电元件直至成为与被约束部件等按压时相同的厚度,将此时的载荷除以自动记录仪与电极体的接触面的面积。应予说明,通常通过容器对蓄电元件的对置的一对面施加载荷,但仅将该一对面的一个面的面积设为施加载荷的面的面积。The pressure applied to the electrode body by the restraining member is not particularly limited and can be appropriately set. For example, as the lower limit of the pressure applied to the electrode body, it is sometimes preferably 0.5MPa, more preferably 0.7MPa, further preferably 0.9MPa, and further preferably 1.0MPa. By the above-mentioned pressure being above the above-mentioned lower limit, the effect of suppressing the reduction of the capacity retention rate during the charge and discharge cycle is more significantly exerted. On the other hand, as the upper limit of the above-mentioned pressure, it is sometimes preferably 3.7MPa, more preferably 3.5MPa, further preferably 3.3MPa, and further preferably 3.0MPa. By the above-mentioned pressure being below the above-mentioned upper limit, the clogging of the pores of the separator caused by applying excessive pressure can be suppressed. The pressure applied to the electrode body is the pressure in the discharge state. As a method for measuring the pressure applied to the electrode body, the following value can be cited as the pressure applied to the electrode body: the storage element is separated from the restraining member, etc. in the discharge state, and the storage element is pressed with an automatic recorder until it becomes the same thickness as when pressed by the restraining member, etc., and the load at this time is divided by the area of the contact surface between the automatic recorder and the electrode body. In addition, although a load is usually applied to a pair of opposing surfaces of the electric storage element through the container, the area of only one surface of the pair of surfaces is set as the area of the surface to which the load is applied.
实施例Example
以下,根据实施例进一步具体说明本发明。本发明不限于以下实施例。The present invention is further described below with reference to examples. The present invention is not limited to the following examples.
[实施例1][Example 1]
(正极的制作)(Production of positive electrode)
作为正极活性物质,使用磷酸铁锂(LiFePO4)。制作将N-甲基吡咯烷酮(NMP)作为分散介质并以固体成分换算以90:5:5的质量比率含有上述正极活性物质、作为导电剂的乙炔黑(AB)和作为粘合剂的聚偏二氟乙烯(PVDF)的正极合剂糊料。在作为正极基材的铝箔的两面涂布上述正极合剂糊料,干燥后压制。由此,得到在正极基材的两面层叠有正极活性物质层的正极。此时,层叠于正极基材的单面的正极活性物质层的每单位面积的质量以固体成分换算为15mg/cm2。另外,得到的正极中的正极活性物质层的孔径50nm的微分孔容为0.0039cm3/(g·nm)。应予说明,正极活性物质层的孔径50nm的微分孔容是通过上述方法求出的值。另外,在本实施例中,上述微分孔容是在制作正极时测定的值,但即使在对基于该正极制作的蓄电元件进行充放电后,上述微分孔容也可以视为相同的值。将实施例1的正极活性物质层的微分孔容分布曲线示于图4。As a positive electrode active material, lithium iron phosphate (LiFePO 4 ) was used. A positive electrode mixture paste containing the positive electrode active material, acetylene black (AB) as a conductive agent, and polyvinylidene fluoride (PVDF) as a binder in a mass ratio of 90:5:5 in terms of solid content was prepared using N-methylpyrrolidone (NMP) as a dispersion medium. The positive electrode mixture paste was applied to both sides of an aluminum foil as a positive electrode substrate, and pressed after drying. Thus, a positive electrode having positive electrode active material layers stacked on both sides of the positive electrode substrate was obtained. At this time, the mass per unit area of the positive electrode active material layer stacked on one side of the positive electrode substrate was 15 mg/cm 2 in terms of solid content. In addition, the differential pore volume of the positive electrode active material layer with a pore diameter of 50 nm in the obtained positive electrode was 0.0039 cm 3 /(g·nm). It should be noted that the differential pore volume of the positive electrode active material layer with a pore diameter of 50 nm is a value obtained by the above method. In this example, the differential pore volume is a value measured when the positive electrode is made, but even after the storage element made based on the positive electrode is charged and discharged, the differential pore volume can be regarded as the same value. The differential pore volume distribution curve of the positive electrode active material layer of Example 1 is shown in FIG.
(负极的制作)(Production of negative electrode)
制备将作为负极活性物质的石墨(Gr)、作为粘合剂的苯乙烯-丁二烯橡胶(SBR)、作为增稠剂的羧甲基纤维素(CMC)和作为分散介质的水混合而得的负极合剂糊料。应予说明,Gr、SBR和CMC的质量比率为96:2:2(固体成分换算)。在作为负极基材的铜箔的两面涂布负极合剂糊料并干燥。然后,进行辊压,得到负极。此时,层叠于负极基材的单面的负极活性物质层的每单位面积的质量以固体成分换算为8mg/cm2。A negative electrode mixture paste was prepared by mixing graphite (Gr) as a negative electrode active material, styrene-butadiene rubber (SBR) as a binder, carboxymethyl cellulose (CMC) as a thickener, and water as a dispersion medium. It should be noted that the mass ratio of Gr, SBR, and CMC was 96:2:2 (solid content conversion). The negative electrode mixture paste was applied to both sides of a copper foil as a negative electrode substrate and dried. Then, roll pressing was performed to obtain a negative electrode. At this time, the mass per unit area of the negative electrode active material layer stacked on one side of the negative electrode substrate was 8 mg/ cm2 in terms of solid content.
(非水电解质的制备)(Preparation of non-aqueous electrolyte)
在将EC和EMC以30:70的体积比混合而得的非水溶剂中以1.0mol/dm3的浓度溶解作为电解质盐的LiPF6,制作溶液。得到上述溶液作为非水电解质。LiPF 6 as an electrolyte salt was dissolved at a concentration of 1.0 mol/dm 3 in a non-aqueous solvent obtained by mixing EC and EMC at a volume ratio of 30:70 to prepare a solution. The solution was obtained as a non-aqueous electrolyte.
(蓄电元件的制作)(Production of energy storage elements)
作为隔离件,使用聚烯烃制微多孔膜。通过介由该隔离件层叠上述正极和上述负极,制作电极体。将该电极体收纳于将铝层和树脂膜层层叠而成的复合膜(合计厚度:约150μm)制的容器中,向内部注入上述非水电解质。上述容器的内部空间的上述层叠方向的最小宽度相对于上述电极体的层叠方向的厚度的比率为1.10以下。然后,换算为1个气压下、25℃的条件,以相对于注入的非水电解质的体积为约50%、且相对于容器内的剩余空间的体积为约80%的体积的方式封入二氧化碳,通过热熔接进行密封,得到实施例1的蓄电元件。应予说明,通过封入到容器内的二氧化碳溶解于上述非水电解质,实施例1的蓄电元件密封后的容器的内部成为负压状态。另外,上述容器由于其厚度薄且为具有挠性的复合膜制,所以上述容器的内部为负压状态,由此上述容器变形。进而,由于上述容器的内部空间的上述层叠方向的最小宽度相对于上述电极体的厚度足够小,所以通过上述容器的变形而成为上述电极体在正极和负极的层叠方向上被按压的状态。As a separator, a polyolefin microporous film is used. The electrode body is prepared by stacking the positive electrode and the negative electrode via the separator. The electrode body is placed in a container made of a composite film (total thickness: about 150 μm) in which an aluminum layer and a resin film layer are stacked, and the non-aqueous electrolyte is injected into the interior. The ratio of the minimum width of the internal space of the container in the stacking direction to the thickness of the electrode body in the stacking direction is 1.10 or less. Then, converted to the conditions of 1 atmosphere and 25°C, carbon dioxide is sealed in a manner of about 50% of the volume of the injected non-aqueous electrolyte and about 80% of the volume of the remaining space in the container, and sealed by heat welding to obtain the storage element of Example 1. It should be noted that the carbon dioxide sealed in the container dissolves in the non-aqueous electrolyte, and the interior of the container after the storage element of Example 1 is sealed becomes a negative pressure state. In addition, since the container is thin and made of a flexible composite film, the interior of the container is in a negative pressure state, thereby deforming the container. Furthermore, since the minimum width of the internal space of the container in the stacking direction is sufficiently smaller than the thickness of the electrode body, the electrode body is pressed in the stacking direction of the positive and negative electrodes due to deformation of the container.
[实施例2、3和比较例1~9][Examples 2, 3 and Comparative Examples 1 to 9]
如表1所记载地改变正极活性物质层的孔径50nm的微分孔容,除此之外,与实施例1同样地得到实施例2、3和比较例1~3的各蓄电元件。Except that the differential pore volume of the pore diameter of 50 nm of the positive electrode active material layer was changed as described in Table 1, the same procedure as in Example 1 was carried out to obtain each of the electric storage elements of Examples 2 and 3 and Comparative Examples 1 to 3.
另外,不向容器内封入二氧化碳,如表1所记载地改变正极活性物质层的孔径50nm的微分孔容,除此之外,与实施例1同样地得到比较例4~9的各蓄电元件。其中,在比较例3中评价所有孔径的微分孔容,在实施例2、3、比较例1、2和4~9中仅评价孔径50nm的微分孔容。将比较例3的正极活性物质层的微分孔容分布曲线示于图4。另外,由于在容器内没有封入二氧化碳,所以比较例4~9的蓄电元件的容器的内部的压力等于大气压(1个气压)。In addition, carbon dioxide was not sealed in the container, and the differential pore volume of the pore diameter of 50 nm of the positive electrode active material layer was changed as described in Table 1. The storage elements of Comparative Examples 4 to 9 were obtained in the same manner as in Example 1. Among them, the differential pore volume of all pore diameters was evaluated in Comparative Example 3, and only the differential pore volume of the pore diameter of 50 nm was evaluated in Examples 2, 3, Comparative Examples 1, 2, and 4 to 9. The differential pore volume distribution curve of the positive electrode active material layer of Comparative Example 3 is shown in FIG4. In addition, since carbon dioxide was not sealed in the container, the pressure inside the container of the storage element of Comparative Examples 4 to 9 was equal to the atmospheric pressure (1 atmosphere).
(初始充放电)(Initial charge and discharge)
对于得到的各蓄电元件,在25℃下按照以下要领进行初始充放电。设为充电电流0.1C、充电终止电压3.6V进行恒定电流恒定电压充电。充电的结束条件为充电电流达到0.02C。然后,设置10分钟的休止时间。然后,设为放电电流0.1C、放电终止电压2.0V进行恒定电流放电。For each of the obtained storage elements, initial charge and discharge were performed at 25°C according to the following procedures. The charging current was set to 0.1C and the charging end voltage was 3.6V for constant current and constant voltage charging. The end condition of charging was that the charging current reached 0.02C. Then, a rest time of 10 minutes was set. Then, the discharge current was set to 0.1C and the discharge end voltage was 2.0V for constant current discharge.
(初始的容量确认试验)(Initial capacity confirmation test)
接着,对于各蓄电元件,在25℃下按照以下要领进行初始的容量确认试验。Next, an initial capacity confirmation test was performed on each power storage element at 25° C. according to the following procedure.
设为充电电流0.1C、充电终止电压3.6V进行恒定电流恒定电压充电。充电的结束条件为充电电流达到0.02C。然后,设置10分钟的休止期间。然后,设为放电电流0.1C、放电终止电压2.0V进行恒定电流放电。将此时的放电容量作为“初始的放电容量”。另外,对于各蓄电元件,设为充电电流0.1C、充电终止电压3.6V进行恒定电流恒定电压充电。充电的结束条件为充电电流达到0.02C。然后,设置10分钟的休止期间。然后,以放电电流0.1C进行恒定电流放电至SOC70%,然后测定在未施加电流的状态下经过30分钟后的电压,作为“SOC70%的开路电压”。然后,以放电电流0.1C进行恒定电流放电至SOC30%,然后测定在未施加电流的状态下经过30分钟后的电压,作为“SOC30%的开路电压”。在各蓄电元件中,SOC30%的开路电压与SOC70%的开路电压之差均为0.2V以下。应予说明,这里,将进行初始的容量确认试验后的状态作为完全放电状态而标记为SOC0%,将设为充电终止电压3.6V对与初始的放电容量相同的电量进行恒定电流恒定电压充电后的状态作为满充电状态而标记为SOC100%。The charging current is set to 0.1C and the charging end voltage is 3.6V for constant current and constant voltage charging. The end condition of charging is that the charging current reaches 0.02C. Then, a rest period of 10 minutes is set. Then, the discharge current is set to 0.1C and the discharge end voltage is 2.0V for constant current discharge. The discharge capacity at this time is referred to as the "initial discharge capacity". In addition, for each storage element, the charging current is set to 0.1C and the charging end voltage is 3.6V for constant current and constant voltage charging. The end condition of charging is that the charging current reaches 0.02C. Then, a rest period of 10 minutes is set. Then, constant current discharge is performed with a discharge current of 0.1C to SOC70%, and then the voltage is measured after 30 minutes without applying current as the "open circuit voltage of SOC70%". Then, constant current discharge is performed with a discharge current of 0.1C to SOC30%, and then the voltage is measured after 30 minutes without applying current as the "open circuit voltage of SOC30%". In each storage element, the difference between the open circuit voltage at SOC30% and the open circuit voltage at SOC70% is less than 0.2 V. It should be noted that here, the state after the initial capacity confirmation test is marked as SOC0% as a fully discharged state, and the state after constant current and constant voltage charging with a charge end voltage of 3.6 V for the same amount of electricity as the initial discharge capacity is marked as SOC100% as a fully charged state.
(充放电循环试验)(Charge and discharge cycle test)
上述初始的容量确认试验后,对于各蓄电元件,在25℃下按照以下要领进行充放电循环试验。设为充电电流1.0C、充电终止电压3.6V进行恒定电流恒定电压充电。充电的结束条件为充电电流达到0.05C。然后,设为放电电流1.0C、放电终止电压2.0V进行恒定电流放电。充电后和放电后分别设置10分钟的休止时间。实施该充放电50个循环。After the initial capacity confirmation test, for each storage element, a charge and discharge cycle test was performed at 25°C according to the following instructions. The charging current was set to 1.0C and the charge end voltage was 3.6V for constant current and constant voltage charging. The end condition of charging was that the charging current reached 0.05C. Then, the discharge current was set to 1.0C and the discharge end voltage was 2.0V for constant current discharge. A rest time of 10 minutes was set after charging and after discharging. This charge and discharge was performed for 50 cycles.
充放电循环试验后,通过与上述“初始的容量确认试验”同样的方法进行充放电循环试验后的容量确认试验。将此时的放电容量作为“充放电循环试验后的放电容量”。将充放电循环试验后的放电容量除以初始的放电容量,求出容量维持率(%)。将结果示于表1。After the charge-discharge cycle test, a capacity confirmation test after the charge-discharge cycle test is performed in the same manner as the above-mentioned "initial capacity confirmation test". The discharge capacity at this time is referred to as the "discharge capacity after the charge-discharge cycle test". The discharge capacity after the charge-discharge cycle test is divided by the initial discharge capacity to calculate the capacity retention rate (%). The results are shown in Table 1.
[表1[Table 1
如上述表1所示,当比较正极活性物质层的孔径50nm的微分孔容相同的比较例1和比较例7时,容器内的压力为负压状态的比较例1与容器内的压力等于大气压的比较例7相比,容量维持率较高。同样地,当比较比较例2和比较例8、比较例3和比较例9时,容器内的压力为负压状态的比较例2、比较例3与容器内的压力等于大气压的比较例8、比较例9相比,容量维持率高。As shown in Table 1 above, when comparing Comparative Example 1 and Comparative Example 7, which have the same differential pore volume of 50 nm of the pore diameter of the positive electrode active material layer, the capacity retention rate of Comparative Example 1, in which the pressure in the container is a negative pressure state, is higher than that of Comparative Example 7, in which the pressure in the container is equal to atmospheric pressure. Similarly, when comparing Comparative Example 2 and Comparative Example 8, and Comparative Example 3 and Comparative Example 9, the capacity retention rate of Comparative Example 2 and Comparative Example 3, in which the pressure in the container is a negative pressure state, is higher than that of Comparative Example 8 and Comparative Example 9, in which the pressure in the container is equal to atmospheric pressure.
另外,当比较容器内的压力等于大气压的比较例4~9时,正极活性物质层的孔径50nm的微分孔容为0.0030cm3/(g·nm)以上的比较例4~6与正极活性物质层的孔径50nm的微分孔容小于0.0030cm3/(g·nm)的比较例7~9相比,容量维持率高。另一方面,正极活性物质层的孔径50nm的微分孔容为0.0030cm3/(g·nm)以上、且容器内的压力为负压状态的实施例1~3与比较例1~9相比,容量维持率得到大幅改善。由此推测,例如通过由于容器内为负压状态而按压电极体的事实、以及正极活性物质层具有适当的孔的事实协同地发挥作用,显著促进电极体内的锂离子等电荷输送离子的顺利且均匀的移动等,由此电极体内的充放电反应不易产生偏差,其结果,能够抑制充放电循环时的容量维持率的降低。In addition, when the pressure in the container is equal to the atmospheric pressure in Comparative Examples 4 to 9, the differential pore volume of the positive electrode active material layer at a pore size of 50 nm is 0.0030 cm 3 / (g·nm) or more, and the capacity retention rate is higher in Comparative Examples 4 to 6 than in Comparative Examples 7 to 9 in which the differential pore volume of the positive electrode active material layer at a pore size of 50 nm is less than 0.0030 cm 3 / (g·nm). On the other hand, the differential pore volume of the positive electrode active material layer at a pore size of 50 nm is 0.0030 cm 3 / (g·nm) or more, and the pressure in the container is in a negative pressure state. The capacity retention rate is greatly improved compared to Comparative Examples 1 to 9. It is speculated that, for example, the fact that the electrode body is pressed due to the negative pressure state in the container and the fact that the positive electrode active material layer has appropriate pores work synergistically, significantly promoting the smooth and uniform movement of charge transport ions such as lithium ions in the electrode body, so that the charge and discharge reaction in the electrode body is not easily deviated, and as a result, the reduction in the capacity retention rate during the charge and discharge cycle can be suppressed.
工业上的可利用性Industrial Applicability
本发明可以应用于作为个人计算机、通信终端等电子设备、汽车等的电源使用的蓄电元件等。The present invention can be applied to power storage elements used as power sources for electronic devices such as personal computers and communication terminals, and automobiles.
符号说明Explanation of symbols
1 蓄电元件1 Storage element
2 电极体2 Electrode body
3 容器3 Container
4正极端子4 Positive terminal
41正极引线41 positive lead
5负极端子5 Negative terminal
51负极引线51 negative lead
20蓄电单元20 Storage Unit
30蓄电装置30 Power storage device
Claims (4)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-062630 | 2022-04-04 | ||
JP2022062630 | 2022-04-04 | ||
PCT/JP2023/013750 WO2023195434A1 (en) | 2022-04-04 | 2023-04-03 | Power storage element and power storage device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118974997A true CN118974997A (en) | 2024-11-15 |
Family
ID=88242929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202380030046.5A Pending CN118974997A (en) | 2022-04-04 | 2023-04-03 | Electricity storage element and electricity storage device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2023195434A1 (en) |
CN (1) | CN118974997A (en) |
WO (1) | WO2023195434A1 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101959701B1 (en) * | 2016-01-22 | 2019-03-18 | 아사히 가세이 가부시키가이샤 | Lithium ion secondary battery |
JP2018026400A (en) * | 2016-08-08 | 2018-02-15 | 旭化成株式会社 | Nonaqueous lithium type power storage element |
JP2020167353A (en) * | 2019-03-29 | 2020-10-08 | 旭化成株式会社 | Method for manufacturing nonaqueous alkali metal power storage element |
-
2023
- 2023-04-03 CN CN202380030046.5A patent/CN118974997A/en active Pending
- 2023-04-03 WO PCT/JP2023/013750 patent/WO2023195434A1/en active Application Filing
- 2023-04-03 JP JP2024514264A patent/JPWO2023195434A1/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
JPWO2023195434A1 (en) | 2023-10-12 |
WO2023195434A1 (en) | 2023-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6484995B2 (en) | Lithium ion secondary battery | |
CN115668530A (en) | Positive electrode and electricity storage element | |
JP2020123465A (en) | Anode and manufacturing method of anode | |
US20240178391A1 (en) | Nonaqueous electrolyte energy storage device | |
US20240243341A1 (en) | Energy storage device and energy storage apparatus | |
US20230155180A1 (en) | Energy storage device, method for manufacturing the same and energy storage apparatus | |
CN118339690A (en) | Nonaqueous electrolyte power storage element, device, and method for manufacturing nonaqueous electrolyte power storage element | |
JP7532898B2 (en) | Positive electrode and storage element | |
WO2023276863A1 (en) | Non-aqueous electrolyte power storage element | |
JP2022134613A (en) | Positive electrode mixture for non-aqueous electrolyte storage element, positive electrode for non-aqueous electrolyte storage element, and non-aqueous electrolyte storage element | |
CN115516660A (en) | Positive electrode for electricity storage element and electricity storage element | |
CN118974997A (en) | Electricity storage element and electricity storage device | |
WO2024147290A1 (en) | Nonaqueous-electrolyte electricity storage element | |
US20230420656A1 (en) | Positive electrode for nonaqueous electrolyte energy storage device, nonaqueous electrolyte energy storage device, and energy storage apparatus | |
WO2024090207A1 (en) | Positive electrode for non-aqueous electrolyte power storage element, and non-aqueous electrolyte power storage element | |
WO2023032752A1 (en) | Power storage element and power storage device | |
US20240186514A1 (en) | Nonaqueous electrolyte energy storage device | |
US20240234708A1 (en) | Nonaqueous electrolyte energy storage device and energy storage apparatus | |
US20240266534A1 (en) | Energy storage device | |
US20240021794A1 (en) | Positive active material for energy storage device, positive electrode for energy storage device, energy storage device, and energy storage apparatus | |
JP2023117881A (en) | Non-aqueous electrolyte storage element | |
CN118285002A (en) | Nonaqueous electrolyte storage element | |
WO2023145677A1 (en) | Non-aqueous electrolyte storage element | |
JP2024043618A (en) | Electrode and power storage element | |
JP2024153497A (en) | Positive electrode for non-aqueous electrolyte storage element and non-aqueous electrolyte storage element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication |