CN118570334A - A method for reconstructing power load curve - Google Patents
A method for reconstructing power load curve Download PDFInfo
- Publication number
- CN118570334A CN118570334A CN202411034879.1A CN202411034879A CN118570334A CN 118570334 A CN118570334 A CN 118570334A CN 202411034879 A CN202411034879 A CN 202411034879A CN 118570334 A CN118570334 A CN 118570334A
- Authority
- CN
- China
- Prior art keywords
- row
- cluster
- information table
- clustering result
- interpolation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 239000013598 vector Substances 0.000 claims abstract description 23
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 6
- 230000008569 process Effects 0.000 claims description 18
- 238000010606 normalization Methods 0.000 claims description 12
- 238000007781 pre-processing Methods 0.000 claims description 4
- 230000002159 abnormal effect Effects 0.000 claims description 3
- 238000012549 training Methods 0.000 abstract description 4
- 238000012545 processing Methods 0.000 abstract description 3
- 230000006872 improvement Effects 0.000 description 7
- 238000013480 data collection Methods 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/20—Drawing from basic elements, e.g. lines or circles
- G06T11/203—Drawing of straight lines or curves
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
- G06F18/23213—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Economics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Water Supply & Treatment (AREA)
- Probability & Statistics with Applications (AREA)
- Primary Health Care (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Complex Calculations (AREA)
Abstract
本发明公开了一种电力负荷曲线重构方法,属于数据处理领域。该方法步骤包括:通过变分模态分解将原始电力负荷曲线分解为多个固有模态分量子序列;对所有固有模态分量子序列进行空间重构,得到对应的信息表,其中每一行对应一个由数据点组成的行向量;对于各信息表,分别对其中的行向量进行聚类,再进行交叉聚类,得到最终聚类结果;按最终聚类结果中各类簇的元素数量将各类簇划分至不同集合,分别对对应行进行不同方式的插值;根据插值后的信息表得到分量重构曲线并叠加合并,得到最终的重构曲线。本发明可以更好地适应曲线的复杂变化,大大提高重构的准确性,而且不需要训练数据,也更加节省计算资源。
The present invention discloses a method for reconstructing a power load curve, and belongs to the field of data processing. The method comprises the following steps: decomposing the original power load curve into multiple intrinsic mode component subsequences by variational mode decomposition; spatially reconstructing all intrinsic mode component subsequences to obtain a corresponding information table, wherein each row corresponds to a row vector composed of data points; for each information table, clustering the row vectors therein respectively, and then performing cross clustering to obtain the final clustering result; dividing each type of cluster into different sets according to the number of elements in each type of cluster in the final clustering result, and interpolating the corresponding rows in different ways respectively; obtaining the component reconstruction curve according to the interpolated information table and superimposing and merging them to obtain the final reconstruction curve. The present invention can better adapt to the complex changes of the curve, greatly improve the accuracy of reconstruction, and does not require training data, and also saves more computing resources.
Description
技术领域Technical Field
本发明属于数据处理领域,具体涉及一种电力负荷曲线重构方法。The invention belongs to the field of data processing, and in particular relates to a method for reconstructing a power load curve.
背景技术Background Art
高分辨率的负荷曲线对于深入挖掘负荷波动的规律至关重要,它不仅能够精确预测新能源发电(如太阳能、风能)的波动,而且对新能源的消纳和电力现货交易具有显著的影响。High-resolution load curves are crucial for in-depth exploration of the laws of load fluctuations. They can not only accurately predict the fluctuations of renewable energy power generation (such as solar and wind power), but also have a significant impact on the consumption of renewable energy and spot electricity trading.
通过硬件虽然能实现高频度数据采集与上传,但需要对已有的硬件设备和通信网络进行改造,以支持高频度的数据采集任务和高速的数据传输,成本较高,且主要适用于关口计量数据采集,对于非关口计量场景则难以推广。Although high-frequency data collection and uploading can be achieved through hardware, the existing hardware equipment and communication networks need to be modified to support high-frequency data collection tasks and high-speed data transmission. The cost is relatively high and it is mainly suitable for gateway metering data collection. It is difficult to promote for non-gateway metering scenarios.
鉴于硬件改造的局限性,通过软件重构成为了当前的主流方案。目前,电力负荷曲线的重构主要有以下两种方式:Given the limitations of hardware transformation, software reconstruction has become the current mainstream solution. Currently, there are two main ways to reconstruct the power load curve:
一、通过单一的插值算法重构:针对低分辨率数据通过插值函数(如拉格朗日插值、牛顿插值等)在数据点之间进行插值操作,得到高分辨率的负荷曲线。虽然该方式可以保持原有规律,但它进行全量填充时会导致较大的误差,影响负荷预测的准确性,进而对新能源调控和电网运行计划的制定造成不利影响,因此只适合对少量缺失数据的填充。1. Reconstruction through a single interpolation algorithm: For low-resolution data, interpolation functions (such as Lagrange interpolation, Newton interpolation, etc.) are used to interpolate between data points to obtain a high-resolution load curve. Although this method can maintain the original rules, it will cause large errors when filling in the full amount, affecting the accuracy of load forecasting, and thus adversely affecting the regulation of new energy and the formulation of power grid operation plans. Therefore, it is only suitable for filling in a small amount of missing data.
二、通过有监督学习或深度学习方法重构:该方式理论上可以达到较高的准确率,但是训练所需的大量的高分辨率的数据样本难以获取。如果选择其他曲线作为样本,数据规模较小时会导致重构曲线不够平滑,规模较大时则需要大量的计算资源。2. Reconstruction through supervised learning or deep learning methods: This method can theoretically achieve a higher accuracy, but the large amount of high-resolution data samples required for training is difficult to obtain. If other curves are selected as samples, the reconstructed curve will not be smooth enough when the data scale is small, and a large amount of computing resources will be required when the scale is large.
发明内容Summary of the invention
本发明提出了一种电力负荷曲线重构方法,其目的是:解决现有重构方法存在的准确性差、训练数据难以获取、耗费大量计算资源的问题。The present invention proposes a power load curve reconstruction method, the purpose of which is to solve the problems of poor accuracy, difficulty in obtaining training data, and consumption of a large amount of computing resources in existing reconstruction methods.
本发明技术方案如下:The technical solution of the present invention is as follows:
一种电力负荷曲线重构方法,步骤包括:A method for reconstructing a power load curve, comprising the steps of:
步骤1、对原始电力负荷曲线中进行预处理;Step 1: preprocessing the original power load curve;
步骤2、通过变分模态分解将原始电力负荷曲线分解为个固有模态分量子序列; Step 2: Decompose the original power load curve into The intrinsic mode component subsequences;
步骤3、对所有固有模态分量子序列分别通过拆分的方式进行空间重构,得到各固有模态分量子序列所分别对应的信息表;信息表中的各行依次对应固有模态分量子序列中按序分割的各曲线段,信息表中的每一行包含对应的曲线段中所有顺序排列的、归一化后的数据点,即每一行对应一个由数据点组成的行向量;Step 3, spatially reconstruct all the intrinsic mode component subsequences by splitting them, and obtain the information tables corresponding to the extrinsic mode component subsequences; each row in the information table corresponds to each curve segment divided in sequence in the extrinsic mode component subsequence, and each row in the information table contains all the normalized data points in the corresponding curve segment arranged in sequence, that is, each row corresponds to a row vector composed of data points;
步骤4、对于各信息表,分别对其中的行向量进行聚类,从而得到个固有模态分 量子序列所各自对应的行向量聚类结果; Step 4: For each information table, cluster the row vectors therein to obtain The row vector clustering results corresponding to each of the intrinsic mode component subsequences;
步骤5、对所有固有模态分量子序列的行向量聚类结果进行交叉聚类,得到最终聚类结果;Step 5: Perform cross clustering on the row vector clustering results of all intrinsic mode component subsequences to obtain the final clustering results;
步骤6、按最终聚类结果中各类簇的元素数量将各类簇划分至集合和集合: 如果最终聚类结果中某类簇的元素数量为1,则将该类簇作为集合的子类簇,否则将该 类簇作为集合的子类簇; Step 6: Divide each cluster into sets according to the number of elements in each cluster in the final clustering result and collection : If the number of elements in a cluster in the final clustering result is 1, then the cluster is taken as a set , otherwise the cluster is treated as a set The subclass cluster of
步骤7、对所有信息表的各行分别进行插值,如果某一行对应集合中的某子类 簇的元素,则该行在相邻的数据点之间采用线性插值;如果某一行对应集合中的某子类 簇的其中一个元素,则该行在相邻的数据点之间采用近邻插值; Step 7: Interpolate each row of all information tables. If a row corresponds to a set If a row corresponds to a subclass cluster in the set, the row uses linear interpolation between adjacent data points; If it is an element of a subclass cluster in , the row uses nearest neighbor interpolation between adjacent data points;
步骤8、将所有插值后的信息表中的各行分别进行反归一化,然后将信息表中各行的数据点组成与所在行对应的曲线段,再将信息表中各行的曲线段按序组成该信息表所对应的固有模态分量子序列的分量重构曲线,最后将所有分量重构曲线叠加合并,得到最终的重构曲线。Step 8. Denormalize each row in the interpolated information table respectively, then combine the data points of each row in the information table into a curve segment corresponding to the row, and then combine the curve segments of each row in the information table in sequence into a component reconstruction curve of the inherent modal component subsequence corresponding to the information table, and finally superimpose and merge all the component reconstruction curves to obtain the final reconstructed curve.
作为所述的电力负荷曲线重构方法的进一步改进:步骤1中,预处理包括删除异常数据和对缺失的数据进行填充。As a further improvement of the power load curve reconstruction method: in step 1, the preprocessing includes deleting abnormal data and filling in missing data.
作为所述的电力负荷曲线重构方法的进一步改进:步骤3中,设各信息表种均包含行,每一行均包含个数据点; As a further improvement of the power load curve reconstruction method: in step 3, it is assumed that each information table contains rows, each containing data points;
所述归一化是指按行归一化,设第行中的第个数据点原始值为,则该点归一 化后的数值为: The normalization is row-by-row normalization. The first The original value of the data point is , then the normalized value of this point is:
。 .
作为所述的电力负荷曲线重构方法的进一步改进:步骤5中,所述交叉聚类的过程为:将第一个固有模态分量子序列的行向量聚类结果和第二个固有模态分量子序列的行向量聚类结果相交得到的聚类结果作为第二个固有模态分量子序列所对应的相交后聚类结果,从第三个固有模态分量子序列开始,将当前固有模态分量子序列的聚类结果与前一个固有模态分量子序列的相交后聚类结果进行相交,得到当前固有模态分量子序列的相交后聚类结果,将最后一个固有模态分量子序列的相交后聚类结果作为所述最终聚类结果。As a further improvement of the power load curve reconstruction method: in step 5, the cross-clustering process is: the clustering result obtained by intersecting the row vector clustering result of the first eigenmode component subsequence and the row vector clustering result of the second eigenmode component subsequence is used as the intersected clustering result corresponding to the second eigenmode component subsequence, and starting from the third eigenmode component subsequence, the clustering result of the current eigenmode component subsequence is intersected with the intersected clustering result of the previous eigenmode component subsequence to obtain the intersected clustering result of the current eigenmode component subsequence, and the intersected clustering result of the last eigenmode component subsequence is used as the final clustering result.
作为所述的电力负荷曲线重构方法的进一步改进:步骤5中,对于任意两个聚类结果,其相交过程为:遍历第一个聚类结果中的类簇,对于每个类簇:将其与第二个聚类结果中的所有类簇分别相交,再将各相交结果组合成为该类簇对应的相交后类簇集合;然后将第一个聚类结果中的原所有类簇各自所对应的相交后类簇集合求并、得到两个聚类结果的相交后聚类结果。As a further improvement of the power load curve reconstruction method: in step 5, for any two clustering results, the intersection process is: traverse the clusters in the first clustering result, for each cluster: intersect it with all the clusters in the second clustering result respectively, and then combine the intersection results into the intersection cluster set corresponding to the cluster; then merge the intersection cluster sets corresponding to all the original clusters in the first clustering result to obtain the intersection clustering result of the two clustering results.
作为所述的电力负荷曲线重构方法的进一步改进,步骤7中,线性插值过程为:假 设在相邻的数据点之间插入个数据点,前一个数据点是该行插值前第个数据点、值为,后一个数据点是该行插值前第个数据点、值为,则插入的第个新数据 点的值为。 As a further improvement of the power load curve reconstruction method, in step 7, the linear interpolation process is: assuming that the linear interpolation between adjacent data points is data points, the previous data point is the interpolation value before the row data points, with values , the next data point is the first data point before the interpolation of the line data points, with values , then the inserted The value of the new data point is .
作为所述的电力负荷曲线重构方法的进一步改进,步骤7中,线性插值过程为:As a further improvement of the power load curve reconstruction method, in step 7, the linear interpolation process is:
对于任一信息表,假设当前进行插值的行对应集合中的某子类簇中的一个 元素,将该子类簇中所有元素对应的行作为信息表的操作行; For any information table, assume that the row currently being interpolated corresponds to the set A subclass cluster in An element in the subclass cluster The rows corresponding to all elements in are used as the operation rows of the information table;
在对上述操作行中任意两个相邻数据点之间的区域进行插值时,设前一个数据点 是该行插值前第个数据点,后一个数据点是该行插值前第个数据点,则设置搜索 范围为本信息表内上述所有操作行中原有第个数据点及第个数据点的值;When interpolating the area between any two adjacent data points in the above operation row, let the previous data point be the first data point before the interpolation of the row. data points, and the next data point is the first data point before the interpolation of the row data points, then set the search range to the original Data points and The value of the data point;
沿从第个数据点至第个数据点的方向顺序插入插值点时,将搜索范围 中与前一个原有数据点或插值点的值的欧式距离第二近的值作为当前插值点的值,直至完 成所有操作行的近邻插值操作。 Along from Data points to When inserting the interpolation point in the direction of the data points, the value with the second closest Euclidean distance to the previous original data point or interpolation point in the search range is used as the value of the current interpolation point until the nearest neighbor interpolation operation of all operation rows is completed.
作为所述的电力负荷曲线重构方法的进一步改进,步骤8中,反归一化过程为:As a further improvement of the power load curve reconstruction method, in step 8, the denormalization process is:
设某信息表插值后第行中的第个数据点值为,则该点反归一化后的数值 为: Suppose that after interpolation of a certain information table The first The data point value is , then the value of the point after denormalization is:
; ;
其中,和分别为该行归一化之前的数据点最大值和最小值。 in, and They are the maximum and minimum values of the data points in this row before normalization.
相对于现有技术,本发明具有以下积极效果:Compared with the prior art, the present invention has the following positive effects:
本发明通过模态分解将原始曲线分解为多个频率分量,保证曲线非平稳性和非线性的适应性,再通过分段处理精细地捕捉到各分量各段的特征,然后通过聚类和交叉分类将各段分为线性插值和近邻插值两种情况,充分利用各个分量的特征信息挖掘曲线全局和局部特征,选择各段最适合的插值方法分别插值。本发明相对于单一的插值方法,可以更好地适应曲线的复杂变化,大大提高重构的准确性;相对于有监督学习或深度学习方法,本发明不需要训练数据,也不需要参照其它大规模数据样本进行复杂的计算,更加节省计算资源。The present invention decomposes the original curve into multiple frequency components through modal decomposition to ensure the non-stationarity and nonlinear adaptability of the curve, and then finely captures the characteristics of each component and each segment through segment processing, and then divides each segment into two cases of linear interpolation and nearest neighbor interpolation through clustering and cross-classification, making full use of the characteristic information of each component to mine the global and local characteristics of the curve, and selecting the most suitable interpolation method for each segment for interpolation. Compared with a single interpolation method, the present invention can better adapt to the complex changes of the curve and greatly improve the accuracy of reconstruction; compared with supervised learning or deep learning methods, the present invention does not require training data, nor does it require complex calculations with reference to other large-scale data samples, which saves more computing resources.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明方法的流程图。FIG. 1 is a flow chart of the method of the present invention.
具体实施方式DETAILED DESCRIPTION
下面结合附图详细说明本发明的技术方案。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。The technical solution of the present invention is described in detail below in conjunction with the accompanying drawings. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments.
如图1,一种电力负荷曲线重构方法,步骤包括:As shown in FIG1 , a method for reconstructing a power load curve includes the following steps:
步骤1、对原始电力负荷曲线中进行预处理。具体包括,删除异常数据(如变化幅值明显过大的数据),并对缺失的数据进行填充(可采用线性插值等方式)。Step 1: Preprocess the original power load curve, including deleting abnormal data (such as data with obviously large change amplitude) and filling in missing data (using linear interpolation or other methods).
一般地,原始电力负荷曲线的数据频度选择15分钟、1小时或1日均可,本实施例以1小时频度,大约7日的数据为例。Generally, the data frequency of the original power load curve can be 15 minutes, 1 hour or 1 day. This embodiment takes the data of about 7 days with a frequency of 1 hour as an example.
步骤2、通过变分模态分解(VMD)将原始电力负荷曲线分解为个固有模态分量子 序列:,其中为第个固有模态分量子序列。本实施例中分解为8个分量。 Step 2: Decompose the original power load curve into A subsequence of intrinsic mode components: ,in For the In this embodiment, the eigenmode component subsequences are decomposed into 8 components.
VMD技术的优势在于其自适应性,可以根据实际信号的特点确定模态分解的个数,并在分解过程中自适应地匹配每种模态的最佳中心频率和有限带宽,可以有效的避免模态分解过程中出现模态混叠。The advantage of VMD technology lies in its adaptability. It can determine the number of modal decompositions according to the characteristics of the actual signal, and adaptively match the optimal center frequency and limited bandwidth of each mode during the decomposition process, which can effectively avoid modal aliasing during the modal decomposition process.
步骤3、对所有固有模态分量子序列分别通过拆分的方式进行空间重构,得到各固 有模态分量子序列所分别对应的信息表,可记为。信息表中的各行依次对应 固有模态分量子序列中按序分割的各曲线段,信息表中的每一行包含对应的曲线段中所有 顺序排列的、归一化后的数据点。 Step 3: Reconstruct all intrinsic modal component subsequences by splitting them into two parts, and obtain the information table corresponding to each intrinsic modal component subsequence, which can be recorded as Each row in the information table corresponds to each curve segment divided in sequence in the natural mode component subsequence, and each row in the information table contains all the normalized data points in the corresponding curve segment in sequence.
设各信息表种均包含行,每一行均包含个数据点,表示信息表中的第行中 的个数据点所构成的行向量。 Assume that each information table contains rows, each containing data points, Indicates the information table In the row The row vector of data points.
所述归一化是指按行归一化,设第行中的第个数据点原始值为,则该点归一 化后的数值为: The normalization is row-by-row normalization. The first The original value of the data point is , then the normalized value of this point is:
。 .
步骤4、对于各信息表,分别对其中的行向量进行聚类,从而得到所有固有模态分量子序列所各自对应的行向量聚类结果。Step 4: For each information table, cluster the row vectors therein respectively, so as to obtain the row vector clustering results corresponding to all the intrinsic mode component subsequences.
本实施例中,共有8个固有模态分量子序列,每个固有模态分量子序列中包含9个 行向量,设第个固有模态分量子序列的行向量聚类结果为,则各固有模态分量子序列 的行向量聚类结果可分别表示为: In this embodiment, there are 8 intrinsic modal component subsequences, each of which contains 9 row vectors. The row vector clustering result of the intrinsic mode component subsequences is , then the row vector clustering results of each intrinsic mode component subsequence can be expressed as:
; ;
; ;
; ;
..........
。 .
本实施例中,采用k-means进行聚类。In this embodiment, k-means is used for clustering.
步骤5、对所有固有模态分量子序列的行向量聚类结果进行交叉聚类,得到最终聚类结果。Step 5: Perform cross clustering on the row vector clustering results of all intrinsic mode component subsequences to obtain the final clustering results.
所述交叉聚类的过程为:将第一个固有模态分量子序列的行向量聚类结果和第二个固有模态分量子序列的行向量聚类结果相交得到的聚类结果作为第二个固有模态分量子序列所对应的相交后聚类结果,从第三个固有模态分量子序列开始,将当前固有模态分量子序列的聚类结果与前一个固有模态分量子序列的相交后聚类结果进行相交,得到当前固有模态分量子序列的相交后聚类结果,将最后一个固有模态分量子序列的相交后聚类结果作为所述最终聚类结果。The cross-clustering process is as follows: the clustering result obtained by intersecting the row vector clustering result of the first eigenmodal component subsequence and the row vector clustering result of the second eigenmodal component subsequence is used as the intersected clustering result corresponding to the second eigenmodal component subsequence; starting from the third eigenmodal component subsequence, the clustering result of the current eigenmodal component subsequence is intersected with the intersected clustering result of the previous eigenmodal component subsequence to obtain the intersected clustering result of the current eigenmodal component subsequence; and the intersected clustering result of the last eigenmodal component subsequence is used as the final clustering result.
其中,对于任意两个聚类结果,其相交过程为:遍历第一个聚类结果中的类簇,对于每个类簇:将其与第二个聚类结果中的所有类簇分别相交,再将各相交结果组合成为该类簇对应的相交后类簇集合;然后将第一个聚类结果中的原所有类簇各自所对应的相交后类簇集合求并、得到两个聚类结果的相交后聚类结果。Among them, for any two clustering results, the intersection process is: traverse the clusters in the first clustering result, for each cluster: intersect it with all the clusters in the second clustering result respectively, and then combine the intersection results into the intersection cluster set corresponding to the cluster; then merge the intersection cluster sets corresponding to all the original clusters in the first clustering result to obtain the intersection clustering result of the two clustering results.
例如,上述和的相交过程为:先将中的第一个类簇与中的3个类簇 分别相交,得到的3个相交结果分别为、空集、空集,中的第一个类簇对应的相交后 类簇集合为。同理,中的第二个类簇与中的3个类簇 分别相交,得到的相交后类簇集合为,中的第二个类簇 的相交后类簇集合为,和的相交后聚类结果为。再将与相交得到,将与相交得到,依次类推得到最终聚类结果。 For example, the above and The intersection process is: first The first cluster in and The three clusters in intersect with each other, and the three intersection results are , empty set, empty set, The set of clusters after intersection corresponding to the first cluster in is Similarly, The second cluster in and The three clusters in intersect with each other, and the obtained cluster set after intersection is , The set of clusters after the intersection of the second cluster in is , and The clustering result after intersection is . Then and Intersect ,Will and Intersect , and so on to get the final clustering result .
步骤6、按最终聚类结果中各类簇的元素数量将各类簇划分至集合和集合: 如果最终聚类结果中某类簇的元素数量为1,则将该类簇作为集合的子类簇,否则将该 类簇作为集合的子类簇。 Step 6: Divide each cluster into sets according to the number of elements in each cluster in the final clustering result and collection : If the number of elements in a cluster in the final clustering result is 1, then the cluster is taken as a set , otherwise the cluster is treated as a set subclass cluster of .
本实施例中,设集合,集合。显然,集合中所有子类簇的并集即为。 In this embodiment, set ,gather Obviously, the set The union of all subclass clusters in is .
步骤7、对所有信息表的各行分别进行插值,如果某一行对应集合中的某子类 簇的元素,则该行在相邻的数据点之间采用线性插值;如果某一行对应集合中的某子类 簇的其中一个元素,则该行在相邻的数据点之间采用近邻插值。 Step 7: Interpolate each row of all information tables. If a row corresponds to a set If a row corresponds to a subclass cluster in the set, the row uses linear interpolation between adjacent data points; If a row is an element of a subclass cluster in , the nearest neighbor interpolation is used between adjacent data points.
(1)线性插值过程为:(1) The linear interpolation process is:
假设在相邻的数据点之间插入个数据点,前一个数据点是该行插值前第个数 据点、值为,后一个数据点是该行插值前第个数据点、值为,则插入的第 个新数据点的值为。 Assume that we interpolate between adjacent data points data points, the previous data point is the interpolation value before the row data points, with values , the next data point is the first data point before the interpolation of the line data points, with values , then the inserted The value of the new data point is .
(2)近邻插值过程为:(2) The nearest neighbor interpolation process is:
对于任一信息表,假设当前进行插值的行对应集合中的某子类簇中的一个 元素,将该子类簇中所有元素对应的行作为信息表的操作行。例如子类簇, 则将第2行和第6行作为操作行。 For any information table, assume that the row currently being interpolated corresponds to the set A subclass cluster in An element in the subclass cluster The rows corresponding to all elements in the table are used as operation rows of the information table. For example, the subclass cluster , then the 2nd and 6th rows are used as operation rows.
在对上述操作行中任意两个相邻数据点之间的区域进行插值时,设前一个数据点 是该行插值前第个数据点,后一个数据点是该行插值前第个数据点,则设置搜索 范围为本信息表内上述所有操作行中原有第个数据点及第个数据点的值,本实 施例中,假设在第3个数据点和第4个数据点之间插值,则搜索范围为第2行和第6行中的第3 个数据点和第4个数据点的值,共4个值。沿从第个数据点至第个数据点的方向顺 序插入插值点时,将搜索范围中与前一个原有数据点或插值点的值的欧式距离第二近的值 作为当前插值点的值,直至完成所有操作行的近邻插值操作。例如,在第2行第3个数据点和 第4个数据点之间插入第1个插值点时,将搜索范围中与该行第3个数据点(原有)的值的欧 式距离第二近的值作为当前插值点的值,插入第2个插值点时,将搜索范围中与前述第1个 插值点的值的欧式距离第二近的值作为当前插值点的值,依次类推。 When interpolating the area between any two adjacent data points in the above operation row, let the previous data point be the first data point before the interpolation of the row. data points, and the next data point is the first data point before the interpolation of the row data points, then set the search range to the original Data points and In this embodiment, it is assumed that the interpolation is performed between the third and fourth data points, and the search range is the values of the third and fourth data points in the second and sixth rows, for a total of four values. Data points to When inserting interpolation points in the direction of the data points, the value in the search range that is the second closest to the value of the previous original data point or interpolation point in the Euclidean distance is used as the value of the current interpolation point until the nearest neighbor interpolation operation of all operation rows is completed. For example, when inserting the first interpolation point between the third and fourth data points in the second row, the value in the search range that is the second closest to the value of the third data point (original) in the row is used as the value of the current interpolation point. When inserting the second interpolation point, the value in the search range that is the second closest to the value of the first interpolation point in the Euclidean distance is used as the value of the current interpolation point, and so on.
步骤8、将所有插值后的信息表中的各行分别进行反归一化,然后将信息表中各行的数据点组成与所在行对应的曲线段,再将信息表中各行的曲线段按序组成该信息表所对应的固有模态分量子序列的分量重构曲线,最后将所有分量重构曲线叠加合并,得到最终的重构曲线。Step 8. Denormalize each row in the interpolated information table respectively, then combine the data points of each row in the information table into a curve segment corresponding to the row, and then combine the curve segments of each row in the information table in sequence into a component reconstruction curve of the inherent modal component subsequence corresponding to the information table, and finally superimpose and merge all the component reconstruction curves to obtain the final reconstructed curve.
其中,反归一化过程为:The denormalization process is:
设某信息表插值后第行中的第个数据点值为,则该点反归一化后的数值 为: Suppose that after interpolation of a certain information table The first The data point value is , then the value of the point after denormalization is:
。 .
其中,和分别为该行归一化之前的数据点最大值和最小值。 in, and They are the maximum and minimum values of the data points in this row before normalization.
需要说明的是,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。It should be noted that, for those skilled in the art, it is obvious that the present invention is not limited to the details of the above exemplary embodiments, and the present invention can be implemented in other specific forms without departing from the spirit or essential features of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411034879.1A CN118570334B (en) | 2024-07-31 | 2024-07-31 | A method for reconstructing power load curve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411034879.1A CN118570334B (en) | 2024-07-31 | 2024-07-31 | A method for reconstructing power load curve |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118570334A true CN118570334A (en) | 2024-08-30 |
CN118570334B CN118570334B (en) | 2024-10-29 |
Family
ID=92467780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411034879.1A Active CN118570334B (en) | 2024-07-31 | 2024-07-31 | A method for reconstructing power load curve |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118570334B (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110954133A (en) * | 2019-11-28 | 2020-04-03 | 天津大学 | Kernelized Distance Fuzzy Clustering Orthogonal Spectroscopic Imaging Pose Sensor Calibration Method |
CN111553434A (en) * | 2020-04-30 | 2020-08-18 | 华北电力大学 | Power system load classification method and system |
KR20210092895A (en) * | 2020-01-17 | 2021-07-27 | 한국전력공사 | Method and Server for Compensating a Missing Value in a Power Data |
CN113378954A (en) * | 2021-06-23 | 2021-09-10 | 云南电网有限责任公司电力科学研究院 | Load curve clustering method and system based on particle swarm improved K-means algorithm |
CN113902206A (en) * | 2021-10-19 | 2022-01-07 | 南京工程学院 | A Short-Term Load Forecasting Method Based on VMD-BiGRU |
CN113962485A (en) * | 2021-11-19 | 2022-01-21 | 国网江西省电力有限公司电力科学研究院 | Ultra-short-term power load prediction method and device based on machine learning |
CN115758188A (en) * | 2022-09-27 | 2023-03-07 | 广东电网有限责任公司 | Non-invasive load identification method, device, equipment and medium |
WO2023035119A1 (en) * | 2021-09-07 | 2023-03-16 | 山东工商学院 | Method and system for extracting hyperbolic wave from ground penetrating radar image |
WO2023035564A1 (en) * | 2021-09-08 | 2023-03-16 | 广东电网有限责任公司湛江供电局 | Load interval prediction method and system based on quantile gradient boosting decision tree |
US11704576B1 (en) * | 2020-01-29 | 2023-07-18 | Arva Intelligence Corp. | Identifying ground types from interpolated covariates |
CN116542362A (en) * | 2023-03-24 | 2023-08-04 | 广东电网有限责任公司广州供电局 | Load prediction method and device, electronic equipment and storage medium |
-
2024
- 2024-07-31 CN CN202411034879.1A patent/CN118570334B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110954133A (en) * | 2019-11-28 | 2020-04-03 | 天津大学 | Kernelized Distance Fuzzy Clustering Orthogonal Spectroscopic Imaging Pose Sensor Calibration Method |
KR20210092895A (en) * | 2020-01-17 | 2021-07-27 | 한국전력공사 | Method and Server for Compensating a Missing Value in a Power Data |
US11704576B1 (en) * | 2020-01-29 | 2023-07-18 | Arva Intelligence Corp. | Identifying ground types from interpolated covariates |
CN111553434A (en) * | 2020-04-30 | 2020-08-18 | 华北电力大学 | Power system load classification method and system |
CN113378954A (en) * | 2021-06-23 | 2021-09-10 | 云南电网有限责任公司电力科学研究院 | Load curve clustering method and system based on particle swarm improved K-means algorithm |
WO2023035119A1 (en) * | 2021-09-07 | 2023-03-16 | 山东工商学院 | Method and system for extracting hyperbolic wave from ground penetrating radar image |
WO2023035564A1 (en) * | 2021-09-08 | 2023-03-16 | 广东电网有限责任公司湛江供电局 | Load interval prediction method and system based on quantile gradient boosting decision tree |
CN113902206A (en) * | 2021-10-19 | 2022-01-07 | 南京工程学院 | A Short-Term Load Forecasting Method Based on VMD-BiGRU |
CN113962485A (en) * | 2021-11-19 | 2022-01-21 | 国网江西省电力有限公司电力科学研究院 | Ultra-short-term power load prediction method and device based on machine learning |
CN115758188A (en) * | 2022-09-27 | 2023-03-07 | 广东电网有限责任公司 | Non-invasive load identification method, device, equipment and medium |
CN116542362A (en) * | 2023-03-24 | 2023-08-04 | 广东电网有限责任公司广州供电局 | Load prediction method and device, electronic equipment and storage medium |
Non-Patent Citations (2)
Title |
---|
JIANG WEN-QIAN 等: "Application of improved FCM algorithm in outlier processing of power load", 《PROCEEDINGS OF THE CSU-EPSA》, 31 October 2011 (2011-10-31) * |
王赛一;余建平;孙丰杰;王承民;谢宁;: "电力大数据的价值密度评价及结合改进k-means的提升方法研究", 智慧电力, no. 03, 20 March 2019 (2019-03-20) * |
Also Published As
Publication number | Publication date |
---|---|
CN118570334B (en) | 2024-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109902863B (en) | Wind speed prediction method and device based on multi-factor time-space correlation | |
Daoqing et al. | Parallel discrete lion swarm optimization algorithm for solving traveling salesman problem | |
WO2024187506A1 (en) | Fault locating method and apparatus applied to power distribution network, device, and medium | |
Cao et al. | Scalable distribution systems state estimation using long short-term memory networks as surrogates | |
CN113806947A (en) | Offshore wind farm layout processing method, device and equipment | |
CN114050607A (en) | Construction system for power distribution network reconstruction digital model | |
CN118570334B (en) | A method for reconstructing power load curve | |
CN116070768A (en) | Short-term wind power prediction method based on data reconstruction and TCN-BiLSTM | |
CN106992516B (en) | Probability static voltage stability margin optimization implementation method | |
CN118052023A (en) | Topology optimization method, control device and medium for large wind farm current collection system | |
CN116737793B (en) | Carbon emission stream generation method, model training method, device and computer equipment | |
CN114896794B (en) | A coordinated approach to maintenance planning and power allocation for AC/DC parallel transmission channels | |
Ghaffari et al. | A power quality‐based framework for optimal siting and sizing of wind turbines by search space reduction via power losses and flicker emission sensitivity indices | |
CN111553040B (en) | A high-performance computing method and device for power grid topology analysis based on GPU acceleration | |
Dong et al. | An integrated ultra short term power forecasting method for regional wind–pv–hydro | |
CN113779861A (en) | Photovoltaic power prediction method and terminal equipment | |
Juchuang et al. | CNN-Wavelet-Transform-Based Model for Solar Photovoltaic Power Prediction | |
CN118227985B (en) | New energy load data reconstruction method and system based on Markov diffusion mode | |
CN112231926A (en) | A node-optimized method for measuring harmonic impedance in large power systems | |
CN111416441A (en) | A Power Grid Topology Analysis Method Based on GPU Hierarchical Acceleration | |
CN118521000A (en) | Network-structured new energy data preprocessing method, inertia prediction method and device | |
CN113128064B (en) | Thermoelectric data aggregation method, system, device and storage medium for simulation | |
CN116228963A (en) | Improved three-dimensional reconstruction method for porous medium | |
CN117994070A (en) | Micro-grid energy storage optimal configuration method and system | |
Chen et al. | Research on Short-term Prediction Algorithm for Distributed Photovoltaic Power in Regional Distribution Networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |