CN118651838A - A modification method of lithium manganese iron phosphate - Google Patents
A modification method of lithium manganese iron phosphate Download PDFInfo
- Publication number
- CN118651838A CN118651838A CN202411151794.1A CN202411151794A CN118651838A CN 118651838 A CN118651838 A CN 118651838A CN 202411151794 A CN202411151794 A CN 202411151794A CN 118651838 A CN118651838 A CN 118651838A
- Authority
- CN
- China
- Prior art keywords
- lithium iron
- manganese phosphate
- lithium
- iron manganese
- fluoroborate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- DVATZODUVBMYHN-UHFFFAOYSA-K lithium;iron(2+);manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[Fe+2].[O-]P([O-])([O-])=O DVATZODUVBMYHN-UHFFFAOYSA-K 0.000 title claims abstract description 101
- 238000002715 modification method Methods 0.000 title claims abstract description 13
- LIQLLTGUOSHGKY-UHFFFAOYSA-N [B].[F] Chemical compound [B].[F] LIQLLTGUOSHGKY-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000002243 precursor Substances 0.000 claims abstract description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 21
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 229910003481 amorphous carbon Inorganic materials 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 5
- 238000002156 mixing Methods 0.000 claims abstract description 5
- 239000010450 olivine Substances 0.000 claims abstract description 4
- 229910052609 olivine Inorganic materials 0.000 claims abstract description 4
- 239000000126 substance Substances 0.000 claims abstract description 3
- -1 fluorine metal compound Chemical class 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 35
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000011737 fluorine Substances 0.000 claims description 10
- 229910052731 fluorine Inorganic materials 0.000 claims description 10
- 239000012300 argon atmosphere Substances 0.000 claims description 8
- 238000010532 solid phase synthesis reaction Methods 0.000 claims description 7
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 6
- 239000002612 dispersion medium Substances 0.000 claims description 6
- 239000008103 glucose Substances 0.000 claims description 6
- 238000004729 solvothermal method Methods 0.000 claims description 6
- 238000003980 solgel method Methods 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 238000000498 ball milling Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 2
- 239000005642 Oleic acid Substances 0.000 claims description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 2
- 239000002202 Polyethylene glycol Substances 0.000 claims description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 2
- 229930006000 Sucrose Natural products 0.000 claims description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 2
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 2
- 229920001223 polyethylene glycol Polymers 0.000 claims description 2
- 239000005720 sucrose Substances 0.000 claims description 2
- 229910015900 BF3 Inorganic materials 0.000 claims 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical group FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 9
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 9
- 230000008901 benefit Effects 0.000 abstract description 3
- 238000001308 synthesis method Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 30
- 230000004048 modification Effects 0.000 description 19
- 238000012986 modification Methods 0.000 description 19
- 239000000047 product Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- 230000008859 change Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000013078 crystal Substances 0.000 description 8
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical group [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 238000001878 scanning electron micrograph Methods 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 7
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 229910052593 corundum Inorganic materials 0.000 description 4
- 239000010431 corundum Substances 0.000 description 4
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical group [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 239000010406 cathode material Substances 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 235000013024 sodium fluoride Nutrition 0.000 description 2
- 239000011775 sodium fluoride Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 230000005536 Jahn Teller effect Effects 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011805 ball Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- ILXAVRFGLBYNEJ-UHFFFAOYSA-K lithium;manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[O-]P([O-])([O-])=O ILXAVRFGLBYNEJ-UHFFFAOYSA-K 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
- C01D15/04—Halides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/30—Three-dimensional structures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明提供了一种磷酸锰铁锂的改性方法,属于锂离子电池技术领域,改性方法具体方法如下:步骤1:将磷酸锰铁锂前驱体或磷酸锰铁锂与碳源和氟硼化合物混合;步骤2:将步骤1得到的混合物高温热处理后得到改性磷酸锰铁锂;改性磷酸锰铁锂最外层为氟金属化合物,中间层为氟硼掺杂的无定形碳,内核为氟硼或/和金属离子掺杂的磷酸锰铁锂;磷酸锰铁锂前驱体或磷酸锰铁锂的化学成分为,,空间群为Pnma,属于橄榄石结构。本发明合成的改性磷酸锰铁锂具有较高的容量、能量密度以及良好的循环稳定性和倍率性能,且具有合成方法简单的优点。
The invention provides a modification method of lithium iron manganese phosphate, which belongs to the technical field of lithium ion batteries. The modification method is specifically as follows: step 1: mixing a lithium iron manganese phosphate precursor or lithium iron manganese phosphate with a carbon source and a fluorine-boron compound; step 2: subjecting the mixture obtained in step 1 to high-temperature heat treatment to obtain modified lithium iron manganese phosphate; the outermost layer of the modified lithium iron manganese phosphate is a fluorine-metal compound, the middle layer is amorphous carbon doped with fluorine-boron, and the inner core is lithium iron manganese phosphate doped with fluorine-boron or/and metal ions; the chemical composition of the lithium iron manganese phosphate precursor or lithium iron manganese phosphate is , , the space group is Pnma, and it belongs to the olivine structure. The modified lithium manganese iron phosphate synthesized by the present invention has high capacity, energy density, good cycle stability and rate performance, and has the advantage of a simple synthesis method.
Description
技术领域Technical Field
本发明涉及一种锂离子电池技术领域,具体涉及一种磷酸锰铁锂的改性方法。The invention relates to the technical field of lithium ion batteries, and in particular to a modification method of lithium manganese iron phosphate.
背景技术Background Art
锂离子电池是一种清洁、高效、可再生的二次电池,正极材料是其重要的组成部分。磷酸铁锂是最重要的锂离子正极材料之一,具有出色的循环稳定性、高安全性和低成本的优势。然而,其进一步发展受到其提供的低能量密度的限制,这是由平台电压低引起的。磷酸锰铁锂(LMFP)有更高的氧化还原电位,被认为是一种非常有前景的锂离子电池正极材料,但是其导电性以及循环性能较差。Lithium-ion battery is a clean, efficient and renewable secondary battery, and cathode material is an important component. Lithium iron phosphate is one of the most important lithium-ion cathode materials, with the advantages of excellent cycle stability, high safety and low cost. However, its further development is limited by the low energy density it provides, which is caused by the low platform voltage. Lithium manganese iron phosphate (LMFP) has a higher redox potential and is considered to be a very promising cathode material for lithium-ion batteries, but its conductivity and cycle performance are poor.
体相掺杂是LMFP的重要改性方法。佛山市德方纳米科技有限公司公开了锂离子电池正极材料及其制备方法(CN109192935A)。复旦大学公开了磷位硼掺杂磷酸锰锂/碳复合材料及其制备方法(CN102931404A)。佛山市德方纳米科技有限公司公开了磷位硼掺杂的纳米盘状磷酸锰铁锂正极材料及其制备方法和应用(CN116666624A)。江苏贝特瑞纳米科技有限公司公开了一种氟掺杂磷酸锰铁锂正极材料及其制备方法(CN114373912A)。上述方法的共同特点是在磷酸盐橄榄石体系中掺杂氟或者硼元素,改善了导电率以及锂离子传输速率。Bulk doping is an important modification method for LMFP. Foshan Defang Nanotechnology Co., Ltd. discloses a lithium-ion battery positive electrode material and a preparation method thereof (CN109192935A). Fudan University discloses a phosphorus-boron-doped lithium manganese phosphate/carbon composite material and a preparation method thereof (CN102931404A). Foshan Defang Nanotechnology Co., Ltd. discloses a phosphorus-boron-doped nano-disk-shaped lithium manganese iron phosphate positive electrode material and a preparation method and application thereof (CN116666624A). Jiangsu Beite Nanotechnology Co., Ltd. discloses a fluorine-doped lithium manganese iron phosphate positive electrode material and a preparation method thereof (CN114373912A). The common feature of the above methods is that fluorine or boron elements are doped in the phosphate olivine system to improve the conductivity and lithium ion transfer rate.
表面包覆可以使材料表现出更好的电化学性能。碳包覆成本低、方法简单,其不仅可以提高材料的导电性,还可以防止烧结过程中过渡金属氧化。碳包覆层掺杂有助于进一步提高导电性并提升循环稳定性。浙江南都电源动力股份有限公司公开了一种掺杂碳包覆层改性磷酸铁锂正极材料及其制备方法,应用(CN118164457A)。广西柳工机械股份有限公司公开了一种包覆型磷酸锰铁锂材料及其制备方法和应用(CN118136813A)。上述方法的共同特点是用氟或其它元素掺杂碳层可以进一步提高碳层导电性,并可以抑制循环过程CEI膜的形成。Surface coating can make the material show better electrochemical performance. Carbon coating has low cost and simple method. It can not only improve the conductivity of the material, but also prevent the oxidation of transition metals during sintering. Doping of the carbon coating layer helps to further improve the conductivity and enhance the cycle stability. Zhejiang Narada Power Co., Ltd. discloses a doped carbon coating layer modified lithium iron phosphate positive electrode material and its preparation method and application (CN118164457A). Guangxi Liugong Machinery Co., Ltd. discloses a coated lithium manganese iron phosphate material and its preparation method and application (CN118136813A). The common feature of the above methods is that doping the carbon layer with fluorine or other elements can further improve the conductivity of the carbon layer and can inhibit the formation of CEI film during the cycle process.
包覆掺杂两种手段并行是更为先进的改性方法。佛山市德方纳米科技有限公司公开了一种磷酸铁锂正极材料及其制备方法和锂离子电池(CN117720113A)。杭州巴特瑞新能源科技有限公司一种公开了应用于便携式移动电源的锂离子电池及制备方法(CN117174831A)。上述方法的共同特点是利用溶胶-凝胶法或固相法将氟或氟硼同时掺杂在碳层以及磷酸盐晶格中。The two methods of coating and doping are more advanced modification methods. Foshan Defang Nanotechnology Co., Ltd. disclosed a lithium iron phosphate positive electrode material and its preparation method and lithium ion battery (CN117720113A). Hangzhou Barter New Energy Technology Co., Ltd. disclosed a lithium ion battery for portable mobile power supply and its preparation method (CN117174831A). The common feature of the above methods is to use the sol-gel method or solid phase method to simultaneously dope fluorine or fluorine boron into the carbon layer and the phosphate lattice.
上述各种改性方法共同证明了氟/硼掺杂碳或体相都能有效改善材料的电化学性能。然而每种方法都面临着以下至少一种问题:The above modification methods have proven that fluorine/boron doping of carbon or bulk phase can effectively improve the electrochemical properties of materials. However, each method faces at least one of the following problems:
(1)工艺复杂,不利于产业化应用;(1) The process is complicated and not conducive to industrial application;
(2)掺杂源价格昂贵;(2) The doping source is expensive;
(3)改性之后的电池性能仍不能达到预期。(3) The battery performance after modification still cannot meet expectations.
发明内容Summary of the invention
本发明的目的在于提供一种磷酸锰铁锂的改性方法,本发明合成的改性磷酸锰铁锂具有较高的容量、能量密度以及良好的循环稳定性和倍率性能,且具有合成方法简单的优点。The object of the present invention is to provide a method for modifying lithium manganese iron phosphate. The modified lithium manganese iron phosphate synthesized by the present invention has high capacity, energy density, good cycle stability and rate performance, and has the advantage of a simple synthesis method.
为解决上述技术问题,本发明所采用的技术方案是:In order to solve the above technical problems, the technical solution adopted by the present invention is:
一种磷酸锰铁锂的改性方法,具体方法如下:A modification method for lithium manganese iron phosphate, the specific method is as follows:
步骤1:将磷酸锰铁锂前驱体或磷酸锰铁锂与碳源和氟硼化合物混合;Step 1: mixing a lithium iron manganese phosphate precursor or lithium iron manganese phosphate with a carbon source and a fluorine boron compound;
步骤2:将步骤1得到的混合物高温热处理后得到改性磷酸锰铁锂;改性磷酸锰铁锂最外层为氟金属化合物,中间层为氟硼掺杂的无定形碳,内核为氟硼或/和金属离子掺杂的磷酸锰铁锂;Step 2: subjecting the mixture obtained in step 1 to high-temperature heat treatment to obtain modified lithium manganese iron phosphate; the outermost layer of the modified lithium manganese iron phosphate is a fluorine metal compound, the middle layer is amorphous carbon doped with fluorine and boron, and the inner core is lithium manganese iron phosphate doped with fluorine, boron and/or metal ions;
其中,磷酸锰铁锂前驱体或磷酸锰铁锂的化学成分,,空间群为Pnma,属于橄榄石结构。Among them, the chemical composition of lithium iron manganese phosphate precursor or lithium iron manganese phosphate , , the space group is Pnma, and it belongs to the olivine structure.
其中,磷酸锰铁锂前驱体来自溶剂热法或溶胶凝胶法中的至少一种。Wherein, the lithium manganese iron phosphate precursor comes from at least one of a solvent thermal method or a sol-gel method.
其中,磷酸锰铁锂来自于溶剂热法、溶胶凝胶法或固相法中的至少一种。Among them, lithium manganese iron phosphate comes from at least one of a solvent thermal method, a sol-gel method or a solid phase method.
进一步的,碳源包括葡萄糖、聚乙二醇、蔗糖、油酸中的一种或多种混合。Furthermore, the carbon source includes a mixture of one or more of glucose, polyethylene glycol, sucrose, and oleic acid.
其中,碳源添加量为磷酸锰铁锂前驱体或磷酸锰铁锂的。Among them, the amount of carbon source added is lithium iron manganese phosphate precursor or lithium iron manganese phosphate. .
其中,氟硼化合物包括氟硼酸锂、氟硼酸钠、氟硼酸镁、氟硼酸钾、氟硼酸钙、氟硼酸锰、氟硼酸铁、氟硼酸钴、氟硼酸镍、氟硼酸铜、氟硼酸锌、氟硼酸亚锡、氟硼酸铵中的至少一种。Among them, the fluoroboric compound includes at least one of lithium fluoroborate, sodium fluoroborate, magnesium fluoroborate, potassium fluoroborate, calcium fluoroborate, manganese fluoroborate, iron fluoroborate, cobalt fluoroborate, nickel fluoroborate, copper fluoroborate, zinc fluoroborate, stannous fluoroborate and ammonium fluoroborate.
进一步的,步骤1中,混合方式为,加入水和乙醇中的至少一种分散介质,球磨30min后烘干。Furthermore, in step 1, the mixing method is to add at least one dispersion medium of water and ethanol, ball mill for 30 minutes and then dry.
其中,高温热处理条件为,氩气或氮气气氛下,升温温度为升温至200-800 ℃,保温2-12 h后冷却至室温。The high temperature heat treatment conditions are as follows: in an argon or nitrogen atmosphere, the heating temperature is Heat to 200-800 ℃, keep warm for 2-12 hours Allow to cool to room temperature.
本发明还公开了一种磷酸锰铁锂,所述磷酸锰铁锂采用上述所述的磷酸锰铁锂的改性方法制得。The present invention also discloses lithium manganese iron phosphate, which is prepared by the above-mentioned lithium manganese iron phosphate modification method.
一种正极极片,述正极极片由上述的磷酸锰铁锂制得。A positive electrode plate is made from the above-mentioned lithium manganese iron phosphate.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明中基于前驱体的工艺相较于原始合成方案只是另外添加了氟硼化合物,没有其它多余的步骤。通过简单的改性步骤,同时实现了磷酸锰铁锂的体相掺杂、碳包覆层掺杂以及氟金属化合物包覆。Compared with the original synthesis scheme, the precursor-based process in the present invention only adds fluorine-boron compounds, without other redundant steps. Through simple modification steps, bulk doping of lithium manganese iron phosphate, carbon coating layer doping and fluorine-metal compound coating are simultaneously achieved.
同时,多种改性效果的共同作用使改性磷酸锰铁锂具有十分优异的电化学性能,缓解了循环过程中的电压衰减以及锰的溶出。本改性方法具有灵活性,通过不同的氟硼化合物的添加,可以实现不同种类离子的掺杂和/或包覆,可以具体改变氟硼化合物的种类以及多种氟硼化合物的比例而有针对性的改善材料的循环性能、倍率性能等,以实现针对不同应用场景的不同改性方案。At the same time, the combined effect of multiple modification effects makes the modified lithium manganese iron phosphate have very excellent electrochemical properties, which alleviates the voltage decay and manganese dissolution during the cycle process. This modification method is flexible. By adding different fluorine-boron compounds, different types of ions can be doped and/or coated. The types of fluorine-boron compounds and the ratio of multiple fluorine-boron compounds can be specifically changed to improve the material's cycle performance, rate performance, etc., so as to achieve different modification schemes for different application scenarios.
本发明将磷酸锰铁锂前驱体或磷酸锰铁锂与碳源和氟硼化合物混合后高温热处理得到改性磷酸锰铁锂。改性磷酸锰铁锂最外层为氟金属化合物,中间层为氟硼掺杂无定形碳,内核为氟硼或/和金属离子掺杂的磷酸锰铁锂。氟金属化合物能调控CEI膜并阻碍电解液分解产生的HF对磷酸锰铁锂的破坏,氟硼掺杂无定形碳能起到导电和促进离子传输的作用,氟硼或/和金属离子掺杂能够提高磷酸锰铁锂的结构稳定性,抑制Jahn-Teller效应和锰/铁溶出,并提高材料的电子和离子导电性。此外,氟硼化合物还能提高包覆碳源的利用率和包覆碳层的残碳量。改性磷酸锰铁锂具有更高的电压稳定性和容量稳定性,表现出更高的能量保持率和倍率性能。The present invention mixes a lithium iron manganese phosphate precursor or lithium iron manganese phosphate with a carbon source and a fluorine boron compound and then performs a high-temperature heat treatment to obtain a modified lithium iron manganese phosphate. The outermost layer of the modified lithium iron manganese phosphate is a fluorine metal compound, the middle layer is a fluorine boron doped amorphous carbon, and the inner core is a lithium iron manganese phosphate doped with fluorine boron or/and metal ions. The fluorine metal compound can regulate the CEI film and hinder the damage of HF generated by the decomposition of the electrolyte to the lithium iron manganese phosphate. The fluorine boron doped amorphous carbon can play a role in conducting electricity and promoting ion transmission. The fluorine boron or/and metal ion doping can improve the structural stability of the lithium iron manganese phosphate, inhibit the Jahn-Teller effect and manganese/iron dissolution, and improve the electronic and ionic conductivity of the material. In addition, the fluorine boron compound can also improve the utilization rate of the coated carbon source and the residual carbon content of the coated carbon layer. The modified lithium iron manganese phosphate has higher voltage stability and capacity stability, and exhibits higher energy retention rate and rate performance.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings required for use in the embodiments will be briefly introduced below. It should be understood that the following drawings only show certain embodiments of the present invention and therefore should not be regarded as limiting the scope. For ordinary technicians in this field, other related drawings can be obtained based on these drawings without paying creative work.
图1为本方法所合成材料的结构示意图。FIG1 is a schematic diagram of the structure of the material synthesized by this method.
图2是实施例1中所制备的前驱体的SEM图片。Figure 2 is the prepared in Example 1 SEM image of the precursor.
图3是实施例1中所制备的改性的SEM图片。Figure 3 is a modified SEM images of .
图4是实施例1中所制备的前驱体和改性的XRD图谱。FIG. 4 is a diagram of the Precursors and Modifications XRD pattern of .
图5是实施例1中改性的倍率充放电曲线。Figure 5 is a modified Rate charge and discharge curve.
图6是实施例2中所制备的改性的SEM图片。Figure 6 is a modified SEM images of .
图7是实施例2中所制备的改性的XRD图谱。Figure 7 is a modified XRD pattern of .
图8是实施例2中改性的倍率充放电曲线。Figure 8 is a modified Rate charge and discharge curve.
图9是实施例3中所制备的改性的SEM图片。Figure 9 is a modified SEM images of .
图10是实施例3中所制备的改性的XRD图谱。Figure 10 is a modified XRD pattern of .
图11是实施例3中改性的倍率充放电曲线。Figure 11 is a modified example 3 Rate charge and discharge curve.
图12是实施例4中所制备的改性的SEM图片。Figure 12 is a modified SEM images of .
图13是实施例4中所制备的改性的XRD图谱。Figure 13 is a modified XRD pattern of .
图14是实施例4中改性的倍率充放电曲线。Figure 14 is a modified Rate charge and discharge curve.
图15是实施例5中所制备的改性的SEM图片。Figure 15 is a modified SEM images of .
图16是实施例5中所制备的改性的XRD图谱。Figure 16 is a modified XRD pattern of .
图17是实施例5中改性的倍率充放电曲线。Figure 17 is a modified example 5 Rate charge and discharge curve.
图18是对比例1中所制备的的SEM图片。Figure 18 is prepared in Comparative Example 1 SEM images of .
图19是对比例1中所制备的的XRD图谱。Figure 19 is prepared in Comparative Example 1 XRD pattern of .
图20是对比例1中的倍率充放电曲线。Figure 20 is in comparative example 1 Rate charge and discharge curve.
图21是对比例2中所制备的的SEM图片。Figure 21 is prepared in Comparative Example 2 SEM images of .
图22是对比例2中所制备的的XRD图谱。Figure 22 is prepared in Comparative Example 2 XRD pattern of .
图23是对比例2中的倍率充放电曲线。Figure 23 is a comparative example 2 Rate charge and discharge curve.
附图标记:Reference numerals:
101外层,102内层,103中间层。101 outer layer, 102 inner layer, 103 middle layer.
具体实施方式DETAILED DESCRIPTION
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本发明实施例的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。下面结合附图对本发明的实施例进行详细说明。In the following, only some exemplary embodiments are briefly described. As those skilled in the art will appreciate, the described embodiments may be modified in various ways without departing from the spirit or scope of the embodiments of the present invention. Therefore, the drawings and descriptions are considered to be exemplary and non-restrictive in nature. Embodiments of the present invention are described in detail below in conjunction with the accompanying drawings.
实施例1Example 1
本例采用溶剂热法合成磷酸锰铁锂前驱体,再将前驱体改性。将按照摩尔比3:0.8:0.2:1的比例转移到装有水/乙二醇混合溶剂的反应釜中,通有氩气保护气,随后密封反应釜,升温至180℃,并在该温度下保温2 h,反应结束后洗涤、干燥,制备得到前驱体。 In this example, the lithium manganese iron phosphate precursor was synthesized by the solvothermal method, and then the precursor was modified. The mixture was transferred to a reactor containing a water/ethylene glycol mixed solvent in a molar ratio of 3:0.8:0.2:1, and argon protective gas was passed through the reactor. The reactor was then sealed and heated to 180°C and kept at this temperature for 2 h. After the reaction was completed, the mixture was washed and dried to prepare Precursor.
将前驱体与的葡萄糖和的氟硼酸锂置入球磨罐中,以乙醇为分散介质,400 rpm球磨30 min后烘干。The precursor and of glucose and The lithium fluoroborate was placed in a ball mill, ethanol was used as the dispersion medium, and the mixture was ball milled at 400 rpm for 30 min and then dried.
将上述混合物置于刚玉舟中,在氩气氛围下5℃/min升温速度升至700℃,保温2 h后自然冷却至室温。所得到产物最外层为氟化锂,中间层为氟硼掺杂的无定形碳,内核为氟硼掺杂的磷酸锰铁锂。The mixture was placed in a corundum boat, heated to 700°C at a rate of 5°C/min in an argon atmosphere, and naturally cooled to room temperature after being kept for 2 hours. The outermost layer of the obtained product is lithium fluoride, the middle layer is fluorine-boron doped amorphous carbon, and the inner core is fluorine-boron doped lithium manganese iron phosphate.
根据图2-图5可知,前驱体即为Pnma结构,后续改性步骤没有改变磷酸锰铁锂的晶体结构,烧结后,颗粒形状没有发生明显改变。经过改性后的磷酸锰铁锂具有较好的倍率性能,和更小的极化(更高的放电电压)。According to Figures 2-5, the precursor is a Pnma structure, and the subsequent modification steps did not change the crystal structure of lithium manganese iron phosphate. After sintering, the particle shape did not change significantly. The modified lithium manganese iron phosphate has better rate performance and smaller polarization (higher discharge voltage).
参看图1,一种磷酸锰铁锂,其外层为氟金属化合物层,内层为氟硼或/和金属离子掺杂磷酸锰铁锂层,中间层为氟硼掺杂碳层,用于制备正极极片。Referring to FIG. 1 , a lithium manganese iron phosphate, whose outer layer is a fluorine-metal compound layer, the inner layer is a fluorine-boron or/and metal ion-doped lithium manganese iron phosphate layer, and the middle layer is a fluorine-boron-doped carbon layer, is used to prepare a positive electrode plate.
实施例2Example 2
本例采用溶剂热法合成磷酸锰铁锂前驱体,将前驱体合成磷酸锰铁锂,然后对磷酸锰铁锂改性。与实施例1相比,区别仅在于得到前驱体后。将前驱体与的葡萄糖置入球磨罐中,以乙醇为分散介质,400 rpm球磨30 min后烘干。将上述混合物置于刚玉舟中,在氩气氛围下5℃/min升温速度升至700℃,保温2 h后自然冷却至室温。所得到产物最外层为无定形碳,内核为磷酸锰铁锂。将此磷酸锰铁锂与的氟硼酸锂置入球磨罐中,以乙醇为分散介质,400 rpm球磨30 min后烘干。将上述混合物置于刚玉舟中,在氩气氛围下5℃/min升温速度升至700℃,保温2 h后自然冷却至室温。所得到产物最外层为氟化锂,中间层为氟硼掺杂的无定形碳,内核为氟硼掺杂的磷酸锰铁锂。In this example, a solvent thermal method is used to synthesize a lithium iron manganese phosphate precursor, and the precursor is synthesized into lithium iron manganese phosphate, and then the lithium iron manganese phosphate is modified. Compared with Example 1, the only difference is that Precursor. The glucose was placed in a ball mill, ethanol was used as the dispersion medium, and the mixture was ball milled at 400 rpm for 30 min and then dried. The mixture was placed in a corundum boat, and the temperature was raised to 700°C at a rate of 5°C/min in an argon atmosphere. After being kept warm for 2 h, it was naturally cooled to room temperature. The outermost layer of the obtained product was amorphous carbon, and the inner core was lithium manganese iron phosphate. The lithium manganese iron phosphate was mixed with The lithium fluoroborate was placed in a ball mill, ethanol was used as the dispersion medium, and the mixture was ball milled at 400 rpm for 30 min and then dried. The mixture was placed in a corundum boat, heated to 700°C at a rate of 5°C/min in an argon atmosphere, kept warm for 2 h, and then naturally cooled to room temperature. The outermost layer of the obtained product is lithium fluoride, the middle layer is fluorine-boron doped amorphous carbon, and the inner core is fluorine-boron doped lithium manganese iron phosphate.
参看图6-图8,后续改性步骤没有改变磷酸锰铁锂的晶体结构,颗粒形状没有发生明显改变。与实施例1的形貌特征以及电化学性能区别较小,证明了氟硼化合物对磷酸锰铁锂成品也有较好的改性效果。6-8, the subsequent modification steps did not change the crystal structure of lithium iron manganese phosphate, and the particle shape did not change significantly. The morphological characteristics and electrochemical properties were slightly different from those of Example 1, proving that fluorine boron compounds also have a good modification effect on lithium iron manganese phosphate products.
实施例3Example 3
本例采用固相法合成磷酸锰铁锂,然后对磷酸锰铁锂改性。按化学计量比1:0.8:0.2将和葡萄糖研磨均匀后,加入的乙醇400rpm球磨6h后将物料烘干,将干燥粉末在氩气氛围下350℃预烧2h,600℃热处理6h后得到固相法磷酸锰铁锂。将此磷酸锰铁锂与的氟硼酸锂置入球磨罐中,以乙醇为分散介质,400 rpm球磨30 min后烘干。将上述混合物置于刚玉舟中,在氩气氛围下5℃/min升温速度升至700℃,保温2h后自然冷却至室温。所得到产物最外层为氟化锂,中间层为氟硼掺杂的无定形碳,内核为氟硼掺杂的磷酸锰铁锂。 In this example, lithium manganese iron phosphate was synthesized by solid phase method and then modified. and After the glucose is evenly ground, add After ball milling at 400 rpm for 6 hours, the material was dried, and the dried powder was pre-calcined at 350 ° C for 2 hours in an argon atmosphere, and heat treated at 600 ° C for 6 hours to obtain solid-phase lithium manganese iron phosphate. The lithium fluoroborate was placed in a ball mill, ethanol was used as the dispersion medium, and the mixture was ball milled at 400 rpm for 30 min and then dried. The mixture was placed in a corundum boat, and the temperature was raised to 700°C at a rate of 5°C/min in an argon atmosphere. After being kept for 2 hours, it was naturally cooled to room temperature. The outermost layer of the obtained product is lithium fluoride, the middle layer is fluorine-boron doped amorphous carbon, and the inner core is fluorine-boron doped lithium manganese iron phosphate.
参看图9-图11,改性后仍属于磷酸锰铁锂的晶体结构,改性后的磷酸锰铁锂具有较好的电化学性能。氟硼化合物对固相法合成的磷酸锰铁锂也有较好的改性效果。Referring to Figures 9 to 11, the modified lithium manganese iron phosphate still has a crystal structure, and the modified lithium manganese iron phosphate has good electrochemical properties. Fluoroboric compounds also have a good modification effect on lithium manganese iron phosphate synthesized by solid phase method.
实施例4Example 4
本例采用溶剂热法合成磷酸锰铁锂前驱体,再将前驱体改性。与实施例1相比,区别仅在于将氟硼酸锂替换为氟硼酸钠。所得到产物最外层为氟化钠,中间层为氟硼掺杂的无定形碳,内核为氟硼和钠掺杂的磷酸锰铁锂。In this example, a lithium iron manganese phosphate precursor is synthesized by a solvothermal method, and then the precursor is modified. Compared with Example 1, the only difference is that lithium fluoroborate is replaced by sodium fluoroborate. The outermost layer of the obtained product is sodium fluoride, the middle layer is fluorine-boron doped amorphous carbon, and the inner core is fluorine-boron and sodium doped lithium iron manganese phosphate.
参看图12-图14,后续改性步骤没有改变磷酸锰铁锂的晶体结构,颗粒形状没有发生明显改变,改性后的磷酸锰铁锂具有较好的电化学性能。证明了相较于氟硼酸锂,氟硼酸钠也能起到改性作用。Referring to Figures 12 to 14, the subsequent modification steps did not change the crystal structure of lithium manganese iron phosphate, and the particle shape did not change significantly. The modified lithium manganese iron phosphate has good electrochemical properties. This proves that compared with lithium fluoroborate, sodium fluoroborate can also play a modification role.
实施例5Example 5
本例采用溶剂热法合成磷酸锰铁锂前驱体,再将前驱体改性。与实施例1相比,区别仅在于将氟硼酸锂替换为等摩尔量的氟硼酸锂和氟硼酸钠混合物。所得到产物最外层为氟化锂和氟化钠,中间层为氟硼掺杂的无定形碳,内核为氟硼和钠掺杂的磷酸锰铁锂。In this example, a lithium iron manganese phosphate precursor is synthesized by a solvothermal method, and then the precursor is modified. Compared with Example 1, the only difference is that lithium fluoroborate is replaced by an equimolar mixture of lithium fluoroborate and sodium fluoroborate. The outermost layer of the obtained product is lithium fluoride and sodium fluoride, the middle layer is fluorine-boron doped amorphous carbon, and the inner core is fluorine-boron and sodium doped lithium iron manganese phosphate.
参看图15-图17,后续改性步骤没有改变磷酸锰铁锂的晶体结构,颗粒形状没有发生明显改变,改性后的磷酸锰铁锂具有较好的电化学性能。证明了多种氟硼化合物的混合也能起到磷酸锰铁锂的改性作用。Referring to Figures 15 to 17, the subsequent modification steps did not change the crystal structure of lithium iron manganese phosphate, and the particle shape did not change significantly. The modified lithium iron manganese phosphate has good electrochemical properties. This proves that the mixture of multiple fluorine-boron compounds can also play a role in modifying lithium iron manganese phosphate.
对比例1Comparative Example 1
本例采用溶剂热法合成磷酸锰铁锂前驱体,将前驱体合成磷酸锰铁锂。与实施例1相比,区别仅在于不加入氟硼酸锂。所得到产物外层为无定形碳,内核为磷酸锰铁锂。In this example, a solvent thermal method is used to synthesize a lithium iron manganese phosphate precursor, and the precursor is synthesized into lithium iron manganese phosphate. Compared with Example 1, the only difference is that lithium fluoroborate is not added. The outer layer of the obtained product is amorphous carbon, and the inner core is lithium iron manganese phosphate.
参看图18-图20,所合成产物为磷酸锰铁锂的晶体结构,颗粒形状与实施例1、2、4、5基本相同。相较于实施例1、2、4、5而言,电化学性能较差,说明氟硼化合物的改性能提高基于溶剂热法的磷酸锰铁锂的电化学性能。18 to 20 , the synthesized product is a crystal structure of lithium manganese iron phosphate, and the particle shape is substantially the same as that of Examples 1, 2, 4, and 5. Compared with Examples 1, 2, 4, and 5, the electrochemical performance is poor, indicating that the modification of the fluorine boron compound can improve the electrochemical performance of lithium manganese iron phosphate based on the solvothermal method.
对比例2Comparative Example 2
本例采用固相法合成磷酸锰铁锂。按化学计量比1:0.8:0.2将和葡萄糖研磨均匀后,加入的乙醇400rpm球磨6h后将物料烘干,将干燥粉末在氩气氛围下350℃预烧2h,600℃热处理6h后得到固相法磷酸锰铁锂。所得到产物外层为无定形碳,内核为磷酸锰铁锂。 In this example, lithium manganese iron phosphate was synthesized by solid phase method. and After the glucose is evenly ground, add After ball milling at 400 rpm for 6 hours, the material was dried, and the dried powder was pre-calcined at 350°C for 2 hours in an argon atmosphere, and heat treated at 600°C for 6 hours to obtain solid-phase lithium manganese iron phosphate. The outer layer of the obtained product is amorphous carbon, and the inner core is lithium manganese iron phosphate.
参看图21-图23,所合成产物为磷酸锰铁锂的晶体结构,颗粒形状与实施例3基本相同。相较于实施例3而言,电化学性能较差,说明氟硼化合物的改性能提高基于固相法的磷酸锰铁锂的电化学性能。21-23, the synthesized product is a crystal structure of lithium manganese iron phosphate, and the particle shape is substantially the same as that of Example 3. Compared with Example 3, the electrochemical performance is poor, indicating that the modification of fluorine boron compound can improve the electrochemical performance of lithium manganese iron phosphate based on the solid phase method.
表1是电池材料在1C下的电化学性能。Table 1 shows the electrochemical performance of battery materials at 1C.
从表1可以看出,所有的实施例1-5相较于对比例1-2而言,首次库伦效率、循环稳定性均有所提高,循环500次后锰溶出和电压衰减都得到抑制,说明本专利所使用的多合一改性方案可以大幅度缓解充放电过程中材料表面副反应以及材料体相结构失效。同时由于本方法具有低成本以及工艺简单的特性,是一种磷酸锰铁锂产业化改性策略。As can be seen from Table 1, all Examples 1-5 have improved initial coulombic efficiency and cycle stability compared to Comparative Examples 1-2, and both manganese dissolution and voltage decay are suppressed after 500 cycles, indicating that the all-in-one modification scheme used in this patent can greatly alleviate the side reactions on the surface of the material and the failure of the bulk structure of the material during the charge and discharge process. At the same time, due to the low cost and simple process of this method, it is a modification strategy for the industrialization of lithium manganese iron phosphate.
根据附图3、图6、图9、图12、图15、图18和图21中,该实施例或对照例的最终产品SEM形貌,说明本改性方法不会明显改变产品形貌。According to the SEM morphology of the final product of the embodiment or the control example in Figures 3, 6, 9, 12, 15, 18 and 21, it is explained that the modification method will not significantly change the product morphology.
根据附图4、图7、图10、图13、图16、图19和图22中,该实施例或对照例的最终产品XRD物相分析,说明本改性方法不会明显改变产品的晶体结构,所合成产品没有其它杂质。According to the XRD phase analysis of the final product of the embodiment or the control example in Figures 4, 7, 10, 13, 16, 19 and 22, it is shown that the modification method will not significantly change the crystal structure of the product, and the synthesized product does not have other impurities.
根据附图5、图8、图11、图14、图17、图20和图23中,该实施例或对照例的最终产品电化学性能,说明实施例的电化学性能均优于对比例。According to the electrochemical performance of the final product of the embodiment or the control example in Figures 5, 8, 11, 14, 17, 20 and 23, it is shown that the electrochemical performance of the embodiment is better than that of the control example.
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。Although the preferred embodiments of the present invention have been described, those skilled in the art may make other changes and modifications to these embodiments once they have learned the basic creative concept. Therefore, the appended claims are intended to be interpreted as including the preferred embodiments and all changes and modifications that fall within the scope of the present invention.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,应当指出的是,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. It should be pointed out that any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention should be included in the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411151794.1A CN118651838B (en) | 2024-08-21 | 2024-08-21 | A modification method of lithium manganese iron phosphate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411151794.1A CN118651838B (en) | 2024-08-21 | 2024-08-21 | A modification method of lithium manganese iron phosphate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118651838A true CN118651838A (en) | 2024-09-17 |
CN118651838B CN118651838B (en) | 2024-11-26 |
Family
ID=92706655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411151794.1A Active CN118651838B (en) | 2024-08-21 | 2024-08-21 | A modification method of lithium manganese iron phosphate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118651838B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119208577A (en) * | 2024-11-25 | 2024-12-27 | 湖南裕能新能源电池材料股份有限公司 | A surface-modified manganese-based lithium iron phosphate positive electrode material and preparation method thereof |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102153063A (en) * | 2011-03-31 | 2011-08-17 | 武汉工程大学 | Method for preparing lithium iron phosphate serving as battery material from brown corundum slags |
CN104885267A (en) * | 2012-12-21 | 2015-09-02 | 陶氏环球技术有限责任公司 | Co-solvent assisted microwave-solvothermal process for making olivine lithium transition metal phosphate electrode materials |
CN104953118A (en) * | 2015-05-21 | 2015-09-30 | 青海时代新能源科技有限公司 | Positive electrode material of lithium ion battery and preparation method thereof |
CN106450304A (en) * | 2016-11-15 | 2017-02-22 | 安徽安达新能源材料有限公司 | Lithium manganese phosphate composite cathode material and preparation method and application thereof |
CN108232168A (en) * | 2018-01-19 | 2018-06-29 | 河北力滔电池材料有限公司 | Modified phosphate iron lithium composite material and preparation method |
CN109309207A (en) * | 2017-07-28 | 2019-02-05 | 比亚迪股份有限公司 | A kind of positive active material and preparation method thereof, anode and lithium ion battery |
CN114497494A (en) * | 2022-01-24 | 2022-05-13 | 中南大学 | Surface-coated modified nickel-cobalt-manganese ternary material and preparation method and application thereof |
CN114665058A (en) * | 2022-05-05 | 2022-06-24 | 盐城工学院 | A kind of preparation method of lithium ion battery cathode material lithium manganese iron phosphate |
CN115810733A (en) * | 2022-12-19 | 2023-03-17 | 江苏航宇超能锂电科技有限公司 | Modified lithium iron manganese phosphate material, preparation method thereof and lithium ion battery |
CN116632191A (en) * | 2023-05-17 | 2023-08-22 | 孚能科技(赣州)股份有限公司 | Modified lithium iron manganese phosphate positive electrode material, preparation method thereof and lithium ion battery |
JP2023162559A (en) * | 2022-04-27 | 2023-11-09 | 国立大学法人横浜国立大学 | Lithium composite oxide and method for producing the same |
CN117525331A (en) * | 2023-11-15 | 2024-02-06 | 湖北亿纬动力有限公司 | Lithium iron manganese phosphate material, preparation method thereof, positive electrode plate and lithium ion battery |
-
2024
- 2024-08-21 CN CN202411151794.1A patent/CN118651838B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102153063A (en) * | 2011-03-31 | 2011-08-17 | 武汉工程大学 | Method for preparing lithium iron phosphate serving as battery material from brown corundum slags |
CN104885267A (en) * | 2012-12-21 | 2015-09-02 | 陶氏环球技术有限责任公司 | Co-solvent assisted microwave-solvothermal process for making olivine lithium transition metal phosphate electrode materials |
CN104953118A (en) * | 2015-05-21 | 2015-09-30 | 青海时代新能源科技有限公司 | Positive electrode material of lithium ion battery and preparation method thereof |
CN106450304A (en) * | 2016-11-15 | 2017-02-22 | 安徽安达新能源材料有限公司 | Lithium manganese phosphate composite cathode material and preparation method and application thereof |
CN109309207A (en) * | 2017-07-28 | 2019-02-05 | 比亚迪股份有限公司 | A kind of positive active material and preparation method thereof, anode and lithium ion battery |
CN108232168A (en) * | 2018-01-19 | 2018-06-29 | 河北力滔电池材料有限公司 | Modified phosphate iron lithium composite material and preparation method |
CN114497494A (en) * | 2022-01-24 | 2022-05-13 | 中南大学 | Surface-coated modified nickel-cobalt-manganese ternary material and preparation method and application thereof |
JP2023162559A (en) * | 2022-04-27 | 2023-11-09 | 国立大学法人横浜国立大学 | Lithium composite oxide and method for producing the same |
CN114665058A (en) * | 2022-05-05 | 2022-06-24 | 盐城工学院 | A kind of preparation method of lithium ion battery cathode material lithium manganese iron phosphate |
CN115810733A (en) * | 2022-12-19 | 2023-03-17 | 江苏航宇超能锂电科技有限公司 | Modified lithium iron manganese phosphate material, preparation method thereof and lithium ion battery |
CN116632191A (en) * | 2023-05-17 | 2023-08-22 | 孚能科技(赣州)股份有限公司 | Modified lithium iron manganese phosphate positive electrode material, preparation method thereof and lithium ion battery |
CN117525331A (en) * | 2023-11-15 | 2024-02-06 | 湖北亿纬动力有限公司 | Lithium iron manganese phosphate material, preparation method thereof, positive electrode plate and lithium ion battery |
Non-Patent Citations (2)
Title |
---|
KONTJE, M.: "Chemical induced delithiation on LixMnPO4: an investigation about the phase structure", 《ARXIV》, 22 June 2019 (2019-06-22) * |
ZHANG LI-JUAN: "Low temperature performance of LiBF4/LiODFB blend salts electrolyte", 《BATTERY BIMONTHLY 》, 25 June 2018 (2018-06-25) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119208577A (en) * | 2024-11-25 | 2024-12-27 | 湖南裕能新能源电池材料股份有限公司 | A surface-modified manganese-based lithium iron phosphate positive electrode material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN118651838B (en) | 2024-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105355886B (en) | A kind of sodium-ion battery positive pole Na2+2xFe2‑x(SO4)3@carbon composites and preparation method thereof | |
CN101572305B (en) | A preparation method of LiFePO4/C cathode material with high rate performance | |
CN103682266B (en) | A kind of Li, Mn position codope manganese phosphate lithium/carbon composite material and preparation method thereof | |
CN101339992B (en) | Preparation method of lithium vanadium silicate lithium ion battery cathode material | |
CN104477870B (en) | A kind of porous flake lithium ion battery LiTi2(PO4)3Electrode materials and its preparation method | |
CN102593461B (en) | Preparation method of positive material carbon-coated LiFePO4 of lithium ion secondary cell | |
CN101152959A (en) | Preparation method of lithium iron phosphate composite oxide | |
CN118651838A (en) | A modification method of lithium manganese iron phosphate | |
CN105390682A (en) | Preparation method for lithium iron phosphate microsphere/three-dimensional graphene composite electrode material and application of composite electrode material | |
CN112864372B (en) | Lithium ion battery nickel-rich single crystal positive electrode material with double functional interfaces and preparation method thereof | |
Zhang et al. | Enhancing the electrochemical performance of Li4Ti5O12 anode materials by codoping with Na and Br | |
CN102931400A (en) | A kind of synthesis method of LiMnPO4/C composite cathode material for lithium-ion battery at nanoscale | |
CN117936755A (en) | A high energy density polyanion positive electrode material and preparation method thereof and a positive electrode sheet for a sodium ion battery | |
WO2023207421A1 (en) | Composite lithium manganese iron phosphate positive electrode material, and preparation method and application thereof | |
CN1821064A (en) | Method for preparing high-density lithium iron phosphate by microwave heating | |
CN116443941A (en) | Preparation and application of in-situ carbon-coated sodium ferric sulfate positive electrode material | |
CN112038614A (en) | A kind of negative electrode material for sodium ion battery and preparation method thereof | |
CN107994223A (en) | A kind of composite material of the fluorin-doped modification of aluminium and its preparation method and application | |
CN102134064A (en) | Preparation method of positive material of lithium iron phosphate | |
Wang et al. | Mn-based tunnel-structured Na 0.44 MnO 2 cathode materials for high-performance sodium-ion batteries: electrochemical mechanism, synthesis and modifications | |
CN116002660B (en) | A preparation method of carbon-silicon composite material, carbon-silicon composite material and lithium battery | |
Luo et al. | Surface Coating Enabling Sulfide Solid Electrolytes with Excellent Air Stability and Lithium Compatibility | |
CN106450178A (en) | Manganese dioxide-coated carbon-sulfur composite material and preparation method and application thereof | |
CN114824243B (en) | Preparation method of fast-chargeable Co-doped niobium oxide anode material and deep-sea energy storage battery | |
CN114420936B (en) | Nitrogen-doped expanded-layer graphite/tin phosphide multilayer composite material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |