CN118500392A - Underwater robot DVL speed measurement error correction method based on improved ELM - Google Patents
Underwater robot DVL speed measurement error correction method based on improved ELM Download PDFInfo
- Publication number
- CN118500392A CN118500392A CN202410971782.7A CN202410971782A CN118500392A CN 118500392 A CN118500392 A CN 118500392A CN 202410971782 A CN202410971782 A CN 202410971782A CN 118500392 A CN118500392 A CN 118500392A
- Authority
- CN
- China
- Prior art keywords
- dvl
- output
- data
- elm
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 238000005259 measurement Methods 0.000 title claims abstract description 39
- 238000012937 correction Methods 0.000 title abstract description 13
- 238000012549 training Methods 0.000 claims abstract description 39
- 238000012360 testing method Methods 0.000 claims abstract description 16
- 238000007781 pre-processing Methods 0.000 claims abstract description 8
- 239000011159 matrix material Substances 0.000 claims description 36
- 230000006870 function Effects 0.000 claims description 18
- 239000013598 vector Substances 0.000 claims description 18
- 230000004913 activation Effects 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 7
- 230000008030 elimination Effects 0.000 claims description 4
- 238000003379 elimination reaction Methods 0.000 claims description 4
- 238000002474 experimental method Methods 0.000 claims description 3
- 210000002569 neuron Anatomy 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 210000004027 cell Anatomy 0.000 claims 1
- 230000006798 recombination Effects 0.000 claims 1
- 238000005215 recombination Methods 0.000 claims 1
- 230000001360 synchronised effect Effects 0.000 claims 1
- 238000009434 installation Methods 0.000 abstract description 4
- 230000007423 decrease Effects 0.000 abstract 1
- 238000011161 development Methods 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000013450 outlier detection Methods 0.000 description 2
- 230000008521 reorganization Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
- G01C21/203—Specially adapted for sailing ships
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
- G01C25/005—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
技术领域Technical Field
本发明属于水下机器人导航定位技术领域,具体涉及一种基于改进ELM的水下机器人DVL测速误差修正方法。The invention belongs to the technical field of underwater robot navigation and positioning, and in particular relates to an underwater robot DVL speed measurement error correction method based on improved ELM.
背景技术Background Art
海洋资源丰富,开发海洋资源具有巨大潜力,但考虑到海洋环境的特殊性和复杂性,其探索和开发面临一系列挑战。传统的人工探索开发海洋资源成本高昂且存在较大的危险。因此,人们研发了自主水下机器人,通过对水下机器人的控制可以帮助我们实现对海洋资源的开发。因为它们能够在深海环境中工作,并且可以进行长时间的探测和监测,不仅能够大幅降低成本,还能减少人员暴露在危险环境中的风险。Marine resources are abundant and there is great potential for their development. However, considering the particularity and complexity of the marine environment, its exploration and development face a series of challenges. Traditional manual exploration and development of marine resources is costly and dangerous. Therefore, people have developed autonomous underwater robots, which can help us realize the development of marine resources through the control of underwater robots. Because they can work in deep-sea environments and can conduct long-term detection and monitoring, they can not only significantly reduce costs, but also reduce the risk of personnel being exposed to dangerous environments.
水下机器人的导航定位对于其安全和任务执行至关重要。惯导和DVL(DopplerVelocity Log)是常用的水下导航定位技术,但它们的准确性受到安装误差角的影响。这些误差可能来自于设备安装不准确或者水下环境的变化,如水下地形、水流等。针对环境变化对安装角估计技术的影响,也需要考虑在设计导航系统时增加对环境变化的适应性和鲁棒性。这可能涉及到动态校准方法的研究,以及对传感器数据进行实时处理和调整以适应不同的水下环境条件。The navigation and positioning of underwater robots is crucial to their safety and mission execution. Inertial navigation and DVL (Doppler Velocity Log) are commonly used underwater navigation and positioning technologies, but their accuracy is affected by the installation error angle. These errors may come from inaccurate equipment installation or changes in the underwater environment, such as underwater terrain, water flow, etc. In view of the impact of environmental changes on the installation angle estimation technology, it is also necessary to consider increasing the adaptability and robustness to environmental changes when designing the navigation system. This may involve the study of dynamic calibration methods, as well as real-time processing and adjustment of sensor data to adapt to different underwater environmental conditions.
发明内容Summary of the invention
针对上述存在问题,本发明提出基于改进ELM的水下机器人DVL测速误差修正方法,首先对采集水下机器人导航系统中的DVL速度信息进行异常值检测和剔除取代,这里本发明提出一种基于最小二乘法趋势项建模和肖维涅准则的异常值检测和剔除方法;其次,将速度信息生成DVL速度修正模型的训练集,同时,本发明基于混合加权激活函数构建了一种基于改进的ELM的DVL速度预测模型并在GPS信号有效情况下对该模型进行训练;最后,基于上述方法搭建了DVL速度修正模型,并完成了准确速度信息输出功能。In view of the above-mentioned problems, the present invention proposes an underwater robot DVL speed measurement error correction method based on improved ELM. First, the DVL speed information collected in the underwater robot navigation system is detected and eliminated. Here, the present invention proposes an outlier detection and elimination method based on least squares trend term modeling and Chauvigne criterion; secondly, the speed information is used to generate a training set of the DVL speed correction model. At the same time, the present invention constructs a DVL speed prediction model based on the improved ELM based on a hybrid weighted activation function and trains the model when the GPS signal is valid; finally, a DVL speed correction model is built based on the above method, and the accurate speed information output function is completed.
上述的目的通过以下技术方案实现:The above purpose is achieved through the following technical solutions:
基于改进ELM的水下机器人DVL测速误差修正方法,该方法包括如下步骤:The underwater robot DVL speed measurement error correction method based on improved ELM includes the following steps:
步骤1、采集水下机器人运动的DVL设备的输出DVL测量数据进行预处理;Step 1, collecting the output DVL measurement data of the DVL device of the underwater robot movement for preprocessing;
步骤2、将步骤1经过预处理的DVL测量数据组成样本集,同步采集机器人在 GPS信号有效情况下运动载体坐标系下的三维速度信息组成样本集,将样本集和 样本集的数据按时间分段分别组合成DVL速度预测模型训练阶段的训练集和模型测试 阶段的测试集; Step 2: The DVL measurement data preprocessed in step 1 is combined into a sample set , synchronously collect the robot's three-dimensional velocity information in the motion carrier coordinate system when the GPS signal is valid to form a sample set , the sample set and sample set The data are divided into time segments and combined into a training set for the DVL velocity prediction model training phase and a test set for the model testing phase;
步骤3、构建改进ELM混合方法的DVL速度预测模型;Step 3: Construct a DVL velocity prediction model based on the improved ELM hybrid method;
步骤4、在GPS信号有效情况下训练步骤3构建的改进ELM混合方法的DVL速度预测模型;Step 4: training the DVL speed prediction model of the improved ELM hybrid method constructed in step 3 when the GPS signal is valid;
步骤5、同步采集惯导、DVL和GPS的速度信息,将步骤2中的测试集输入到步骤4训练好的改进ELM混合方法的DVL速度预测模型中,模型输出误差补偿后的DVL速度信息,将其输入到惯导和DVL组合导航系统中,同时将该模型的定位误差与惯导和GPS组合导航系统的定位误差、原始DVL数据下的惯导和DVL组合导航系统的定位误差进行比对,验证ELM模型的准确性。Step 5: synchronously collect the speed information of INS, DVL and GPS, input the test set in step 2 into the DVL speed prediction model of the improved ELM hybrid method trained in step 4, and the model outputs the DVL speed information after error compensation, which is input into the INS and DVL combined navigation system. At the same time, the positioning error of the model is compared with the positioning error of the INS and GPS combined navigation system and the positioning error of the INS and DVL combined navigation system under the original DVL data to verify the accuracy of the ELM model.
进一步地,步骤1所述对数据进行预处理,具体包括:Furthermore, the data is preprocessed in step 1, specifically including:
首先基于最小二乘法趋势项建模和肖维涅准则对DVL设备的输出的采样频率为的离散DVL的量数据序列,其中,U为数据长度,进行野值剔除处 理,根据DVL测量数据的趋势特征构建其K阶拟合多项式: First, based on the least squares trend term modeling and the Chauvigne criterion, the sampling frequency of the output of the DVL device is The discrete DVL quantity data sequence ,in , U is the data length, outliers are removed, and the K-order fitting polynomial is constructed according to the trend characteristics of DVL measurement data :
, ,
其中,为拟合多项式的系数; in, are the coefficients of the fitted polynomial;
引入残差平方和函数: Introducing the residual sum of squares function :
, ,
并对残差平方和函数取极小值,并通过对拟合多项式的系数取偏导求零, 得 And the residual sum of squares function Take the minimum value and adjust the coefficients of the fitted polynomial Taking the partial derivative to zero, we get
, ,
计算并展开重组,得:Calculate and expand the reorganization to get:
, ,
其中,分别是用来索引多项式不同阶次的变量; in, They are variables used to index different orders of polynomials;
利用矩阵求解法得到拟合多项式系数并得到趋势项拟合多项式,因此DVL测量 数据的去趋势项为: Using matrix solution method to get the fitting polynomial coefficients And the trend term fitting polynomial is obtained, so the detrended term of the DVL measurement data is for:
, ,
DVL测量数据的残差序列为: The residual sequence of DVL measurement data for:
, ,
其中,为DVL测量数据去趋势项的算式均值,计算公式为: in, is the mean value of the detrended term of the DVL measurement data, and the calculation formula is:
, ,
定义残差序列的绝对值满足的点数据为可疑数据,即DVL输 出的野值,其中为肖维涅准则系数,其系数拟合公式为:;为 DVL数据去趋势项后序列的标准差,其计算公式为:; Define the absolute value of the residual sequence satisfy The point data is suspicious data, that is, the wild value output by DVL, where is the Chauvigne criterion coefficient, and its coefficient fitting formula is: ; is the standard deviation of the DVL data after detrending, and its calculation formula is: ;
若判定其为野值,则对该点数据进行剔除处理,并将其代为DVL测量数据去趋势项 的算式均值,至此将DVL数据输出中的野值进行了剔除,即出DVL测量数 据预处理完成。 If it is determined to be an outlier, the data of the point will be removed and replaced by the mean value of the formula for detrending the DVL measurement data. At this point, the outliers in the DVL data output have been eliminated, and the DVL measurement data preprocessing is completed.
进一步地,步骤2所述DVL速度预测模型的训练集包括:Furthermore, the training set of the DVL speed prediction model in step 2 includes:
2a.步骤1经过预处理的DVL测量数据组成样本集,其中分别为载体坐标系下DVL在x、y、z方向的速度信息; 2a. Step 1: The preprocessed DVL measurement data form a sample set ,in They are the velocity information of DVL in the x, y, and z directions in the carrier coordinate system;
2b.同步采集机器人在GPS信号有效情况下载体坐标系下的三维速度信息组成样 本集,其中分别为机器人在载体坐标系下 x、y、z方向的速度信息; 2b. Synchronously collect the robot's three-dimensional velocity information in the carrier coordinate system when the GPS signal is valid to form a sample set ,in They are the speed information of the robot in the x, y, and z directions in the carrier coordinate system;
2c.将、这两个样本集的数据组合成DVL速度预测模型训练阶段的训练集 和模型测试阶段的测试集。 2c. , The data of these two sample sets are combined into the training set in the DVL velocity prediction model training phase and the test set in the model testing phase.
进一步地,步骤3所述构建改进ELM混合方法的DVL速度预测模型,包括如下子步骤:Furthermore, step 3 of constructing the DVL velocity prediction model of the improved ELM hybrid method includes the following sub-steps:
3a.构建单隐含层前馈的算法模型,包括输入层、隐含层和输出层3部分;其中输入层包含3个数据通道,隐含层包含12个数据通道,输出层包含3个数据通道;3a. Construct a single hidden layer feedforward algorithm model, including input layer, hidden layer and output layer; the input layer contains 3 data channels, the hidden layer contains 12 data channels, and the output layer contains 3 data channels;
3b. 混合加权激活函数并在之后的实验中确定最优的ELM激活函数: 3b. Mix weighted activation functions and determine the optimal ELM activation function in subsequent experiments :
, ,
其中和分别为隐含层参数权值和偏置向量,V为输入; in and are the hidden layer parameter weights and bias vectors respectively, and V is the input;
3c.构建ELM模型的输出:, 3c. Construct the output of the ELM model: ,
其中,为与理想输出对应的实际输出;为隐藏层和输出层之间的权重 矩阵,;表示第i个单元与隐含层相互之间的权重向量,;上标T表示矩阵的转置,表示与的内积;为正则化参数平衡 原始目标函数与范数惩罚项之间的权衡关系; 是输入矩阵的权重,是输入矩阵的 权重的范数;为偏置向量,,L为隐藏层个数,m为输出向量的维数; in, For the ideal output The corresponding actual output; is the weight matrix between the hidden layer and the output layer, ; represents the weight vector between the i-th unit and the hidden layer, ; The superscript T indicates the transpose of the matrix, express and The inner product of The regularization parameter balances the trade-off between the original objective function and the norm penalty term; is the weight of the input matrix, is the norm of the weights of the input matrix; is the bias vector, , L is the number of hidden layers, m is the dimension of the output vector;
3d.将步骤3c中的输出简化为, 3d. Simplify the output in step 3c to ,
其中,为模型的输出矩阵,等同,;为隐藏层 的输出权重矩阵,,,为输入向量; in, is the output matrix of the model, equivalent to , ; is the output weight matrix of the hidden layer, , , is the input vector;
3e. 计算隐藏层输出权重矩阵和隐藏层与输出层之间的权重,即求解式的极小范数最小二乘解:,由正交化法求得,当矩阵为 非奇异值时,则。 3e. Calculate the hidden layer output weight matrix and the weights between the hidden layer and the output layer , that is, the solution The minimum norm least squares solution of : , obtained by orthogonalization method, when the matrix When is a non-singular value, .
进一步地,步骤4所述在GPS信号有效情况下训练ELM模型,具体方法是:Furthermore, in step 4, the ELM model is trained when the GPS signal is valid. The specific method is:
4a.将步骤2中的训练集输入到步骤3构建的改进ELM混合方法的DVL速度预测模型中进行训练;4a. Input the training set in step 2 into the DVL velocity prediction model of the improved ELM hybrid method constructed in step 3 for training;
4b.根据连续的概率分布随机设定输入矩阵的权重与偏置向量; 4b. Randomly set the weights of the input matrix according to a continuous probability distribution With the bias vector ;
4c.计算隐藏层输出权重矩阵和隐藏层与输出层之间的权重,即求解式 的极小范数最小二乘解:,由正交化法求得,当矩阵为非奇异 值时,则; 4c. Calculate the hidden layer output weight matrix and the weights between the hidden layer and the output layer , that is, the solution The minimum norm least squares solution of : , obtained by orthogonalization method, when the matrix When is a non-singular value, ;
4d.选取均方根误差RMSE作为训练是否结束的判断标准,,为理想输出; 4d. Select the root mean square error RMSE as the criterion for whether the training is finished. , For ideal output;
4e.若模型误差不满足RMSE要求,判断训练样本是否足够,若训练样本不足,返回步骤1,否则增加隐藏层神经元个数并返回步骤3接着训练模型。4e. If the model error does not meet the RMSE requirement, determine whether the training samples are sufficient. If the training samples are insufficient, return to step 1; otherwise, increase the number of neurons in the hidden layer and return to step 3 to continue training the model.
本发明相比现有技术的有益效果是:Compared with the prior art, the present invention has the following beneficial effects:
(1)本发明相对于现有技术,提出了一种基于最小二乘法趋势项建模和肖维涅准则的异常值检测和剔除方法,进一步提升了DVL速度信息的准确性和可靠性;(1) Compared with the prior art, the present invention proposes an outlier detection and elimination method based on least squares trend term modeling and Chauvigne criterion, which further improves the accuracy and reliability of DVL speed information;
(2)本发明相对于现有技术,采用了极限学习机(ELM)来提高DVL速度信息的精度,同时本发明基于混合加权激活函数对现有ELM模型进行了改进,进一步提升了DVL速度修正的效率和准确性。(2) Compared with the prior art, the present invention adopts an extreme learning machine (ELM) to improve the accuracy of DVL speed information. At the same time, the present invention improves the existing ELM model based on a hybrid weighted activation function, further improving the efficiency and accuracy of DVL speed correction.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明的基于改进ELM的水下机器人DVL速度误差修正方法流程图;FIG1 is a flow chart of a method for correcting speed error of an underwater robot DVL based on an improved ELM of the present invention;
图2为采用本发明方法的DVL三个方向的速度预测曲线图;FIG2 is a speed prediction curve diagram of the DVL in three directions using the method of the present invention;
图3为采用本发明方法修正后的DVL速度误差曲线图。FIG. 3 is a DVL speed error curve diagram after correction by the method of the present invention.
具体实施方式DETAILED DESCRIPTION
如图1所示,本发明的基于改进ELM的水下机器人DVL测速误差修正方法,包括如下步骤:As shown in FIG1 , the underwater robot DVL speed measurement error correction method based on improved ELM of the present invention comprises the following steps:
步骤1、数据预处理:Step 1: Data preprocessing:
为防止因为水下机器人运动时DVL的异常情况出现异常值影响整体模型的效果,在进行模型构建训练前对采集水下机器人运动的DVL设备的输出DVL测量数据中的异常点进行剔除替代,保证模型的精确度。In order to prevent the abnormal value caused by the abnormal situation of DVL when the underwater robot moves, which may affect the effect of the overall model, the abnormal points in the output DVL measurement data of the DVL device that collects the movement of the underwater robot are eliminated and replaced before model construction and training to ensure the accuracy of the model.
采集水下机器人运动的DVL设备的输出DVL测量数据进行预处理,基于最小二乘法 趋势项建模和肖维涅准则对采样频率为的离散DVL数据序列进 行野值剔除处理,(其中U为数据长度)。首先,根据DVL数据的趋势特征构建其K阶拟合多项 式: The output DVL measurement data of the DVL device of the underwater robot is collected and preprocessed. The sampling frequency is set based on the least squares trend term modeling and the Chauvigne criterion. Discrete DVL data sequence Perform outlier elimination (where U is the data length). First, construct its K-order fitting polynomial based on the trend characteristics of DVL data :
, ,
其中,为拟合多项式的系数;in, are the coefficients of the fitted polynomial;
引入残差平方和函数: Introducing the residual sum of squares function :
, ,
并对残差平方和函数取极小值,并通过对拟合多项式的系数取偏导求零, 得 And the residual sum of squares function Take the minimum value and adjust the coefficients of the fitted polynomial Taking the partial derivative to zero, we get
, ,
计算并展开重组,得:Calculate and expand the reorganization to get:
, ,
其中,分别是用来索引多项式不同阶次的变量; in, They are variables used to index different orders of polynomials;
利用矩阵求解法得到拟合多项式系数并得到趋势项拟合多项式,因此DVL测量 数据的去趋势项为: Using matrix solution method to get the fitting polynomial coefficients And the trend term fitting polynomial is obtained, so the detrended term of the DVL measurement data is for:
, ,
DVL测量数据的残差序列为: The residual sequence of DVL measurement data for:
, ,
其中,为DVL测量数据去趋势项的算式均值,计算公式为: in, is the mean value of the detrended term of the DVL measurement data, and the calculation formula is:
, ,
定义残差序列的绝对值满足的点数据为可疑数据,即DVL输 出的野值,其中为肖维涅准则系数,其系数拟合公式为:;为 DVL数据去趋势项后序列的标准差,其计算公式为:; Define the absolute value of the residual sequence satisfy The point data is suspicious data, that is, the wild value output by DVL, where is the Chauvigne criterion coefficient, and its coefficient fitting formula is: ; is the standard deviation of the DVL data after detrending, and its calculation formula is: ;
若判定其为野值,则对该点数据进行剔除处理,并将其代为DVL测量数据去趋势项 的算式均值,至此将DVL数据输出中的野值进行了剔除,即出DVL测量数 据预处理完成,为后面DVL速度训练模型的构建做准备。 If it is determined to be an outlier, the data of the point will be removed and replaced by the mean value of the formula for detrending the DVL measurement data. At this point, the wild values in the DVL data output have been eliminated, that is, the DVL measurement data preprocessing is completed, preparing for the subsequent construction of the DVL speed training model.
步骤2、生成DVL速度预测模型训练阶段的训练集和模型测试阶段的测试集:Step 2: Generate the training set for the DVL speed prediction model training phase and the test set for the model testing phase:
2a.步骤1经过预处理的DVL测量数据组成样本集,其中分别为载体坐标系下DVL在x、y、z方向的速度信息; 2a. Step 1: The preprocessed DVL measurement data form a sample set ,in They are the velocity information of DVL in the x, y, and z directions in the carrier coordinate system;
2b.同步采集机器人在GPS信号有效情况下载体坐标系下的三维速度信息组成样 本集,其中分别为机器人在载体坐标系下 x、y、z方向的速度信息; 2b. Synchronously collect the robot's three-dimensional velocity information in the carrier coordinate system when the GPS signal is valid to form a sample set ,in They are the speed information of the robot in the x, y, and z directions in the carrier coordinate system;
2c.将、这两个样本集的数据组合成DVL速度预测模型训练阶段的训练集 和模型测试阶段的测试集。 2c. , The data of these two sample sets are combined into the training set in the DVL velocity prediction model training phase and the test set in the model testing phase.
步骤3、构建改进ELM混合方法的DVL速度预测模型:Step 3: Construct a DVL velocity prediction model based on the improved ELM hybrid method:
3a.构建单隐含层前馈的算法模型,包括输入层、隐含层和输出层3部分;其中输入层包含3个数据通道,隐含层包含12个数据通道,输出层包含3个数据通道;3a. Construct a single hidden layer feedforward algorithm model, including input layer, hidden layer and output layer; the input layer contains 3 data channels, the hidden layer contains 12 data channels, and the output layer contains 3 data channels;
3b. 混合加权激活函数并在之后的实验中确定最优的ELM激活函数: 3b. Mix weighted activation functions and determine the optimal ELM activation function in subsequent experiments :
, ,
其中和分别为隐含层参数权值和偏置向量,V为输入; in and are the hidden layer parameter weights and bias vectors respectively, and V is the input;
3c.构建ELM模型的输出:, 3c. Construct the output of the ELM model: ,
其中,为与理想输出对应的实际输出;为隐藏层和输出层之间的权重 矩阵,;表示第i个单元与隐含层相互之间的权重向量,;上标T表示矩阵的转置,表示与的内积;为正则化参数平衡 原始目标函数与范数惩罚项之间的权衡关系; 是输入矩阵的权重,是输入矩阵的 权重的范数;为偏置向量,,L为隐藏层个数,m为输出向量的维数; in, For the ideal output The corresponding actual output; is the weight matrix between the hidden layer and the output layer, ; represents the weight vector between the i-th unit and the hidden layer, ; The superscript T indicates the transpose of the matrix, express and The inner product of The regularization parameter balances the trade-off between the original objective function and the norm penalty term; is the weight of the input matrix, is the norm of the weights of the input matrix; is the bias vector, , L is the number of hidden layers, m is the dimension of the output vector;
3d.将步骤3c中的输出简化为, 3d. Simplify the output in step 3c to ,
其中,为模型的输出矩阵,等同,;为隐藏层 的输出权重矩阵,,,为输入向量; in, is the output matrix of the model, equivalent to , ; is the output weight matrix of the hidden layer, , , is the input vector;
3e. 计算隐藏层输出权重矩阵和隐藏层与输出层之间的权重,即求解式的极小范数最小二乘解:,由正交化法求得,当矩阵为 非奇异值时,则。 3e. Calculate the hidden layer output weight matrix and the weights between the hidden layer and the output layer , that is, the solution The minimum norm least squares solution of : , obtained by orthogonalization method, when the matrix When is a non-singular value, .
步骤4、在GPS信号有效情况下训练ELM模型:Step 4: Train the ELM model when the GPS signal is valid:
4a.将步骤2中的训练集输入到步骤3构建的改进ELM混合方法的DVL速度预测模型中进行训练;4a. Input the training set in step 2 into the DVL velocity prediction model of the improved ELM hybrid method constructed in step 3 for training;
4b.根据连续的概率分布随机设定输入矩阵的权重与偏置向量; 4b. Randomly set the weights of the input matrix according to a continuous probability distribution With the bias vector ;
4c.计算隐藏层输出权重矩阵和隐藏层与输出层之间的权重,即求解式 的极小范数最小二乘解:,由正交化法求得,当矩阵为非奇 异值时,则; 4c. Calculate the hidden layer output weight matrix and the weights between the hidden layer and the output layer , that is, the solution The minimum norm least squares solution of : , obtained by orthogonalization method, when the matrix When is a non-singular value, ;
4d.选取均方根误差RMSE作为训练是否结束的判断标准,,为理想输出; 4d. Select the root mean square error RMSE as the criterion for whether the training is finished. , For ideal output;
4e.若模型误差不满足RMSE要求,判断训练样本是否足够,若训练样本不足,返回步骤1,否则增加隐藏层神经元个数并返回步骤3接着训练模型。4e. If the model error does not meet the RMSE requirement, determine whether the training samples are sufficient. If the training samples are insufficient, return to step 1; otherwise, increase the number of neurons in the hidden layer and return to step 3 to continue training the model.
步骤5、DVL速度误差模型测试:Step 5: DVL speed error model test:
同步采集惯导、DVL和GPS的速度信息,将步骤2中的测试集输入到训练好的ELM模型中,模型输出进行误差补偿后的DVL速度信息,并将其输入到惯导和DVL组合导航系统中,同时将其定位误差与惯导和GPS组合导航系统的定位误差、原始DVL数据下的惯导和DVL组合导航系统的定位误差进行比对,验证ELM模型的准确性。The speed information of INS, DVL and GPS is collected synchronously, and the test set in step 2 is input into the trained ELM model. The model outputs the DVL speed information after error compensation, and inputs it into the INS and DVL combined navigation system. At the same time, its positioning error is compared with the positioning error of the INS and GPS combined navigation system and the positioning error of the INS and DVL combined navigation system under the original DVL data to verify the accuracy of the ELM model.
实验验证:Experimental verification:
为验证本发明方法的有效性,设计了实验验证。实验设备包括:GPS设备、DVL设备、导航计算机、IMU设备等。导航计算机负责采集GPS、DVL和IMU信息;本发明所提算法在导航计算机中运行。图2 给出了采用本发明方法的DVL三个方向的速度预测曲线图;图3 给出了采用本发明方法修正后的DVL速度误差曲线图。从图2可以看出本发明能够在DVL信号失效情况下预测其输出,从图3可以看出,其预测速度精度相对较高,能够很好地修正DVL速度误差。In order to verify the effectiveness of the method of the present invention, an experimental verification was designed. The experimental equipment includes: GPS equipment, DVL equipment, navigation computer, IMU equipment, etc. The navigation computer is responsible for collecting GPS, DVL and IMU information; the algorithm proposed in the present invention runs in the navigation computer. Figure 2 shows the speed prediction curve of the three directions of the DVL using the method of the present invention; Figure 3 shows the DVL speed error curve after correction using the method of the present invention. It can be seen from Figure 2 that the present invention can predict its output when the DVL signal fails, and it can be seen from Figure 3 that its predicted speed accuracy is relatively high, and it can correct the DVL speed error well.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410971782.7A CN118500392B (en) | 2024-07-19 | 2024-07-19 | Error correction method of underwater robot DVL speed measurement based on improved ELM |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410971782.7A CN118500392B (en) | 2024-07-19 | 2024-07-19 | Error correction method of underwater robot DVL speed measurement based on improved ELM |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118500392A true CN118500392A (en) | 2024-08-16 |
CN118500392B CN118500392B (en) | 2024-09-24 |
Family
ID=92236985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410971782.7A Active CN118500392B (en) | 2024-07-19 | 2024-07-19 | Error correction method of underwater robot DVL speed measurement based on improved ELM |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118500392B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2334199C1 (en) * | 2007-03-19 | 2008-09-20 | Закрытое акционерное общество "Лазекс" | Inertial-satellite navigation system with combination application of satellite data |
CN109242194A (en) * | 2018-09-25 | 2019-01-18 | 东北大学 | A kind of thickener underflow concentration prediction method based on mixed model |
CN109634308A (en) * | 2019-01-16 | 2019-04-16 | 中国海洋大学 | Dynamics-Based Velocity Model-Assisted Underwater Intelligent Navigation Method |
CN113847915A (en) * | 2021-09-24 | 2021-12-28 | 中国人民解放军战略支援部队信息工程大学 | A Navigation Method of Strapdown Inertial Navigation/Doppler Integrated Navigation System |
CN114440878A (en) * | 2022-01-27 | 2022-05-06 | 湖南大学无锡智能控制研究院 | SINS and DVL combined navigation method, equipment and system |
CN116338655A (en) * | 2023-02-22 | 2023-06-27 | 河海大学 | A DVL Velocity Error Calibration Method Based on DMD-LSTM Model |
CN117994584A (en) * | 2024-02-07 | 2024-05-07 | 北京理工大学 | Extreme learning machine image classification method based on OLQR algorithm training |
-
2024
- 2024-07-19 CN CN202410971782.7A patent/CN118500392B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2334199C1 (en) * | 2007-03-19 | 2008-09-20 | Закрытое акционерное общество "Лазекс" | Inertial-satellite navigation system with combination application of satellite data |
CN109242194A (en) * | 2018-09-25 | 2019-01-18 | 东北大学 | A kind of thickener underflow concentration prediction method based on mixed model |
CN109634308A (en) * | 2019-01-16 | 2019-04-16 | 中国海洋大学 | Dynamics-Based Velocity Model-Assisted Underwater Intelligent Navigation Method |
CN113847915A (en) * | 2021-09-24 | 2021-12-28 | 中国人民解放军战略支援部队信息工程大学 | A Navigation Method of Strapdown Inertial Navigation/Doppler Integrated Navigation System |
CN114440878A (en) * | 2022-01-27 | 2022-05-06 | 湖南大学无锡智能控制研究院 | SINS and DVL combined navigation method, equipment and system |
CN116338655A (en) * | 2023-02-22 | 2023-06-27 | 河海大学 | A DVL Velocity Error Calibration Method Based on DMD-LSTM Model |
CN117994584A (en) * | 2024-02-07 | 2024-05-07 | 北京理工大学 | Extreme learning machine image classification method based on OLQR algorithm training |
Non-Patent Citations (1)
Title |
---|
黄浩乾, 吕奥奇, 王迪, 等: "基于贝叶斯和统计相似度量测的水下自主定位方法", 控制与决策, 9 May 2024 (2024-05-09), pages 1 - 7 * |
Also Published As
Publication number | Publication date |
---|---|
CN118500392B (en) | 2024-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Deep learning-enabled fusion to bridge GPS outages for INS/GPS integrated navigation | |
CN110487271A (en) | Elman neural network aiding tight integration air navigation aid when a kind of GNSS signal is obstructed | |
CN104730537B (en) | Infrared/laser radar data fusion target tracking method based on multi-scale model | |
CN109948207A (en) | A method for predicting assembly errors of aero-engine high-pressure rotors | |
CN109507706B (en) | GPS signal loss prediction positioning method | |
CN110962124A (en) | Method for compensating static error and correcting dynamic stiffness model of cutting machining robot | |
CN109635494A (en) | A kind of flight test and ground simulation aerodynamic data comprehensive modeling method | |
CN103335814A (en) | Inclination angle measurement error data correction system and method of experimental model in wind tunnel | |
CN101701826A (en) | Passive Multi-Sensor Target Tracking Method Based on Hierarchical Particle Filter | |
CN107633256A (en) | Joint objective positioning and sensor registration method under a kind of multi-source ranging | |
CN109635855A (en) | Multi-sensor Fusion tracking based on self-encoding encoder model | |
CN107169299B (en) | A tracking method for formation targets in decentralized maneuvering mode | |
CN116519021A (en) | Inertial navigation system fault diagnosis method, system and equipment | |
CN103487056A (en) | Gravity matching method based on artificial bee colony algorithm and average Hausdorff distance | |
CN114925462B (en) | Thin-wall part machining deformation prediction method based on cutting force and rigidity correlation evolution | |
CN118534792B (en) | Simulation system and method for dry emission of submarine-launched unmanned aerial vehicle | |
CN118500392B (en) | Error correction method of underwater robot DVL speed measurement based on improved ELM | |
CN113065259B (en) | A method for coordinating the pose of a panel assembly and a skeleton | |
CN110186483B (en) | Method for improving drop point precision of inertia guidance spacecraft | |
Huang et al. | A Coarse Alignment Method Based on Vector Observation and Truncated Vectorized $\boldsymbol {\kappa} $-Matrix for Underwater Vehicle | |
Shi et al. | Online monitoring dynamic characteristics in thin-walled structure milling: A physics-constrained Bayesian updating approach | |
CN115993077B (en) | Inertial navigation system optimal decision-making method and system under complex road condition transportation | |
CN110110469A (en) | Parallel robot dynamic parameters identification method based on singular value decomposition | |
CN117421695A (en) | Heterogeneous multi-sensor data fusion method and device for unmanned vehicle | |
CN110186482A (en) | A method of improving the impact accuracy of inertial guidance spacecraft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |