CN118839031A - Multi-level file index management method for video data - Google Patents
Multi-level file index management method for video data Download PDFInfo
- Publication number
- CN118839031A CN118839031A CN202411045767.6A CN202411045767A CN118839031A CN 118839031 A CN118839031 A CN 118839031A CN 202411045767 A CN202411045767 A CN 202411045767A CN 118839031 A CN118839031 A CN 118839031A
- Authority
- CN
- China
- Prior art keywords
- video
- video data
- index
- file
- feature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007726 management method Methods 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 33
- 238000013507 mapping Methods 0.000 claims abstract description 5
- 239000013598 vector Substances 0.000 claims description 98
- 230000002159 abnormal effect Effects 0.000 claims description 18
- 238000010276 construction Methods 0.000 claims description 18
- 230000008439 repair process Effects 0.000 claims description 15
- 230000008676 import Effects 0.000 claims description 14
- 230000006399 behavior Effects 0.000 claims description 9
- 238000013500 data storage Methods 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 claims description 5
- 230000006835 compression Effects 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 4
- 238000013527 convolutional neural network Methods 0.000 claims description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/70—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F16/71—Indexing; Data structures therefor; Storage structures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Multimedia (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本发明公开了一种用于视频数据的多级文件索引管理方法,涉及了文件索引管理技术领域,获取若干视频源对应的视频数据,对全部的视频数据依次进行帧切割,进而将每个视频源对应的视频数据划分为各自对应的若干视频帧,对每个视频源对应视频数据的若干视频帧进行特征处理,进而获取每个视频数据对应的特征帧信息,构建多级索引文件,将全部视频源对应的视频数据映射至多级索引文件中,进而构建每个视频数据对应的分层检索索引,配置查询平台,将全部视频数据的分层检索索引导入查询平台对应设置的终端数据库内,向查询平台内输入所需检索的视频数据的检索信息,根据检索信息与分层检索索引进行索引匹配,进而定位出目标视频数据。The present invention discloses a multi-level file index management method for video data, and relates to the technical field of file index management. The method comprises the following steps: obtaining video data corresponding to a plurality of video sources, performing frame cutting on all the video data in sequence, and then dividing the video data corresponding to each video source into a plurality of video frames corresponding to each of the video sources, performing feature processing on the plurality of video frames corresponding to the video data of each video source, and then obtaining feature frame information corresponding to each video data, constructing a multi-level index file, mapping the video data corresponding to all the video sources into the multi-level index file, and then constructing a hierarchical retrieval index corresponding to each video data, configuring a query platform, importing the hierarchical retrieval index of all the video data into a terminal database corresponding to the query platform, inputting retrieval information of the video data to be retrieved into the query platform, performing index matching based on the retrieval information and the hierarchical retrieval index, and then locating the target video data.
Description
技术领域Technical Field
本发明涉及文件索引管理技术领域,具体是一种用于视频数据的多级文件索引管理方法。The invention relates to the technical field of file index management, and in particular to a multi-level file index management method for video data.
背景技术Background Art
多级文件索引管理指的是一种将文件索引结构按照不同级别进行组织和管理的方法,在这种管理方法中,索引不仅仅是简单的一级索引,即基本的文件名或属性索引,而是根据文件的特征和属性,采用分层的方式进行构建和管理。Multi-level file index management refers to a method of organizing and managing file index structures at different levels. In this management method, the index is not just a simple first-level index, that is, a basic file name or attribute index, but is constructed and managed in a hierarchical manner based on the characteristics and attributes of the file.
随着数字视频数据的大量产生和应用,如何高效管理和检索视频文件成为了文件索引管理技术研究的重点内容之一,传统的文件系统和数据库管理方法在面对大规模视频数据时普遍存在检索效率低、检索精度不高等问题,因此,需要一种结合多级文件索引管理技术的管理方法,以便达到对视频数据更加高效、精准的检索。With the massive generation and application of digital video data, how to efficiently manage and retrieve video files has become one of the key contents of file index management technology research. Traditional file systems and database management methods generally have problems such as low retrieval efficiency and low retrieval accuracy when facing large-scale video data. Therefore, a management method that combines multi-level file index management technology is needed to achieve more efficient and accurate retrieval of video data.
发明内容Summary of the invention
为了解决上述问题,本发明的目的在于提供一种用于视频数据的多级文件索引管理方法。In order to solve the above problems, the object of the present invention is to provide a multi-level file index management method for video data.
本发明的目的可以通过以下技术方案实现:一种用于视频数据的多级文件索引管理方法,包括以下步骤:The object of the present invention can be achieved by the following technical solution: A multi-level file index management method for video data, comprising the following steps:
步骤S1:获取若干视频源对应的视频数据,对全部的视频数据依次进行帧切割,进而将每个视频源对应的视频数据划分为各自对应的若干视频帧,对每个视频源对应视频数据的若干视频帧进行特征处理,进而获取每个视频数据对应的特征帧信息;Step S1: obtaining video data corresponding to a plurality of video sources, performing frame cutting on all the video data in sequence, and then dividing the video data corresponding to each video source into a plurality of video frames corresponding to each of the video sources, performing feature processing on a plurality of video frames corresponding to the video data of each video source, and then obtaining feature frame information corresponding to each video data;
步骤S2:构建多级索引文件,将全部视频源对应的视频数据映射至多级索引文件中,进而构建每个视频数据对应的分层检索索引;Step S2: construct a multi-level index file, map the video data corresponding to all video sources into the multi-level index file, and then construct a hierarchical retrieval index corresponding to each video data;
步骤S3:配置查询平台,将全部视频数据的分层检索索引导入查询平台对应设置的终端数据库内,向查询平台内输入所需检索的视频数据的检索信息,根据检索信息与分层检索索引进行索引匹配,进而定位出目标视频数据。Step S3: Configure the query platform, import the hierarchical retrieval index of all video data into the terminal database corresponding to the query platform, input the retrieval information of the video data to be retrieved into the query platform, perform index matching based on the retrieval information and the hierarchical retrieval index, and then locate the target video data.
进一步的,获取若干视频源对应的视频数据,对全部的视频数据依次进行帧切割,进而将每个视频源对应的视频数据划分为各自对应的若干视频帧的过程包括:Furthermore, the process of obtaining video data corresponding to a plurality of video sources, performing frame segmentation on all the video data in sequence, and then dividing the video data corresponding to each video source into a plurality of video frames corresponding to each of the video sources includes:
对若干个视频源进行编号,并记为i,i=1,2,3,……,n,n为大于0的自然数,编号为i的视频源包括若干个视频数据,将编号为i的视频源包括的全部视频数据构建成一个视频集合,并记为Ω{i},对Ω{i}所包括的全部视频数据进行编号,每个视频数据记作VD[i][1],VD[i][2],VD[i][3],……,VD[i][m],m为大于0的自然数,获取全部视频源各自对应的全部视频数据,从i=1的视频源开始,依次对该视频源所包括的VD[1][1],VD[1][2],……,VD[1][m]进行帧切割,重复上述操作,直至完成对i=n的视频源对应全部视频数据的帧切割;A number of video sources are numbered and recorded as i, i=1, 2, 3, ..., n, n is a natural number greater than 0, the video source numbered i includes a number of video data, all the video data included in the video source numbered i are constructed into a video set and recorded as Ω{i}, all the video data included in Ω{i} are numbered, each video data is recorded as VD[i][1], VD[i][2], VD[i][3], ..., VD[i][m], m is a natural number greater than 0, all the video data corresponding to all the video sources are obtained, starting from the video source i=1, VD[1][1], VD[1][2], ..., VD[1][m] included in the video source are frame-cut in turn, and the above operation is repeated until the frame cutting of all the video data corresponding to the video source i=n is completed;
通过帧切割将每个视频源所包括的视频数据划分为各自对应的若干视频帧,将视频帧所在视频源的编号,视频帧所在视频数据的编号以及视频帧所在视频数据上对应的时间戳合并作为当前视频帧的帧标识。The video data included in each video source is divided into several corresponding video frames through frame cutting, and the number of the video source where the video frame is located, the number of the video data where the video frame is located, and the corresponding timestamp on the video data where the video frame is located are combined as the frame identifier of the current video frame.
进一步的,对每个视频源对应视频数据的若干视频帧进行特征处理,进而获取每个视频数据对应的特征帧信息的过程包括:Furthermore, the process of performing feature processing on a plurality of video frames of video data corresponding to each video source, and then obtaining feature frame information corresponding to each video data includes:
对全部视频帧进行的特征处理包括特征提取以及特征向量构建;Feature processing of all video frames includes feature extraction and feature vector construction;
通过特征提取获取每个视频帧的颜色特征、边缘特征以及纹理特征;Obtain the color features, edge features, and texture features of each video frame through feature extraction;
特征向量构建为:通过卷积神经网络技术构建进行向量化处理的向量构建模型,以每个视频数据所包括视频帧中颜色特征占比最高、边缘特征占比最高以及纹理特征占比最高的视频帧分别作为向量构建模型相应的第一向量参数、第二向量参数以及第三向量参数;The feature vector is constructed as follows: a vector construction model for vectorization processing is constructed by using convolutional neural network technology, and the video frames with the highest color feature ratio, the highest edge feature ratio, and the highest texture feature ratio in the video frames included in each video data are used as the first vector parameter, the second vector parameter, and the third vector parameter of the vector construction model respectively;
将第一向量参数、第二向量参数以及第三向量参数输入至向量构建模型,进而构建出颜色特征对应的常规特征向量、边缘特征对应的常规特征向量以及纹理特征对应的常规特征向量,设置各自常规特征向量的向量区分角范围,向量区分角范围包括第一正向区间范围、第二正向区间范围、第一负向区间范围以及第二负向区间范围;Inputting the first vector parameter, the second vector parameter and the third vector parameter into the vector construction model, thereby constructing a conventional feature vector corresponding to the color feature, a conventional feature vector corresponding to the edge feature and a conventional feature vector corresponding to the texture feature, and setting a vector distinction angle range of each conventional feature vector, wherein the vector distinction angle range includes a first positive interval range, a second positive interval range, a first negative interval range and a second negative interval range;
将全部视频帧对应的颜色特征、边缘特征以及纹理特征输入至向量构建模型中,进而获取每个视频帧对应的颜色特征、边缘特征以及纹理特征特征向量,获取每个视频帧对应颜色特征的特征向量与相应常规特征向量的夹角度数,每个视频帧对应边缘特征的特征向量与相应常规特征向量的夹角度数,以及每个视频帧对应纹理特征的特征向量与相应常规特征向量的夹角度数;Input the color features, edge features and texture features corresponding to all video frames into the vector construction model, and then obtain the color feature, edge feature and texture feature feature vectors corresponding to each video frame, obtain the angle between the feature vector of the color feature corresponding to each video frame and the corresponding conventional feature vector, the angle between the feature vector of the edge feature corresponding to each video frame and the corresponding conventional feature vector, and the angle between the feature vector of the texture feature corresponding to each video frame and the corresponding conventional feature vector;
当夹角度数处于第一正向区间范围时,则将相应的特征向量标注为A类特征向量,当夹角度数处于第二正向区间范围时,则将相应的特征向量标注为B类特征向量,当夹角度数处于第一负向区间范围时,则将相应的特征向量标注为C类特征向量,当夹角度数处于第二负向区间范围时,则将相应的特征向量标注为D类特征向量,将每个视频数据所对应视频帧全部被标注过的特征向量作为相应视频数据的特征帧信息。When the angle degree is in the first positive interval range, the corresponding feature vector is marked as a Class A feature vector; when the angle degree is in the second positive interval range, the corresponding feature vector is marked as a Class B feature vector; when the angle degree is in the first negative interval range, the corresponding feature vector is marked as a Class C feature vector; when the angle degree is in the second negative interval range, the corresponding feature vector is marked as a Class D feature vector. All the marked feature vectors of the video frames corresponding to each video data are used as the feature frame information of the corresponding video data.
进一步的,构建多级索引文件的过程包括:Furthermore, the process of building a multi-level index file includes:
获取每个视频源对应的源地址信息,每个视频源所包括全部视频数据各自对应的视频信息摘要,以及每个视频数据所包括视频帧的帧信息摘要;Obtain source address information corresponding to each video source, video information summaries corresponding to all video data included in each video source, and frame information summaries of video frames included in each video data;
所述源地址信息包括地址IP、地址网关以及地址数字序列;The source address information includes address IP, address gateway and address digital sequence;
所述视频信息摘要用于记录每个视频数据对应的视频压缩信息;The video information summary is used to record the video compression information corresponding to each video data;
所述帧信息摘要包括帧长度、帧分辨率以及帧率;The frame information summary includes frame length, frame resolution and frame rate;
根据视频源对应的源地址信息构建顶层索引结构,根据视频源下每个视频数据对应的视频信息摘要构建顶层索引结构下等同于当前视频数据数目的中层索引结构,根据视频数据下每个视频帧对应的帧信息摘要构建中层索引结构下等同于当前视频帧数目的底层索引结构;A top-level index structure is constructed according to the source address information corresponding to the video source, a middle-level index structure equal to the number of current video data under the top-level index structure is constructed according to the video information summary corresponding to each video data under the video source, and a bottom-level index structure equal to the number of current video frames under the middle-level index structure is constructed according to the frame information summary corresponding to each video frame under the video data;
根据顶层索引结构的数目分配相应数目的空白文件,并将顶层索引结构对应包括的中层索引结构以及底层索引结构作为空白文件的记录项,进而构建出每个视频源对应的总索引文件,设置索引遍历起点,将每个视频源对应的总索引文件链接至索引遍历起点,进而构建出用于遍历全部视频源、视频源所包括全部视频数据以及视频数据所包括全部视频帧的多级索引文件。A corresponding number of blank files are allocated according to the number of top-level index structures, and the middle-level index structure and the bottom-level index structure corresponding to the top-level index structure are used as record items of the blank files, thereby constructing a general index file corresponding to each video source, setting an index traversal starting point, and linking the general index file corresponding to each video source to the index traversal starting point, thereby constructing a multi-level index file for traversing all video sources, all video data included in the video sources, and all video frames included in the video data.
进一步的,将全部视频源对应的视频数据映射至多级索引文件中,进而构建每个视频数据对应的分层检索索引的过程包括:Furthermore, the process of mapping the video data corresponding to all video sources into a multi-level index file and then constructing a hierarchical retrieval index corresponding to each video data includes:
将每个视频源映射至多级索引文件中的顶层索引结构中,并将每个视频源的编号作为顶层索引,将每个视频源所包括的全部视频数据映射至多级索引文件中的中层索引结构中,并将每个视频数据的编号作为中层索引,将每个视频数据所包括的全部视频帧映射至多级索引文件中的底层索引结构中,并将每个视频帧的时间戳作为底层索引,将顶层索引、中层索引以及底层索引整合构建为每个视频数据对应的分层检索索引。Map each video source to the top-level index structure in the multi-level index file, and use the number of each video source as the top-level index; map all video data included in each video source to the middle-level index structure in the multi-level index file, and use the number of each video data as the middle-level index; map all video frames included in each video data to the bottom-level index structure in the multi-level index file, and use the timestamp of each video frame as the bottom-level index; integrate the top-level index, middle-level index and bottom-level index to construct a hierarchical retrieval index corresponding to each video data.
进一步的,配置查询平台的过程包括:Furthermore, the process of configuring the query platform includes:
由查询平台向预设的服务器发送一个链接请求,由服务器接受链接请求并判断链接请求的IP地址是否在服务器对应设置的地址表单内;The query platform sends a connection request to the preset server, and the server accepts the connection request and determines whether the IP address of the connection request is in the address table set by the server;
若是,则将查询平台与服务器进行链接;If yes, the query platform is linked to the server;
若否,则判断当前查询平台存在系统风险,获取记载有当前系统风险的平台日志,并将平台日志所包括的若干个日志记录项输入至预设的风险库内,由风险库根据每个日志记录项的内容匹配出具体风险行为以及对应的风险详情信息,以及同步匹配出每个风险详情信息对应的风险修复参数,通过相应的风险修复参数对每个具体风险行为进行修复,进而修复当前查询平台所存在的系统风险,并在系统风险修复完成后继续进行当前查询平台与服务器之间的链接;If not, it is determined that there is a system risk in the current query platform, and the platform log that records the current system risk is obtained, and several log record items included in the platform log are input into the preset risk library. The risk library matches the specific risk behavior and the corresponding risk details information according to the content of each log record item, and simultaneously matches the risk repair parameters corresponding to each risk detail information, and repairs each specific risk behavior through the corresponding risk repair parameters, thereby repairing the system risk existing in the current query platform, and continuing the link between the current query platform and the server after the system risk repair is completed;
当查询平台与服务器之间的链接成功后,则查询平台配置成功,否则,继续进行具体风险行为的修复以及查询平台与服务器之间的链接,直至查询平台与服务器之间链接成功为止。When the query platform and the server are linked successfully, the query platform configuration is successful, otherwise, the repair of specific risk behaviors and the link between the query platform and the server are continued until the query platform and the server are linked successfully.
进一步的,将全部视频数据的分层检索索引导入查询平台对应设置的终端数据库内的过程包括:Furthermore, the process of importing the hierarchical search index of all video data into the terminal database corresponding to the query platform includes:
所述查询平台设置有相应的终端数据库,将全部视频源对应视频数据的分层检索索引导入至终端数据库内,为每个视频源分配一个查询平台所对应的上传接口,每个上传接口对应关联一个接口序列,每个视频源所包括全部视频数据的分层检索索引通过相应的上传接口导入至终端数据库;The query platform is provided with a corresponding terminal database, and the hierarchical retrieval index of the video data corresponding to all video sources is imported into the terminal database, and an upload interface corresponding to the query platform is allocated to each video source, and each upload interface is correspondingly associated with an interface sequence, and the hierarchical retrieval index of all video data included in each video source is imported into the terminal database through the corresponding upload interface;
在导入前,判断每个上传接口对应的接口序列是否被篡改,若是,则将相应上传接口的全部视频数据的分层检索索引封装至一个空白文件内,并将该空白文件标注为异常文件,将异常文件导入至终端数据库所对应设置的数据安全区,若否,则直接将上传接口的全部视频数据的分层检索索引导入至终端数据库所设置的数据存储区进行存储;Before importing, determine whether the interface sequence corresponding to each upload interface has been tampered with. If so, encapsulate the hierarchical retrieval index of all video data of the corresponding upload interface into a blank file, mark the blank file as an abnormal file, and import the abnormal file into the data security area set corresponding to the terminal database. If not, directly import the hierarchical retrieval index of all video data of the upload interface into the data storage area set by the terminal database for storage;
在数据安全区对异常文件中所包括的每一个视频数据的分层检索索引进行遍历,依次判断每个分层检索索引是否变更,若是,则表示分层检索索引存在错误,对当前的分层检索索引进行更新,将其更新为未发生变更之前正确的分层检索索引,若否,则对当前的分层检索索引不进行任何操作,直至完成异常文件中全部存在错误的分层检索索引的更新,当异常文件中全部存在错误的分层检索索引更新完毕后,将异常文件标注为安全文件,并将安全文件所包括的全部分层检索索引转移存储至数据存储区内。In the data security area, the layered retrieval index of each video data included in the abnormal file is traversed, and each layered retrieval index is determined in turn whether it has been changed. If so, it means that there is an error in the layered retrieval index, and the current layered retrieval index is updated to the correct layered retrieval index before the change. If not, no operation is performed on the current layered retrieval index until the update of all the layered retrieval indexes with errors in the abnormal file is completed. When all the layered retrieval indexes with errors in the abnormal file are updated, the abnormal file is marked as a safe file, and all the layered retrieval indexes included in the safe file are transferred and stored in the data storage area.
进一步的,向查询平台内输入所需检索的视频数据的检索信息,根据检索信息与分层检索索引进行索引匹配,并定位出目标视频数据的过程包括:Furthermore, the process of inputting search information of the video data to be searched into the query platform, performing index matching with the hierarchical search index according to the search information, and locating the target video data includes:
所述检索信息包括一类信息以及二类信息,一类信息用于进行目标视频数据的定位,一类信息包括当前所需检索视频数据的顶层索引以及中层索引,二类信息用于进行目标视频数据所包括若干视频帧的单点定位,二类信息包括当前目标视频数据对应全部视频帧的底层索引;The retrieval information includes first-class information and second-class information. The first-class information is used to locate the target video data. The first-class information includes the top-level index and the middle-level index of the currently required retrieved video data. The second-class information is used to locate the single point of several video frames included in the target video data. The second-class information includes the bottom-level index of all video frames corresponding to the current target video data.
将编辑完成的检索信息输入至查询平台内,与查询平台的分层检索索引进行索引匹配,将终端数据库中满足一类信息对应顶层索引以及中层索引的分层检索索引作为目标索引,将目标索引对应的视频数据定位为目标视频数据,当定位出目标视频数据后,根据二类信息对应的底层索引搜索当前目标视频数据对应的若干个相应视频帧。The edited retrieval information is input into the query platform, and the index is matched with the hierarchical retrieval index of the query platform. The hierarchical retrieval index that satisfies the top-level index and the middle-level index corresponding to the first category of information in the terminal database is used as the target index, and the video data corresponding to the target index is located as the target video data. After the target video data is located, several corresponding video frames corresponding to the current target video data are searched according to the bottom-level index corresponding to the second category of information.
与现有技术相比,本发明的有益效果是:获取若干视频源对应的视频数据依次进行帧切割,将每个视频源对应的视频数据划分为各自对应的若干视频帧,对每个视频源对应视频数据的全部视频帧进行特征处理,进而获取每个视频数据对应的特征帧信息,构建多级索引文件,将全部视频源对应的视频数据映射至多级索引文件中,进而构建每个视频数据对应的分层检索索引,将全部视频数据的分层检索索引导入配置完成的查询平台所设置的终端数据库内,向查询平台内输入所需检索的视频数据的检索信息,根据检索信息与分层检索索引进行索引匹配,进而定位出目标视频数据,一定程度上实现了对视频数据的高效检索和精准检索。Compared with the prior art, the beneficial effects of the present invention are: obtaining video data corresponding to several video sources and performing frame cutting in sequence, dividing the video data corresponding to each video source into several corresponding video frames, performing feature processing on all video frames of the video data corresponding to each video source, and then obtaining feature frame information corresponding to each video data, constructing a multi-level index file, mapping the video data corresponding to all video sources into the multi-level index file, and then constructing a hierarchical retrieval index corresponding to each video data, importing the hierarchical retrieval index of all video data into a terminal database set up by a configured query platform, inputting retrieval information of the video data to be retrieved into the query platform, performing index matching based on the retrieval information and the hierarchical retrieval index, and then locating the target video data, thereby realizing efficient and accurate retrieval of video data to a certain extent.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明的流程图。FIG. 1 is a flow chart of the present invention.
具体实施方式DETAILED DESCRIPTION
如图1所示,一种用于视频数据的多级文件索引管理方法,包括以下步骤:As shown in FIG1 , a multi-level file index management method for video data includes the following steps:
步骤S1:获取若干视频源对应的视频数据,对全部的视频数据依次进行帧切割,进而将每个视频源对应的视频数据划分为各自对应的若干视频帧,对每个视频源对应视频数据的若干视频帧进行特征处理,进而获取每个视频数据对应的特征帧信息;Step S1: obtaining video data corresponding to a plurality of video sources, performing frame cutting on all the video data in sequence, and then dividing the video data corresponding to each video source into a plurality of video frames corresponding to each of the video sources, performing feature processing on a plurality of video frames corresponding to the video data of each video source, and then obtaining feature frame information corresponding to each video data;
步骤S2:构建多级索引文件,将全部视频源对应的视频数据映射至多级索引文件中,进而构建每个视频数据对应的分层检索索引;Step S2: construct a multi-level index file, map the video data corresponding to all video sources into the multi-level index file, and then construct a hierarchical retrieval index corresponding to each video data;
步骤S3:配置查询平台,将全部视频数据的分层检索索引导入查询平台对应设置的终端数据库内,向查询平台内输入所需检索的视频数据的检索信息,根据检索信息与分层检索索引进行索引匹配,进而定位出目标视频数据。Step S3: Configure the query platform, import the hierarchical retrieval index of all video data into the terminal database corresponding to the query platform, input the retrieval information of the video data to be retrieved into the query platform, perform index matching based on the retrieval information and the hierarchical retrieval index, and then locate the target video data.
需要进一步说明的是,在具体的实施过程中,获取若干视频源对应的视频数据,对全部的视频数据依次进行帧切割,进而将每个视频源对应的视频数据划分为各自对应的若干视频帧的过程包括:It should be further explained that, in a specific implementation process, the process of obtaining video data corresponding to a plurality of video sources, performing frame cutting on all the video data in sequence, and then dividing the video data corresponding to each video source into a plurality of corresponding video frames includes:
对若干个视频源进行编号,并将编号记为i,则有i=1,2,3,……,n,其中n为大于0的自然数,编号为i的视频源对应包括若干个视频数据,将编号为i的视频源对应包括的全部视频数据构建成一个相应的视频集合,并记为Ω{i};A number of video sources are numbered and recorded as i, then i=1, 2, 3, ..., n, where n is a natural number greater than 0, and the video source numbered i includes a number of video data, and all the video data corresponding to the video source numbered i are constructed into a corresponding video set, which is recorded as Ω{i};
对视频集合Ω{i}所包括的全部视频数据进行编号,每个视频数据记作VD[i][1],VD[i][2],VD[i][3],……,VD[i][m],m为大于0的自然数,获取全部视频源各自对应的全部视频数据,从i=1的视频源开始,依次对该视频源所包括的VD[1][1],VD[1][2],……,VD[1][m]进行帧切割,当前视频源对应全部视频数据处理完成后,继续进行i=2的视频源对应全部视频数据的帧切割,即进行视频数据VD[2][1],VD[2][2],……,VD[2][m]的帧切割,重复上述操作,对i=3—n的视频源对应的全部视频数据进行帧切割,其中,i=n的视频源对应的视频数据包括VD[n][1],VD[n][2],VD[n][3],……VD[n][m];Number all video data included in the video set Ω{i}, each video data is recorded as VD[i][1], VD[i][2], VD[i][3], ..., VD[i][m], where m is a natural number greater than 0, obtain all video data corresponding to all video sources, start from the video source i=1, and sequentially perform frame cutting on VD[1][1], VD[1][2], ..., VD[1][m] included in the video source. After all video data corresponding to the current video source are processed, continue to perform frame cutting on all video data corresponding to the video source i=2, that is, perform frame cutting on video data VD[2][1], VD[2][2], ..., VD[2][m]. Repeat the above operation to perform frame cutting on all video data corresponding to the video sources i=3-n, wherein the video data corresponding to the video source i=n includes VD[n][1], VD[n][2], VD[n][3], ..., VD[n][m].
通过帧切割将每个视频源所包括的视频数据划分为各自对应的若干视频帧,将视频帧所在视频源的编号,视频帧所在视频数据的编号以及视频帧所在视频数据上对应的时间戳合并作为当前视频帧的帧标识,将帧标识记作Z,将时间戳记作T,则有Z=i—m—T。Through frame cutting, the video data included in each video source is divided into several corresponding video frames. The number of the video source where the video frame is located, the number of the video data where the video frame is located, and the corresponding timestamp on the video data where the video frame is located are combined as the frame identifier of the current video frame. The frame identifier is denoted as Z, and the timestamp is denoted as T, then Z=i-m-T.
需要说明的是,Z=i—m—T的含义为:第i个视频源内第m个视频数据对应时间戳为T的视频帧,视频数据包括若干视频帧,视频帧的长度单位为秒:S,视频帧的长度设置为2S,以每个视频帧对应帧起始时间作为相应视频帧的时间戳。It should be noted that Z=i-m-T means that the m-th video data in the ith video source corresponds to a video frame with a timestamp of T, the video data includes several video frames, the length of the video frame is in seconds: S, the length of the video frame is set to 2S, and the start time of each video frame is used as the timestamp of the corresponding video frame.
需要进一步说明的是,在具体的实施过程中,对每个视频源对应视频数据的若干视频帧进行特征处理,进而获取每个视频数据对应的特征帧信息的过程包括:It should be further explained that, in a specific implementation process, the process of performing feature processing on a plurality of video frames of video data corresponding to each video source and then obtaining feature frame information corresponding to each video data includes:
对全部视频帧进行的特征处理包括特征提取以及特征向量构建;Feature processing of all video frames includes feature extraction and feature vector construction;
通过特征提取获取每个视频帧的颜色特征、边缘特征以及纹理特征,所述颜色特征通过计算视频帧对应的颜色直方图进行,所述边缘特征通过Canny边缘检测算法进行,所述纹理特征通过局部二值模式进行;The color feature, edge feature and texture feature of each video frame are obtained by feature extraction, wherein the color feature is obtained by calculating the color histogram corresponding to the video frame, the edge feature is obtained by using the Canny edge detection algorithm, and the texture feature is obtained by using the local binary pattern;
特征向量构建的内容如下:通过卷积神经网络技术构建进行向量化处理的向量构建模型,以每个视频数据所包括视频帧中颜色特征占比最高的作为向量构建模型相应的第一向量参数,以每个视频数据所包括视频帧中边缘特征占比最高的作为向量构建模型相应的第二向量参数,以每个视频数据所包括视频帧中纹理特征占比最高的作为向量构建模型相应的第三向量参数;The content of the feature vector construction is as follows: construct a vector construction model for vectorization processing by using the convolutional neural network technology, take the color feature with the highest proportion in the video frame included in each video data as the first vector parameter corresponding to the vector construction model, take the edge feature with the highest proportion in the video frame included in each video data as the second vector parameter corresponding to the vector construction model, take the texture feature with the highest proportion in the video frame included in each video data as the third vector parameter corresponding to the vector construction model;
将第一向量参数、第二向量参数以及第三向量参数输入至向量构建模型,进而构建出颜色特征对应的常规特征向量、边缘特征对应的常规特征向量以及纹理特征对应的常规特征向量;Inputting the first vector parameter, the second vector parameter and the third vector parameter into the vector construction model, thereby constructing a conventional feature vector corresponding to the color feature, a conventional feature vector corresponding to the edge feature and a conventional feature vector corresponding to the texture feature;
设置颜色特征、边缘特征以及纹理特征对应常规特征向量的向量区分角范围,所述向量区分角范围包括第一正向区间范围、第二正向区间范围、第一负向区间范围以及第二负向区间范围;Setting a vector distinguishing angle range of a conventional feature vector corresponding to a color feature, an edge feature, and a texture feature, wherein the vector distinguishing angle range includes a first positive interval range, a second positive interval range, a first negative interval range, and a second negative interval range;
其中,第一正向区间范围为常规特征向量右侧0°—90°角范围,第二正向区间范围为常规特征向量右侧91°—80°角范围,第一负向区间范围为常规特征向量左侧0°—90°角范围,第二负向区间范围为常规特征向量左侧91°—180°角范围;Among them, the first positive interval range is the 0°-90° angle range on the right side of the conventional eigenvector, the second positive interval range is the 91°-80° angle range on the right side of the conventional eigenvector, the first negative interval range is the 0°-90° angle range on the left side of the conventional eigenvector, and the second negative interval range is the 91°-180° angle range on the left side of the conventional eigenvector;
需要说明的是,颜色特征、边缘特征以及纹理特征对应常规特征向量的向量区分角范围皆为上述所述情形;It should be noted that the vector discrimination angle ranges of the color features, edge features and texture features corresponding to the conventional feature vectors are all as described above;
将全部视频帧对应的颜色特征、边缘特征以及纹理特征输入至向量构建模型中,进而获取每个视频帧对应的颜色特征、边缘特征以及纹理特征特征向量,获取每个视频帧对应颜色特征的特征向量与相应常规特征向量的夹角度数,获取每个视频帧对应边缘特征的特征向量与相应常规特征向量的夹角度数,以及获取每个视频帧对应纹理特征的特征向量与相应常规特征向量的夹角度数;Input the color features, edge features and texture features corresponding to all video frames into the vector construction model, and then obtain the color feature, edge feature and texture feature feature vectors corresponding to each video frame, obtain the angle between the feature vector of the color feature corresponding to each video frame and the corresponding conventional feature vector, obtain the angle between the feature vector of the edge feature corresponding to each video frame and the corresponding conventional feature vector, and obtain the angle between the feature vector of the texture feature corresponding to each video frame and the corresponding conventional feature vector;
当夹角度数处于第一正向区间范围时,则将相应的特征向量标注为A类特征向量,当夹角度数处于第二正向区间范围时,则将相应的特征向量标注为B类特征向量;When the angle is within the first positive interval, the corresponding eigenvector is marked as a type A eigenvector; when the angle is within the second positive interval, the corresponding eigenvector is marked as a type B eigenvector;
当夹角度数处于第一负向区间范围时,则将相应的特征向量标注为C类特征向量,当夹角度数处于第二负向区间范围时,则将相应的特征向量标注为D类特征向量;When the angle is within the first negative interval, the corresponding eigenvector is marked as a C-type eigenvector; when the angle is within the second negative interval, the corresponding eigenvector is marked as a D-type eigenvector;
将每个视频数据所对应视频帧全部被标注过的特征向量作为相应视频数据的特征帧信息。All the marked feature vectors of the video frames corresponding to each video data are used as the feature frame information of the corresponding video data.
需要进一步说明的是,在具体的实施过程中,构建多级索引文件的过程包括:It should be further explained that, in the specific implementation process, the process of building a multi-level index file includes:
获取每个视频源对应的源地址信息,获取每个视频源所包括全部视频数据各自对应的视频信息摘要,以及获取每个视频数据所包括视频帧的帧信息摘要;Obtain source address information corresponding to each video source, obtain video information summaries corresponding to all video data included in each video source, and obtain frame information summaries of video frames included in each video data;
所述源地址信息用于记录每个视频源的来源,源地址信息包括地址IP、地址网关以及地址数字序列;The source address information is used to record the source of each video source, and the source address information includes the address IP, address gateway and address digital sequence;
所述视频信息摘要用于记录每个视频数据对应的视频压缩信息,视频压缩信息用于反映每个视频数据的概览内容;The video information summary is used to record the video compression information corresponding to each video data, and the video compression information is used to reflect the overview content of each video data;
所述帧信息摘要包括帧长度、帧分辨率以及帧率;The frame information summary includes frame length, frame resolution and frame rate;
根据视频源对应的源地址信息构建顶层索引结构,根据视频源下每个视频数据对应的视频信息摘要构建顶层索引结构对应的等同于当前视频数据数目的中层索引结构,根据视频数据下每个视频帧对应的帧信息摘要构建中层索引结构对应的等同于当前视频帧数目的底层索引结构;A top-level index structure is constructed according to the source address information corresponding to the video source, a middle-level index structure corresponding to the top-level index structure and equal to the number of current video data is constructed according to the video information summary corresponding to each video data under the video source, and a bottom-level index structure corresponding to the middle-level index structure and equal to the number of current video frames is constructed according to the frame information summary corresponding to each video frame under the video data;
根据顶层索引结构的数目分配相应数目的空白文件,并将顶层索引结构对应包括的中层索引结构以及底层索引结构作为空白文件的记录项,进而构建出每个视频源对应的总索引文件;A corresponding number of blank files are allocated according to the number of top-level index structures, and the middle-level index structure and the bottom-level index structure included in the top-level index structure are used as record items of the blank files, thereby constructing a total index file corresponding to each video source;
设置索引遍历起点,将每个视频源对应的总索引文件链接至索引遍历起点上,进而构建出用于遍历全部视频源、视频源所包括全部视频数据以及视频数据所包括全部视频帧的多级索引文件。An index traversal starting point is set, and a general index file corresponding to each video source is linked to the index traversal starting point, thereby constructing a multi-level index file for traversing all video sources, all video data included in the video sources, and all video frames included in the video data.
需要进一步说明的是,在具体的实施过程中,将全部视频源对应的视频数据映射至多级索引文件中,进而构建每个视频数据对应的分层检索索引的过程包括:It should be further explained that, in a specific implementation process, the process of mapping the video data corresponding to all video sources into a multi-level index file and then constructing a hierarchical retrieval index corresponding to each video data includes:
将每个视频源按照编号从小至大的顺序映射至多级索引文件中的顶层索引结构中,并将每个视频源的编号作为顶层索引,将每个视频源所包括的全部视频数据按照从左至右,从上至下的顺序映射至多级索引文件中的中层索引结构中,并将每个视频数据的编号作为中层索引,将每个视频数据所包括的全部视频帧映射至多级索引文件中的底层索引结构中,并将每个视频帧的时间戳作为底层索引;Map each video source to the top-level index structure in the multi-level index file in the order of the number from small to large, and use the number of each video source as the top-level index, map all video data included in each video source to the middle-level index structure in the multi-level index file in the order from left to right and from top to bottom, and use the number of each video data as the middle-level index, map all video frames included in each video data to the bottom-level index structure in the multi-level index file, and use the timestamp of each video frame as the bottom-level index;
将顶层索引、中层索引以及底层索引整合构建为每个视频数据对应的分层检索索引,所述分层检索索引用于后续对视频数据的快速检索。The top-level index, the middle-level index and the bottom-level index are integrated to construct a hierarchical retrieval index corresponding to each video data, and the hierarchical retrieval index is used for subsequent rapid retrieval of the video data.
需要进一步说明的是,在具体的实施过程中,配置查询平台的过程包括:It should be further explained that, in the specific implementation process, the process of configuring the query platform includes:
设置查询平台用于进行不同视频源对应视频数据,以及每个视频数据对应视频帧的查询操作,由查询平台向预设的服务器发送一个链接请求,由服务器接受链接请求并判断链接请求的IP地址是否在服务器对应设置的地址表单内;A query platform is set up to query the video data corresponding to different video sources and the video frames corresponding to each video data. The query platform sends a link request to a preset server, and the server receives the link request and determines whether the IP address of the link request is in the address form set corresponding to the server;
若是,则将查询平台与服务器进行链接;If yes, the query platform is linked to the server;
若否,则判断当前查询平台存在系统风险,获取记载有当前系统风险的平台日志,并将平台日志所包括的若干个日志记录项输入至预设的风险库内,由风险库根据每个日志记录项的内容匹配出具体风险行为以及对应的风险详情信息,以及同步匹配出每个风险详情信息对应的风险修复参数,通过相应的风险修复参数对每个具体风险行为进行修复,进而修复当前查询平台所存在的系统风险,并在系统风险修复完成后继续进行当前查询平台与服务器之间的链接;If not, it is determined that there is a system risk in the current query platform, and the platform log that records the current system risk is obtained, and several log record items included in the platform log are input into the preset risk library. The risk library matches the specific risk behavior and the corresponding risk details information according to the content of each log record item, and simultaneously matches the risk repair parameters corresponding to each risk detail information, and repairs each specific risk behavior through the corresponding risk repair parameters, thereby repairing the system risk existing in the current query platform, and continuing the link between the current query platform and the server after the system risk repair is completed;
当查询平台与服务器之间的链接成功后,则查询平台配置成功,否则,继续进行具体风险行为的修复以及查询平台与服务器之间的链接,直至查询平台与服务器之间链接成功为止。When the query platform and the server are linked successfully, the query platform configuration is successful, otherwise, the repair of specific risk behaviors and the link between the query platform and the server are continued until the query platform and the server are linked successfully.
需要进一步说明的是,在具体的实施过程中,将全部视频数据的分层检索索引导入查询平台对应设置的终端数据库内的过程包括:It should be further explained that, in the specific implementation process, the process of importing the hierarchical retrieval index of all video data into the terminal database corresponding to the query platform includes:
所述查询平台设置有相应的终端数据库,设置终端数据库对应的数据导入时段,并将数据导入时段记作T导入,T导入=[t1,t2],其中,t1为数据导入时段的开始时刻,t2为数据导入时段的结束时刻;The query platform is provided with a corresponding terminal database, a data import period corresponding to the terminal database is set, and the data import period is recorded as Timport , Timport = [ t1 , t2 ], wherein t1 is the start time of the data import period, and t2 is the end time of the data import period;
在数据导入时段内,将全部视频源对应视频数据的分层检索索引导入至终端数据库内,为每个视频源分配一个查询平台所对应的上传接口,每个上传接口对应关联一个接口序列,每个视频源所包括全部视频数据的分层检索索引通过相应的上传接口导入至终端数据库;During the data import period, the hierarchical retrieval index of the video data corresponding to all video sources is imported into the terminal database, an upload interface corresponding to the query platform is allocated to each video source, each upload interface is associated with an interface sequence, and the hierarchical retrieval index of all video data included in each video source is imported into the terminal database through the corresponding upload interface;
在导入前,判断每个上传接口对应的接口序列是否被篡改,若是,则将相应上传接口的全部视频数据的分层检索索引封装至一个空白文件内,并将该空白文件标注为异常文件,将异常文件导入至终端数据库所对应设置的数据安全区,若否,则直接将上传接口的全部视频数据的分层检索索引导入至终端数据库所设置的数据存储区进行存储;Before importing, determine whether the interface sequence corresponding to each upload interface has been tampered with. If so, encapsulate the hierarchical retrieval index of all video data of the corresponding upload interface into a blank file, mark the blank file as an abnormal file, and import the abnormal file into the data security area set corresponding to the terminal database. If not, directly import the hierarchical retrieval index of all video data of the upload interface into the data storage area set by the terminal database for storage;
在数据安全区对异常文件中所包括的每一个视频数据的分层检索索引进行遍历,依次判断每个分层检索索引是否变更,若是,则表示分层检索索引存在错误,对当前的分层检索索引进行更新,将其更新为未发生变更之前正确的分层检索索引,若否,则对当前的分层检索索引不进行任何操作;直至完成异常文件中全部存在错误的分层检索索引的更新;In the data security area, the hierarchical retrieval index of each video data included in the abnormal file is traversed, and each hierarchical retrieval index is judged in turn whether it has been changed. If so, it means that there is an error in the hierarchical retrieval index, and the current hierarchical retrieval index is updated to be the correct hierarchical retrieval index before the change. If not, no operation is performed on the current hierarchical retrieval index; until the update of all the hierarchical retrieval indexes with errors in the abnormal file is completed;
当异常文件中全部存在错误的分层检索索引更新完毕后,将异常文件标注为安全文件,并将安全文件所包括的全部分层检索索引转移存储至数据存储区内。When all erroneous hierarchical retrieval indexes in the abnormal file are updated, the abnormal file is marked as a safe file, and all hierarchical retrieval indexes included in the safe file are transferred and stored in the data storage area.
需要进一步说明的是,在具体的实施过程中,向查询平台内输入所需检索的视频数据的检索信息,根据检索信息与分层检索索引进行索引匹配,进而定位出目标视频数据的过程包括:It should be further explained that, in the specific implementation process, the process of inputting the search information of the video data to be searched into the query platform, performing index matching with the hierarchical search index according to the search information, and then locating the target video data includes:
设置检索时段,并将检索时段记作T检索,有T检索=[t始,t终],其中,t始为检索时段的开始时刻,t终为检索时段的终止时刻,在t始对应的开始时刻,编辑所需检索的视频数据对应的检索信息,所述检索信息包括一类信息以及二类信息;Set a search period, and record the search period as Tsearch , where Tsearch =[ tstart , tend ], where tstart is the start time of the search period, and tend is the end time of the search period. At the start time corresponding to tstart , edit the search information corresponding to the video data to be searched, wherein the search information includes the first type of information and the second type of information;
所述一类信息用于进行目标视频数据的定位,一类信息包括当前所需检索视频数据的顶层索引以及中层索引;The first type of information is used to locate the target video data, and the first type of information includes the top-level index and the middle-level index of the video data currently required to be retrieved;
所述二类信息用于进行目标视频数据所包括若干视频帧的单点定位,二类信息包括当前目标视频数据对应全部视频帧的底层索引;The second type of information is used to perform single-point positioning of a plurality of video frames included in the target video data, and the second type of information includes the bottom-level indexes of all video frames corresponding to the current target video data;
将编辑完成的检索信息输入至查询平台内,进而查询平台根据检索信息与分层检索索引进行索引匹配,将终端数据库中满足一类信息对应顶层索引以及中层索引的分层检索索引作为目标索引,将目标索引对应的视频数据定位为目标视频数据;Input the edited search information into the query platform, and then the query platform performs index matching with the hierarchical search index according to the search information, and uses the hierarchical search index that satisfies the top-level index and the middle-level index corresponding to the first type of information in the terminal database as the target index, and locates the video data corresponding to the target index as the target video data;
当定位出所需检索的目标视频数据后,根据二类信息对应的底层索引搜索当前目标视频数据对应的若干个相应视频帧,进而完成每个视频帧的单点定位。After the target video data to be retrieved is located, several corresponding video frames corresponding to the current target video data are searched according to the underlying index corresponding to the second type of information, thereby completing the single-point positioning of each video frame.
需要说明的是,通过一类信息实现了所需检索视频数据的快速定位,并将定位到的视频数据作为目标视频数据,通过二类信息进一步对目标视频数据对应的全部视频帧进行定位,进而获取了视频数据更为详细的视频特征。It should be noted that the first type of information is used to quickly locate the required video data, and the located video data is used as the target video data. The second type of information is used to further locate all video frames corresponding to the target video data, thereby obtaining more detailed video features of the video data.
以上实施例仅用以说明本发明的技术方法而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方法进行修改或等同替换,而不脱离本发明技术方法的精神和范围。The above embodiments are only used to illustrate the technical method of the present invention rather than to limit it. Although the present invention has been described in detail with reference to the preferred embodiments, those skilled in the art should understand that the technical method of the present invention may be modified or replaced by equivalents without departing from the spirit and scope of the technical method of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411045767.6A CN118839031A (en) | 2024-08-01 | 2024-08-01 | Multi-level file index management method for video data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411045767.6A CN118839031A (en) | 2024-08-01 | 2024-08-01 | Multi-level file index management method for video data |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118839031A true CN118839031A (en) | 2024-10-25 |
Family
ID=93147260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411045767.6A Pending CN118839031A (en) | 2024-08-01 | 2024-08-01 | Multi-level file index management method for video data |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118839031A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104967862A (en) * | 2015-07-22 | 2015-10-07 | 东方网力科技股份有限公司 | Video storage method and device, and video searching method and device |
US20210334242A1 (en) * | 2020-04-23 | 2021-10-28 | Microsoft Technology Licensing, Llc | Generation and traversal of a hierarchical index structure for efficient data retrieval |
CN114189752A (en) * | 2021-11-25 | 2022-03-15 | 杭州视在数科信息技术有限公司 | A Video Storage Scheme Based on Object Storage Service |
CN114301602A (en) * | 2021-12-28 | 2022-04-08 | 苏州浪潮智能科技有限公司 | Video protection method and device based on block chain |
CN114612834A (en) * | 2022-03-15 | 2022-06-10 | 北京中量质子网络信息科技有限公司 | Programmed creative video clip duplication eliminating method, system, equipment and storage medium |
CN114630143A (en) * | 2020-12-10 | 2022-06-14 | 浙江宇视科技有限公司 | Video stream storage method and device, electronic equipment and storage medium |
CN117201873A (en) * | 2023-11-07 | 2023-12-08 | 湖南博远翔电子科技有限公司 | Intelligent analysis method and device for video image |
-
2024
- 2024-08-01 CN CN202411045767.6A patent/CN118839031A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104967862A (en) * | 2015-07-22 | 2015-10-07 | 东方网力科技股份有限公司 | Video storage method and device, and video searching method and device |
US20210334242A1 (en) * | 2020-04-23 | 2021-10-28 | Microsoft Technology Licensing, Llc | Generation and traversal of a hierarchical index structure for efficient data retrieval |
CN114630143A (en) * | 2020-12-10 | 2022-06-14 | 浙江宇视科技有限公司 | Video stream storage method and device, electronic equipment and storage medium |
CN114189752A (en) * | 2021-11-25 | 2022-03-15 | 杭州视在数科信息技术有限公司 | A Video Storage Scheme Based on Object Storage Service |
CN114301602A (en) * | 2021-12-28 | 2022-04-08 | 苏州浪潮智能科技有限公司 | Video protection method and device based on block chain |
CN114612834A (en) * | 2022-03-15 | 2022-06-10 | 北京中量质子网络信息科技有限公司 | Programmed creative video clip duplication eliminating method, system, equipment and storage medium |
CN117201873A (en) * | 2023-11-07 | 2023-12-08 | 湖南博远翔电子科技有限公司 | Intelligent analysis method and device for video image |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106570165B (en) | A content-based video retrieval method and device | |
CN111563103B (en) | Method and system for detecting data blood relationship | |
CN110716539B (en) | Fault diagnosis and analysis method and device | |
CN109408578A (en) | One kind being directed to isomerous environment monitoring data fusion method | |
CN116955469A (en) | Service alarm tracing method based on blood margin analysis | |
CN113641653A (en) | Historical data migration method and system based on domestic dream database | |
CN111241293A (en) | Knowledge graph algorithm constructed based on academic literature | |
CN116521719A (en) | A Query Optimization System Based on Cost Estimation | |
CN111428095B (en) | Graph data quality verification method and graph data quality verification device | |
CN114491168B (en) | Regulating cloud sample data sharing method, system, computer equipment and storage medium | |
CN109636303B (en) | A storage method and system for semi-automatically extracting and structuring document information | |
CN107807976A (en) | IP attribution inquiry methods and device | |
CN115481117A (en) | Asset data processing method and system based on metadata management | |
CN118964469A (en) | A multi-source heterogeneous data integration method and system for data integration middleware | |
CN111913963B (en) | Method and system for storing interface data on demand | |
CN118839031A (en) | Multi-level file index management method for video data | |
CN117609153B (en) | Electronic archive management method and device based on multi-source heterogeneous | |
CN104376000A (en) | Webpage attribute determination method and webpage attribute determination device | |
CN118069737A (en) | Data acquisition method based on block chain | |
CN116916195A (en) | Passive optical network management method, device and readable storage medium | |
CN115438061A (en) | Method and system for updating customer standard address database | |
CN111708967B (en) | Fingerprint identification method based on sitemap | |
CN111143582B (en) | Multimedia resource recommendation method and device for updating association words in double indexes in real time | |
CN111898961A (en) | Error checking method suitable for same field of standing book data of similar power equipment | |
WO2024114784A1 (en) | Method and system for blockchain-based data management |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: China Address after: No. 122 Xingguo Avenue, Xingguo Town, Yangxin County, Huangshi City, Hubei Province 435000 Applicant after: Hubei Yifeng Digital Technology Co.,Ltd. Address before: No. 122, Xingguo Avenue, Xingguo Town, Yangxin County, Huangshi City, Hubei Province, 435200 Applicant before: Hubei Yifeng Digital Technology Co.,Ltd. Country or region before: China |
|
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |