CN118613754A - Eyeglass lenses - Google Patents
Eyeglass lenses Download PDFInfo
- Publication number
- CN118613754A CN118613754A CN202380018830.4A CN202380018830A CN118613754A CN 118613754 A CN118613754 A CN 118613754A CN 202380018830 A CN202380018830 A CN 202380018830A CN 118613754 A CN118613754 A CN 118613754A
- Authority
- CN
- China
- Prior art keywords
- region
- transmittance
- resin
- layer
- ultraviolet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002834 transmittance Methods 0.000 claims abstract description 227
- 239000000758 substrate Substances 0.000 claims abstract description 118
- 239000011248 coating agent Substances 0.000 claims abstract description 26
- 238000000576 coating method Methods 0.000 claims abstract description 25
- 239000011247 coating layer Substances 0.000 claims description 119
- 239000010410 layer Substances 0.000 claims description 108
- 239000002516 radical scavenger Substances 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 31
- 229940123457 Free radical scavenger Drugs 0.000 claims description 25
- 239000006097 ultraviolet radiation absorber Substances 0.000 claims description 15
- 238000002310 reflectometry Methods 0.000 claims description 10
- 229920005989 resin Polymers 0.000 description 153
- 239000011347 resin Substances 0.000 description 152
- 125000001931 aliphatic group Chemical group 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 15
- 238000010586 diagram Methods 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 12
- 229910052809 inorganic oxide Inorganic materials 0.000 description 8
- 229920000098 polyolefin Polymers 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000004925 Acrylic resin Substances 0.000 description 6
- 229920000178 Acrylic resin Polymers 0.000 description 6
- 150000001491 aromatic compounds Chemical class 0.000 description 6
- 239000011859 microparticle Substances 0.000 description 6
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 5
- 229920000515 polycarbonate Polymers 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 239000004926 polymethyl methacrylate Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000004438 eyesight Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 229920002574 CR-39 Polymers 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 125000005375 organosiloxane group Chemical group 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KLDXJTOLSGUMSJ-JGWLITMVSA-N Isosorbide Chemical compound O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 KLDXJTOLSGUMSJ-JGWLITMVSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 229920003231 aliphatic polyamide Polymers 0.000 description 2
- 229910000410 antimony oxide Inorganic materials 0.000 description 2
- 101150059062 apln gene Proteins 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 229960002479 isosorbide Drugs 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000036630 mental development Effects 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 230000004515 progressive myopia Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 1
- 229920005497 Acrypet® Polymers 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000511976 Hoya Species 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003667 anti-reflective effect Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- DRVWBEJJZZTIGJ-UHFFFAOYSA-N cerium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ce+3].[Ce+3] DRVWBEJJZZTIGJ-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000000869 ion-assisted deposition Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 102220142305 rs201343910 Human genes 0.000 description 1
- 102200029613 rs35593767 Human genes 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/10—Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- General Health & Medical Sciences (AREA)
- Eyeglasses (AREA)
- Optical Filters (AREA)
- Laminated Bodies (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及眼镜用镜片。The present invention relates to lenses for spectacles.
背景技术Background Art
在现有的眼镜用镜片中,有使用阻断紫外线的材料(例如参见专利文献1),大多是不让紫外线透过的镜片(例如参见专利文献2)。另一方面,尤其是对儿童而言,太阳光对身心发育有良好的影响,也有文献指出在不沐浴充分的太阳光的情况下,儿童近视加深的风险增高(例如参见非专利文献1)。Among existing eyeglass lenses, some use materials that block ultraviolet rays (see, for example, Patent Document 1), and most use lenses that do not allow ultraviolet rays to pass through (see, for example, Patent Document 2). On the other hand, sunlight has a positive effect on physical and mental development, especially for children, and there are also documents that point out that if children do not bathe in sufficient sunlight, the risk of myopia progression increases (see, for example, Non-Patent Document 1).
专利文献Patent Literature
专利文献1:日本特开2009-209120号公报Patent Document 1: Japanese Patent Application Publication No. 2009-209120
专利文献2:国际公开第2019/188447号Patent Document 2: International Publication No. 2019/188447
非专利文献Non-patent literature
非专利文献1:日本眼科学会及其他5个学会,“对儿童佩戴防蓝光眼镜的慎重意见”,2021年4月14日,[2022年1月27日检索],网址<https://www.gankaikai.or.jp/info/20210414_bluelight.pdf>Non-patent document 1: Japan Ophthalmological Society and five other societies, “Careful opinion on children wearing blue light blocking glasses,” April 14, 2021, [retrieved January 27, 2022], URL <https://www.gankaikai.or.jp/info/20210414_bluelight.pdf>
发明内容Summary of the invention
在此,对于佩戴眼镜的使用者而言,为了使包含紫外线的自然光传递至眼睛,必须取下眼镜,无法获得眼镜所实现的视力矫正的效果。Here, for a user wearing glasses, in order to transmit natural light including ultraviolet rays to the eyes, the user must take off the glasses, and the vision correction effect achieved by the glasses cannot be obtained.
为了解决上述问题,考虑使用使紫外线透过的化合物来形成眼镜用镜片的基材,但为了满足作为眼镜用镜片的耐性条件等,一般在基材上涂布涂膜。在这样的一般的结构的眼镜镜片中,为了使自然光尽量传递至眼睛,考虑到基材与涂膜的总的特性,有了新的要求:要使迄今为止被阻断的紫外线透过。In order to solve the above problems, it is considered to use a compound that allows ultraviolet rays to pass through to form the substrate of the eyeglass lens, but in order to meet the resistance conditions of the eyeglass lens, a coating film is generally applied on the substrate. In such an eyeglass lens of a general structure, in order to transmit natural light to the eyes as much as possible, considering the overall characteristics of the substrate and the coating film, there is a new requirement: to allow ultraviolet rays that have been blocked to pass through.
因此,本发明的目的在于提供一种例如使紫外线尽量透过,实现更加接近于裸眼沐浴自然光时的状态的眼镜用镜片。Therefore, an object of the present invention is to provide an eyeglass lens that allows ultraviolet rays to pass as much as possible and achieves a state closer to that of naked eyes bathed in natural light.
本发明的一个实施方式中的眼镜用镜片具备基材层、以及涂布于上述基材层的至少一面上的涂膜层,在360nm以上且不足380nm的波长区域中,上述基材层以及上述涂膜层的总的平均透射率为60%以上。An eyeglass lens according to one embodiment of the present invention comprises a substrate layer and a coating layer applied on at least one surface of the substrate layer, wherein the total average transmittance of the substrate layer and the coating layer is 60% or more in a wavelength range of 360 nm to less than 380 nm.
根据本发明,能够提供一种使紫外线尽量透过的眼镜用镜片。According to the present invention, it is possible to provide an eyeglass lens that allows ultraviolet rays to pass as much as possible.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为展示现有技术涉及的各眼镜用镜片的透光率(light transmittance)的图。FIG. 1 is a graph showing light transmittance of various eyeglass lenses according to the prior art.
图2为展示第一实施方式涉及的基材A的透光率的一个例子的图。FIG. 2 is a graph showing an example of the light transmittance of the substrate A according to the first embodiment.
图3为展示第一实施方式涉及的基材B的透光率的一个例子的图。FIG. 3 is a graph showing an example of the light transmittance of the substrate B according to the first embodiment.
图4为展示第一实施方式涉及的基材C的透光率的一个例子的图。FIG. 4 is a graph showing an example of the light transmittance of the substrate C according to the first embodiment.
图5为展示第二实施方式涉及的备选基材的透光率的一个例子的图。FIG. 5 is a graph showing an example of light transmittance of a candidate substrate according to the second embodiment.
图6为展示在将防止紫外线以及可见光的反射的紫外可见光AR涂膜层涂布于第二实施方式涉及的树脂1~10的两面上的情况下的透光率的一个例子的图。FIG. 6 is a graph showing an example of light transmittance when an ultraviolet-visible light AR coating layer for preventing reflection of ultraviolet light and visible light is applied on both surfaces of the resins 1 to 10 according to the second embodiment.
图7为展示比较在第二实施方式涉及的树脂1、3、6上施加了各涂膜层的情况下的平均透射率的表格的图。FIG. 7 is a diagram showing a table comparing average transmittances when respective coating layers are applied to resins 1 , 3 , and 6 according to the second embodiment.
图8为树脂1、3、6与现有镜片的透射率的比较图。FIG. 8 is a comparison chart of the transmittance of resins 1, 3, 6 and a conventional lens.
图9为展示比较树脂1、3、6与现有镜片的各区域中的透射率的表格的图。FIG. 9 is a diagram showing a table comparing the transmittance in each region of resins 1, 3, and 6 with that of a conventional lens.
图10为展示比较树脂1、3、6的各区域中的透射率的表格A的图。FIG. 10 is a diagram of Table A showing the transmittance in each region of Comparative Resins 1, 3, and 6. In FIG.
图11为展示比较树脂1、3、6的各区域中的透射率的表格B的图。FIG. 11 is a diagram of Table B showing the transmittance in each region of Comparative Resins 1, 3, and 6. In FIG.
图12为展示对树脂6的各防反射膜的反射率的图。FIG. 12 is a graph showing the reflectance of each antireflection film on the resin 6. As shown in FIG.
图13为展示对树脂3的各个面上的AR涂膜层的不同所导致的透射率的图。FIG. 13 is a graph showing the difference in transmittance of the AR coating layer on each surface of the resin 3 .
具体实施方式DETAILED DESCRIPTION
以下,参照附图,对本发明的实施方式进行详细说明。但以下说明的实施方式终究只是示例,并不旨在排除以下没有明确记载的各种变形、技术的应用。即,本发明在没有偏离其主旨的范围内,可以进行各种变形并实施。此外,在以下的附图的记载中,对相同或者类似的部分标注相同或者类似的符号进行表示。附图为示意图,未必与实际的尺寸、比例等一致。附图之间有时也包含相互间的尺寸的关系、比例不同的部分。Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the embodiments described below are only examples and are not intended to exclude the application of various modifications and technologies that are not explicitly described below. That is, the present invention can be modified and implemented in various ways without departing from its main purpose. In addition, in the description of the following drawings, the same or similar parts are marked with the same or similar symbols to represent them. The accompanying drawings are schematic diagrams and may not be consistent with the actual dimensions, proportions, etc. The drawings sometimes also include parts with different dimensional relationships and proportions.
[第一实施方式][First embodiment]
<现有的眼镜用镜片><Existing eyeglass lenses>
图1为展示现有技术涉及的各眼镜用镜片(也将现有技术涉及的眼镜用镜片统称表现为“现有镜片”)的透光率的图。在图1展示的例子中,使用以下4个镜片来测量透光率。Fig. 1 is a graph showing the light transmittance of various eyeglass lenses according to the prior art (the eyeglass lenses according to the prior art are also collectively referred to as "conventional lenses"). In the example shown in Fig. 1 , the light transmittance was measured using the following four lenses.
镜片A:以PPG公司(PPG Industries,Inc.)制造的CR-39(注册商标)(烯丙基二甘醇二碳酸酯(allyl diglycol carbonate))作为基材的镜片(折射率1.50)Lens A: Lens made of CR-39 (registered trademark) (allyl diglycol carbonate) manufactured by PPG Industries, Inc. (refractive index 1.50)
镜片B:硫代氨基甲酸乙酯(thiourethane)系的镜片(折射率1.60)Lens B: Thiourethane lens (refractive index 1.60)
镜片C:硫代氨基甲酸乙酯系的镜片(折射率1.67)Lens C: Thiourethane lens (refractive index 1.67)
镜片D:硫代氨基甲酸乙酯系的镜片(折射率1.74)Lens D: Thiourethane lens (refractive index 1.74)
镜片A~D均在基材的两面上形成有硬涂层以及防反射涂层。此外,如图1所示,镜片A~D均阻断比380nm更短的波长。由此可知,在镜片A~D中均对镜片实行了在基材中包含紫外线吸收剂、在硬涂层中包含紫外线吸收剂以及在防反射涂层中包含紫外线吸收剂中的至少一种处理。Lenses A to D all have hard coatings and anti-reflection coatings formed on both sides of the substrate. In addition, as shown in FIG1 , lenses A to D all block wavelengths shorter than 380 nm. It can be seen that lenses A to D all have at least one of the following treatments: including an ultraviolet absorber in the substrate, including an ultraviolet absorber in the hard coating, and including an ultraviolet absorber in the anti-reflection coating.
因此,不仅是用于视力矫正的镜片,在大部分现有的镜片中,虽然由于镜片制造商、材料的不同,镜片的吸收波长也略有不同,但所有的镜片均阻断比380nm更短的波长。Therefore, not only lenses for vision correction, but also most existing lenses block wavelengths shorter than 380nm, although the absorption wavelengths of the lenses vary slightly depending on the lens manufacturer and material.
因此,本发明的发明人们鉴于近年来已查明的紫外线对眼睛的效果等,产生了在眼镜用的镜片中使紫外线透过的构思。然而,如图1所记载,在现有的眼镜用镜片中,大多阻断紫外线,并不存在本发明的发明人们所期望的镜片。Therefore, the inventors of the present invention have come up with the idea of allowing ultraviolet rays to pass through the lenses for spectacles in view of the effects of ultraviolet rays on the eyes that have been found in recent years. However, as shown in FIG1 , most of the existing lenses for spectacles block ultraviolet rays, and there is no lens that the inventors of the present invention expect.
<本发明的眼镜用镜片中的基材><Substrate in the spectacle lens of the present invention>
首先,对本发明的第一实施方式涉及的眼镜用镜片中的基材进行说明。在第一实施方式涉及的眼镜用镜片中,不使用以吸收紫外线的材料作为主材料的基材。例如,作为吸收紫外线的材料,已知有芳香族化合物、具有共轭结构的脂肪族化合物等,因此,在第一实施方式中,作为眼镜用镜片,不使用以这些化合物作为主材料的基材。First, the substrate in the spectacle lens according to the first embodiment of the present invention is described. In the spectacle lens according to the first embodiment, a substrate whose main material is a material that absorbs ultraviolet rays is not used. For example, aromatic compounds, aliphatic compounds having a conjugated structure, etc. are known as materials that absorb ultraviolet rays. Therefore, in the first embodiment, a substrate whose main material is these compounds is not used as a spectacle lens.
在第一实施方式涉及的眼镜用镜片中,具备例如将吸收指定百分比以上的紫外线的化合物以外的第1化合物作为主材料的基材层。对于吸收指定百分比以上的紫外线的材料,作为一个例子,包括上述芳香族化合物。此外,在不妨碍第一实施方式涉及的目的等的范围内,基材层也可以含有芳香族化合物。In the spectacle lens involved in the first embodiment, there is a substrate layer having a first compound other than a compound that absorbs ultraviolet rays at a specified percentage or more as a main material. The material that absorbs ultraviolet rays at a specified percentage or more includes, as an example, the above-mentioned aromatic compound. In addition, the substrate layer may also contain an aromatic compound within the range that does not hinder the purpose involved in the first embodiment.
由此,由于使用吸收指定百分比以上的紫外线的化合物以外的第1化合物来构成基材层,因而至少可以防止眼镜用镜片的基材层严重妨碍紫外线的透过。因此,紫外线将透过眼镜用镜片,使得与包含紫外线的自然光相近的光传递至眼睛。Thus, since the substrate layer is composed of the first compound other than the compound that absorbs ultraviolet rays at a specified percentage or more, it is at least possible to prevent the substrate layer of the spectacle lens from seriously hindering the transmission of ultraviolet rays. Therefore, ultraviolet rays are transmitted through the spectacle lens, so that light similar to natural light containing ultraviolet rays is transmitted to the eyes.
应予说明,在第一实施方式中,紫外线是指处于例如280~400nm的波长区域的波长。其中,将320~400nm称为UVA(第1波长区域),将280~320nm称为UVB(第2波长区域)。UVA与UVB的边界可以设为315nm,UVA的上限可以设为380nm。在第一实施方式的眼镜用镜片中,镜片形成为不阻断280~400nm的波长并使其透过。It should be noted that in the first embodiment, ultraviolet rays refer to wavelengths in the wavelength region of, for example, 280 to 400 nm. Among them, 320 to 400 nm is referred to as UVA (first wavelength region), and 280 to 320 nm is referred to as UVB (second wavelength region). The boundary between UVA and UVB can be set to 315 nm, and the upper limit of UVA can be set to 380 nm. In the eyeglass lens of the first embodiment, the lens is formed so as not to block the wavelength of 280 to 400 nm and to allow it to pass through.
作为在形成基材层时使用的第1化合物,例如为芳香族化合物以外的化合物,包括脂肪族聚碳酸酯、脂肪族烯烃聚合物、脂肪族丙烯酸树脂、以及脂肪族尼龙树脂中的至少一种。The first compound used in forming the base layer is, for example, a compound other than an aromatic compound, and includes at least one of an aliphatic polycarbonate, an aliphatic olefin polymer, an aliphatic acrylic resin, and an aliphatic nylon resin.
由脂肪族聚碳酸酯形成的基材包括例如市售的PPG公司制造的CR-39(注册商标)、以及三菱ケミカル公司制造的DURABIO(注册商标)等中的至少一种。CR-39(注册商标)为无芳香环的直链脂肪族聚碳酸酯,因此吸收紫外线的功能较弱。此外,DURABIO(注册商标)为使用了作为生物材料的异山梨醇的部分生物材料的聚碳酸酯。在该化合物中,与异山梨醇共聚的二醇也为脂环性,不具有芳香环,因此认为吸收紫外线的功能较弱。The substrate formed by aliphatic polycarbonate includes at least one of CR-39 (registered trademark) manufactured by PPG, which is commercially available, and DURABIO (registered trademark) manufactured by Mitsubishi Chemical Co., Ltd. CR-39 (registered trademark) is a straight-chain aliphatic polycarbonate without an aromatic ring, so the function of absorbing ultraviolet rays is weak. In addition, DURABIO (registered trademark) is a polycarbonate of a part of the biomaterial using isosorbide as a biomaterial. In this compound, the diol copolymerized with isosorbide is also alicyclic and does not have an aromatic ring, so it is believed that the function of absorbing ultraviolet rays is weak.
脂肪族烯烃聚合物包括例如环烯烃聚合物(脂环式烯烃聚合物)、以及不具有环状结构的脂肪族烯烃聚合物等中的至少一种。使用环烯烃聚合物形成的基材包括例如市售的三井化学公司制造的APEL(注册商标)(折射率1.544,阿贝数56)、日本ゼオン公司制造的ZEONEX(注册商标)(折射率1.509~1.535)、以及JSR公司制造的ARTON(注册商标)(折射率1.513~1.516,阿贝数56或57)中的任一种。The aliphatic olefin polymer includes, for example, at least one of a cycloolefin polymer (alicyclic olefin polymer) and an aliphatic olefin polymer having no cyclic structure. The substrate formed using the cycloolefin polymer includes, for example, any of the commercially available APEL (registered trademark) manufactured by Mitsui Chemicals (refractive index 1.544, Abbe number 56), ZEONEX (registered trademark) manufactured by Zeon Japan (refractive index 1.509 to 1.535), and ARTON (registered trademark) manufactured by JSR (refractive index 1.513 to 1.516, Abbe number 56 or 57).
由不具有环状结构的脂肪族烯烃聚合物形成的基材包含例如市售的三井化学公司制造的TPX(注册商标)(化合物名为聚甲基戊烯)(折射率1.46)。The substrate formed of an aliphatic olefin polymer having no cyclic structure includes, for example, TPX (registered trademark) (compound name: polymethylpentene) (refractive index: 1.46) commercially available from Mitsui Chemicals, Inc.
对于由脂肪族丙烯酸树脂形成的基材,作为一个例子,可采用日本特殊光学树脂公司制造的“紫外线透过PMMA镜片”(折射率约1.49,阿贝数55)等。PMMA为聚甲基丙烯酸甲酯的简称。紫外线透过PMMA为使紫外线透过的丙烯酸树脂。As a substrate formed of an aliphatic acrylic resin, as an example, a "UV-transmitting PMMA lens" (refractive index of about 1.49, Abbe number 55) manufactured by Japan Special Optical Resins Co., Ltd. can be used. PMMA is the abbreviation of polymethyl methacrylate. UV-transmitting PMMA is an acrylic resin that allows UV rays to pass through.
在此,使用图2~图4,对基材A~C的透光率进行说明。首先,如上所述,在第一实施方式的眼镜用镜片中,使280~400nm的波长区域的光线尽量透过。Here, the light transmittance of the substrates A to C will be described using Figures 2 to 4. First, as described above, in the spectacle lens of the first embodiment, light in the wavelength range of 280 to 400 nm is transmitted as much as possible.
图2为展示第一实施方式涉及的基材A的透光率的一个例子的图。基材A由使用了环烯烃聚合物的树脂形成,折射率为1.544。在300~400nm的波长区域中,与图1所示的现有的眼镜镜片相比,基材A进一步使紫外线区域的波长透过。在图2所示的例子中,基材A在300nm波长附近具有约15%的透射率。此外,在第1波长区域(320~400nm)中具有平均约60%的透射率。FIG. 2 is a diagram showing an example of the light transmittance of the substrate A involved in the first embodiment. The substrate A is formed of a resin using a cycloolefin polymer and has a refractive index of 1.544. In the wavelength region of 300 to 400 nm, the substrate A further transmits wavelengths in the ultraviolet region compared to the existing eyeglass lens shown in FIG. 1 . In the example shown in FIG. 2 , the substrate A has a transmittance of about 15% near a wavelength of 300 nm. In addition, it has an average transmittance of about 60% in the first wavelength region (320 to 400 nm).
图3为展示第一实施方式涉及的基材B的透光率的一个例子的图。基材B由使用了环烯烃聚合物的树脂形成,折射率为1.51。在280~400nm的波长区域中,与图1所示的现有的眼镜镜片相比,基材B进一步使紫外线区域的波长透过。在图3所示的例子中,从280nm波长附近开始基材B的透射率急剧上升,在第2波长区域(280~320nm)中,具有平均约35%的透射率。此外,在第1波长区域(320~400nm)中,具有平均约85%的透射率。FIG. 3 is a diagram showing an example of the light transmittance of the substrate B involved in the first embodiment. The substrate B is formed of a resin using a cycloolefin polymer and has a refractive index of 1.51. In the wavelength region of 280 to 400 nm, the substrate B further transmits wavelengths in the ultraviolet region compared to the existing eyeglass lenses shown in FIG. 1 . In the example shown in FIG. 3 , the transmittance of the substrate B rises sharply from around the wavelength of 280 nm, and in the second wavelength region (280 to 320 nm), it has an average transmittance of about 35%. In addition, in the first wavelength region (320 to 400 nm), it has an average transmittance of about 85%.
图4为展示第一实施方式涉及的基材C的透光率的一个例子的图。基材C由使用了使紫外线透过的PMMA的树脂形成,折射率为1.49,阿贝数为55。在280~400nm的波长区域中,与图1所示的现有的眼镜镜片相比,基材C进一步使紫外线区域的波长透过。在图4所示的例子中,基材C在第2波长区域(280~320nm)中,具有平均约55%的透射率。此外,在第1波长区域(320~400nm)中,具有平均约90%的透射率。FIG. 4 is a diagram showing an example of the light transmittance of the substrate C involved in the first embodiment. The substrate C is formed of a resin using PMMA that allows ultraviolet light to pass through, and has a refractive index of 1.49 and an Abbe number of 55. In the wavelength region of 280 to 400 nm, the substrate C further transmits wavelengths in the ultraviolet region compared to the existing eyeglass lens shown in FIG. 1 . In the example shown in FIG. 4 , the substrate C has an average transmittance of about 55% in the second wavelength region (280 to 320 nm). In addition, in the first wavelength region (320 to 400 nm), it has an average transmittance of about 90%.
在图2至图4所示的例子中,由于基材C使紫外线区域280~400nm的波长良好地透过,因此基材C可良好地用作眼镜用镜片的基材层。应予说明,即使是基材A、B,由于其与现有的眼镜用镜片的基材层相比能够进一步使紫外线区域的波长透过,因此可用作眼镜用镜片的基材。In the examples shown in Figs. 2 to 4, since the substrate C transmits wavelengths in the ultraviolet region of 280 to 400 nm well, the substrate C can be preferably used as a substrate layer of a spectacle lens. It should be noted that even the substrates A and B can transmit wavelengths in the ultraviolet region further than the substrate layers of conventional spectacle lenses, and thus can be used as substrates of spectacle lenses.
<涂布><Coating>
眼镜用镜片可以在基材层的至少一面上形成硬涂膜层(也可以表示为“硬涂层”,“硬涂膜”或“硬涂布层”)。第一实施方式中的眼镜用镜片可以具备涂布在基材层的至少一面上的、由不含紫外线吸收剂的材料形成的硬涂膜层。硬涂膜层通过例如在基材层的表面上均匀地施加硬涂层液而形成,使用不含芳香族化合物的树脂即可。The spectacle lens may have a hard coating layer (may also be expressed as "hard coating layer", "hard coating film" or "hard coating layer") formed on at least one side of the substrate layer. The spectacle lens in the first embodiment may have a hard coating layer formed of a material that does not contain an ultraviolet absorber and is coated on at least one side of the substrate layer. The hard coating layer is formed by, for example, uniformly applying a hard coating liquid on the surface of the substrate layer, and a resin that does not contain an aromatic compound may be used.
例如,在眼镜用镜片中,作为硬涂膜层,可优选使用包含无机氧化物微粒的有机硅氧烷系树脂。有机硅氧烷系树脂优选通过对烷氧基硅烷进行水解并缩合而得到。此外,作为有机硅氧烷系树脂的具体例子,包括γ-缩水甘油醚氧基丙基三甲氧基硅烷、γ-缩水甘油醚氧基丙基三乙氧基硅烷、甲基三甲氧基硅烷、硅酸乙酯或它们的组合。烷氧基硅烷的水解缩合物通过使该烷氧基硅烷化合物或它们的组合在盐酸等酸性水溶液中水解而制造。For example, in eyeglass lenses, as a hard coating layer, an organosiloxane resin containing inorganic oxide particles can be preferably used. The organosiloxane resin is preferably obtained by hydrolyzing and condensing an alkoxysilane. In addition, specific examples of the organosiloxane resin include γ-glycidyloxypropyltrimethoxysilane, γ-glycidyloxypropyltriethoxysilane, methyltrimethoxysilane, ethyl silicate or a combination thereof. The hydrolysis condensate of alkoxysilane is manufactured by hydrolyzing the alkoxysilane compound or a combination thereof in an acidic aqueous solution such as hydrochloric acid.
此外,无机氧化物微粒的材质例如包括氧化锌、二氧化硅(氧化硅微粒)、氧化铝、氧化钛(二氧化钛微粒)、氧化锆(氧化锆微粒)、氧化锡、氧化铍、氧化锑、氧化钨、氧化铈的各溶胶中的单独一种或将它们中的任意两种以上进行混晶后得到的物质。In addition, the material of the inorganic oxide microparticles includes, for example, a single one of the sols of zinc oxide, silicon dioxide (silicon oxide microparticles), aluminum oxide, titanium oxide (titanium dioxide microparticles), zirconium oxide (zirconium oxide microparticles), tin oxide, beryllium oxide, antimony oxide, tungsten oxide, and cerium oxide, or a substance obtained by mixing any two or more of them.
从确保硬涂膜层的透明性的观点出发,无机氧化物微粒的直径优选为1nm以上100nm以下,更优选为1nm以上50nm以下。此外,从以适当程度确保硬涂膜层中的硬度、强韧性的观点出发,无机氧化物微粒的配合量(浓度)优选占硬涂膜层的总成分中的40重量%(重量百分比)以上60重量%以下。From the viewpoint of ensuring the transparency of the hard coating layer, the diameter of the inorganic oxide microparticles is preferably 1 nm to 100 nm, more preferably 1 nm to 50 nm. In addition, from the viewpoint of ensuring the hardness and toughness in the hard coating layer to an appropriate degree, the amount (concentration) of the inorganic oxide microparticles is preferably 40 wt % to 60 wt % of the total components of the hard coating layer.
此外,在硬涂层液中,增加乙酰丙酮金属盐以及乙二胺四乙酸金属盐中的至少一者等作为固化催化剂,并进一步根据确保对基材的粘着性、容易形成、赋予期望的(半)透明色等需要,添加表面活性剂、着色剂、溶剂等。In addition, at least one of acetylacetone metal salt and ethylenediaminetetraacetic acid metal salt is added to the hard coating liquid as a curing catalyst, and surfactants, colorants, solvents, etc. are further added according to the needs of ensuring adhesion to the substrate, easy formation, and imparting the desired (semi-)transparent color.
无机氧化物微粒中的无机氧化物(金属氧化物)选择尽量在可见光区域中不进行吸收的物质。这是基于确保遍及可见光区域的整个区域的高透射率,并确保佩戴镜片时的看到的颜色相对于裸眼时看到的颜色的差别极小的状态的观点。在该观点下,无机氧化物优选为除了Ti(钛)、Ce(铈)以外的一种以上的金属的氧化物。Ti(钛)的氧化物和Ce(铈)的氧化物在可见光区域(尤其是短波长侧)中进行吸收,因此它们被从优选的金属氧化物中排除。The inorganic oxide (metal oxide) in the inorganic oxide particles is selected as a substance that does not absorb in the visible light region as much as possible. This is based on the viewpoint of ensuring high transmittance throughout the entire visible light region and ensuring that the color seen when wearing the lens is extremely different from the color seen with the naked eye. Under this viewpoint, the inorganic oxide is preferably an oxide of one or more metals other than Ti (titanium) and Ce (cerium). Ti (titanium) oxide and Ce (cerium) oxide absorb in the visible light region (especially on the short wavelength side), so they are excluded from the preferred metal oxides.
作为优选的金属氧化物的例子,可列举Sb(锑)、Sn(锡)、Si(硅)、Al(铝)、Ta(钽)、La(镧)、Fe(铁)、Zn(锌)、W(钨)、Zr(锆)、In(铟)的氧化物中的任一者或者它们的组合。As examples of preferred metal oxides, any one of the oxides of Sb (antimony), Sn (tin), Si (silicon), Al (aluminum), Ta (tantalum), La (lanthanum), Fe (iron), Zn (zinc), W (tungsten), Zr (zirconium), and In (indium) or a combination thereof can be listed.
硬涂膜层的物理膜厚优选设为0.5μm(微米)以上4.0μm以下。该膜厚范围的下限基于以下理由而确定:如果比该下限更薄,则难以获得足够的硬度。另一方面,上限基于以下理由而确定:如果设为比该上限更厚,则产生龟裂、脆性等与物理性质相关的问题的发生可能性急剧增加,并且无机氧化物微粒产生的对可见光区域的吸收(减小透射率)的影响变大。应予说明,作为用于硬涂膜层的硬涂层剂,除了上述热固化系涂层剂以外,也可以使用公知的光固化系涂层剂。The physical film thickness of the hard coating layer is preferably set to be above 0.5 μm (micrometer) and below 4.0 μm. The lower limit of the film thickness range is determined based on the following reasons: if it is thinner than the lower limit, it is difficult to obtain sufficient hardness. On the other hand, the upper limit is determined based on the following reasons: if it is set thicker than the upper limit, the possibility of problems related to physical properties such as cracking and brittleness increases sharply, and the effect of absorption (reducing transmittance) on the visible light region caused by the inorganic oxide particles becomes larger. It should be noted that as a hard coating agent for the hard coating layer, in addition to the above-mentioned thermosetting coating agent, a known photocuring coating agent can also be used.
此外,第一实施方式中的眼镜用镜片也可以具备防反射膜层(也可以表示为“防反射膜”或“防反射层”),该防反射膜层被涂布在基材层的至少一面上,并由不含紫外线吸收剂的材料形成。防反射膜层可以形成在基材层上,但优选地,可形成于硬涂膜层上。此外,防反射膜层由光学多层膜形成,并使用不含芳香族化合物的成分即可。In addition, the spectacle lens in the first embodiment may also have an anti-reflection film layer (may also be expressed as "anti-reflection film" or "anti-reflection layer"), which is coated on at least one side of the substrate layer and is formed of a material that does not contain an ultraviolet absorber. The anti-reflection film layer can be formed on the substrate layer, but preferably, it can be formed on the hard coating layer. In addition, the anti-reflection film layer is formed of an optical multilayer film and uses a component that does not contain an aromatic compound.
从确保防反射功能的观点出发,光学多层膜优选形成为在紫外线区域与可见光的整个区域中具有平坦且较高的透射率分布即可。From the viewpoint of ensuring the antireflection function, the optical multilayer film is preferably formed so as to have a flat and high transmittance distribution in the entire ultraviolet region and the visible light region.
光学多层膜为交替层叠形成低折射率层与高折射率层,并且优选整体上具有奇数层(总计5层、总计7层等)的结构即可。更优选的是,如果将最靠近基材侧的层(离基材最近的层)设为第一层,则第奇数层为低折射率层,第偶数层为高折射率层即可。低折射率层及高折射率层通过真空蒸镀法、离子辅助沉积法、离子电镀法、溅射法等形成。Optical multilayer film is alternately stacked to form low refractive index layer and high refractive index layer, and preferably has a structure of odd number layers (a total of 5 layers, a total of 7 layers, etc.) as a whole. More preferably, if the layer closest to the substrate side (the layer closest to the substrate) is set as the first layer, then the odd number layer is a low refractive index layer, and the even number layer is a high refractive index layer. Low refractive index layer and high refractive index layer are formed by vacuum evaporation, ion assisted deposition, ion plating, sputtering, etc.
应予说明,根据本申请的发明人的实验,通过在基材层或硬涂膜层上形成防反射膜层,得到了显示出可见光的透射率上升约5%的数据。因此,通过设置防反射膜层,即使在紫外线的波长区域中也能够谋求透射率的提高。It should be noted that according to the experiment of the inventor of the present application, by forming an anti-reflection film layer on the substrate layer or the hard coating layer, data showing that the transmittance of visible light increased by about 5% were obtained. Therefore, by providing an anti-reflection film layer, the transmittance can be improved even in the wavelength region of ultraviolet light.
<眼镜用镜片><Eyeglass Lenses>
第一实施方式涉及的眼镜用镜片具备上述基材层以及涂膜层。例如,对于基材,使用图2~4记载的化合物来形成眼镜用镜片的基材层,在该基材层的至少一面上形成作为上述涂膜层的硬涂膜层和/或防反射膜层。此外,在第一实施方式涉及的眼镜用镜片中,能够使紫外线区域透过,在紫外线区域中,将基材以及涂膜两者的平均透射率设为至少10%以上。由此,在现有的眼镜用镜片中,如图1所示,在紫外线区域中平均透射率不足10%,但如果是第一实施方式涉及的眼镜用镜片,则由于基材层与涂膜层的总的透射率特性,紫外线区域的平均透射率为10%以上,与现有的眼镜用镜片相比,能够进一步使紫外线透过,能够进一步使自然光传递至眼睛。此外,第一实施方式涉及的眼镜用镜片也可以应用于带度数的眼镜用镜片,使用者可以在矫正视力的同时使接近于自然光的光传递至眼睛。The spectacle lenses involved in the first embodiment include the above-mentioned substrate layer and coating layer. For example, for the substrate, the compound described in Figures 2 to 4 is used to form the substrate layer of the spectacle lenses, and a hard coating layer and/or an anti-reflection film layer as the above-mentioned coating layer is formed on at least one side of the substrate layer. In addition, in the spectacle lenses involved in the first embodiment, the ultraviolet region can be transmitted, and in the ultraviolet region, the average transmittance of both the substrate and the coating is set to at least 10%. Thus, in the existing spectacle lenses, as shown in Figure 1, the average transmittance in the ultraviolet region is less than 10%, but if it is the spectacle lenses involved in the first embodiment, due to the total transmittance characteristics of the substrate layer and the coating layer, the average transmittance in the ultraviolet region is more than 10%, and compared with the existing spectacle lenses, ultraviolet rays can be further transmitted, and natural light can be further transmitted to the eyes. In addition, the spectacle lenses involved in the first embodiment can also be applied to spectacle lenses with degrees, and users can correct their vision while transmitting light close to natural light to their eyes.
此外,对于第一实施方式涉及的眼镜用镜片,优选地,在280nm以上且不足320nm的UVB(第2波长区域)中,基材层以及涂膜层的总的平均透射率(或透射率)为5%以上,在320nm以上400nm以下的UVA(第1波长区域)中,基材层以及涂膜层的总的平均透射率(或透射率)为15%以上即可。尤其是与波长更短的第2波长区域相比,进一步使包含380nm~495nm的蓝光的一部分及其周边的波长区域的第1波长区域透过,由此,与具备紫外线阻断功能的现有的眼镜镜片相比,进一步使自然的太阳光传递至眼睛,因此可以期待对儿童的身心发育有良好的影响和减轻近视加深的风险等。此外,可以说第一实施方式涉及的眼镜用镜片中的任一种均使得第1波长区域的紫外线进一步透过。In addition, for the spectacle lenses involved in the first embodiment, preferably, in UVB (second wavelength region) of 280 nm or more and less than 320 nm, the total average transmittance (or transmittance) of the substrate layer and the coating layer is 5% or more, and in UVA (first wavelength region) of 320 nm or more and 400 nm or less, the total average transmittance (or transmittance) of the substrate layer and the coating layer is 15% or more. In particular, compared with the second wavelength region with a shorter wavelength, the first wavelength region including a part of blue light of 380 nm to 495 nm and its surrounding wavelength region is further transmitted, thereby further transmitting natural sunlight to the eyes compared with existing spectacle lenses with ultraviolet blocking function, so it can be expected to have a good effect on the physical and mental development of children and reduce the risk of myopia progression. In addition, it can be said that any of the spectacle lenses involved in the first embodiment allows ultraviolet rays in the first wavelength region to be further transmitted.
此外,对于第一实施方式涉及的眼镜用镜片,更优选地,在280nm以上且不足320nm的UVB(第2波长区域)中,基材层以及涂膜层的总的平均透射率(或透射率)为10%以上,在320nm以上400nm以下的UVA(第1波长区域)中,基材层以及涂膜层的总的平均透射率(或透射率)为55%以上即可。在此,即便仅仅是图2~3所示的化合物制成的基材,其第2波长区域的平均透射率也为约15%~35%,第1波长区域的平均透射率为约60~85%。因此,即使是在图2~3所示的基材上形成指定的涂膜层,至少也可以确保第2波长区域的平均透射率(或透射率)为约10%以上,第1波长区域的平均透射率(或透射率)为约55%以上。In addition, for the spectacle lenses involved in the first embodiment, it is more preferred that the total average transmittance (or transmittance) of the substrate layer and the coating layer is 10% or more in UVB (second wavelength region) of 280 nm or more and less than 320 nm, and the total average transmittance (or transmittance) of the substrate layer and the coating layer is 55% or more in UVA (first wavelength region) of 320 nm or more and 400 nm or less. Here, even if only the substrate made of the compound shown in Figures 2 to 3 has an average transmittance of about 15% to 35% in the second wavelength region, and an average transmittance of about 60% to 85% in the first wavelength region. Therefore, even if a specified coating layer is formed on the substrate shown in Figures 2 to 3, it can at least ensure that the average transmittance (or transmittance) in the second wavelength region is about 10% or more, and the average transmittance (or transmittance) in the first wavelength region is about 55% or more.
此外,对于第一实施方式涉及的眼镜用镜片,进一步优选地,在280nm以上且不足320nm的UVB(第2波长区域)中,基材层以及涂膜层的总的平均透射率(或透射率)为50%以上,在320nm以上400nm以下的UVA(第1波长区域)中,基材层以及涂膜层的总的平均透射率(或透射率)为85%以上即可。在此,即便仅仅是图4所示的化合物制成的基材,其第2波长区域的平均透射率也为约55%,第1波长区域的平均透射率为约90%。因此,即使以图4所示的化合物制成的基材作为基材层并形成指定的涂膜层,至少也可以确保第2波长区域的平均透射率(或透射率)为约50%以上,第1波长区域的平均透射率(或透射率)为约85%以上。In addition, for the spectacle lenses involved in the first embodiment, it is further preferred that the total average transmittance (or transmittance) of the substrate layer and the coating layer is 50% or more in UVB (second wavelength region) of 280 nm or more and less than 320 nm, and the total average transmittance (or transmittance) of the substrate layer and the coating layer is 85% or more in UVA (first wavelength region) of 320 nm or more and 400 nm or less. Here, even if only the substrate made of the compound shown in FIG. 4 has an average transmittance of about 55% in the second wavelength region, and an average transmittance of about 90% in the first wavelength region. Therefore, even if the substrate made of the compound shown in FIG. 4 is used as the substrate layer and a specified coating layer is formed, at least the average transmittance (or transmittance) in the second wavelength region can be ensured to be about 50% or more, and the average transmittance (or transmittance) in the first wavelength region can be ensured to be about 85% or more.
应予说明,可以对紫外线区域中的平均透射率设置上限而构成眼镜用镜片。例如,对于第一实施方式涉及的眼镜用镜片,可以将280nm~400nm的紫外线区域中基材层以及涂膜层的总的平均透射率的上限设为65%。It should be noted that the spectacle lenses may be configured by setting an upper limit on the average transmittance in the ultraviolet region. For example, for the spectacle lenses involved in the first embodiment, the upper limit of the total average transmittance of the base layer and the coating layer in the ultraviolet region of 280 nm to 400 nm may be set to 65%.
此外,可以对第1波长区域、第2波长区域分别设置透射率的上限。例如,可以将第1波长区域的基材层以及涂膜层的总透射率的上限设为80%,将第2波长区域的基材层以及涂膜层的总透射率的上限设为50%。为了对紫外线区域的透射率设置上限,可以在基材或涂膜的主材料中混合指定量的紫外线吸收剂。由此,第一实施方式涉及的眼镜用镜片可以考虑紫外线照射到眼睛的优点和缺点,使适当波长区域或适当量的紫外线透过。In addition, the upper limit of the transmittance can be set for the first wavelength region and the second wavelength region, respectively. For example, the upper limit of the total transmittance of the substrate layer and the coating layer in the first wavelength region can be set to 80%, and the upper limit of the total transmittance of the substrate layer and the coating layer in the second wavelength region can be set to 50%. In order to set an upper limit for the transmittance in the ultraviolet region, a specified amount of ultraviolet absorber can be mixed in the main material of the substrate or the coating. Thus, the eyeglass lens involved in the first embodiment can allow the appropriate wavelength region or an appropriate amount of ultraviolet rays to pass through, taking into account the advantages and disadvantages of ultraviolet rays irradiating the eyes.
此外,第一实施方式中的基材层的折射率优选高于短波长域的玻璃的折射率。此外,第一实施方式中的眼镜用镜片被实施各种处理,以确保对于紫外线老化、磨损等镜片耐性的一般所要求的性能。在这种情况下,优选不进行使用吸收紫外线的材料的处理。In addition, the refractive index of the substrate layer in the first embodiment is preferably higher than the refractive index of the glass in the short wavelength region. In addition, the spectacle lenses in the first embodiment are subjected to various treatments to ensure generally required performance of lens resistance to ultraviolet aging, abrasion, etc. In this case, it is preferred not to perform treatment using a material that absorbs ultraviolet rays.
[第二实施方式][Second Embodiment]
接着,在第二实施方式中,与第一实施方式同样地,对使紫外线尽量透过的眼镜用镜片进行说明。在此,发明人们对于作为本发明的技术的眼镜用镜片的基材层的备选的各种树脂,调查了紫外线区域以及可见光区域的透射率。Next, in the second embodiment, similarly to the first embodiment, a spectacle lens that allows ultraviolet rays to be transmitted as much as possible is described. Here, the inventors investigated the transmittance in the ultraviolet region and the visible light region for various resins that are candidates for the substrate layer of the spectacle lens of the present invention.
图5为展示第二实施方式涉及的备选基材的透光率的一个例子的图。图5所示的备选基材的树脂如下所示。Fig. 5 is a graph showing an example of light transmittance of a candidate substrate according to the second embodiment. The resin of the candidate substrate shown in Fig. 5 is as follows.
树脂1:アクリペット(注册商标)VH000Resin 1: Acrypet (registered trademark) VH000
树脂2:アクリライト(注册商标)L000Resin 2: Aqualight (registered trademark) L000
树脂3:ZEONEX(注册商标)K22RResin 3: ZEONEX (registered trademark) K22R
树脂4:ZEONEX(注册商标)K26RResin 4: ZEONEX (registered trademark) K26R
树脂5:TPX(注册商标)RT18Resin 5: TPX (registered trademark) RT18
树脂6:ARTON(注册商标)F3500Resin 6: ARTON (registered trademark) F3500
树脂7:APEL(注册商标)5014XHResin 7: APEL (registered trademark) 5014XH
树脂8:CR-39(注册商标)Resin 8: CR-39 (registered trademark)
树脂9:MR-8(注册商标)Resin 9: MR-8 (registered trademark)
树脂10:MR-10(注册商标)Resin 10: MR-10 (registered trademark)
树脂1~6、8~10均为2mm厚的试验片,仅树脂7为3mm厚的试验片。All of resins 1 to 6 and 8 to 10 were test pieces with a thickness of 2 mm, and only resin 7 was a test piece with a thickness of 3 mm.
与图1所示的现有的眼镜用镜片相比,图5所示的各树脂的透射率在更低的波长区域中急剧上升。例如,现有的眼镜用镜片的透射率从380nm附近开始急剧上升,而图5所示的各树脂的透射率在330nm以下的波长区域中急剧上升。The transmittance of each resin shown in Fig. 5 increases sharply in a lower wavelength region than the conventional eyeglass lens shown in Fig. 1. For example, the transmittance of the conventional eyeglass lens increases sharply from around 380 nm, while the transmittance of each resin shown in Fig. 5 increases sharply in a wavelength region below 330 nm.
由此可知,图5所示的各树脂使紫外线区域(280~400nm或280~380nm)的波长透过。尤其是,基于透射率曲线的倾向,为了使紫外线尽量透过,与现有的镜片相比,360~380nm的波长区域的透射率较高这点非常重要。例如,在树脂1~10的所有树脂中,单独的树脂的360~380nm的平均透射率均超过80%,透射率本身也在该区域中超过80%。此外,在本发明的技术中优选的树脂1~4中,360~380nm的平均透射率超过90%。It can be seen from this that each resin shown in FIG. 5 transmits wavelengths in the ultraviolet region (280 to 400 nm or 280 to 380 nm). In particular, based on the tendency of the transmittance curve, it is very important that the transmittance in the wavelength region of 360 to 380 nm is higher than that of existing lenses in order to allow ultraviolet rays to pass as much as possible. For example, in all of the resins 1 to 10, the average transmittance of the 360 to 380 nm of the individual resins exceeds 80%, and the transmittance itself also exceeds 80% in this region. In addition, in the preferred resins 1 to 4 in the technology of the present invention, the average transmittance of 360 to 380 nm exceeds 90%.
要求该360~380nm的波长区域的透射率较高的理由如下:如果在该区域中透射率为高水准(例如,阈值为60%、80%以上等),则即使假设在360nm以下的波长区域中有透射率下降的倾向,也是从360~380nm的波长区域的较高的透射率开始下降,因此能够在280~360nm的波长区域中平均将透射率维持于一定水准。例如,即使是在最长的波长(360nm附近)处透射率减少的树脂6,在280~360nm的波长区域中也具有平均25~30%的透射率。The reason why the transmittance in the wavelength region of 360 to 380 nm is required to be high is as follows: if the transmittance in this region is high (for example, the threshold is 60%, 80% or more, etc.), even if it is assumed that there is a tendency for the transmittance to decrease in the wavelength region below 360 nm, it starts to decrease from the higher transmittance in the wavelength region of 360 to 380 nm, so the transmittance can be maintained at a certain level on average in the wavelength region of 280 to 360 nm. For example, even the resin 6 whose transmittance decreases at the longest wavelength (near 360 nm) has an average transmittance of 25 to 30% in the wavelength region of 280 to 360 nm.
在图5所示的例子中,树脂1在280nm处具有60%以上的透射率,良好地使紫外线区域的光线透过。此外,UVA区域(315~400nm)中的各树脂的平均透射率如下:In the example shown in FIG5 , resin 1 has a transmittance of more than 60% at 280 nm, which allows light in the ultraviolet region to pass through well. In addition, the average transmittance of each resin in the UVA region (315 to 400 nm) is as follows:
树脂1:90.7%、树脂2:91.2%、树脂3:83.5%、树脂4:87.4%、树脂5:83.4%、树脂6:64.7%、树脂7:68.7%、树脂8:85.2%、树脂9:82.7%、树脂10:76.3%Resin 1: 90.7%, Resin 2: 91.2%, Resin 3: 83.5%, Resin 4: 87.4%, Resin 5: 83.4%, Resin 6: 64.7%, Resin 7: 68.7%, Resin 8: 85.2%, Resin 9: 82.7%, Resin 10: 76.3%
如上所述,在UVA区域中,树脂1~5以及8~10具有75%以上的平均透射率,本发明的技术中优选的树脂1~2、4以及8具有85%以上的平均透射率,尤其是对于本发明的技术更优选的树脂1~2具有90%以上的平均透射率。As described above, in the UVA region, resins 1 to 5 and 8 to 10 have an average transmittance of more than 75%, and preferred resins 1 to 2, 4 and 8 in the technology of the present invention have an average transmittance of more than 85%, and especially preferred resins 1 to 2 for the technology of the present invention have an average transmittance of more than 90%.
图6为展示在图5所示的树脂1~10的两面上涂布防止紫外线以及可见光的反射的紫外可见光AR(Anti Reflection)涂膜层的情况下的透光率的一个例子的图。如果比较图6所示的透光率与图5所示的透光率,则首先,在紫外线区域(380nm以下)中,形成有紫外可见光AR涂膜层的各树脂的透射率提高。例如,对于树脂4,在315nm附近,单独的树脂的透射率为约75%,与此相对,具有紫外可见光AR涂膜层的树脂的透射率为约80%,透射率上升约5%。FIG6 is a diagram showing an example of light transmittance when an ultraviolet visible light AR (Anti Reflection) coating layer for preventing reflection of ultraviolet light and visible light is applied on both sides of the resins 1 to 10 shown in FIG5. If the light transmittance shown in FIG6 is compared with the light transmittance shown in FIG5, first, in the ultraviolet region (below 380 nm), the transmittance of each resin formed with an ultraviolet visible light AR coating layer is improved. For example, for resin 4, at around 315 nm, the transmittance of the resin alone is about 75%, while the transmittance of the resin with the ultraviolet visible light AR coating layer is about 80%, and the transmittance is increased by about 5%.
此外,在可见光区域(下限为380~400nm,上限为760~780nm)中,具有紫外可见光AR涂膜层的各树脂的平均透射率也超过约95%,但单独的树脂的情况下的平均透射率为约85~约90%。由此,通过在基材上形成紫外可见光AR涂膜层,能够进一步使可见光区域透过并进一步使紫外线区域透过。In addition, in the visible light region (lower limit 380 to 400 nm, upper limit 760 to 780 nm), the average transmittance of each resin having an ultraviolet visible light AR coating layer also exceeds about 95%, but the average transmittance of a single resin is about 85 to about 90%. Thus, by forming an ultraviolet visible light AR coating layer on the substrate, it is possible to further transmit the visible light region and further transmit the ultraviolet region.
图7为展示比较在第二实施方式涉及的树脂1、3以及6上施加了各涂膜层的情况下的平均透射率的表格的图。在图7所示的例子中,可见光AR涂层样品表示在两面(一面以及与该一面相反的面)涂布有防止可见光反射的膜层的树脂,紫外可见光AR涂层样品表示在两面涂布有防止紫外线以及可见光反射的膜层的树脂。Fig. 7 is a diagram showing a table comparing average transmittances when each coating layer is applied to resins 1, 3, and 6 according to the second embodiment. In the example shown in Fig. 7, the visible light AR coating sample indicates a resin having a film layer coated on both sides (one side and the side opposite to the one side) to prevent visible light reflection, and the ultraviolet visible light AR coating sample indicates a resin having a film layer coated on both sides to prevent ultraviolet and visible light reflection.
图7A为展示UVA以及UVB区域的各树脂的平均透射率的表格的图。在图7A所示的例子中,即使是单独的基材,在UVA以及UVB区域中,树脂1以及树脂3的平均透射率也为36.2%以上。尤其是,在UVA区域中,对于树脂1以及树脂3,即使是单独的基材,平均透射率也为80%以上,可以成为本发明的技术中优选的镜片。Fig. 7A is a diagram showing a table of average transmittances of each resin in the UVA and UVB regions. In the example shown in Fig. 7A, even if they are a single substrate, the average transmittances of resin 1 and resin 3 in the UVA and UVB regions are 36.2% or more. In particular, in the UVA region, for resin 1 and resin 3, even if they are a single substrate, the average transmittance is 80% or more, which can be a preferred lens in the technology of the present invention.
此外,即使是单独的树脂6的基材,在UVB区域中平均透射率不到10%,但在UVA区域中使57.4%的光线透过,与现有镜片相比,在紫外线区域中具有充分的透射率。Furthermore, even the resin 6 substrate alone has an average transmittance of less than 10% in the UVB region, but transmits 57.4% of light in the UVA region, and has a sufficient transmittance in the ultraviolet region compared to conventional lenses.
当在两面上涂布有通常使用的可见光AR涂膜层时,各树脂在UVA以及UVB区域这两个区域中的透射率均减少几个百分比至十几个百分比。认为这是由于以下原因:可见光AR涂膜层虽然防止可见光的反射,但不防止紫外线区域的波长的反射,因此导致紫外线区域的波长被反射,使得透过被涂布的树脂(基材)的紫外线量减少。When the commonly used visible light AR coating layer is coated on both sides, the transmittance of each resin in both the UVA and UVB regions is reduced by several to more than ten percent. This is believed to be due to the following reasons: although the visible light AR coating layer prevents the reflection of visible light, it does not prevent the reflection of wavelengths in the ultraviolet region, so the wavelengths in the ultraviolet region are reflected, reducing the amount of ultraviolet rays that pass through the coated resin (substrate).
当为了本发明的技术,在两面上涂布有防止紫外线以及可见光的反射的紫外可见光AR涂膜层时,各树脂在UVA以及UVB区域这两个区域中的透射率均上升几个百分比。例如,树脂1~树脂6的透射率在UVA区域中均上升3%以上,与单独的基材的情况相比,良好地使紫外线区域透过,能够提供接近于裸眼的镜片。尤其是,对于树脂6,通过形成紫外可见光AR涂膜层,UVA区域的透射率超过60%。When an ultraviolet visible light AR coating layer is applied on both sides to prevent the reflection of ultraviolet rays and visible light for the technology of the present invention, the transmittance of each resin in both the UVA and UVB regions increases by several percentages. For example, the transmittance of resins 1 to 6 in the UVA region increases by more than 3%, and compared with the case of a single substrate, the ultraviolet region is well transmitted, and a lens close to the naked eye can be provided. In particular, for resin 6, by forming an ultraviolet visible light AR coating layer, the transmittance in the UVA region exceeds 60%.
图7B为展示被称为紫外线区域的280~380nm(区域1)和280~400nm(区域2)各自的平均透射率的表格的图。如图7B所示,关于单独的树脂1的基材的平均透射率,在任一区域中均有超过86%的平均透射率,能够得到良好地使紫外线透过的镜片。此外,即使是单独的树脂3的基材,也具有超过65%的平均透射率,即使是单独的树脂6的基材,也具有超过40%的平均透射率。FIG7B is a diagram showing a table of average transmittances in the 280 to 380 nm (region 1) and 280 to 400 nm (region 2) regions called ultraviolet regions. As shown in FIG7B , the average transmittance of the substrate of resin 1 alone is more than 86% in any region, and a lens that allows ultraviolet rays to pass well can be obtained. In addition, even the substrate of resin 3 alone has an average transmittance of more than 65%, and even the substrate of resin 6 alone has an average transmittance of more than 40%.
比较区域1与区域2中的平均透射率,区域2中的平均透射率仅高出几个百分比。这体现了随着从波长较短的区域至波长较长的区域,各树脂的透射率均上升,因此380~400nm的透射率使平均透射率上升几个百分比。Comparing the average transmittance in region 1 and region 2, the average transmittance in region 2 is only a few percentages higher. This shows that the transmittance of each resin increases from the shorter wavelength region to the longer wavelength region, so the transmittance at 380 to 400 nm increases the average transmittance by several percentages.
在树脂1的于两面上涂布有紫外可见光AR涂膜层的情况下,在区域2中平均透射率超过90%,即使在区域1中也具有约89%的平均透射率,表示能够提供接近于裸眼的镜片。应予说明,树脂3以及6中也展示了与现有镜片相比,当在两面上涂布有紫外可见光AR涂膜层时,在区域2中超过50%,在区域1中也超过42%,充分地使紫外线区域透过。In the case of resin 1 with an ultraviolet visible light AR coating layer coated on both surfaces, the average transmittance in region 2 exceeded 90%, and even in region 1, the average transmittance was about 89%, indicating that a lens close to the naked eye can be provided. It should be noted that resins 3 and 6 also showed that when an ultraviolet visible light AR coating layer was coated on both surfaces, the transmittance in region 2 exceeded 50%, and in region 1 exceeded 42%, and the ultraviolet region was fully transmitted.
根据上述内容可以确认,不仅是基材,通过涂布紫外可见光AR涂膜层,平均透射率会上升(图5~7)。因此,对于图5所示的各树脂的备选基材,通过至少在基材层的一面上涂布紫外可见光AR涂膜层,可以使平均透射率上升。因此,在对图5所示的树脂1~10的各树脂的至少一面涂布紫外可见光AR涂膜层的情况下,能够将360~380nm的平均透射率设为80%以上。According to the above content, it can be confirmed that not only the substrate but also the average transmittance increases by applying the UV-visible AR coating layer (Figures 5 to 7). Therefore, for the alternative substrates of each resin shown in Figure 5, the average transmittance can be increased by applying the UV-visible AR coating layer on at least one side of the substrate layer. Therefore, when the UV-visible AR coating layer is applied to at least one side of each resin of resins 1 to 10 shown in Figure 5, the average transmittance of 360 to 380 nm can be set to 80% or more.
接着,发明人们选择树脂1、3、6这三种树脂作为本发明的技术的眼镜用镜片的备选材料进行了各实验,因此对各实验结果进行说明。Next, the inventors selected three resins, Resins 1, 3, and 6, as candidate materials for spectacle lenses according to the technology of the present invention and conducted various experiments, and thus the results of the experiments will be described.
图8为树脂1、3、6与现有镜片的透射率的比较图。在图8所示的例子中,现有镜片1为HOYA公司制造的ハイルックス(注册商标)硬涂层S0.00,现有镜片2为ハイルックス(注册商标)VP_S0.00。在图8所示的例子中,各树脂为在由各自的树脂构成的2mm厚的基材层的试验片的两面上形成有紫外可见光AR涂膜层的结构。以下,关于图9~11中的各树脂,也与图8同样地对2mm厚的基材层进行了指定的处理。FIG8 is a comparison chart of the transmittance of resins 1, 3, and 6 and existing lenses. In the example shown in FIG8, existing lens 1 is HILUCKS (registered trademark) hard coating S0.00 manufactured by HOYA, and existing lens 2 is HILUCKS (registered trademark) VP_S0.00. In the example shown in FIG8, each resin has a structure in which an ultraviolet-visible light AR coating layer is formed on both sides of a test piece of a 2 mm thick substrate layer composed of each resin. Hereinafter, for each resin in FIGS. 9 to 11, the 2 mm thick substrate layer is also subjected to a specified treatment in the same manner as FIG8.
如图8所示,现有镜片1、2为与图1所示的现有镜片相比,紫外线区域的透射率比较高的眼镜用镜片,但即便如此,在从400nm附近至低波长区域,透射率也急剧降低。另一方面,树脂1、3、6在360~380nm的区域中,平均透射率为约90%以上,树脂1、3在360~380nm的区域中的透射率超过90%。As shown in FIG8 , conventional lenses 1 and 2 are spectacle lenses with relatively higher transmittance in the ultraviolet region than the conventional lenses shown in FIG1 , but even so, the transmittance sharply decreases in the region from about 400 nm to the low wavelength region. On the other hand, resins 1, 3, and 6 have an average transmittance of about 90% or more in the region of 360 to 380 nm, and resins 1 and 3 have a transmittance of more than 90% in the region of 360 to 380 nm.
根据图8所示的表格,在紫外线区域(280~400nm或280~380nm)中,树脂1、3、6的透射率比现有镜片1、2更高,因此可知树脂1、3、6使更多的紫外线透过。According to the table shown in FIG. 8 , in the ultraviolet region (280 to 400 nm or 280 to 380 nm), the transmittance of resins 1, 3, and 6 is higher than that of conventional lenses 1 and 2. Therefore, it can be seen that resins 1, 3, and 6 transmit more ultraviolet rays.
图9为展示比较树脂1、3、6与现有镜片在各区域中的透射率的表格的图。也对在图9所示的各树脂的基材层中添加自由基清除剂的情况下的透射率进行比较。对于自由基清除剂,使用ADEKA公司的アデカスタブ(注册商标)(LA-63P、LA-52或LA-57),在各树脂的基材层中添加0.2wt%。自由基清除剂防止镜片的老化,因此能够提高镜片的耐久性。FIG9 is a diagram showing a table comparing the transmittance of resins 1, 3, and 6 with the conventional lens in each region. The transmittance when a radical scavenger is added to the base layer of each resin shown in FIG9 is also compared. As the radical scavenger, ADEKA TABU (registered trademark) (LA-63P, LA-52, or LA-57) of ADEKA Corporation was used, and 0.2 wt % was added to the base layer of each resin. The radical scavenger prevents the aging of the lens, thereby improving the durability of the lens.
在图9(A)所示的结果中,在树脂1中,当具有紫外可见光AR涂膜层且无自由基清除剂时,360~380nm的区域中的平均透射率为95.1%,360~400nm的区域中的平均透射率为95.6%。在具有紫外可见光AR涂膜层且具有自由基清除剂(LA-63P)的树脂1中,360~380nm的区域中的平均透射率为91.5%,360~400nm的区域中的平均透射率为92.7%。在树脂1中,即使在基材层中添加自由基清除剂,各区域中的平均透射率也均超过90%。In the results shown in FIG. 9 (A), in resin 1, when having an ultraviolet visible light AR coating layer and no free radical scavenger, the average transmittance in the region of 360 to 380 nm is 95.1%, and the average transmittance in the region of 360 to 400 nm is 95.6%. In resin 1 having an ultraviolet visible light AR coating layer and a free radical scavenger (LA-63P), the average transmittance in the region of 360 to 380 nm is 91.5%, and the average transmittance in the region of 360 to 400 nm is 92.7%. In resin 1, even if a free radical scavenger is added to the substrate layer, the average transmittance in each region exceeds 90%.
在图9(B)所示的结果中,在树脂3中,当具有紫外可见光AR涂膜层且无自由基清除剂时,360~380nm的区域中的平均透射率为95.0%,360~400nm的区域中的平均透射率为95.5%。在具有紫外可见光AR涂膜层且具有自由基清除剂(LA-52或LA-57)的树脂3中,360~380nm的区域中的平均透射率为约88~90%,360~400nm的区域中的平均透射率为约90~91%。在树脂3中,即使在基材层中添加自由基清除剂,各区域中的平均透射率也均为约90%。In the results shown in FIG. 9 (B), in resin 3, when having an ultraviolet visible light AR coating layer and no free radical scavenger, the average transmittance in the region of 360 to 380 nm is 95.0%, and the average transmittance in the region of 360 to 400 nm is 95.5%. In resin 3 having an ultraviolet visible light AR coating layer and a free radical scavenger (LA-52 or LA-57), the average transmittance in the region of 360 to 380 nm is about 88 to 90%, and the average transmittance in the region of 360 to 400 nm is about 90 to 91%. In resin 3, even if a free radical scavenger is added to the base material layer, the average transmittance in each region is about 90%.
在图9(C)所示的结果中,在树脂6中,当具有紫外可见光AR涂膜层且无自由基清除剂时,360~380nm的区域中的平均透射率为89.8%,360~400nm的区域中的平均透射率为91.5%。在具有紫外可见光AR涂膜层且具有自由基清除剂(LA-52)的树脂6中,360~380nm的区域中的平均透射率为81.9%,360~400nm的区域中的平均透射率为84.8%。In the results shown in FIG9(C), in the case of resin 6 having an ultraviolet visible light AR coating layer and no radical scavenger, the average transmittance in the region of 360 to 380 nm was 89.8%, and the average transmittance in the region of 360 to 400 nm was 91.5%. In the case of resin 6 having an ultraviolet visible light AR coating layer and a radical scavenger (LA-52), the average transmittance in the region of 360 to 380 nm was 81.9%, and the average transmittance in the region of 360 to 400 nm was 84.8%.
应予说明,作为比较例,在树脂6中进一步添加了0.001wt%的通常出于防止镜片的老化等目的而添加的紫外线吸收剂(ADEKA公司的アデカスタブ(注册商标)LA-46)。即便如此,360~380nm的区域中的平均透射率也为77.8%,360~400nm的区域中的平均透射率也为82.6%。在任一区域中平均透射率都超过75%,可知能够良好地使紫外线透过。与仅添加自由基清除剂的情况相比,在补充添加了紫外线吸收剂的情况下,360~380nm以及360~400nm的区域中的平均透射率稍微下降,但根据其下降率的程度可以推测,即使是在向基材层中仅添加适当调整了添加量的紫外线吸收剂来代替自由基清除剂的情况下,也同样可以将该区域中的平均透射率维持于高水准。It should be noted that, as a comparative example, 0.001 wt% of an ultraviolet absorber (Adeka TABU (registered trademark) LA-46 of ADEKA Corporation) which is generally added for the purpose of preventing the aging of lenses was further added to resin 6. Even so, the average transmittance in the region of 360 to 380 nm was 77.8%, and the average transmittance in the region of 360 to 400 nm was 82.6%. The average transmittance in any region exceeded 75%, and it can be seen that ultraviolet rays can be well transmitted. Compared with the case where only a free radical scavenger is added, when the ultraviolet absorber is supplemented, the average transmittance in the region of 360 to 380 nm and 360 to 400 nm is slightly reduced, but it can be inferred from the degree of the reduction rate that even when only an ultraviolet absorber with an appropriately adjusted addition amount is added to the substrate layer instead of the free radical scavenger, the average transmittance in the region can also be maintained at a high level.
此外,在图9(A)~(C)所示的例子中,与在镜片上形成一般的可见光AR涂膜层相比,当在镜片上形成紫外可见光AR涂膜层时,紫外线区域的透射率会变得更高。由此,可以确认紫外可见光AR涂膜层具有效果。In the examples shown in FIG9 (A) to (C), when the ultraviolet visible light AR coating layer is formed on the lens, the transmittance in the ultraviolet region becomes higher than when the general visible light AR coating layer is formed on the lens. Therefore, it can be confirmed that the ultraviolet visible light AR coating layer has an effect.
在图9(D)所示的结果中,在现有镜片1中,360~380nm的区域中的平均透射率为46.0%,360~400nm的区域中的平均透射率为64.5%。此外,在现有镜片2中,360~380nm的区域中的平均透射率为39.6%,360~400nm的区域中的平均透射率为60.4%。在现有镜片1、2中,360~380nm的区域中的平均透射率均无法超过60%。由此,通过形成在360nm以上且不足380nm的波长区域中,基材层以及涂膜层的总的平均透射率为60%以上的眼镜用镜片,能够构成与现有镜片之间的有效差异。In the results shown in FIG. 9 (D), in the conventional lens 1, the average transmittance in the region of 360 to 380 nm is 46.0%, and the average transmittance in the region of 360 to 400 nm is 64.5%. In addition, in the conventional lens 2, the average transmittance in the region of 360 to 380 nm is 39.6%, and the average transmittance in the region of 360 to 400 nm is 60.4%. In the conventional lenses 1 and 2, the average transmittance in the region of 360 to 380 nm cannot exceed 60%. Thus, by forming an eyeglass lens with a total average transmittance of 60% or more in the wavelength region of more than 360 nm and less than 380 nm, an effective difference from the conventional lenses can be formed.
图10为展示比较树脂1、3、6在各区域中的透射率的表格A的图。在图10所示的表格中,比较UVA(315~380nm)区域、UVB(280~315nm)区域中的透射率。Fig. 10 is a diagram showing Table A of the transmittance in each region of Comparative Resins 1, 3, and 6. In the table shown in Fig. 10, the transmittance in the UVA (315 to 380 nm) region and the UVB (280 to 315 nm) region are compared.
在图10(A)所示的结果中,在树脂1中,当具有紫外可见光AR涂膜层且无自由基清除剂时,UVA区域中的平均透射率为93.8%,UVB区域中的平均透射率为79.8%。在具有紫外可见光AR涂膜层且具有自由基清除剂(LA-63P)的树脂1中,UVA区域中的平均透射率为89.0%,UVB区域中的平均透射率为60.5%。In the results shown in FIG10(A), in resin 1, when having an ultraviolet visible light AR coating layer and no free radical scavenger, the average transmittance in the UVA region is 93.8%, and the average transmittance in the UVB region is 79.8%. In resin 1 having an ultraviolet visible light AR coating layer and a free radical scavenger (LA-63P), the average transmittance in the UVA region is 89.0%, and the average transmittance in the UVB region is 60.5%.
在图10(B)所示的结果中,在树脂3中,当具有紫外可见光AR涂膜层且无自由基清除剂时,UVA区域中的平均透射率为85.0%,UVB区域中的平均透射率为37.3%。在具有紫外可见光AR涂膜层且具有自由基清除剂(LA-52)的树脂3中,UVA区域中的平均透射率为67.1%,UVB区域中的平均透射率为14.2%。在具有紫外可见光AR涂膜层且具有自由基清除剂(LA-57)的树脂3中,UVA区域中的平均透射率为60.5%,UVB区域中的平均透射率为7.8%。在树脂3的情况下,作为自由基清除剂,与LA-57相比,使用LA-52时在各区域中平均透射率更高。In the results shown in FIG. 10 (B), in resin 3, when having an ultraviolet-visible light AR coating layer and no free radical scavenger, the average transmittance in the UVA region is 85.0%, and the average transmittance in the UVB region is 37.3%. In resin 3 having an ultraviolet-visible light AR coating layer and a free radical scavenger (LA-52), the average transmittance in the UVA region is 67.1%, and the average transmittance in the UVB region is 14.2%. In resin 3 having an ultraviolet-visible light AR coating layer and a free radical scavenger (LA-57), the average transmittance in the UVA region is 60.5%, and the average transmittance in the UVB region is 7.8%. In the case of resin 3, as a free radical scavenger, the average transmittance in each region is higher when LA-52 is used compared to LA-57.
在图10(C)所示的结果中,在树脂6中,当具有紫外可见光AR涂膜层且无自由基清除剂时,UVA区域中的平均透射率为60.5%,UVB区域中的平均透射率为9.2%。在具有紫外可见光AR涂膜层且具有自由基清除剂(LA-52)的树脂6中,UVA区域中的平均透射率为49.2%,UVB区域中的平均透射率为3.2%。In the results shown in FIG10(C), in resin 6, when having an ultraviolet visible light AR coating layer and no free radical scavenger, the average transmittance in the UVA region is 60.5%, and the average transmittance in the UVB region is 9.2%. In resin 6 having an ultraviolet visible light AR coating layer and a free radical scavenger (LA-52), the average transmittance in the UVA region is 49.2%, and the average transmittance in the UVB region is 3.2%.
此外,作为比较例,与图9(C)同样地,在树脂6中进一步添加了0.001wt%的紫外线吸收剂(LA-46)。在这种情况下,在具有紫外可见光AR涂膜层的树脂6中,UVA区域中的平均透射率为43.8%,UVB区域中的平均透射率为2.3%。此外,同样地,可以推测即使是在向基材层中仅添加了适当调整了添加量的紫外线吸收剂来代替自由基清除剂的情况下,也同样地可将该区域中的平均透射率维持于高水准。In addition, as a comparative example, similarly to FIG. 9 (C), 0.001 wt% of ultraviolet absorber (LA-46) was further added to the resin 6. In this case, in the resin 6 having the ultraviolet visible light AR coating layer, the average transmittance in the UVA region was 43.8%, and the average transmittance in the UVB region was 2.3%. In addition, similarly, it can be inferred that even when only an ultraviolet absorber with an appropriately adjusted addition amount is added to the base material layer instead of the radical scavenger, the average transmittance in the region can be maintained at a high level.
根据图10(A)~(C)所示的结果,对于树脂1,即使添加自由基清除剂,其平均透射率也较高,对于树脂3、6,虽然由于在基材层中添加自由基清除剂,UVB区域的平均透射率减少,但UVA区域的透射率较高,因此可以说在紫外线区域中使一定水准以上的紫外线透过。According to the results shown in Figures 10(A) to (C), for resin 1, even with the addition of a free radical scavenger, its average transmittance is still high. For resins 3 and 6, although the average transmittance in the UVB region is reduced due to the addition of a free radical scavenger in the base material layer, the transmittance in the UVA region is high. Therefore, it can be said that a certain level of ultraviolet rays are transmitted in the ultraviolet region.
图11为展示比较树脂1、3、6在各区域中的透射率的表格B的图。在图11所示的表格中,对紫外线区域的280~380nm(区域1)、280~400nm(区域2)中的透射率进行比较。Fig. 11 is a diagram of Table B showing the transmittance in each region of Comparative Resins 1, 3, and 6. In the table shown in Fig. 11, the transmittance in the ultraviolet region of 280 to 380 nm (region 1) and 280 to 400 nm (region 2) is compared.
在图11(A)所示的结果中,在树脂1中,当具有紫外可见光AR涂膜层且无自由基清除剂时,区域1中的平均透射率为88.9%,区域2中的平均透射率为90.1%。在具有紫外可见光AR涂膜层且具有自由基清除剂(LA-63P)的树脂1中,区域1中的平均透射率为84.5%,区域2中的平均透射率为86.2%。In the results shown in FIG11(A), in resin 1, when having an ultraviolet visible light AR coating layer and no free radical scavenger, the average transmittance in region 1 is 88.9%, and the average transmittance in region 2 is 90.1%. In resin 1 having an ultraviolet visible light AR coating layer and a free radical scavenger (LA-63P), the average transmittance in region 1 is 84.5%, and the average transmittance in region 2 is 86.2%.
在图11(B)所示的结果中,在树脂3中,当具有紫外可见光AR涂膜层且无自由基清除剂时,区域1中的平均透射率为68.3%,区域2中的平均透射率为72.9%。在具有紫外可见光AR涂膜层且具有自由基清除剂(LA-52)的树脂3中,区域1中的平均透射率为48.6%,区域2中的平均透射率为55.9%。在具有紫外可见光AR涂膜层且具有自由基清除剂(LA-57)的树脂3中,区域1中的平均透射率为42.9%,区域2中的平均透射率为50.3%。In the results shown in FIG. 11(B), in resin 3, when having an ultraviolet visible light AR coating layer and no free radical scavenger, the average transmittance in region 1 is 68.3%, and the average transmittance in region 2 is 72.9%. In resin 3 having an ultraviolet visible light AR coating layer and a free radical scavenger (LA-52), the average transmittance in region 1 is 48.6%, and the average transmittance in region 2 is 55.9%. In resin 3 having an ultraviolet visible light AR coating layer and a free radical scavenger (LA-57), the average transmittance in region 1 is 42.9%, and the average transmittance in region 2 is 50.3%.
在图11(C)所示的结果中,在树脂6中,当具有紫外可见光AR涂膜层且无自由基清除剂时,区域1中的平均透射率为42.5%,区域2中的平均透射率为51.0%。在具有紫外可见光AR涂膜层且具有自由基清除剂(LA-52)的树脂6中,区域1中的平均透射率为33.1%,区域2中的平均透射率为42.2%。In the results shown in FIG11(C), in the case of resin 6 having an ultraviolet visible light AR coating layer and no radical scavenger, the average transmittance in region 1 was 42.5%, and the average transmittance in region 2 was 51.0%. In the case of resin 6 having an ultraviolet visible light AR coating layer and having a radical scavenger (LA-52), the average transmittance in region 1 was 33.1%, and the average transmittance in region 2 was 42.2%.
此外,作为比较例,与图9(C)同样地,在树脂6中进一步添加了0.001wt%的紫外线吸收剂(LA-46)。在这种情况下,在具有紫外可见光AR涂膜层的树脂6中,区域1中的平均透射率为29.3%,区域2中的平均透射率为39.0%。此外,同样地,可推测即使是在向基材层中仅添加了适当调整了添加量的紫外线吸收剂来代替自由基清除剂的情况下,也同样可将该区域中的平均透射率维持于高水准。In addition, as a comparative example, similarly to FIG. 9(C), 0.001 wt% of an ultraviolet absorber (LA-46) was further added to the resin 6. In this case, in the resin 6 having the ultraviolet-visible light AR coating layer, the average transmittance in region 1 was 29.3%, and the average transmittance in region 2 was 39.0%. In addition, similarly, it can be inferred that even when only an ultraviolet absorber with an appropriately adjusted addition amount is added to the base material layer instead of the radical scavenger, the average transmittance in the region can be maintained at a high level.
根据图11(A)~(C)所示的结果,对于树脂1,即使添加自由基清除剂,其整个紫外线区域中的平均透射率也较高。对于树脂3、6,虽然由于添加了自由基清除剂,整个紫外线区域中的平均透射率减少,但如图10所示,由于UVA区域的透射率较高,因此可以说在整个紫外线区域中使一定水准以上的紫外线透过。According to the results shown in Fig. 11 (A) to (C), even with the addition of a radical scavenger, the average transmittance in the entire ultraviolet region is high for resin 1. Although the average transmittance in the entire ultraviolet region is reduced due to the addition of a radical scavenger for resins 3 and 6, as shown in Fig. 10, since the transmittance in the UVA region is high, it can be said that ultraviolet rays above a certain level are transmitted in the entire ultraviolet region.
接着,对各防反射膜的反射率进行说明。图12为展示对设为2mm厚的基材层的由树脂6构成的试验片施加的各防反射膜的反射率的图。在图12所示的例子中,在无防反射膜的树脂6中,在超过330nm处附近,反射率从约5%左右上升至约8%。Next, the reflectivity of each anti-reflection film is described. Fig. 12 is a graph showing the reflectivity of each anti-reflection film applied to a test piece composed of resin 6 with a base layer of 2 mm thick. In the example shown in Fig. 12, in the resin 6 without an anti-reflection film, the reflectivity increases from about 5% to about 8% near the wavelength exceeding 330 nm.
在形成有可见光AR的涂膜层的树脂6中,在可见光(例如,780~380nm)以下,反射率较高,基本超过10%,在可见光区域中,反射率变为8%以下。此外,在形成有紫外可见光AR的涂膜层的树脂6中,从紫外线区域280nm至可见光区域730nm为止,反射率为约4%以下,可知不仅是可见光,紫外线也良好地透过。In the resin 6 formed with the coating layer of visible light AR, the reflectivity is high below the visible light (e.g., 780 to 380 nm), basically exceeding 10%, and in the visible light region, the reflectivity becomes 8% or less. In addition, in the resin 6 formed with the coating layer of ultraviolet visible light AR, the reflectivity is about 4% or less from the ultraviolet region 280 nm to the visible light region 730 nm, and it can be seen that not only visible light but also ultraviolet light is well transmitted.
根据图12所示的曲线图,在形成有紫外可见光AR涂膜层的树脂6中,280nm以上780nm以下的波长区域的反射率为5%以下,在本发明的技术中,可以用作良好地使紫外线透过的涂膜层。此外,与没有涂膜层的情况相比,当形成有紫外可见光AR涂膜层时,能够降低反射率,展示出涂膜层的有用性。According to the graph shown in FIG12 , in the resin 6 formed with the UV-visible AR coating layer, the reflectivity in the wavelength region of 280 nm to 780 nm is 5% or less, and in the technology of the present invention, it can be used as a coating layer that allows ultraviolet rays to pass well. In addition, when the UV-visible AR coating layer is formed, the reflectivity can be reduced compared to the case where there is no coating layer, demonstrating the usefulness of the coating layer.
图13为展示树脂3的各个面的AR涂膜层的不同所导致的透射率的图。在图13所示的例子中,对由树脂3构成的1mm厚的基材层的试验片,展示以下的各例子中的透射率。Fig. 13 is a graph showing the difference in transmittance due to the AR coating layer on each surface of the resin 3. In the example shown in Fig. 13, the transmittance in each of the following examples is shown for a test piece having a 1 mm thick base material layer made of the resin 3.
单独的基材Separate substrate
两面具有可见光AR涂膜层Visible light AR coating on both sides
两面具有紫外可见光AR涂膜层Both sides have UV-visible AR coating
表面(凸面)具有可见光AR涂膜层且背面(凹面)具有紫外可见光AR涂膜层表面具有紫外可见光AR涂膜层且背面具有可见光AR涂膜层The surface (convex surface) has a visible light AR coating layer and the back (concave surface) has a UV-visible light AR coating layer. The surface has a UV-visible light AR coating layer and the back has a visible light AR coating layer.
在图13所示的例子中,由于均形成有防止可见光的反射的AR涂膜层,因此在可见光区域(例如,780~380nm)中,与单独的基材层的树脂3相比,形成有AR涂膜层的树脂3的透射率更高。In the example shown in FIG. 13 , since both layers have an AR coating layer for preventing reflection of visible light, the transmittance of the resin 3 having the AR coating layer is higher than that of the resin 3 of the base material layer alone in the visible light region (eg, 780 to 380 nm).
另一方面,在紫外线区域(380nm以下)中,尤其是在360~380nm的区域内,与单独的基材层的树脂3的透射率相比,至少在一面上形成有紫外可见光AR涂膜层的树脂3的透射率更高。应予说明,表面形成有可见光AR涂膜层且背面形成有紫外可见光AR涂膜层的树脂3与表面形成有紫外可见光AR涂膜层且背面形成有可见光AR涂膜层的树脂3具有几乎相同的透射率。On the other hand, in the ultraviolet region (below 380 nm), especially in the region of 360 to 380 nm, the transmittance of the resin 3 having an ultraviolet-visible light AR coating layer formed on at least one side is higher than the transmittance of the resin 3 of the base material layer alone. It should be noted that the resin 3 having a visible light AR coating layer formed on the surface and an ultraviolet-visible light AR coating layer formed on the back side and the resin 3 having an ultraviolet-visible light AR coating layer formed on the surface and a visible light AR coating layer formed on the back side have almost the same transmittance.
此外,在约340nm以下的区域内,即使在一面上形成有紫外可见光AR涂膜层,与单独的基材层的情况相比,透射率也会变低,认为这是由于在另一面上形成了容易反射紫外线的可见光AR涂膜层(参见图12)。然而,与单独的基材层的情况相比,至少一面上形成有紫外可见光AR涂膜层的树脂3的可见光区域中的透射率更高,呈现出抑制了所谓的镜片表面的眩光的外观,更加优选作为最终产品的眼镜用镜片。进而,与一般的眼镜镜片中可以看到的两面形成有可见光AR涂膜层的树脂3相比,在至少一面上形成有紫外可见光AR涂膜层的树脂3的紫外线区域中的透射率更高,可以制成更加接近于裸眼状态的实用的眼镜用镜片。In addition, in the region below about 340nm, even if an ultraviolet-visible AR coating layer is formed on one side, the transmittance becomes lower than that of a single substrate layer. This is believed to be because a visible light AR coating layer that easily reflects ultraviolet rays is formed on the other side (see Figure 12). However, compared with the case of a single substrate layer, the transmittance in the visible light region of the resin 3 having an ultraviolet-visible AR coating layer formed on at least one side is higher, presenting an appearance that suppresses the so-called glare on the lens surface, and is more preferred as a final product of eyeglass lenses. Furthermore, compared with the resin 3 having visible light AR coating layers formed on both sides that can be seen in general eyeglass lenses, the transmittance in the ultraviolet region of the resin 3 having an ultraviolet-visible AR coating layer formed on at least one side is higher, and a practical eyeglass lens that is closer to the naked eye state can be made.
此外,与单独的基材层的树脂3相比,在两面上形成有紫外可见光AR涂膜层的树脂3在约315nm以上的区域中透射率更高。Furthermore, the resin 3 having the ultraviolet-visible light AR coating layer formed on both surfaces has a higher transmittance in the region of about 315 nm or more than that of the resin 3 having a single base material layer.
以上,根据第二实施方式,使用各种各样的树脂进行了实验,结果可以确定作为本发明的技术中的眼镜用镜片的基材。例如,至少能够以图5所示的树脂1~10中的任一树脂作为基材层来形成眼镜用镜片。在第二实施方式中,为了使紫外线透过,着眼于360~380nm的区域中的平均透射率。通过设定在上述360~380nm的区域中,相对于涂膜层与基材层的总的平均透射率的阈值(60%、80%等),可以形成满足该条件且接近于裸眼状态的实用的眼镜用镜片。As described above, according to the second embodiment, experiments were conducted using various resins, and the results can be determined as the substrate for the eyeglass lens in the technology of the present invention. For example, at least any one of the resins 1 to 10 shown in Figure 5 can be used as the substrate layer to form an eyeglass lens. In the second embodiment, in order to allow ultraviolet rays to pass through, the average transmittance in the region of 360 to 380 nm is focused on. By setting a threshold value (60%, 80%, etc.) relative to the total average transmittance of the coating layer and the substrate layer in the above-mentioned region of 360 to 380 nm, a practical eyeglass lens that meets this condition and is close to the naked eye state can be formed.
此外,在第二实施方式中的基材层或涂膜层中适当使用在第一实施方式中说明的素材、材料等能够应用的物质即可。此外,作为基材,也可以使用例如透射率较高的氟化合物的树脂,作为具体例子,有ダイキン工业公司的HMX10等。In addition, the substrate layer or coating layer in the second embodiment can be appropriately used with the materials and the like described in the first embodiment. In addition, as the substrate, a resin of a fluorine compound with a high transmittance can also be used, as a specific example, HMX10 of Daikin Industries, etc.
此外,作为一个例子,本发明的技术中的眼镜用镜片可以作为非视力矫正镜片而应用。Furthermore, as an example, the spectacle lenses in the technology of the present invention can be applied as non-vision corrective lenses.
以上,使用各实施方式对本发明进行了说明,但本发明的技术范围不限于上述实施方式中记载的范围。本领域技术人员知晓可以在上述实施方式中加入各种的变更或改进。从权利要求书的记载可以知晓加入了上述各种变更或改进的实施方式也可以包含在本发明的技术范围内。The present invention has been described above using various embodiments, but the technical scope of the present invention is not limited to the scope described in the above embodiments. Those skilled in the art will appreciate that various changes or improvements may be added to the above embodiments. It will be appreciated from the claims that embodiments to which the above various changes or improvements have been added may also be included in the technical scope of the present invention.
此外,对于本发明的技术,公开了以下附记涉及的技术。In addition, the technology related to the following supplementary notes is disclosed with respect to the technology of the present invention.
[附记1][Note 1]
一种眼镜用镜片,其具备:A spectacles lens, comprising:
基材层;以及,a substrate layer; and
涂布于上述基材层的至少一面上的涂膜层,a coating layer applied on at least one side of the substrate layer,
在280nm以上400nm以下的波长区域中,上述基材层以及上述涂膜层的总的平均透射率为10%以上。In a wavelength range of 280 nm to 400 nm, the total average transmittance of the base material layer and the coating film layer is 10% or more.
[附记2][Note 2]
如附记1所述的眼镜用镜片,其中,The spectacle lens according to Supplementary Note 1, wherein:
在320nm以上400nm以下的第1波长区域中,上述基材层以及上述涂膜层的总的平均透射率为15%以上,In a first wavelength region of 320 nm to 400 nm, the total average transmittance of the substrate layer and the coating layer is 15% or more,
在280nm以上且不足320nm的第2波长区域中,上述基材层以及上述涂膜层的总的平均透射率为5%以上。In a second wavelength region of 280 nm to less than 320 nm, the total average transmittance of the base material layer and the coating film layer is 5% or more.
[附记3][Note 3]
如附记2所述的眼镜用镜片,其中,The spectacle lens according to Supplementary Note 2, wherein:
在上述第1波长区域中,上述基材层以及上述涂膜层的总的平均透射率为55%以上。In the first wavelength region, the total average transmittance of the base material layer and the coating film layer is 55% or more.
在上述第2波长区域中,上述基材层以及上述涂膜层的总的平均透射率为10%以上。In the second wavelength region, the total average transmittance of the base layer and the coating layer is 10% or more.
[附记4][Note 4]
如附记3所述的眼镜用镜片,其中,The spectacle lens according to Supplementary Note 3, wherein:
在上述第1波长区域中,上述基材层以及上述涂膜层的总的平均透射率为85%以上,In the first wavelength region, the total average transmittance of the substrate layer and the coating layer is 85% or more.
在上述第2波长区域中,上述基材层以及上述涂膜层的总的平均透射率为50%以上。In the second wavelength region, the total average transmittance of the base layer and the coating layer is 50% or more.
[附记5][Note 5]
如附记1~4中任一项所述的眼镜用镜片,其中,The spectacle lens according to any one of appendices 1 to 4, wherein
上述基材层由脂肪族聚碳酸酯、脂肪族烯烃聚合物、脂肪族丙烯酸树脂以及脂肪族尼龙树脂中的至少一种形成。The base layer is formed of at least one of aliphatic polycarbonate, aliphatic olefin polymer, aliphatic acrylic resin and aliphatic nylon resin.
[附记6][Note 6]
如附记5所述的眼镜用镜片,其中,The spectacle lens according to Supplementary Note 5, wherein:
上述脂肪族丙烯酸树脂包含使紫外线透过的丙烯酸树脂。The aliphatic acrylic resin includes an acrylic resin that transmits ultraviolet rays.
[附记7][Note 7]
如附记5所述的眼镜用镜片,其中,The spectacle lens according to Supplementary Note 5, wherein:
上述脂肪族烯烃聚合物包含环烯烃聚合物以及不具有环状结构的脂肪族烯烃聚合物中的至少一种。The aliphatic olefin polymer includes at least one of a cycloolefin polymer and an aliphatic olefin polymer having no cyclic structure.
[附记8][Note 8]
如附记1~7中任一项所述的眼镜用镜片,其中,The spectacle lens according to any one of appendices 1 to 7, wherein
上述涂膜层具备由不含紫外线吸收剂的材料形成的硬涂膜层和/或由不含紫外线吸收剂的材料形成的防反射膜层。The coating layer includes a hard coating layer formed of a material not containing a UV absorber and/or an antireflection film layer formed of a material not containing a UV absorber.
权利要求书(按照条约第19条的修改)Claims (as amended under Article 19)
1.一种眼镜用镜片,其具备: 1. A lens for spectacles, comprising:
树脂制的基材层;以及, A resin substrate layer; and
涂膜层,所述涂膜层涂布于所述基材层的至少一面上, A coating layer, the coating layer is coated on at least one side of the substrate layer,
在360nm以上且不足380nm的波长区域中,所述基材层以及所述涂膜层的总的平均透射率为60%以上。 In the wavelength region above 360nm and below 380nm, the total average transmittance of the substrate layer and the coating layer is above 60%.
2.如权利要求1所述的眼镜用镜片,其中, 2. The eyeglass lens according to claim 1, wherein:
在360nm以上且不足380nm的波长区域中,所述基材层以及所述涂膜层的总的平均透射率为80%以上。 In the wavelength region above 360nm and below 380nm, the total average transmittance of the substrate layer and the coating layer is above 80%.
3.如权利要求1所述的眼镜用镜片,其中, 3. The eyeglass lens according to claim 1, wherein:
所述涂膜层在280nm以上且不足780nm的波长区域的反射率为10%以下。 The reflectivity of the coating layer in the wavelength region above 280nm and below 780nm is less than 10%.
4.如权利要求3所述的眼镜用镜片,其中, 4. The eyeglass lens according to claim 3, wherein:
所述涂膜层设于所述基材层的所述一面以及该一面的相反面上。 The coating layer is provided on one side of the substrate layer and on the opposite side of the one side.
5.如权利要求1所述的眼镜用镜片,其中, 5. The eyeglass lens according to claim 1, wherein:
所述涂膜层包含对紫外光以及可见光的防反射膜。 The coating layer includes an anti-reflective film for ultraviolet light and visible light.
6.如权利要求1所述的眼镜用镜片,其中, 6. The eyeglass lens according to claim 1, wherein:
所述基材层在360nm以上且不足380nm的波长区域中,所述基材层的平均透射率为80%以上。 In the wavelength region above 360nm and below 380nm, the average transmittance of the substrate layer is above 80%.
7.如权利要求1所述的眼镜用镜片,其中, 7. The eyeglass lens according to claim 1, wherein:
所述基材层包含自由基清除剂和/或紫外线吸收剂。 The substrate layer contains a free radical scavenger and/or an ultraviolet absorber.
Claims (7)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-012008 | 2022-01-28 | ||
JP2022012008 | 2022-01-28 | ||
PCT/JP2023/002499 WO2023145836A1 (en) | 2022-01-28 | 2023-01-26 | Spectacle lens |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118613754A true CN118613754A (en) | 2024-09-06 |
Family
ID=87471509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202380018830.4A Pending CN118613754A (en) | 2022-01-28 | 2023-01-26 | Eyeglass lenses |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2023145836A1 (en) |
CN (1) | CN118613754A (en) |
TW (1) | TWI836881B (en) |
WO (1) | WO2023145836A1 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010190919A (en) * | 2009-02-13 | 2010-09-02 | Mitsubishi Gas Chemical Co Inc | Optical lens and method of manufacturing same |
EP3327488B1 (en) * | 2016-11-23 | 2021-01-06 | Essilor International | Optical article comprising a dye resistant to photo-degradation |
US20210397022A1 (en) * | 2018-09-28 | 2021-12-23 | Hoya Lens Thailand Ltd. | Spectacle lens |
CN113260901B (en) * | 2018-12-28 | 2023-08-04 | 豪雅镜片泰国有限公司 | Spectacle lens |
JP2023182008A (en) * | 2019-09-30 | 2023-12-26 | ホヤ レンズ タイランド リミテッド | Spectacle lens |
-
2023
- 2023-01-26 CN CN202380018830.4A patent/CN118613754A/en active Pending
- 2023-01-26 WO PCT/JP2023/002499 patent/WO2023145836A1/en active Application Filing
- 2023-01-26 JP JP2023576989A patent/JPWO2023145836A1/ja active Pending
- 2023-01-30 TW TW112102988A patent/TWI836881B/en active
Also Published As
Publication number | Publication date |
---|---|
WO2023145836A1 (en) | 2023-08-03 |
TWI836881B (en) | 2024-03-21 |
JPWO2023145836A1 (en) | 2023-08-03 |
TW202346976A (en) | 2023-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7547412B2 (en) | Optical components having anti-reflection coatings with low reflectivity in both the ultraviolet and visible regions | |
JP6275781B2 (en) | Optical lens with scratch-resistant antireflection layer | |
KR102232170B1 (en) | Optical product, glasses lens and glasses | |
EP3118658B1 (en) | Mirror-coated lens | |
KR20130085415A (en) | Optical component and method for producing same | |
US11709292B2 (en) | Optical plastic product, and plastic spectacle lens and spectacles | |
WO2018037850A1 (en) | Optical product, plastic eyeglass lens, and eyeglasses | |
JP2006126233A (en) | Eyeglass lens with anti-reflection coating | |
CN118613754A (en) | Eyeglass lenses | |
CN118732305A (en) | Eyeglass lenses | |
CN211857106U (en) | High definition aspheric surface resin lens | |
TW202501029A (en) | Eyeglass Lenses | |
JP2019128478A (en) | Spectacle lens and spectacles | |
CN110806647B (en) | Ophthalmic lenses including multi-layer interference coatings and methods of making the same | |
JP2001290112A (en) | Mirror coated lens made of plastic | |
CN117377891A (en) | Optical article with improved visual comfort | |
WO2024204701A1 (en) | Spectacle lens and spectacles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |