[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN118645101A - A smart speaker control system - Google Patents

A smart speaker control system Download PDF

Info

Publication number
CN118645101A
CN118645101A CN202411096568.8A CN202411096568A CN118645101A CN 118645101 A CN118645101 A CN 118645101A CN 202411096568 A CN202411096568 A CN 202411096568A CN 118645101 A CN118645101 A CN 118645101A
Authority
CN
China
Prior art keywords
speaker
resource
optimized
performance
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202411096568.8A
Other languages
Chinese (zh)
Other versions
CN118645101B (en
Inventor
黄凯云
李直喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Zhongkerui Technology Co ltd
Original Assignee
Shenzhen Zhongkerui Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Zhongkerui Technology Co ltd filed Critical Shenzhen Zhongkerui Technology Co ltd
Priority to CN202411096568.8A priority Critical patent/CN118645101B/en
Publication of CN118645101A publication Critical patent/CN118645101A/en
Application granted granted Critical
Publication of CN118645101B publication Critical patent/CN118645101B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/16Speech classification or search using artificial neural networks
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • G10L2015/223Execution procedure of a spoken command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/03Synergistic effects of band splitting and sub-band processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)

Abstract

本发明涉及语音控制技术领域,具体为一种智能音箱控制系统,系统包括语音数据分析模块、动态资源管理模块、噪声抑制调整模块、智能响应速度调控模块。本发明中,通过对音箱语音输入的精确分析,提升了语音命令的识别精度和执行效果,显著改善了用户交互体验,利用自回归积分滑动平均模型与长短期记忆网络,增强了对复杂命令的处理能力和数据效率,实施动态资源管理,根据命令预测自动调整CPU与内存配置,优化设备响应速度和资源利用,提高系统处理能力,实时噪声抑制确保在多噪声环境下也能精确捕捉指令,此外,通过持续监控与调优智能音箱的响应速度和负载,提高了运行效率,同时降低了能源消耗和处理负担。

The present invention relates to the field of voice control technology, specifically to an intelligent speaker control system, the system includes a voice data analysis module, a dynamic resource management module, a noise suppression adjustment module, and an intelligent response speed control module. In the present invention, by accurately analyzing the voice input of the speaker, the recognition accuracy and execution effect of the voice command are improved, the user interaction experience is significantly improved, the autoregressive integral sliding average model and the long short-term memory network are used to enhance the processing capability and data efficiency of complex commands, implement dynamic resource management, automatically adjust the CPU and memory configuration according to command prediction, optimize the device response speed and resource utilization, improve the system processing capacity, and ensure that the real-time noise suppression can accurately capture the command in a multi-noise environment. In addition, by continuously monitoring and optimizing the response speed and load of the intelligent speaker, the operation efficiency is improved, while reducing energy consumption and processing burden.

Description

一种智能音箱控制系统A smart speaker control system

技术领域Technical Field

本发明涉及语音控制技术领域,尤其涉及一种智能音箱控制系统。The present invention relates to the field of voice control technology, and in particular to an intelligent speaker control system.

背景技术Background Art

语音控制技术领域涉及通过声音和语音指令实现设备的操作与控制,该技术利用语音识别系统来解析用户的口头命令,将其转换成可执行的指令以控制各种设备和服务,此技术领域包括语音到文本转换、命令识别、自然语言处理(NLP)以及机器学习算法的开发,提升识别准确性和理解复杂指令的能力。语音控制技术已广泛应用于家庭自动化、车载系统、智能手机应用和辅助技术,其核心优势在于提供无接触的操作方式,增强用户体验并使设备操作更加直观和便捷。The field of voice control technology involves the operation and control of devices through sound and voice commands. This technology uses a voice recognition system to parse the user's verbal commands and convert them into executable commands to control various devices and services. This technical field includes voice-to-text conversion, command recognition, natural language processing (NLP), and the development of machine learning algorithms to improve recognition accuracy and the ability to understand complex commands. Voice control technology has been widely used in home automation, in-vehicle systems, smartphone applications, and assistive technologies. Its core advantage is that it provides a contactless operation method, enhances the user experience, and makes device operation more intuitive and convenient.

其中,智能音箱控制系统是一个使用语音控制技术来操作智能音箱的系统。智能音箱是一种配备有麦克风、扬声器和互联网连接的设备,能够响应用户的语音命令执行各种功能,如播放音乐、设置闹钟、提供天气预报、控制智能家居设备等,通过智能音箱控制系统,用户可以仅通过语音交互与设备进行沟通,无需手动操作,使得日常生活更加方便和智能,该系统的用途主要是通过自然语言界面简化家庭或办公环境中的设备管理,提高生活的自动化水平。Among them, the smart speaker control system is a system that uses voice control technology to operate smart speakers. A smart speaker is a device equipped with a microphone, a speaker and an Internet connection that can respond to the user's voice commands to perform various functions, such as playing music, setting alarms, providing weather forecasts, controlling smart home devices, etc. Through the smart speaker control system, users can communicate with the device only through voice interaction without manual operation, making daily life more convenient and intelligent. The purpose of this system is mainly to simplify device management in a home or office environment through a natural language interface and improve the level of automation in life.

现有的智能音箱控制系统虽广泛应用于多种音箱设备,但在语音识别准确性、资源管理效率和环境噪声处理方面仍存在不足,特别是在复杂或嘈杂的环境中,现有技术因环境噪声而难以准确捕捉和处理用户的语音命令,传统的语音识别系统在资源分配上缺乏灵活性,导致在资源有限的设备上运行不佳,影响用户体验。对于响应速度的优化也未能达到实时更新的需求,这限制语音控制技术在紧急或需快速反应的应用场景下的效用,不仅影响用户的操作便利性,也限制语音技术在更广泛场景下的应用推广。Although the existing smart speaker control system is widely used in a variety of speaker devices, it still has deficiencies in voice recognition accuracy, resource management efficiency and environmental noise processing. Especially in complex or noisy environments, the existing technology is difficult to accurately capture and process user voice commands due to environmental noise. The traditional voice recognition system lacks flexibility in resource allocation, resulting in poor operation on devices with limited resources, affecting the user experience. The optimization of response speed has also failed to meet the requirements of real-time updates, which limits the effectiveness of voice control technology in emergency or rapid response application scenarios, which not only affects the user's operational convenience, but also limits the application and promotion of voice technology in a wider range of scenarios.

发明内容Summary of the invention

本发明的目的是解决现有技术中存在的缺点,而提出的一种智能音箱控制系统。The purpose of the present invention is to solve the shortcomings of the prior art and to propose an intelligent speaker control system.

为了实现上述目的,本发明采用了如下技术方案:一种智能音箱控制系统包括:In order to achieve the above object, the present invention adopts the following technical solution: an intelligent speaker control system comprises:

语音数据分析模块基于音箱语音输入数据,通过自回归积分滑动平均模型对输入数据进行分析,获取语音模式分析结果,利用长短期记忆网络细化命令模式的预测,得到细化后命令预测结果;The voice data analysis module analyzes the input data of the speaker through the autoregressive integral sliding average model to obtain the voice pattern analysis results, and uses the long short-term memory network to refine the prediction of the command pattern to obtain the refined command prediction results;

动态资源管理模块根据所述细化后命令预测结果,动态调整智能音箱控制的资源,包括CPU分配量和内存配置,执行资源优化,获取音箱资源优化状态,通过所述音箱资源优化状态调整运行参数,得到优化后的资源配置;The dynamic resource management module dynamically adjusts the resources controlled by the smart speaker according to the refined command prediction results, including the CPU allocation and memory configuration, performs resource optimization, obtains the speaker resource optimization status, adjusts the operating parameters according to the speaker resource optimization status, and obtains the optimized resource configuration;

噪声抑制调整模块基于所述优化后的资源配置,捕捉环境音频数据,通过卡尔曼滤波器分析和更新音频信号的状态,得到音频状态调整结果,利用所述音频状态调整结果对环境噪声进行实时抑制,捕捉智能音箱控制的语音指令,得到优化后的语音捕捉结果;The noise suppression adjustment module captures the ambient audio data based on the optimized resource configuration, analyzes and updates the state of the audio signal through the Kalman filter, obtains the audio state adjustment result, uses the audio state adjustment result to suppress the ambient noise in real time, captures the voice command controlled by the smart speaker, and obtains the optimized voice capture result;

智能响应速度调控模块基于所述优化后的语音捕捉结果,监控智能音箱的响应时间和处理负载,生成音箱性能日志,根据所述音箱性能日志分析响应效率和负载情况,优化响应速度,得到调整后的音箱性能调控响应配置。The intelligent response speed control module monitors the response time and processing load of the smart speaker based on the optimized voice capture result, generates a speaker performance log, analyzes the response efficiency and load according to the speaker performance log, optimizes the response speed, and obtains the adjusted speaker performance control response configuration.

作为本发明的进一步方案,所述细化后命令预测结果的获取步骤具体为:As a further solution of the present invention, the step of obtaining the refined command prediction result is specifically as follows:

基于音箱语音输入数据,应用频谱分析进行信号处理,提取基频和声谱特征,采用公式:Based on the speaker voice input data, spectrum analysis is applied for signal processing to extract the fundamental frequency and spectral features using the formula:

;

计算基频特征,生成信号特征分析结果,其中,代表基频分析结果,是第 i 个频率成分,是对应的振幅,是采样点数量, 是持续性指标;Calculate the fundamental frequency characteristics and generate signal characteristic analysis results, where: represents the fundamental frequency analysis result, is the ith frequency component, is the corresponding amplitude, is the number of sampling points, It is a continuous indicator;

利用所述信号特征分析结果,采用长短期记忆网络,对命令模式进行学习和预测,采用公式:Using the signal feature analysis results, a long short-term memory network is used to learn and predict the command mode using the formula:

;

强化模型对输入变异的敏感性,计算命令模式概率,生成初步命令模式预测结果,其中,是命令模式的预测概率,是权重参数,是LSTM单元的输出函数,是输入特征,是特征数量,是变异系数;Strengthen the model's sensitivity to input variation, calculate command pattern probabilities, and generate preliminary command pattern prediction results, where is the predicted probability of the command mode, is the weight parameter, is the output function of the LSTM unit, are input features, is the number of features, is the coefficient of variation;

使用所述初步命令模式预测结果,结合当前环境的上下文信息,采用公式:The results of the preliminary command pattern prediction are used, combined with the context information of the current environment, using the formula:

;

计算并获取细化后命令预测结果,其中,是命令预测结果,是第 j 个预测命令的概率,是参照的命令数量,是标准差。Calculate and obtain the refined command prediction results, where: is the command prediction result, is the probability of the jth predicted command, is the number of commands referenced, is the standard deviation.

作为本发明的进一步方案,所述音箱资源优化状态的获取步骤具体为:As a further solution of the present invention, the step of obtaining the speaker resource optimization state is specifically as follows:

从所述细化后命令预测结果中提取命令的资源需求敏感性参数,计算命令对资源的需求量,采用公式:The resource demand sensitivity parameter of the command is extracted from the refined command prediction result, and the resource demand of the command is calculated using the formula:

;

生成细化命令资源需求,其中,代表资源需求,代表命令预测的资源敏感性,是调节系数;Generate detailed command resource requirements, where: Represents resource demand, represents the resource sensitivity of the command prediction, is the adjustment coefficient;

根据所述细化命令资源需求,调整智能音箱的CPU和内存配置,采用公式:According to the detailed command resource requirements, the CPU and memory configuration of the smart speaker are adjusted using the formula:

;

生成更新后的资源分配情况,其中,表示更新后的资源分配情况,代表资源需求,是调节参数;Generate an updated resource allocation, where: Indicates the updated resource allocation. Represents resource demand, is the adjustment parameter;

基于所述更新后的资源分配情况,监控并记录资源优化后的运行状态,采用公式:Based on the updated resource allocation, monitor and record the running status after resource optimization, using the formula:

;

生成音箱资源优化状态,其中,是音箱资源优化状态,是更新后的资源分配情况,是性能评估参数。Generates the speaker resource optimization state, where It is the speaker resource optimization state. is the updated resource allocation, is a performance evaluation parameter.

作为本发明的进一步方案,所述优化后的资源配置的获取步骤具体为:As a further solution of the present invention, the step of obtaining the optimized resource configuration is specifically:

根据所述音箱资源优化状态,采用公式:According to the speaker resource optimization state, the formula is adopted:

;

生成分析后的优化状态参数,其中,代表分析后的优化状态参数,是增益系数,是基线修正参数,是音箱资源优化状态;Generate the optimized state parameters after analysis, where represents the optimized state parameters after analysis, is the gain factor, is the baseline correction parameter, It is the speaker resource optimization status;

根据所述分析后的优化状态参数,计算所需的CPU和内存资源,采用公式:According to the optimized state parameters after the analysis, the required CPU and memory resources are calculated using the formula:

;

生成评估后的资源参数,其中,代表评估后的资源参数,是调整因子,代表分析后的优化状态参数;Generates the evaluated resource parameters, where Represents the resource parameters after evaluation, is the adjustment factor, Represents the optimized state parameters after analysis;

使用所述评估后的资源参数调整运行参数,优化音响控制性能,采用公式:Using the resource parameters evaluated above, the operating parameters are adjusted to optimize the sound control performance using the formula:

;

生成优化后的资源配置,其中,是优化后的资源配置,是权重参数,是调整比例,分别代表评估后的资源参数和当前资源配置。Generate an optimized resource configuration, where: It is the optimized resource allocation. is the weight parameter, is to adjust the proportion, and They represent the evaluated resource parameters and current resource configuration respectively.

作为本发明的进一步方案,所述音频状态调整结果的获取步骤具体为:As a further solution of the present invention, the step of obtaining the audio state adjustment result is specifically:

基于所述优化后的资源配置,激活音频捕捉,收集环境音频数据,采用公式:Based on the optimized resource configuration, audio capture is activated to collect environmental audio data using the formula:

;

生成捕捉的音频数据参数,其中,代表捕捉的音频数据,是增益和敏感性调整系数,是环境音频强度;Generate captured audio data parameters, where Represents the captured audio data, and are the gain and sensitivity adjustment factors, is the ambient audio intensity;

将所述捕捉的音频数据参数输入卡尔曼滤波器,分析和更新音频信号的状态,调节信号的平滑度和响应速度,采用公式:The captured audio data parameters are input into the Kalman filter to analyze and update the state of the audio signal, adjust the smoothness and response speed of the signal, and use the formula:

;

生成过滤后的音频信号,其中,代表过滤后的音频信号,和 γ 是调节信号处理的敏感性和阈值,代表捕捉的音频数据;Generate a filtered audio signal where represents the filtered audio signal, and γ are the sensitivity and threshold of adjusting signal processing, Represents the captured audio data;

基于所述过滤后的音频信号,更新音频状态,采用公式:Based on the filtered audio signal, the audio state is updated using the formula:

;

生成音频状态调整结果,其中,是音频状态调整结果,调节音频状态的更新速率和调整范围,代表过滤后的音频信号。Generate an audio state adjustment result, where: is the result of audio status adjustment. and Adjust the update rate and adjustment range of the audio status, Represents the filtered audio signal.

作为本发明的进一步方案,所述优化后的语音捕捉结果的获取步骤具体为:As a further solution of the present invention, the step of obtaining the optimized voice capture result is specifically:

根据所述音频状态调整结果,执行实时噪声抑制,优化环境中的音频捕捉,采用公式:According to the audio state adjustment result, real-time noise suppression is performed to optimize the audio capture in the environment, using the formula:

;

生成噪声抑制后的音频参数,其中,为优化后的噪声抑制参数,分别为噪声抑制增益、稳定性系数和灵敏度调节参数,表示音频状态调整结果;Generate noise suppressed audio parameters, where is the optimized noise suppression parameter, are noise suppression gain, stability coefficient and sensitivity adjustment parameters respectively, Indicates the audio status adjustment result;

利用所述噪声抑制后的音频参数,对智能音箱控制的语音指令进行捕捉和初步处理,采用公式:The audio parameters after noise suppression are used to capture and preliminarily process the voice commands controlled by the smart speaker, using the formula:

;

生成初步处理后的语音参数,其中,为初步处理后的语音指令参数,是处理增益和权重参数,为优化后的噪声抑制参数,为环境中原始的语音数据;Generate preliminary processed speech parameters, where is the voice command parameter after preliminary processing, and are the processing gain and weight parameters, is the optimized noise suppression parameter, The original voice data in the environment;

根据所述初步处理后的语音参数,更新智能音箱的语音识别配置,采用公式:According to the initially processed speech parameters, the speech recognition configuration of the smart speaker is updated using the formula:

;

生成优化后的语音捕捉结果,其中,为优化后的语音捕捉结果,表示更新系数,为初步处理后的语音指令参数。Generate optimized speech capture results, where For the optimized voice capture results, represents the update coefficient, It is the voice command parameter after preliminary processing.

作为本发明的进一步方案,所述音箱性能日志的获取步骤具体为:As a further solution of the present invention, the steps of obtaining the speaker performance log are specifically as follows:

利用所述优化后的语音捕捉结果,优化响应时间的表征,通过公式:Using the optimized voice capture results, the characterization of the response time is optimized, using the formula:

;

生成响应时间性能指标,其中,表示增益系数、基础偏置和调节系数,代表响应时间性能指标,表示优化后的语音捕捉结果;Generate response time performance indicators, where and represents the gain factor, basic bias and adjustment factor, Represents the response time performance indicator, Indicates the optimized speech capture result;

结合所述响应时间性能指标和处理负载,采用公式:Combining the response time performance indicator and processing load, the formula is used:

;

生成性能日志参数,其中,为性能日志参数,是权重参数,代表响应时间性能指标,表示处理负载;Generate performance log parameters, where: is the performance log parameter, and is the weight parameter, Represents the response time performance indicator, Indicates processing load;

使用所述性能日志参数,通过配置音箱参数并记录关键性能数据,采用公式:Using the performance log parameters, by configuring the speaker parameters and recording key performance data, the formula is used:

;

生成音箱性能日志,其中,是融合系数,是前一次的性能日志,是音箱性能日志,为性能日志参数。Generates a speaker performance log, where is the fusion coefficient, This is the previous performance log. It is the speaker performance log. It is the performance log parameter.

作为本发明的进一步方案,所述调整后的音箱性能调控响应配置的获取步骤具体为:As a further solution of the present invention, the step of obtaining the adjusted speaker performance control response configuration is specifically:

从所述音箱性能日志中提取关键的性能指标,包括响应效率和处理负载,计算初步的性能数据,采用公式:Extract key performance indicators from the speaker performance log, including response efficiency and processing load, and calculate preliminary performance data using the formula:

;

生成性能分析结果,其中, 代表从日志中提取的性能数据,权重系数,表示处理负载,表示响应效率;Generate performance analysis results, where Represents performance data extracted from logs, , Weight coefficient, Represents the processing load, Indicates response efficiency;

基于所述性能分析结果,调整音箱的处理参数,优化设备的响应速度,通过公式:Based on the performance analysis results, the processing parameters of the speaker are adjusted to optimize the response speed of the device, through the formula:

;

生成优化后的处理配置,其中,为优化后的处理配置,是调节参数,表示调整音箱的处理参数, 代表从日志中提取的性能数据;Generate an optimized processing configuration where: For the optimized processing configuration, and is the adjustment parameter, Indicates adjusting the processing parameters of the speaker. Represents performance data extracted from logs;

使用所述优化后的处理配置,更新音箱的性能调控配置,应用公式:Using the optimized processing configuration, update the speaker's performance control configuration and apply the formula:

;

得到调整后的音箱性能调控响应配置,其中,是更新系数,是之前的音箱性能调控配置,为优化后的处理配置,表示调整后的音箱性能调控响应配置。The adjusted speaker performance control response configuration is obtained, wherein: is the update coefficient, It is the previous speaker performance control configuration. For the optimized processing configuration, Indicates the adjusted speaker performance control response configuration.

与现有技术相比,本发明的优点和积极效果在于:Compared with the prior art, the advantages and positive effects of the present invention are:

本发明中,通过对音箱语音输入的细致分析与处理,提升语音命令的识别精度和执行精确性,使得用户交互体验得到显著提高,采用自回归积分滑动平均模型和长短期记忆网络分析语音模式,不仅优化数据处理效率,也提高对复杂命令的理解能力,动态资源管理的实施,根据预测结果调整CPU和内存配置,使设备能在不同需求下自动优化资源使用,提升系统的整体响应速度和处理能力。通过实时噪声抑制,进一步提升语音捕捉的质量,确保在嘈杂环境下也能准确识别用户的指令,对智能音箱的响应速度和处理负载的监控和优化,保持了设备在高效率运行的同时,还能节省能源消耗,减少不必要的处理负担。In the present invention, the recognition accuracy and execution precision of voice commands are improved through careful analysis and processing of the speaker voice input, so that the user interaction experience is significantly improved. The autoregressive integral sliding average model and long short-term memory network are used to analyze the voice mode, which not only optimizes the data processing efficiency, but also improves the ability to understand complex commands. The implementation of dynamic resource management adjusts the CPU and memory configuration according to the prediction results, so that the device can automatically optimize resource usage under different requirements and improve the overall response speed and processing capacity of the system. Through real-time noise suppression, the quality of voice capture is further improved to ensure that the user's instructions can be accurately recognized even in a noisy environment. The monitoring and optimization of the response speed and processing load of the smart speaker can keep the device running efficiently while saving energy consumption and reducing unnecessary processing burden.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为本发明的系统流程图;Fig. 1 is a system flow chart of the present invention;

图2为本发明中细化后命令预测结果的流程图;FIG2 is a flow chart of the refined command prediction results in the present invention;

图3为本发明中音箱资源优化状态的流程图;FIG3 is a flow chart of the speaker resource optimization state in the present invention;

图4为本发明中优化后的资源配置的流程图;FIG4 is a flow chart of optimized resource configuration in the present invention;

图5为本发明中音频状态调整结果的流程图;FIG5 is a flow chart of the audio state adjustment result in the present invention;

图6为本发明中优化后的语音捕捉结果的流程图;FIG6 is a flow chart of the optimized speech capture result in the present invention;

图7为本发明中音箱性能日志的流程图;FIG7 is a flow chart of a speaker performance log in the present invention;

图8为本发明中调整后的音箱性能调控响应配置的流程图。FIG8 is a flow chart of the adjusted speaker performance control response configuration in the present invention.

具体实施方式DETAILED DESCRIPTION

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the purpose, technical solution and advantages of the present invention more clearly understood, the present invention is further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention and are not intended to limit the present invention.

在本发明的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In the description of the present invention, it should be understood that the terms "length", "width", "up", "down", "front", "back", "left", "right", "vertical", "horizontal", "top", "bottom", "inside", "outside" and the like indicate positions or positional relationships based on the positions or positional relationships shown in the drawings, and are only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation on the present invention. In addition, in the description of the present invention, "plurality" means two or more, unless otherwise clearly and specifically defined.

实施例:请参阅图1,一种智能音箱控制系统包括:Embodiment: Please refer to FIG1 , a smart speaker control system includes:

语音数据分析模块基于音箱语音输入数据,通过自回归积分滑动平均模型对输入数据进行分析,获取语音模式分析结果,利用长短期记忆网络细化命令模式的预测,得到细化后命令预测结果;The voice data analysis module analyzes the input data of the speaker through the autoregressive integral sliding average model to obtain the voice pattern analysis results, and uses the long short-term memory network to refine the prediction of the command pattern to obtain the refined command prediction results;

动态资源管理模块根据细化后命令预测结果,动态调整智能音箱控制的资源,包括CPU分配量和内存配置,执行资源优化,获取音箱资源优化状态,通过音箱资源优化状态调整运行参数,得到优化后的资源配置;The dynamic resource management module dynamically adjusts the resources controlled by the smart speaker according to the refined command prediction results, including CPU allocation and memory configuration, performs resource optimization, obtains the speaker resource optimization status, adjusts the operating parameters according to the speaker resource optimization status, and obtains the optimized resource configuration;

噪声抑制调整模块基于优化后的资源配置,捕捉环境音频数据,通过卡尔曼滤波器分析和更新音频信号的状态,得到音频状态调整结果,利用音频状态调整结果对环境噪声进行实时抑制,捕捉智能音箱控制的语音指令,得到优化后的语音捕捉结果;The noise suppression adjustment module captures the ambient audio data based on the optimized resource configuration, analyzes and updates the state of the audio signal through the Kalman filter, obtains the audio state adjustment result, uses the audio state adjustment result to suppress the ambient noise in real time, captures the voice commands controlled by the smart speaker, and obtains the optimized voice capture result;

智能响应速度调控模块基于优化后的语音捕捉结果,监控智能音箱的响应时间和处理负载,生成音箱性能日志,根据音箱性能日志分析响应效率和负载情况,优化响应速度,得到调整后的音箱性能调控响应配置。The intelligent response speed control module monitors the response time and processing load of the smart speaker based on the optimized voice capture results, generates speaker performance logs, analyzes the response efficiency and load conditions according to the speaker performance logs, optimizes the response speed, and obtains the adjusted speaker performance control response configuration.

语音模式分析结果包括音调分布、声音频谱、语速区间,细化后命令预测结果包括命令意图类型、参数设置范围、执行优先级,音箱资源优化状态包括处理器负载、内存占用率、能耗等级,优化后的资源配置包括资源分配方案、存储优化级别、处理能力提升,音频状态调整结果包括噪声消除效果、声音增强级别、信号稳定性,优化后的语音捕捉结果包括识别精度提升、反应速度优化、误识率下降,音箱性能日志包括性能峰值记录、响应异常记录、资源使用历史,优化后的音箱性能调控响应配置包括时间响应优化、负载平衡策略、性能自适应调整。The results of voice pattern analysis include pitch distribution, sound spectrum, and speaking speed range. The refined command prediction results include command intent type, parameter setting range, and execution priority. The speaker resource optimization status includes processor load, memory occupancy, and energy consumption level. The optimized resource configuration includes resource allocation plan, storage optimization level, and processing power improvement. The audio status adjustment results include noise elimination effect, sound enhancement level, and signal stability. The optimized voice capture results include improved recognition accuracy, optimized response speed, and reduced error recognition rate. The speaker performance log includes performance peak records, response abnormality records, and resource usage history. The optimized speaker performance regulation response configuration includes time response optimization, load balancing strategy, and performance adaptive adjustment.

请参阅图2,细化后命令预测结果的获取步骤具体为:Please refer to Figure 2, the steps for obtaining the refined command prediction results are as follows:

基于音箱语音输入数据,应用频谱分析进行信号处理,提取基频和声谱特征,采用公式:Based on the speaker voice input data, spectrum analysis is applied for signal processing to extract the fundamental frequency and spectral features using the formula:

;

计算基频特征,生成信号特征分析结果,其中,代表基频分析结果,是第 i 个频率成分,是对应的振幅,是采样点数量, 是持续性指标;Calculate the fundamental frequency characteristics and generate signal characteristic analysis results, where: represents the fundamental frequency analysis result, is the ith frequency component, is the corresponding amplitude, is the number of sampling points, It is a continuous indicator;

利用信号特征分析结果,采用长短期记忆网络,对命令模式进行学习和预测,采用公式:Using the signal feature analysis results, the long short-term memory network is used to learn and predict the command mode using the formula:

;

强化模型对输入变异的敏感性,计算命令模式概率,生成初步命令模式预测结果,其中,是命令模式的预测概率,是权重参数,是LSTM单元的输出函数,是输入特征,是特征数量,是变异系数;Strengthen the model's sensitivity to input variation, calculate command pattern probabilities, and generate preliminary command pattern prediction results, where is the predicted probability of the command mode, is the weight parameter, is the output function of the LSTM unit, are input features, is the number of features, is the coefficient of variation;

使用初步命令模式预测结果,结合当前环境的上下文信息,采用公式:Use the preliminary command pattern to predict the result, combined with the contextual information of the current environment, and use the formula:

;

计算并获取细化后命令预测结果,其中,是命令预测结果,是第 j 个预测命令的概率,是参照的命令数量,是标准差。Calculate and obtain the refined command prediction results, where: is the command prediction result, is the probability of the jth predicted command, is the number of commands referenced, is the standard deviation.

基频分析结果的公式:The formula for fundamental frequency analysis results is:

;

:第i个频率成分,一般通过傅里叶变换从时间域信号转换为频率域信号得到; : The i-th frequency component is generally obtained by converting the time domain signal into the frequency domain signal through Fourier transform;

:对应频率的振幅,通过傅里叶变换的结果获得; : Corresponding frequency The amplitude of is obtained by Fourier transform result;

:信号的持续性指标,可以通过分析信号在某频率上的时间长度获得; : The persistence index of the signal can be obtained by analyzing the length of time the signal is at a certain frequency;

:采样点数量,代表信号中总的频率成分数; : The number of sampling points, representing the total number of frequency components in the signal;

假设信号有三个频率成分Hz,对应的振幅,每个成分的持续性指标,总的采样点Assume that the signal has three frequency components Hz, corresponding to the amplitude , the sustainability index of each component , the total number of sampling points ;

计算过程Calculation process :

;

;

这个值代表信号中加权平均的基频成分,是对信号特征的一种量化表达。this The value represents the weighted average fundamental frequency component in the signal and is a quantitative expression of the signal characteristics.

命令模式的预测概率公式:The predicted probability formula of command mode:

;

:权重参数,反映了每个特征的重要性,一般通过训练数据的统计分析确定; : Weight parameter, which reflects the importance of each feature and is generally determined by statistical analysis of training data;

:LSTM单元的输出函数,依赖于输入特征和网络的参数; : The output function of the LSTM unit depends on the input features and the parameters of the network;

:输入特征,是经过预处理的信号特征如MFCC等; : Input features are preprocessed signal features such as MFCC;

:变异系数,表示特征在训练集中的变异性,可以通过统计方法获得; : Coefficient of variation, indicating characteristics The variability in the training set can be obtained by statistical methods;

:特征数量; : number of features;

假设有三个特征,权重,变异系数,特征数Assume there are three features, weights , , coefficient of variation , the number of features ;

计算calculate :

;

;

;

这个值表示综合考虑变异性后的预测命令模式的概率。this The values represent the probability of the predicted command pattern after taking into account the variability.

命令预测结果公式:Command prediction result formula:

;

:第j个预测命令的概率,从上述计算得来; : The probability of the jth predicted command, from the above calculated;

:标准差,表示的分散度,通过统计分析获得; : Standard deviation, indicating The dispersion of is obtained through statistical analysis;

:考虑的命令数量; : The number of commands considered;

假设预测结果,标准差,命令数Assume the prediction result , standard deviation , number of commands ;

计算calculate :

;

;

;

;

这个值表示综合标准差调整后的最终命令预测结果的稳定性度量。this The value represents a stability measure of the final command prediction results after adjusting the comprehensive standard deviation.

请参阅图3,音箱资源优化状态的获取步骤具体为:Please refer to FIG3 , the specific steps for obtaining the speaker resource optimization status are:

从细化后命令预测结果中提取命令的资源需求敏感性参数,计算命令对资源的需求量,采用公式:Extract the resource demand sensitivity parameters of the command from the refined command prediction results and calculate the resource demand of the command using the formula:

;

生成细化命令资源需求,其中,代表资源需求,代表命令预测的资源敏感性,是调节系数;Generate detailed command resource requirements, where: Represents resource demand, represents the resource sensitivity of the command prediction, is the adjustment coefficient;

根据细化命令资源需求,调整智能音箱的CPU和内存配置,采用公式:According to the detailed command resource requirements, adjust the CPU and memory configuration of the smart speaker using the formula:

;

生成更新后的资源分配情况,其中,表示更新后的资源分配情况,代表资源需求,是调节参数;Generate an updated resource allocation, where: Indicates the updated resource allocation. Represents resource demand, is the adjustment parameter;

基于更新后的资源分配情况,监控并记录资源优化后的运行状态,采用公式:Based on the updated resource allocation, monitor and record the running status after resource optimization, using the formula:

;

生成音箱资源优化状态,其中,是音箱资源优化状态,是更新后的资源分配情况,是性能评估参数。Generates the speaker resource optimization state, where It is the speaker resource optimization state. is the updated resource allocation, is a performance evaluation parameter.

资源需求公式:Resource requirement formula:

;

:假设为命令预测的资源敏感性参数,这是通过分析用户命令类型和频率得到的模型预测值,例如 : Assume that it is the resource sensitivity parameter for command prediction, which is the model prediction value obtained by analyzing the user command type and frequency, such as ;

资源需求调节系数,假设为固定值,如 The resource demand adjustment coefficient is assumed to be a fixed value, such as ;

计算calculate :

;

计算calculate :

;

将上述结果代入Substituting the above results into :

;

此算例中,表示根据命令预测的资源需求强度。In this example, Indicates the resource demand intensity predicted by the command.

更新后的资源分配情况公式:Updated resource allocation formula:

;

从上一步获取,例如 Obtained from the previous step, for example ;

:调节参数,设 :Adjust parameters, set ;

计算calculate :

;

计算分母:Calculate the denominator:

;

将上述结果代入Substituting the above results into :

;

此算例中,表示优化后的资源配置状态,说明资源分配算法能够动态调整以提高效率。In this example, It indicates the optimized resource configuration state, which means that the resource allocation algorithm can be dynamically adjusted to improve efficiency.

音箱资源优化状态公式:Speaker resource optimization status formula:

;

从上一步获取,例如 Obtained from the previous step, for example ;

:性能评估参数,设 :Performance evaluation parameters, set ;

计算第二项:Calculate the second term:

;

将上述结果代入Substituting the above results into :

;

此算例中,表示音箱的最终资源优化状态,反映了资源优化的整体效益,量化了性能优化后的实际状态。In this example, It indicates the final resource optimization status of the speaker, reflects the overall benefit of resource optimization, and quantifies the actual status after performance optimization.

请参阅图4,优化后的资源配置的获取步骤具体为:Please refer to Figure 4, the steps for obtaining the optimized resource configuration are as follows:

根据音箱资源优化状态,采用公式:According to the speaker resource optimization status, the formula is used:

;

生成分析后的优化状态参数,其中,代表分析后的优化状态参数,是增益系数,是基线修正参数,是音箱资源优化状态;Generate the optimized state parameters after analysis, where represents the optimized state parameters after analysis, is the gain factor, is the baseline correction parameter, It is the speaker resource optimization status;

根据分析后的优化状态参数,计算所需的CPU和内存资源,采用公式:According to the analyzed optimization status parameters, the required CPU and memory resources are calculated using the formula:

;

生成评估后的资源参数,其中,代表评估后的资源参数,是调整因子,代表分析后的优化状态参数;Generates the evaluated resource parameters, where Represents the resource parameters after evaluation, is the adjustment factor, Represents the optimized state parameters after analysis;

使用评估后的资源参数调整运行参数,优化音响控制性能,采用公式:Use the estimated resource parameters to adjust the operating parameters and optimize the sound control performance using the formula:

;

生成优化后的资源配置,其中,是优化后的资源配置,是权重参数,是调整比例,分别代表评估后的资源参数和当前资源配置。Generate an optimized resource configuration, where: It is the optimized resource allocation. is the weight parameter, is to adjust the proportion, and They represent the evaluated resource parameters and current resource configuration respectively.

分析后的优化状态参数公式:The optimized state parameter formula after analysis:

;

:增益系数,假设取值为2,用于增强状态的反馈效果; : Gain coefficient, assuming the value is 2, used to enhance the feedback effect of the state;

:基线修正参数,假设取值为1,用于平衡状态响应; : Baseline correction parameter, assumed to be 1, used for equilibrium state response;

:音箱资源优化状态,假设取值为 3; : Speaker resource optimization status, assuming the value is 3;

计算calculate :

;

计算分母Calculate the denominator :

;

将上述结果代入公式:Substituting the above results into formula:

;

此算例中,代表分析后的优化状态,表明优化状态已被有效放大并调整。In this example, Represents the optimized state after analysis, indicating that the optimized state has been effectively amplified and adjusted.

评估后的资源参数公式:The resource parameter formula after evaluation is:

;

:调整因子,假设取值为1.5,用于优化资源分配的敏感性; : Adjustment factor, assumed to be 1.5, used to optimize the sensitivity of resource allocation;

:调整因子,假设取值为0.5; : Adjustment factor, assuming the value is 0.5;

:从上一步骤获得的输出,值为4.5; : The output obtained from the previous step, the value is 4.5;

计算calculate :

;

计算分母Calculate the denominator :

;

将上述结果代入公式:Substituting the above results into formula:

;

此算例中,代表计算后的资源需求,反映了对资源配置的高需求状态。In this example, Represents the resource demand after calculation, reflecting the high demand state for resource allocation.

优化后的资源配置公式:Optimized resource allocation formula:

;

:权重参数,假设取值为0.7,控制新配置与当前配置的平衡; : Weight parameter, assuming a value of 0.7, controls the balance between the new configuration and the current configuration;

:当前配置的调整比例,假设取值为0.3; : The adjustment ratio of the current configuration, assuming the value is 0.3;

:从上一步骤获得的输出,值为28.0; : The output obtained from the previous step, the value is 28.0;

:当前资源配置状态,假设为10; : Current resource configuration status, assumed to be 10;

计算calculate :

;

计算calculate :

;

将上述结果代入公式:Substituting the above results into formula:

;

此算例中,表示优化后的资源配置,显示出资源配置的实际调整结果。In this example, It indicates the optimized resource configuration and displays the actual adjustment results of the resource configuration.

请参阅图5,音频状态调整结果的获取步骤具体为:Please refer to FIG5 , the specific steps of obtaining the audio state adjustment result are as follows:

基于优化后的资源配置,激活音频捕捉,收集环境音频数据,采用公式:Based on the optimized resource configuration, activate audio capture and collect environmental audio data using the formula:

;

生成捕捉的音频数据参数,其中,代表捕捉的音频数据,是增益和敏感性调整系数,是环境音频强度;Generate captured audio data parameters, where Represents the captured audio data, and are the gain and sensitivity adjustment factors, is the ambient audio intensity;

将捕捉的音频数据参数输入卡尔曼滤波器,分析和更新音频信号的状态,调节信号的平滑度和响应速度,采用公式:The captured audio data parameters are input into the Kalman filter to analyze and update the state of the audio signal, adjust the smoothness and response speed of the signal, and use the formula:

;

生成过滤后的音频信号,其中,代表过滤后的音频信号,和 γ 是调节信号处理的敏感性和阈值,代表捕捉的音频数据;Generate a filtered audio signal where represents the filtered audio signal, and γ are the sensitivity and threshold of adjusting signal processing, Represents the captured audio data;

基于过滤后的音频信号,更新音频状态,采用公式:Based on the filtered audio signal, update the audio state using the formula:

;

生成音频状态调整结果,其中,是音频状态调整结果,调节音频状态的更新速率和调整范围,代表过滤后的音频信号。Generate an audio state adjustment result, where: is the result of audio status adjustment. and Adjust the update rate and adjustment range of the audio status, Represents the filtered audio signal.

捕捉的音频数据公式:Captured audio data formula:

;

:增益系数,用于调整音频数据的放大级别,假设 : Gain factor, used to adjust the amplification level of the audio data, assuming ;

:敏感性调整系数,用于增强对环境音频强度的响应,假设 : Sensitivity adjustment factor, used to enhance the response to the ambient audio intensity, assuming ;

:环境音频强度,假设在某个环境中测得单位; : Ambient audio intensity, assuming it is measured in a certain environment unit;

计算calculate :

;

计算calculate :

;

计算calculate :

将上述结果代入Substituting the above results into :

;

此算例中,表示捕捉的音频数据的处理结果,表示对环境音量的敏感度和响应。In this example, Represents the result of processing the captured audio data, indicating the sensitivity and response to the ambient volume.

过滤后的音频信号公式:The filtered audio signal formula is:

;

:滤波增益系数,用于调节音频信号的平滑度,假设 : Filter gain coefficient, used to adjust the smoothness of the audio signal, assuming ;

:滤波基线参数,确保分母不为零,假设 : Filter baseline parameters, ensure that the denominator is not zero, assuming ;

:滤波敏感性调整参数,影响信号响应速度,假设 : Filter sensitivity adjustment parameter, affecting the signal response speed, assuming ;

:从上个步骤中得到,值为0.7455; : From the previous step, the value is 0.7455;

计算calculate :

;

计算calculate :

;

计算分母:Calculate the denominator:

;

将上述结果代入Substituting the above results into :

;

此算例中,表示过滤后的音频信号,显示了卡尔曼滤波器在降低噪声和平滑信号方面的效果。In this example, Represents the filtered audio signal, showing the effectiveness of the Kalman filter in reducing noise and smoothing the signal.

音频状态调整结果公式:Audio status adjustment result formula:

;

:状态更新系数,调节音频信号的更新速率,假设 : State update coefficient, adjusts the update rate of the audio signal, assuming ;

:振幅调节参数,用于模拟音频信号的周期性调整,假设 : Amplitude adjustment parameter, used to simulate the periodic adjustment of the audio signal, assuming ;

:从上个步骤中得到,值为 0.898; : From the previous step, the value is 0.898;

计算sinCalculate sin :

;

将上述结果代入Substituting the above results into :

;

此算例中,表示最终的音频状态调整结果,展示了通过卡尔曼滤波器和状态更新算法所实现的音频信号的最终处理效果。In this example, It represents the final audio state adjustment result, showing the final processing effect of the audio signal achieved by the Kalman filter and the state update algorithm.

请参阅图6,优化后的语音捕捉结果的获取步骤具体为:Please refer to FIG6 , the steps for obtaining the optimized voice capture result are as follows:

根据音频状态调整结果,执行实时噪声抑制,优化环境中的音频捕捉,采用公式:Adjust the results based on the audio state and perform real-time noise suppression to optimize audio capture in the environment using the formula:

;

生成噪声抑制后的音频参数,其中,为优化后的噪声抑制参数,分别为噪声抑制增益、稳定性系数和灵敏度调节参数,表示音频状态调整结果;Generate noise suppressed audio parameters, where is the optimized noise suppression parameter, are noise suppression gain, stability coefficient and sensitivity adjustment parameters respectively, Indicates the audio status adjustment result;

利用噪声抑制后的音频参数,对智能音箱控制的语音指令进行捕捉和初步处理,采用公式:The audio parameters after noise suppression are used to capture and preliminarily process the voice commands controlled by the smart speaker, using the formula:

;

生成初步处理后的语音参数,其中,为初步处理后的语音指令参数,是处理增益和权重参数,为优化后的噪声抑制参数,为环境中原始的语音数据;Generate preliminary processed speech parameters, where is the voice command parameter after preliminary processing, and are the processing gain and weight parameters, is the optimized noise suppression parameter, The original voice data in the environment;

根据初步处理后的语音参数,更新智能音箱的语音识别配置,采用公式:According to the initially processed speech parameters, update the speech recognition configuration of the smart speaker using the formula:

;

生成优化后的语音捕捉结果,其中,为优化后的语音捕捉结果,表示更新系数,为处理后的语音指令参数。Generate optimized speech capture results, where For the optimized voice capture results, represents the update coefficient, It is the processed voice command parameter.

优化后的噪声抑制参数公式:Optimized noise suppression parameter formula:

;

(噪声抑制增益):设定为0.5,用于调整噪声抑制的强度; (Noise Suppression Gain): Set to 0.5 to adjust the strength of noise suppression;

(稳定性系数):设定为1,确保分母不为零并平衡噪声抑制; (Stability coefficient): Set to 1 to ensure that the denominator is not zero and balance noise suppression;

(灵敏度调节参数):设定为0.1,调整噪声抑制的灵敏度; (Sensitivity adjustment parameter): Set to 0.1 to adjust the sensitivity of noise suppression;

(从前一流程获取的音频状态调整结果):假设为3; (Audio state adjustment result obtained from the previous process): Assume it is 3;

计算calculate :

;

计算calculate :

;

计算分母:Calculate the denominator:

;

将上述结果代入Substituting the above results into :

;

此算例中,表示噪声抑制后的音频参数,表明有效的噪声抑制增益和稳定性调节。In this example, Represents the audio parameters after noise suppression, indicating the effective noise suppression gain and stability adjustment.

初步处理后的语音指令参数公式:The parameter formula of the voice command after preliminary processing is:

;

(处理增益):设定为2,增强语音数据的清晰度; (Processing Gain): Set to 2 to enhance the clarity of voice data;

(权重参数):设定为0.8,增强环境数据的权重; (Weight parameter): Set to 0.8 to increase the weight of environmental data;

:从前一步骤获取,值为2.59; : Obtained from the previous step, the value is 2.59;

(环境中原始的语音数据):假设为5; (Original voice data in the environment): Assume it is 5;

计算calculate :

;

计算calculate :

;

将上述结果代入Substituting the above results into :

;

此算例中,表示初步处理后的语音参数,显示了有效的语音增强。In this example, Represents the speech parameters after preliminary processing, showing effective speech enhancement.

优化后的语音捕捉结果公式:Optimized voice capture result formula:

;

(更新系数):设定为0.7,用于平衡新旧数据; (Update coefficient): set to 0.7 to balance new and old data;

:从前一步骤获取,值为4.86; : Obtained from the previous step, the value is 4.86;

(前一次的语音识别结果):假设为3; (Previous speech recognition result): Assume it is 3;

计算calculate and :

;

;

将上述结果相加得到Adding the above results together we get :

;

此算例中,表示最终优化后的语音捕捉结果,显示了新旧数据的有效整合,确保了语音识别的连续性和增强效果。In this example, Represents the final optimized speech capture result, showing the effective integration of new and old data, ensuring the continuity and enhancement of speech recognition.

请参阅图7,音箱性能日志的获取步骤具体为:Please refer to FIG. 7 , the specific steps for obtaining the speaker performance log are as follows:

利用优化后的语音捕捉结果,优化响应时间的表征,通过公式:Using the optimized speech capture results, the characterization of the response time is optimized, using the formula:

;

生成响应时间性能指标,其中,表示增益系数、基础偏置和调节系数,代表响应时间性能指标,表示优化后的语音捕捉结果;Generate response time performance indicators, where and represents the gain factor, basic bias and adjustment factor, Represents the response time performance indicator, Indicates the optimized speech capture result;

结合响应时间性能指标和处理负载,采用公式:Combining the response time performance indicator and processing load, the formula is used:

;

生成性能日志参数,其中,为性能日志参数,是权重参数,代表响应时间性能指标,表示处理负载;Generate performance log parameters, where: is the performance log parameter, and is the weight parameter, Represents the response time performance indicator, Indicates processing load;

使用性能日志参数,通过配置音箱参数并记录关键性能数据,采用公式:Use the performance log parameters to configure the speaker parameters and record key performance data using the formula:

;

生成音箱性能日志,其中,是融合系数,是前一次的性能日志,是音箱性能日志,为性能日志参数。Generates a speaker performance log, where is the fusion coefficient, This is the previous performance log. It is the speaker performance log. It is the performance log parameter.

响应时间性能指标公式:Response time performance indicator formula:

:增益系数,设定为1.5,以增强响应时间的影响; ; : Gain coefficient, set to 1.5 to enhance the impact of response time;

:基础偏置,设定为2.0,以防止分母为零; : Base bias, set to 2.0 to prevent the denominator from being zero;

:调节系数,设定为 0.5,以平衡响应时间对性能的贡献; : Adjustment coefficient, set to 0.5 to balance the contribution of response time to performance;

:从前一处理步骤获得的优化后的语音捕捉结果,假设为4; : The optimized speech capture result obtained from the previous processing step, assumed to be 4;

计算calculate :

;

计算分母中的Calculate the denominator :

;

计算完整的分母:Compute the full denominator:

;

最终值:final value:

;

这个值表示响应时间性能指标,揭示了响应时间对整体性能的影响。This value Represents the response time performance indicator, revealing the impact of response time on the overall performance.

性能日志参数公式:Performance log parameter formula:

;

:权重系数,设定为0.1,用以调整的贡献; : Weight coefficient, set to 0.1, to adjust Contribution

:调节系数,设定为1,以增强的影响; : Adjustment coefficient, set to 1 to enhance The impact of

:前面计算得出,值为6; : The value calculated above is 6;

:处理负载,假设为10; : Processing load, assuming it is 10;

计算calculate :

;

计算calculate :

;

最终值:final value:

;

这个值表示综合性能日志参数,反映了处理负载和响应时间的综合影响。This value Represents a comprehensive performance log parameter that reflects the combined impact of processing load and response time.

音箱性能日志公式:Speaker performance log formula:

;

:融合系数,设定为0.8,用于平衡新旧数据的影响; : Fusion coefficient, set to 0.8, to balance the impact of new and old data;

:前面计算得出,值为24.916; : The value calculated above is 24.916;

:前一次的性能日志,假设为20; : The previous performance log, assuming it is 20;

计算calculate :

;

计算calculate :

;

最终值:final value:

;

这个值表示最终的音箱性能日志,展示了性能监控的持续更新和整合过去数据的能力。This value Represents the final loudspeaker performance log, demonstrating the ability of performance monitoring to continuously update and integrate past data.

请参阅图8,调整后的音箱性能调控响应配置的获取步骤具体为:Please refer to FIG8 , the steps for obtaining the adjusted speaker performance control response configuration are as follows:

从音箱性能日志中提取关键的性能指标,包括响应效率和处理负载,计算初步的性能数据,采用公式:Extract key performance indicators from the speaker performance log, including response efficiency and processing load, and calculate preliminary performance data using the formula:

;

生成性能分析结果,其中, 代表从日志中提取的性能数据,权重系数,表示处理负载,表示响应效率;Generate performance analysis results, where Represents performance data extracted from logs, , Weight coefficient, Represents the processing load, Indicates response efficiency;

基于性能分析结果,调整音箱的处理参数,优化设备的响应速度,通过公式:Based on the performance analysis results, adjust the processing parameters of the speaker to optimize the response speed of the device, through the formula:

;

生成优化后的处理配置,其中,为优化后的处理配置,是调节参数,表示调整音箱的处理参数, 代表从日志中提取的性能数据;Generate an optimized processing configuration where: For the optimized processing configuration, and is the adjustment parameter, Indicates adjusting the processing parameters of the speaker. Represents performance data extracted from logs;

使用优化后的处理配置,更新音箱的性能调控配置,应用公式:Using the optimized processing configuration, update the speaker's performance control configuration and apply the formula:

;

得到调整后的音箱性能调控响应配置,其中,是更新系数,是之前的音箱性能调控配置,为优化后的处理配置,表示调整后的音箱性能调控响应配置。The adjusted speaker performance control response configuration is obtained, wherein: is the update coefficient, It is the previous speaker performance control configuration. For the optimized processing configuration, Indicates the adjusted speaker performance control response configuration.

从日志中提取的性能数据公式:Formula for extracting performance data from logs:

;

假设参数为:Assume the parameters are:

:权重系数,增强响应效率的影响; : Weight coefficient, enhancing the impact of response efficiency;

:权重系数,调节对处理负载的敏感性; : Weight coefficient, adjusting the sensitivity to processing load;

:假设响应效率数值为5; : Assume the response efficiency value is 5;

:假设处理负载为16; : Assume the processing load is 16;

计算calculate :

;

计算calculate :

;

计算分母Calculate the denominator :

;

计算calculate :

;

最终计算Final calculation :

;

这表明,代表从日志中提取的性能数据的加权结果。This shows , represents the weighted result of the performance data extracted from the logs.

优化后的处理配置公式:Optimized processing configuration formula:

;

假设参数为:Assume the parameters are:

:调节性能数据的平方影响; : Adjust the square effect of performance data;

:确保分母不为零; : Make sure the denominator is not zero;

:调节日志参数的灵活性; : Flexibility in adjusting log parameters;

:假设处理参数为3; : Assume that the processing parameter is 3;

计算calculate :

;

计算分子Calculating molecules :

;

计算calculate :

;

计算calculate :

;

这表明,表示基于性能数据的响应速度配置的优化结果。This shows , indicating that based on performance data The optimization result of the response speed configuration.

调整后的音箱性能调控响应配置公式:Adjusted speaker performance control response configuration formula:

;

假设参数为:Assume the parameters are:

:融合新旧配置的比例; : The ratio of integrating new and old configurations;

:假设之前的配置为300; : Assume that the previous configuration is 300;

计算calculate :

;

计算calculate :

;

计算calculate :

;

这表明,表示最终更新的音箱性能调控响应配置,提供了基于先前和新优化数据的综合配置。This shows , represents the final updated speaker performance control response configuration, providing a comprehensive configuration based on previous and new optimization data.

以上,仅是本发明的较佳实施例而已,并非对本发明作其他形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例应用于其他领域,但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。The above are only preferred embodiments of the present invention and are not intended to limit the present invention in other forms. Any technician familiar with the profession may use the technical contents disclosed above to change or modify them into equivalent embodiments with equivalent changes and apply them to other fields. However, any simple modification, equivalent change and modification made to the above embodiments based on the technical essence of the present invention without departing from the technical solution of the present invention still falls within the protection scope of the technical solution of the present invention.

Claims (8)

1.一种智能音箱控制系统,其特征在于,所述系统包括:1. An intelligent speaker control system, characterized in that the system comprises: 语音数据分析模块基于音箱语音输入数据,通过自回归积分滑动平均模型对输入数据进行分析,获取语音模式分析结果,利用长短期记忆网络细化命令模式的预测,得到细化后命令预测结果;The voice data analysis module analyzes the input data of the speaker through the autoregressive integral sliding average model to obtain the voice pattern analysis results, and uses the long short-term memory network to refine the prediction of the command pattern to obtain the refined command prediction results; 动态资源管理模块根据所述细化后命令预测结果,动态调整智能音箱控制的资源,包括CPU分配量和内存配置,执行资源优化,获取音箱资源优化状态,通过所述音箱资源优化状态调整运行参数,得到优化后的资源配置;The dynamic resource management module dynamically adjusts the resources controlled by the smart speaker according to the refined command prediction results, including the CPU allocation and memory configuration, performs resource optimization, obtains the speaker resource optimization status, adjusts the operating parameters according to the speaker resource optimization status, and obtains the optimized resource configuration; 噪声抑制调整模块基于所述优化后的资源配置,捕捉环境音频数据,通过卡尔曼滤波器分析和更新音频信号的状态,得到音频状态调整结果,利用所述音频状态调整结果对环境噪声进行实时抑制,捕捉智能音箱控制的语音指令,得到优化后的语音捕捉结果;The noise suppression adjustment module captures the ambient audio data based on the optimized resource configuration, analyzes and updates the state of the audio signal through the Kalman filter, obtains the audio state adjustment result, uses the audio state adjustment result to suppress the ambient noise in real time, captures the voice command controlled by the smart speaker, and obtains the optimized voice capture result; 智能响应速度调控模块基于所述优化后的语音捕捉结果,监控智能音箱的响应时间和处理负载,生成音箱性能日志,根据所述音箱性能日志分析响应效率和负载情况,优化响应速度,得到调整后的音箱性能调控响应配置。The intelligent response speed control module monitors the response time and processing load of the smart speaker based on the optimized voice capture result, generates a speaker performance log, analyzes the response efficiency and load according to the speaker performance log, optimizes the response speed, and obtains the adjusted speaker performance control response configuration. 2.根据权利要求1所述的智能音箱控制系统,其特征在于,所述细化后命令预测结果的获取步骤具体为:2. The intelligent speaker control system according to claim 1, characterized in that the step of obtaining the refined command prediction result is specifically: 基于音箱语音输入数据,应用频谱分析进行信号处理,提取基频和声谱特征,采用公式:Based on the speaker voice input data, spectrum analysis is applied for signal processing to extract the fundamental frequency and spectral features using the formula: ; 计算基频特征,生成信号特征分析结果,其中,代表基频分析结果,是第 i 个频率成分,是对应的振幅,是采样点数量, 是持续性指标;Calculate the fundamental frequency characteristics and generate signal characteristic analysis results, where: represents the fundamental frequency analysis result, is the ith frequency component, is the corresponding amplitude, is the number of sampling points, It is a continuous indicator; 利用所述信号特征分析结果,采用长短期记忆网络,对命令模式进行学习和预测,采用公式:Using the signal feature analysis results, a long short-term memory network is used to learn and predict the command mode using the formula: ; 强化模型对输入变异的敏感性,计算命令模式概率,生成初步命令模式预测结果,其中,是命令模式的预测概率,是权重参数,是LSTM单元的输出函数,是输入特征,是特征数量,是变异系数;Strengthen the model's sensitivity to input variation, calculate command pattern probabilities, and generate preliminary command pattern prediction results, where is the predicted probability of the command mode, is the weight parameter, is the output function of the LSTM unit, are input features, is the number of features, is the coefficient of variation; 使用所述初步命令模式预测结果,结合当前环境的上下文信息,采用公式:The results of the preliminary command pattern prediction are used, combined with the context information of the current environment, using the formula: ; 计算并获取细化后命令预测结果,其中,是命令预测结果,是第 j 个预测命令的概率,是参照的命令数量,是标准差。Calculate and obtain the refined command prediction results, where: is the command prediction result, is the probability of the jth predicted command, is the number of commands referenced, is the standard deviation. 3.根据权利要求2所述的智能音箱控制系统,其特征在于,所述音箱资源优化状态的获取步骤具体为:3. The intelligent speaker control system according to claim 2, characterized in that the step of obtaining the speaker resource optimization state is specifically: 从所述细化后命令预测结果中提取命令的资源需求敏感性参数,计算命令对资源的需求量,采用公式:The resource demand sensitivity parameter of the command is extracted from the refined command prediction result, and the resource demand of the command is calculated using the formula: ; 生成细化命令资源需求,其中,代表资源需求,代表命令预测的资源敏感性,是调节系数;Generate detailed command resource requirements, where: Represents resource demand, represents the resource sensitivity of the command prediction, is the adjustment coefficient; 根据所述细化命令资源需求,调整智能音箱的CPU和内存配置,采用公式:According to the detailed command resource requirements, the CPU and memory configuration of the smart speaker are adjusted using the formula: ; 生成更新后的资源分配情况,其中,表示更新后的资源分配情况,代表资源需求,是调节参数;Generate an updated resource allocation, where: Indicates the updated resource allocation. Represents resource demand, is the adjustment parameter; 基于所述更新后的资源分配情况,监控并记录资源优化后的运行状态,采用公式:Based on the updated resource allocation, monitor and record the running status after resource optimization, using the formula: ; 生成音箱资源优化状态,其中,是音箱资源优化状态,是更新后的资源分配情况,是性能评估参数。Generates the speaker resource optimization state, where It is the speaker resource optimization state. is the updated resource allocation, is a performance evaluation parameter. 4.根据权利要求3所述的智能音箱控制系统,其特征在于,所述优化后的资源配置的获取步骤具体为:4. The smart speaker control system according to claim 3, characterized in that the step of obtaining the optimized resource configuration is specifically: 根据所述音箱资源优化状态,采用公式:According to the speaker resource optimization state, the formula is adopted: ; 生成分析后的优化状态参数,其中,代表分析后的优化状态参数,是增益系数,是基线修正参数,是音箱资源优化状态;Generate the optimized state parameters after analysis, where represents the optimized state parameters after analysis, is the gain factor, is the baseline correction parameter, It is the speaker resource optimization status; 根据所述分析后的优化状态参数,计算所需的CPU和内存资源,采用公式:According to the optimized state parameters after the analysis, the required CPU and memory resources are calculated using the formula: ; 生成评估后的资源参数,其中,代表评估后的资源参数,是调整因子,代表分析后的优化状态参数;Generates the evaluated resource parameters, where Represents the resource parameters after evaluation, is the adjustment factor, Represents the optimized state parameters after analysis; 使用所述评估后的资源参数调整运行参数,优化音响控制性能,采用公式:Using the resource parameters evaluated above, the operating parameters are adjusted to optimize the sound control performance using the formula: ; 生成优化后的资源配置,其中,是优化后的资源配置,是权重参数,是调整比例,分别代表评估后的资源参数和当前资源配置。Generate an optimized resource configuration, where: It is the optimized resource allocation. is the weight parameter, is to adjust the proportion, and They represent the evaluated resource parameters and current resource configuration respectively. 5.根据权利要求4所述的智能音箱控制系统,其特征在于,所述音频状态调整结果的获取步骤具体为:5. The intelligent speaker control system according to claim 4, characterized in that the step of obtaining the audio state adjustment result is specifically: 基于所述优化后的资源配置,激活音频捕捉,收集环境音频数据,采用公式:Based on the optimized resource configuration, audio capture is activated to collect environmental audio data using the formula: ; 生成捕捉的音频数据参数,其中,代表捕捉的音频数据,是增益和敏感性调整系数,是环境音频强度;Generate captured audio data parameters, where Represents the captured audio data, and are the gain and sensitivity adjustment factors, is the ambient audio intensity; 将所述捕捉的音频数据参数输入卡尔曼滤波器,分析和更新音频信号的状态,调节信号的平滑度和响应速度,采用公式:The captured audio data parameters are input into the Kalman filter to analyze and update the state of the audio signal, adjust the smoothness and response speed of the signal, and use the formula: ; 生成过滤后的音频信号,其中,代表过滤后的音频信号,和 γ 是调节信号处理的敏感性和阈值,代表捕捉的音频数据;Generate a filtered audio signal where represents the filtered audio signal, and γ are the sensitivity and threshold of adjusting signal processing, Represents the captured audio data; 基于所述过滤后的音频信号,更新音频状态,采用公式:Based on the filtered audio signal, the audio state is updated using the formula: ; 生成音频状态调整结果,其中,是音频状态调整结果,调节音频状态的更新速率和调整范围,代表过滤后的音频信号。Generate an audio state adjustment result, where: is the result of audio status adjustment. and Adjust the update rate and adjustment range of the audio status, Represents the filtered audio signal. 6.根据权利要求5所述的智能音箱控制系统,其特征在于,所述优化后的语音捕捉结果的获取步骤具体为:6. The intelligent speaker control system according to claim 5, characterized in that the step of obtaining the optimized voice capture result is specifically: 根据所述音频状态调整结果,执行实时噪声抑制,优化环境中的音频捕捉,采用公式:According to the audio state adjustment result, real-time noise suppression is performed to optimize the audio capture in the environment, using the formula: ; 生成噪声抑制后的音频参数,其中,为优化后的噪声抑制参数,分别为噪声抑制增益、稳定性系数和灵敏度调节参数,表示音频状态调整结果;Generate noise suppressed audio parameters, where is the optimized noise suppression parameter, are noise suppression gain, stability coefficient and sensitivity adjustment parameters respectively, Indicates the audio status adjustment result; 利用所述噪声抑制后的音频参数,对智能音箱控制的语音指令进行捕捉和初步处理,采用公式:The audio parameters after noise suppression are used to capture and preliminarily process the voice commands controlled by the smart speaker, using the formula: ; 生成初步处理后的语音参数,其中,为初步处理后的语音指令参数,是处理增益和权重参数,为优化后的噪声抑制参数,为环境中原始的语音数据;Generate preliminary processed speech parameters, where is the voice command parameter after preliminary processing, and are the processing gain and weight parameters, is the optimized noise suppression parameter, The original voice data in the environment; 根据所述初步处理后的语音参数,更新智能音箱的语音识别配置,采用公式:According to the initially processed speech parameters, the speech recognition configuration of the smart speaker is updated using the formula: ; 生成优化后的语音捕捉结果,其中,为优化后的语音捕捉结果,表示更新系数,为初步处理后的语音指令参数。Generate optimized speech capture results, where For the optimized voice capture results, represents the update coefficient, It is the voice command parameter after preliminary processing. 7.根据权利要求6所述的智能音箱控制系统,其特征在于,所述音箱性能日志的获取步骤具体为:7. The smart speaker control system according to claim 6, wherein the step of obtaining the speaker performance log is specifically: 利用所述优化后的语音捕捉结果,优化响应时间的表征,通过公式:Using the optimized voice capture results, the characterization of the response time is optimized, using the formula: ; 生成响应时间性能指标,其中,表示增益系数、基础偏置和调节系数,代表响应时间性能指标,表示优化后的语音捕捉结果;Generate response time performance indicators, where and represents the gain factor, basic bias and adjustment factor, Represents the response time performance indicator, Indicates the optimized speech capture result; 结合所述响应时间性能指标和处理负载,采用公式:Combining the response time performance indicator and processing load, the formula is used: ; 生成性能日志参数,其中,为性能日志参数,是权重参数,代表响应时间性能指标,表示处理负载;Generate performance log parameters, where: is the performance log parameter, and is the weight parameter, Represents the response time performance indicator, Indicates processing load; 使用所述性能日志参数,通过配置音箱参数并记录关键性能数据,采用公式:Using the performance log parameters, by configuring the speaker parameters and recording key performance data, the formula is used: ; 生成音箱性能日志,其中,是融合系数,是前一次的性能日志,是音箱性能日志,为性能日志参数。Generates a speaker performance log, where is the fusion coefficient, This is the previous performance log. It is the speaker performance log. It is the performance log parameter. 8.根据权利要求7所述的智能音箱控制系统,其特征在于,所述调整后的音箱性能调控响应配置的获取步骤具体为:8. The intelligent speaker control system according to claim 7, characterized in that the step of obtaining the adjusted speaker performance control response configuration is specifically: 从所述音箱性能日志中提取关键的性能指标,包括响应效率和处理负载,计算初步的性能数据,采用公式:Extract key performance indicators from the speaker performance log, including response efficiency and processing load, and calculate preliminary performance data using the formula: ; 生成性能分析结果,其中, 代表从日志中提取的性能数据,权重系数,表示处理负载,表示响应效率;Generate performance analysis results, where Represents performance data extracted from logs, , Weight coefficient, Represents the processing load, Indicates response efficiency; 基于所述性能分析结果,调整音箱的处理参数,优化设备的响应速度,通过公式:Based on the performance analysis results, the processing parameters of the speaker are adjusted to optimize the response speed of the device, through the formula: ; 生成优化后的处理配置,其中,为优化后的处理配置,是调节参数,表示调整音箱的处理参数, 代表从日志中提取的性能数据;Generate an optimized processing configuration where: For the optimized processing configuration, and is the adjustment parameter, Indicates adjusting the processing parameters of the speaker. Represents performance data extracted from logs; 使用所述优化后的处理配置,更新音箱的性能调控配置,应用公式:Using the optimized processing configuration, update the speaker's performance control configuration and apply the formula: ; 得到调整后的音箱性能调控响应配置,其中,是更新系数,是之前的音箱性能调控配置,为优化后的处理配置,表示调整后的音箱性能调控响应配置。The adjusted speaker performance control response configuration is obtained, wherein: is the update coefficient, It is the previous speaker performance control configuration. For the optimized processing configuration, Indicates the adjusted speaker performance control response configuration.
CN202411096568.8A 2024-08-12 2024-08-12 Intelligent sound box control system Active CN118645101B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202411096568.8A CN118645101B (en) 2024-08-12 2024-08-12 Intelligent sound box control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202411096568.8A CN118645101B (en) 2024-08-12 2024-08-12 Intelligent sound box control system

Publications (2)

Publication Number Publication Date
CN118645101A true CN118645101A (en) 2024-09-13
CN118645101B CN118645101B (en) 2024-12-03

Family

ID=92669827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202411096568.8A Active CN118645101B (en) 2024-08-12 2024-08-12 Intelligent sound box control system

Country Status (1)

Country Link
CN (1) CN118645101B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119068880A (en) * 2024-11-07 2024-12-03 四川大学 Intelligent household intelligent control method, system and storage medium based on voice recognition

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7191130B1 (en) * 2002-09-27 2007-03-13 Nuance Communications Method and system for automatically optimizing recognition configuration parameters for speech recognition systems
WO2008080912A1 (en) * 2007-01-04 2008-07-10 International Business Machines Corporation Systems and methods for intelligent control of microphones for speech recognition applications
US10409551B1 (en) * 2016-06-21 2019-09-10 Amazon Technologies, Inc. Voice-driven monitoring of resources in a service provider network
CN114822591A (en) * 2022-06-24 2022-07-29 深圳市中科睿科技有限公司 Sound box data information processing method
CN115762516A (en) * 2022-11-09 2023-03-07 晨雨初听(武汉)文化艺术传播有限公司 Man-machine interaction control method, equipment and storage medium
CN117854739A (en) * 2024-03-05 2024-04-09 天津市第二人民医院(天津市传染病医院) Intelligent internal medicine nursing monitoring system
CN117894311A (en) * 2024-02-29 2024-04-16 大连博涛文化科技股份有限公司 Bionic robot in aspect of voice recognition control
CN118093175A (en) * 2024-02-27 2024-05-28 黑龙江橙桔科技有限公司 Computer resource distribution system and method based on big data analysis
CN118211779A (en) * 2024-03-12 2024-06-18 广东铧鸿机电工程有限公司 Intelligent security comprehensive management platform
CN118262714A (en) * 2024-03-14 2024-06-28 苏州资旗网络科技有限公司 Voice interaction service system based on artificial intelligence

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7191130B1 (en) * 2002-09-27 2007-03-13 Nuance Communications Method and system for automatically optimizing recognition configuration parameters for speech recognition systems
WO2008080912A1 (en) * 2007-01-04 2008-07-10 International Business Machines Corporation Systems and methods for intelligent control of microphones for speech recognition applications
US10409551B1 (en) * 2016-06-21 2019-09-10 Amazon Technologies, Inc. Voice-driven monitoring of resources in a service provider network
CN114822591A (en) * 2022-06-24 2022-07-29 深圳市中科睿科技有限公司 Sound box data information processing method
CN115762516A (en) * 2022-11-09 2023-03-07 晨雨初听(武汉)文化艺术传播有限公司 Man-machine interaction control method, equipment and storage medium
CN118093175A (en) * 2024-02-27 2024-05-28 黑龙江橙桔科技有限公司 Computer resource distribution system and method based on big data analysis
CN117894311A (en) * 2024-02-29 2024-04-16 大连博涛文化科技股份有限公司 Bionic robot in aspect of voice recognition control
CN117854739A (en) * 2024-03-05 2024-04-09 天津市第二人民医院(天津市传染病医院) Intelligent internal medicine nursing monitoring system
CN118211779A (en) * 2024-03-12 2024-06-18 广东铧鸿机电工程有限公司 Intelligent security comprehensive management platform
CN118262714A (en) * 2024-03-14 2024-06-28 苏州资旗网络科技有限公司 Voice interaction service system based on artificial intelligence

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119068880A (en) * 2024-11-07 2024-12-03 四川大学 Intelligent household intelligent control method, system and storage medium based on voice recognition

Also Published As

Publication number Publication date
CN118645101B (en) 2024-12-03

Similar Documents

Publication Publication Date Title
WO2021139327A1 (en) Audio signal processing method, model training method, and related apparatus
CN109087669B (en) Audio similarity detection method and device, storage medium and computer equipment
CN112820291B (en) Smart home control method, smart home control system and storage medium
US20080147411A1 (en) Adaptation of a speech processing system from external input that is not directly related to sounds in an operational acoustic environment
CN107799126A (en) Sound end detecting method and device based on Supervised machine learning
US10891946B2 (en) Voice-controlled assistant volume control
CN117294985B (en) TWS Bluetooth headset control method
CN109801646B (en) Voice endpoint detection method and device based on fusion features
CN118645101A (en) A smart speaker control system
CN113132193B (en) Control method and device of intelligent device, electronic device and storage medium
CN102945673A (en) Continuous speech recognition method with speech command range changed dynamically
CN113330511A (en) Voice recognition method, voice recognition device, storage medium and electronic equipment
CN118173092A (en) Online customer service platform based on AI voice interaction
CN118795790A (en) A joint control method of smart home system based on Internet of Things
CN111223489B (en) Specific keyword identification method and system based on Attention mechanism
CN118486297B (en) Response method based on voice emotion recognition and intelligent voice assistant system
CN118567601B (en) Method, device, equipment and storage medium for adjusting volume of power amplifier system
CN113516992B (en) Audio processing method, device, intelligent device and storage medium
CN118449800A (en) An intelligent voice recognition control system and method based on the Internet of Things
CN112562717A (en) Howling detection method, howling detection device, storage medium and computer equipment
JP7471727B2 (en) Audio encoding method, device, computer device, and computer program
CN113763978B (en) Voice signal processing method, device, electronic equipment and storage medium
CN115440192A (en) A test method, device, equipment and storage medium for a speech recognition system
CN118737199B (en) Crying detection method, device and storage medium based on integrated memory and calculation architecture
CN112382296A (en) Method and device for voiceprint remote control of wireless audio equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant