[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN118771889A - 一种HfCxNy-SiC改性C/C复合材料及其制备方法 - Google Patents

一种HfCxNy-SiC改性C/C复合材料及其制备方法 Download PDF

Info

Publication number
CN118771889A
CN118771889A CN202410795611.3A CN202410795611A CN118771889A CN 118771889 A CN118771889 A CN 118771889A CN 202410795611 A CN202410795611 A CN 202410795611A CN 118771889 A CN118771889 A CN 118771889A
Authority
CN
China
Prior art keywords
infiltration
composite material
hfc
powder
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410795611.3A
Other languages
English (en)
Inventor
贾瑜军
刘志强
王雅雯
李贺军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202410795611.3A priority Critical patent/CN118771889A/zh
Publication of CN118771889A publication Critical patent/CN118771889A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

本发明公开了一种HfCxNy‑SiC改性C/C复合材料及其制备方法,包括:对C/C复合材料进行预处理,得到熔渗用C/C预制体;将HfSi2与Si3N4粉末混合,干燥,得到熔渗用粉料;将熔渗用C/C预制体平行放置于熔渗用粉料上层,并继续添加熔渗用粉料至完全覆盖熔渗用C/C预制体且高于熔渗用C/C预制体上表面,进行密封后,在高温下通过反应熔渗工艺进行改性处理,得到C/C‑HfCxNy‑SiC复合材料;对C/C‑HfCxNy‑SiC复合材料进行打磨、清洗、干燥处理,得到HfCxNy‑SiC改性C/C复合材料。本发明采用反应熔渗工艺制备的复合材料界面结合强,抗烧蚀性能优异,抗冲刷性能强。

Description

一种HfCxNy-SiC改性C/C复合材料及其制备方法
技术领域
本发明属于C/C复合材料改性技术领域,涉及一种HfCxNy-SiC改性C/C复合材料及其制备方法。
背景技术
碳/碳复合材料自1958年被发现以来,因其低密度、高热导率、高比强度、高比模量、低热膨胀系数、以及力学强度随温度升高不降反升的特点,被广泛应用于固体火箭发动机喷管、飞行器的鼻锥和前缘以及涡轮发动机叶片等航空航天领域热端部件。但碳/碳复合材料氧化活性较高,氧化失重使材料强度大幅度降低。高焓燃烧环境中较差的抗烧蚀性、含氧热流下较弱的氧化稳定性极大地限制了碳/碳复合材料的应用。
超高温陶瓷(UHTCs)的熔点超过3000℃,其氧化物的熔点在1800℃以上,是一类能在高温环境(>2000℃)及等离子体反应气氛下保持本身物理化学性质相对稳定,并在1650℃以上重复使用的热防护材料,被认为是提高C/C复合材料性能的理想引入材料。研究表明,碳氮化铪(简称:HfCxNy)超高温陶瓷具有比HfC(3890℃)更高的熔点、更优异的硬度、韧性和延展性,能更好地满足新一代高超声速飞行器服役环境对材料性能的需求。但是目前关于HfCxNy的研究很少,已有的报道也主要集中于一些理论计算和HfCxNy陶瓷的制备以及陶瓷本身的性能,很少有学者将HfCxNy作为基体改性组元研究其对C/C复合材料性能的影响。
文献“Zhang,J.et al.Ablation behavior of a novel carbonitridesHfC0.68N0.32 coating for C/C composites in laser and oxyacetyleneenvironment.Journal of the European Ceramic Society 44,3049-3057.”采用HfCl4-CH4-N2-H2-Ar体系,通过CVD工艺在C/C复合材料表面预制的SiC涂层上沉积了HfC0.68 N0.32涂层,材料在激光和氧乙炔气氛下表现出良好的抗烧蚀性能。但CVD制备的涂层与基体结合力较差,在高温长时烧蚀过程中,易造成涂层剥落。
发明内容
本发明的目的在于提供一种HfCxNy-SiC改性C/C复合材料及其制备方法,解决现有技术中界面结合力较差的问题。
为达到上述目的,本发明采用以下技术方案予以实现:
一种HfCxNy-SiC改性C/C复合材料的制备方法,包括:
对C/C复合材料进行预处理,得到熔渗用C/C预制体;
将HfSi2与Si3N4粉末混合,干燥,得到熔渗用粉料;
将熔渗用C/C预制体平行放置于熔渗用粉料上层,并继续添加熔渗用粉料至完全覆盖熔渗用C/C预制体且高于熔渗用C/C预制体上表面,进行密封后,在高温下通过反应熔渗工艺进行改性处理,得到C/C-HfCxNy-SiC复合材料;
对C/C-HfCxNy-SiC复合材料进行打磨、清洗、干燥处理,得到HfCxNy-SiC改性C/C复合材料。
进一步的,所述预处理包括打磨处理、清洗处理、煮沸处理和干燥处理。
进一步的,所述煮沸处理温度为100~350℃,处理时间为1~6h。
进一步的,所述干燥处理温度为70℃,处理时间为6~10h。
进一步的,所述HfSi2与Si3N4粉末的摩尔比为1~4:1~4。
进一步的,所述HfSi2与Si3N4粉末通过球磨混合,所述球磨过程中,球料比为2:1,转速为200~500rpm,球磨时间为4~6h。
进一步的,所述熔渗用粉料的干燥温度为60~100℃,干燥时间为8~12h。
进一步的,所述改性处理的条件为:在Ar或N2惰性气氛保护环境或真空度为1~100Pa的真空环境下,温度为1600~2100℃,升温速率为4~10℃/min,保温时间为0.5~3h。
进一步的,所述HfCxNy-SiC改性C/C复合材料的干燥温度为60~100℃,时间为6~12h。
采用所述制备方法制得的HfCxNy-SiC改性C/C复合材料。
与现有技术相比,本发明具有以下有益效果:
本发明提供一种HfCxNy-SiC改性C/C复合材料的制备方法,以HfSi2和Si3N4混合粉料做为熔渗剂,将具有超高熔点、强硬度、一定韧性和延展性的HfCxNy用于改性处理C/C复合材料,其中Si3N4提供氮源,采用反应熔渗工艺制备的复合材料界面结合强。此外,SiC的引入使得Hf(C,N)基复合材料对于不同的高温应用具有吸引力,通过改变HfSi2和Si3N4摩尔比来调控HfCxNy成分和SiC的相对含量,使组织成分易控。本发明工艺简单,对设备要求低,与碳化铪相比,碳氮化铪的熔点更高,碳氮化铪陶瓷基复合材料在高温含氧环境下,抗烧蚀性能优异。且碳氮化铪具有更高的硬度、一定的韧性和延展性,较其它超高温陶瓷基体,在极端气动热和高速颗粒侵蚀环境中,抗冲刷性能强。能更好地提高材料在高热流密度、高压气流和高速颗粒侵蚀环境中的服役寿命,延长高速飞行器的航时,具有重大的空间战略意义。同时,在本发明的基础上,还可以更广泛的设计HfCxNy改性碳/碳复合材料的制备和性能提升方案,因此,本发明的发展前景十分可观,经济效益和社会效益十分突出。
附图说明
为了更清楚的说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明的HfCxNy-SiC改性C/C复合材料的制备方法工艺流程图。
图2为本发明的实施例1制备的HfCxNy-SiC改性C/C复合材料的XRD图。
图3为本发明的实施例1制备的HfCxNy-SiC改性C/C复合材料的SEM图。
具体实施方式
为使本领域技术人员可了解本发明的特点及效果,以下谨就说明书及权利要求书中提及的术语及用语进行一般性的说明及定义。除非另有指明,否则文中使用的所有技术及科学上的字词,均为本领域技术人员对于本发明所了解的通常意义,当有冲突情形时,应以本说明书的定义为准。
本文描述和公开的理论或机制,无论是对或错,均不应以任何方式限制本发明的范围,即本发明内容可以在不为任何特定的理论或机制所限制的情况下实施。
本文中,所有以数值范围或百分比范围形式界定的特征如数值、数量、含量与浓度仅是为了简洁及方便。据此,数值范围或百分比范围的描述应视为已涵盖且具体公开所有可能的次级范围及范围内的个别数值(包括整数与分数)。
本文中,若无特别说明,“包含”、“包括”、“含有”、“具有”或类似用语涵盖了“由……组成”和“主要由……组成”的意思,例如“A包含a”涵盖了“A包含a和其他”和“A仅包含a”的意思。
本文中,为使描述简洁,未对各个实施方案或实施例中的各个技术特征的所有可能的组合都进行描述。因此,只要这些技术特征的组合不存在矛盾,各个实施方案或实施例中的各个技术特征可以进行任意的组合,所有可能的组合都应当认为是本说明书记载的范围。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
下列实施例中使用本领域常规的仪器设备。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。下列实施例中使用各种原料,除非另作说明,都使用常规市售产品,其规格为本领域常规规格。在本发明的说明书以及下述实施例中,如没有特别说明,“%”都表示重量百分比,“份”都表示重量份,比例都表示重量比。
下面结合附图对本发明做进一步详细描述:
参见图1,本发明提供一种HfCxNy-SiC改性C/C复合材料的制备方法,包括以下步骤:
步骤1:选取2.5D C/C复合材料,将其加工为10mm×10mm×10mm的块状试样,依次使用50目、800目和3000目的碳化硅砂纸打磨处理,保证样品在进行反应熔体浸渗时无明显缺陷,表面呈规整光洁状态。使用去离子水对打磨后的试样进行超声清洗,清洗次数为3~5次,每次的清洗时间为30~60min,随后,在100~350℃下,对块状试样进行1~6h煮沸处理,直至试样表面无气泡冒出,保证试样内的开孔完全打开,然后将试样放在温度为70℃的电热鼓风干燥箱中烘干6~10h,得到熔渗用C/C预制体。
步骤2:将HfSi2与Si3N4粉末按照摩尔比1~4:1~4混合,将粉体混合物和氧化锆磨球放入刚玉球磨罐中,其中球料比2:1,然后密封刚玉球磨罐,用行星式球磨机在转速为200~500rpm的条件下进行球磨,球磨4~6h后取出粉料,然后将其放置于温度为60~100℃的电热鼓风干燥箱中烘干8~12h,得到混合均匀的熔渗用粉料。
步骤3:采用反应熔渗工艺对C/C复合材料进行改性处理,在石墨坩埚内壁铺上3~5层石墨纸,在坩埚底部铺上4~10mm厚的熔渗用粉料,将熔渗用C/C预制体平行放置于熔渗用粉料上层,继续添加熔渗用粉料至完全覆盖熔渗用C/C预制体且高于熔渗用C/C预制体上表面5~10mm,熔渗用粉料添加过程中保证熔渗用粉料呈疏松状态,熔渗用粉料添加完毕后,依次用石墨纸、碳毡进行密封处理,随后对坩埚进行密封处理。
步骤4:将密封坩埚放于石墨炉中进行高温处理,其高温热处理条件为:温度为1600~2100℃、炉内真空度为1~100Pa,或者处于Ar或N2惰性气氛保护环境下,升温速率为4~10℃/min,保温时间为0.5~3h,随后进行断电降温,待样品随炉冷却至室温取出,得到C/C-HfCxNy-SiC复合材料。
步骤5:对反应熔渗后得到的C/C-HfCxNy-SiC复合材料依次使用50目、800目和3000目的金刚石磨盘进行打磨处理,保证表面无明显凸起。随后使用去离子水对样品进行超声清洗,清洗次数为3~5次,每次的清洗时间为30~60min,随后将其放入电热鼓风干燥箱中在60~100℃下烘干6~12h,即得到HfCxNy-SiC改性C/C复合材料。
下面结合具体实施例对本发明做进一步详细描述:
实施例一:
步骤1:选取密度为1.1g/cm3的2.5D C/C复合材料,将其加工为10mm×10mm×10mm的块状试样,依次使用50目、800目和3000目的碳化硅砂纸打磨处理,保证样品在进行反应熔体浸渗时无明显缺陷,表面呈规整光洁状态。使用去离子水对打磨后的试样进行超声清洗,清洗次数为5次,每次的清洗时间为30min,随后,在300℃下,对块状试样进行3h煮沸处理,直至试样表面无气泡冒出,保证试样内的开孔完全打开,然后将试样放在温度为70℃的电热鼓风干燥箱中烘干8h备用。
步骤2:将HfSi2与Si3N4粉末按照摩尔比4:1混合,将粉体混合物和氧化锆磨球放入刚玉球磨罐中,其中球料比2:1,然后密封刚玉球磨罐,用行星式球磨机在转速为400rpm的条件下,球磨6h后过筛,然后放置于温度为70℃的电热鼓风干燥箱中烘干8h,得到混合均匀的粉体混合物,将其作为熔渗用粉料。
步骤3:采用反应熔渗工艺对C/C复合材料进行改性处理,在石墨坩埚内壁铺上5层石墨纸,在坩埚底部铺上10mm厚的熔渗用粉料,将多孔C/C复合材料平行放置于熔渗用粉料上层,继续添加粉料至完全覆盖样品且高于样品上表面10mm,粉料添加过程中保证粉料呈疏松状态,粉料添加完毕后,依次用石墨纸、碳毡进行密封处理,随后对坩埚进行密封处理。
步骤4:将密封坩埚放于石墨炉中进行高温处理,其高温热处理条件为:温度为1700℃、炉内压力为10Pa,升温速率为5℃/min,保温时间为3h,随后进行断电降温,待样品随炉冷却至室温后取出。
步骤5:对反应熔渗后得到的复合材料依次使用50目、800目和3000目的金刚石磨盘进行打磨处理,保证样品表面无明显凸起。随后使用去离子水对样品进行超声清洗,清洗次数为5次,每次的清洗时间为60min,随后将其放入电热鼓风干燥箱中在80℃下烘干10h,即得到HfCxNy-SiC改性C/C复合材料。
对制备得到的复合材料做X-射线衍射分析,如图2所示,表明高熔点碳氮化铪在熔渗过程中生成。对制备得到的复合材料的SEM图进行分析,如图3所示,从图3可以看出,样品表面形成了白色的HfCxNy相与灰色的SiC相。因此可以判断,本实施例获得了HfCxNy-SiC改性C/C复合材料。
实施例二:
步骤1:选取密度为1.7g/cm3的C/C复合材料,将其加工为尺寸为10mm的立方块状试样,依次使用50目、800目和3000目的碳化硅砂纸打磨处理,保证样品在进行反应熔体浸渗时无明显缺陷,表面呈规整光洁状态。使用去离子水对打磨后的试样进行超声清洗,清洗次数为3次,每次的清洗时间为60min,随后,在350℃下,对块状试样进行3h煮沸处理,直至试样表面无气泡冒出,保证试样内的开孔完全打开,然后将试样放在温度为70℃的电热鼓风干燥箱中烘干6h备用。
步骤2:将HfSi2与Si3N4粉末按照摩尔比4:1混合,将粉体混合物和氧化锆磨球放入刚玉球磨罐中,其中球料比2:1,然后密封刚玉球磨罐,用行星式球磨机在转速为400rpm的条件下,球磨6h后过筛,然后放置于温度为70℃的电热鼓风干燥箱中烘干8h,得到混合均匀的粉体混合物,将其作为熔渗用粉料。
步骤3:在采用反应熔渗工艺对C/C复合材料进行改性处理,在石墨坩埚内壁铺上4层石墨纸,在坩埚底部铺上10mm厚的熔渗用粉料,将多孔C/C复合材料平行放置于熔渗用粉料上层,继续添加粉料至完全覆盖样品且高于样品上表面10mm,粉料添加过程中保证粉料呈疏松状态,粉料添加完毕后,依次用石墨纸、碳毡进行密封处理,随后对坩埚进行密封处理。
步骤4:将密封坩埚放于石墨炉中进行高温处理,其高温热处理条件为:温度为1700℃、炉内压力为10Pa,升温速率为5℃/min,保温时间为3h,随后进行断电降温,待样品随炉冷却至室温取出,得到改性碳碳复合材料。
步骤5:对反应熔渗后得到的复合材料依次使用50目、800目和3000目的金刚石磨盘进行打磨处理,保证样品表面无明显凸起。随后使用去离子水对样品进行超声清洗,清洗次数为5次,每次的清洗时间为30min,随后将其放入电热鼓风干燥箱中在80℃下烘干12h,即得到HfCxNy-SiC改性C/C复合材料。
实施例三:
步骤1:选取密度为1.2g/cm3的2.5D C/C复合材料,将其加工为10mm×10mm×10mm的块状试样,依次使用50目、800目和3000目的碳化硅砂纸打磨处理,保证样品在进行反应熔体浸渗时无明显缺陷,表面呈规整光洁状态。使用去离子水对打磨后的试样进行超声清洗,清洗次数为3次,每次的清洗时间为60min,随后,在200℃下,对块状试样进行4h煮沸处理,直至试样表面无气泡冒出,保证试样内的开孔完全打开,然后将试样放在温度为70℃的电热鼓风干燥箱中烘干6h备用。
步骤2:将HfSi2与Si3N4粉末按照摩尔比4:1混合,将粉体混合物和氧化锆磨球放入刚玉球磨罐中,其中球料比2:1,然后密封刚玉球磨罐,用行星式球磨机在转速为400rpm的条件下,球磨4h后过筛,然后放置于温度为70℃的电热鼓风干燥箱中烘干8h,得到混合均匀的粉体混合物,将其作为熔渗用粉料。
步骤3:采用反应熔渗工艺对C/C复合材料进行基体改性,在石墨坩埚内壁铺上5层石墨纸,在坩埚底部铺上6mm厚的熔渗用粉料,将多孔C/C复合材料平行放置于熔渗用粉料上层,继续添加粉料至完全覆盖样品且高于样品上表面8mm,粉料添加过程中保证粉料呈疏松状态,粉料添加完毕后,依次用石墨纸、碳毡进行密封处理,随后对坩埚进行密封处理。
步骤4:将密封坩埚放于石墨炉中进行高温处理,其高温热处理条件为:温度为1900℃、炉内通Ar气气氛,升温速率为10℃/min,保温时间为2h,随后进行断电降温,待样品随炉冷却至室温取出。
步骤5:对反应熔渗后得到的复合材料依次使用50目、800目和3000目的金刚石磨盘进行打磨处理,保证样品表面无明显凸起。随后使用去离子水对样品进行超声清洗,清洗次数为5次,每次的清洗时间为30min,随后将其放入电热鼓风干燥箱中在80℃下烘干12h,即得到HfCxNy-SiC改性C/C复合材料。
实施例四:
步骤1:选取密度为1.7g/cm3的2.5D C/C复合材料,将其加工为10mm×10mm×10mm的块状试样,依次使用50目、800目和3000目的碳化硅砂纸打磨处理,保证样品在进行反应熔体浸渗时无明显缺陷,表面呈规整光洁状态。使用去离子水对打磨后的试样进行超声清洗,清洗次数为3次,每次的清洗时间为30min,随后,在350℃下,对块状试样进行3h煮沸处理,直至试样表面无气泡冒出,保证试样内的开孔完全打开,然后将试样放在温度为70℃的电热鼓风干燥箱中烘干8h备用。
步骤2:将HfSi2与Si3N4粉末按照摩尔比4:1混合,将粉体混合物和氧化锆磨球放入刚玉球磨罐中,其中球料比2:1,然后密封刚玉球磨罐,用行星式球磨机在转速为300rpm的条件下,球磨4h后过筛,然后放置于温度为70℃的电热鼓风干燥箱中烘干10h,得到混合均匀的粉体混合物,将其作为熔渗用粉料。
步骤3:采用反应熔渗工艺对C/C复合材料进行基体改性,在石墨坩埚内壁铺上5层石墨纸,在坩埚底部铺上6mm厚的熔渗用粉料,将多孔C/C复合材料平行放置于熔渗用粉料上层,继续添加粉料至完全覆盖样品且高于样品上表面8mm,粉料添加过程中保证粉料呈疏松状态,粉料添加完毕后,依次用石墨纸、碳粉进行密封处理,随后对坩埚进行密封处理。
步骤4:将密封坩埚放于石墨炉中进行高温处理,其高温热处理条件为:温度为1900℃、炉内通Ar气气氛,保持大气压强,升温速率为4℃/min,保温时间为1h,随后进行断电降温,待样品随炉冷却至室温取出。
步骤5:对反应熔渗后得到的复合材料依次使用50目、800目和3000目的金刚石磨盘进行打磨处理,保证样品表面无明显凸起。随后使用去离子水对样品进行超声清洗,清洗次数为5次,每次的清洗时间为40min,随后将其放入电热鼓风干燥箱中在80℃下烘干12h,即得到HfCxNy-SiC改性C/C复合材料。
实施例五:
步骤1:选取密度为1.1g/cm3的2.5D C/C复合材料,将其加工为10mm×10mm×10mm的块状试样,依次使用50目、800目和3000目的碳化硅砂纸打磨处理,保证样品在进行反应熔体浸渗时无明显缺陷,表面呈规整光洁状态。使用去离子水对打磨后的试样进行超声清洗,清洗5次,每次的清洗时间为30min,随后,在350℃下,对块状试样进行3h煮沸处理,直至试样表面无气泡冒出,保证试样内的开孔完全打开,然后将试样放在温度为80℃的电热鼓风干燥箱中烘干8h备用。
步骤2:将HfSi2与Si3N4粉末按照摩尔比4:1混合,将粉体混合物和氧化锆磨球放入刚玉球磨罐中,其中球料比2:1,然后密封刚玉球磨罐,用行星式球磨机在转速为300rpm的条件下,球磨6h后过筛,然后放置于温度为70℃的电热鼓风干燥箱中烘干10h,得到混合均匀的粉体混合物,将其作为熔渗用粉料。
步骤3:采用反应熔渗工艺对C/C复合材料进行基体改性,在石墨坩埚内壁铺上5层石墨纸,在坩埚底部铺上6mm厚的熔渗用粉料,将多孔C/C复合材料平行放置于熔渗用粉料上层,继续添加粉料至完全覆盖样品且高于样品上表面8mm,粉料添加过程中保证粉料呈疏松状态,粉料添加完毕后,依次用石墨纸、碳毡进行密封处理,随后对坩埚进行密封处理。
步骤4:将密封坩埚放于石墨炉中进行高温处理,其高温热处理条件为:温度为2100℃,炉内通Ar气气氛,升温速率为5℃/min,保温时间为1h,随后进行断电降温,待样品随炉冷却至室温取出。
步骤5:对反应熔渗后得到的复合材料依次使用50目、800目和3000目的金刚石磨盘进行打磨处理,保证样品表面无明显凸起。随后使用去离子水对样品进行超声清洗,清洗次数5次,每次的清洗时间为30min,随后将其放入电热鼓风干燥箱中在80℃下烘干12h,即得到HfCxNy-SiC改性C/C复合材料。
实施例六:
步骤1:选取密度为1.7g/cm3的2.5D C/C复合材料,将其加工为10mm×10mm×10mm的块状试样,依次使用50目、800目和3000目的碳化硅砂纸打磨处理,保证样品在进行反应熔体浸渗时无明显缺陷,表面呈规整光洁状态。使用去离子水对打磨后的试样进行超声清洗,清洗次数为3次,每次的清洗时间为60min,随后,在300℃下,对块状试样进行3h煮沸处理,直至试样表面无气泡冒出,保证试样内的开孔完全打开,然后将试样放在温度为80℃的电热鼓风干燥箱中烘干8h备用。
步骤2:将HfSi2与Si3N4粉末按照摩尔比1:1混合,将粉体混合物和氧化锆磨球放入刚玉球磨罐中,其中球料比2:1,然后密封刚玉球磨罐,用行星式球磨机在转速为400rpm的条件下,球磨4h后过筛,然后放置于温度为70℃的电热鼓风干燥箱中烘干10h,得到混合均匀的粉体混合物,将其作为熔渗用粉料。
步骤3:采用反应熔渗工艺对C/C复合材料进行基体改性,在石墨坩埚内壁铺上5层石墨纸,在坩埚底部铺上4mm厚的熔渗用粉料,将多孔C/C复合材料平行放置于熔渗用粉料上层,继续添加粉料至完全覆盖样品且高于样品上表面8mm,粉料添加过程中保证粉料呈疏松状态,粉料添加完毕后,依次用石墨纸、碳毡进行密封处理,随后对坩埚进行密封处理。
步骤4:将密封坩埚放于石墨炉中进行高温处理,其高温热处理条件为:温度为2100℃,炉内通Ar气气氛,升温速率为5℃/min,保温时间为1h,随后进行断电降温,待样品随炉冷却至室温取出。
步骤5:对反应熔渗后得到的复合材料依次使用50目、800目和3000目的金刚石磨盘进行打磨处理,保证样品表面无明显凸起。随后使用去离子水对样品进行超声清洗,清洗次数为3次,每次的清洗时间为60min,随后将其放入电热鼓风干燥箱中在80℃下烘干12h,即得到HfCxNy-SiC改性C/C复合材料。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种HfCxNy-SiC改性C/C复合材料的制备方法,其特征在于,包括:
对C/C复合材料进行预处理,得到熔渗用C/C预制体;
将HfSi2与Si3N4粉末混合,干燥,得到熔渗用粉料;
将熔渗用C/C预制体平行放置于熔渗用粉料上层,并继续添加熔渗用粉料至完全覆盖熔渗用C/C预制体且高于熔渗用C/C预制体上表面,进行密封后,在高温下通过反应熔渗工艺进行改性处理,得到C/C-HfCxNy-SiC复合材料;
对C/C-HfCxNy-SiC复合材料进行打磨、清洗、干燥处理,得到HfCxNy-SiC改性C/C复合材料。
2.根据权利要求1所述的一种HfCxNy-SiC改性C/C复合材料的制备方法,其特征在于,所述预处理包括打磨处理、清洗处理、煮沸处理和干燥处理。
3.根据权利要求2所述的一种HfCxNy-SiC改性C/C复合材料的制备方法,其特征在于,所述煮沸处理温度为100~350℃,处理时间为1~6h。
4.根据权利要求2所述的一种HfCxNy-SiC改性C/C复合材料的制备方法,其特征在于,所述干燥处理温度为70℃,处理时间为6~10h。
5.根据权利要求1所述的一种HfCxNy-SiC改性C/C复合材料的制备方法,其特征在于,所述HfSi2与Si3N4粉末的摩尔比为(1~4):(1~4)。
6.根据权利要求1所述的一种HfCxNy-SiC改性C/C复合材料的制备方法,其特征在于,所述HfSi2与Si3N4粉末通过球磨混合,所述球磨过程中,球料比为2:1,转速为200~500rpm,球磨时间为4~6h。
7.根据权利要求1所述的一种HfCxNy-SiC改性C/C复合材料的制备方法,其特征在于,所述熔渗用粉料的干燥温度为60~100℃,干燥时间为8~12h。
8.根据权利要求1所述的一种HfCxNy-SiC改性C/C复合材料的制备方法,其特征在于,所述改性处理的条件为:在Ar或N2惰性气氛保护环境或真空度为1~100Pa的真空环境下,温度为1600~2100℃,升温速率为4~10℃/min,保温时间为0.5~3h。
9.根据权利要求1所述的一种HfCxNy-SiC改性C/C复合材料的制备方法,其特征在于,所述HfCxNy-SiC改性C/C复合材料的干燥温度为60~100℃,时间为6~12h。
10.采用权利要求1~9任一项所述制备方法制得的HfCxNy-SiC改性C/C复合材料。
CN202410795611.3A 2024-06-19 2024-06-19 一种HfCxNy-SiC改性C/C复合材料及其制备方法 Pending CN118771889A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410795611.3A CN118771889A (zh) 2024-06-19 2024-06-19 一种HfCxNy-SiC改性C/C复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410795611.3A CN118771889A (zh) 2024-06-19 2024-06-19 一种HfCxNy-SiC改性C/C复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN118771889A true CN118771889A (zh) 2024-10-15

Family

ID=92985254

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410795611.3A Pending CN118771889A (zh) 2024-06-19 2024-06-19 一种HfCxNy-SiC改性C/C复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN118771889A (zh)

Similar Documents

Publication Publication Date Title
Li et al. Comparison of the oxidation behaviors of SiC coatings on C/C composites prepared by pack cementation and chemical vapor deposition
Chen et al. Microstructure, thermophysical properties, and ablation resistance of C/HfC-ZrC-SiC composites
Chen et al. Advances in antioxidation coating materials for carbon/carbon composites
Zhu et al. SiC-Si coating with micro-pores to protect carbon/carbon composites against oxidation
CN108530110A (zh) 一种c/c复合材料的超高温陶瓷涂层及其制备方法
WO2021103560A1 (zh) 一种长时耐烧蚀超高熔点含氮碳化物超高温陶瓷及其应用
He et al. Effects of ZrC particle size on ablation behavior of C/C-SiC-ZrC composites prepared by chemical liquid vapor deposition
CN109485423B (zh) SiC纳米线增韧化学气相共沉积HfC-SiC复相涂层的制备方法
Wang et al. Oxidation and ablation resistant properties of pack-siliconized Si-C protective coating for carbon/carbon composites
JPH07157384A (ja) 耐熱耐酸化性高強度部材及びその製造方法
Wu et al. Corrosion behavior of PS-PVD spray Yb2Si2O7 environmental barrier coatings during continuous water vapor exposure
Yang et al. SiC/Si–ZrSi2–ZrB2-HfB2/SiC coating for oxidation protection of C/C composites prepared by three-step method
Abdollahi et al. SiC nanoparticles toughened-SiC/MoSi 2-SiC multilayer functionally graded oxidation protective coating for carbon materials at high temperatures
Abdollahi et al. C/SiC gradient oxidation protective coating on graphite by modified reactive melt infiltration method: effects of processing parameters on transition interface thickness and high-temperature anti-oxidation behavior
CN114773075A (zh) 具有La/Y掺杂ZrC-SiC涂层的超高温陶瓷基复合材料及制备方法
Gu et al. New anti-ablation candidate for carbon/carbon composites: preparation, composition and ablation behavior of Y2Hf2O7 coating under an oxyacetylene torch
Jiang et al. Oxidation and ablation behaviour of multiphase ultra-high-temperature ceramic Ta0· 5Zr0· 5B2–Si–SiC protective coating for graphite
Zhang et al. Ablation behavior of CVD-TaC coatings with different crystal structures for C/C composites under oxyacetylene flame
Jiang et al. Multiphase composite Hf0. 8Ti0· 2B2–SiC–Si coating providing oxidation and ablation protection for graphite under different high temperature oxygen-containing environments
CN115057704A (zh) 一种抗沙尘环境沉积物腐蚀的稀土块体陶瓷材料及其制备方法和应用
CN114538964A (zh) SiC-Si包覆碳/碳复合材料表面富含MoSi2高温抗氧化涂层及制备方法
CN118771889A (zh) 一种HfCxNy-SiC改性C/C复合材料及其制备方法
Li et al. Preparing the SiC coated C/C composites with excellent mechanical and antioxidative properties using a buffer layer
CN109735787A (zh) 一种耐高温抗氧化烧蚀复合涂层及制备方法
CN108504980B (zh) 一种耐高温抗烧蚀复合涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination