CN118424296A - Real-time track planning method, device, medium and product based on track analysis solution - Google Patents
Real-time track planning method, device, medium and product based on track analysis solution Download PDFInfo
- Publication number
- CN118424296A CN118424296A CN202410873553.1A CN202410873553A CN118424296A CN 118424296 A CN118424296 A CN 118424296A CN 202410873553 A CN202410873553 A CN 202410873553A CN 118424296 A CN118424296 A CN 118424296A
- Authority
- CN
- China
- Prior art keywords
- iteration
- track
- profile
- planning
- real
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及轨迹规划技术领域,特别是涉及一种基于轨迹解析解的实时轨迹规划方法、装置、介质及产品。The present invention relates to the field of trajectory planning technology, and in particular to a real-time trajectory planning method, device, medium and product based on trajectory analytical solution.
背景技术Background technique
在高超音速滑翔飞行器(HGV)控制领域中,禁飞区规避是轨迹规划层在已知决策路径的前提下,采用轨迹解析设计方法实时生成轨迹,包括轨迹解析预测、多阶段轨迹参数化求解和跟踪制导。禁飞区规避时HGV横向机动大,动力学具有大攻角、大倾侧角的气动特性,使得横纵向运动强耦合且非线性度高,目前多阶段轨迹参数化求解多采用高斯算法,计算量大且不易达到收敛,降低了实时轨迹规划的效率和精度。In the field of hypersonic glide vehicle (HGV) control, no-fly zone avoidance is the process of using trajectory analysis design methods to generate trajectories in real time under the premise of a known decision path, including trajectory analysis prediction, multi-stage trajectory parameterization solution, and tracking guidance. When avoiding a no-fly zone, the HGV has large lateral maneuvers, and its dynamics have aerodynamic characteristics of large angle of attack and large roll angle, which makes the lateral and longitudinal motions strongly coupled and highly nonlinear. At present, the multi-stage trajectory parameterization solution mostly uses the Gaussian algorithm, which has a large amount of calculation and is difficult to converge, reducing the efficiency and accuracy of real-time trajectory planning.
发明内容Summary of the invention
本发明的目的是提供一种基于轨迹解析解的实时轨迹规划方法、装置、介质及产品,能够提高禁飞区规避实时轨迹规划的效率和精度。The purpose of the present invention is to provide a real-time trajectory planning method, device, medium and product based on trajectory analytical solution, which can improve the efficiency and accuracy of real-time trajectory planning for avoiding no-fly zones.
为实现上述目的,本发明提供了如下方案:一种基于轨迹解析解的实时轨迹规划方法,包括:获取飞行器的轨迹解析解和路径点约束;所述轨迹解析解是上层路径决策根据禁飞区信息和飞行器的状态,建立运动方程与摄动解析解间的解析误差关系,将解析误差关系转化为高阶形变方程并递阶求解后得到的。To achieve the above-mentioned purpose, the present invention provides the following scheme: a real-time trajectory planning method based on trajectory analytical solution, comprising: obtaining the trajectory analytical solution and path point constraints of the aircraft; the trajectory analytical solution is obtained by the upper-level path decision-making, according to the no-fly zone information and the state of the aircraft, establishing the analytical error relationship between the motion equation and the perturbation analytical solution, converting the analytical error relationship into a high-order deformation equation and solving it recursively.
基于所述轨迹解析解确定轨迹参数化表达式。A trajectory parameterization expression is determined based on the trajectory analytical solution.
根据路径点约束、轨迹参数化表达式和轨迹约束,将轨迹参数化表达式规划最优控制问题转化为多阶段剖面参数规划问题。According to the path point constraints, trajectory parameterized expressions and trajectory constraints, the optimal control problem of trajectory parameterized expression planning is transformed into a multi-stage profile parameter planning problem.
利用修正牛顿法对所述多阶段剖面参数规划问题进行迭代求解,确定最优禁飞区规避实时轨迹规划参数。The modified Newton method is used to iteratively solve the multi-stage profile parameter planning problem to determine the optimal no-fly zone avoidance real-time trajectory planning parameters.
基于所述禁飞区规避实时轨迹规划参数控制所述飞行器。The aircraft is controlled based on the no-fly zone avoidance real-time trajectory planning parameters.
一种计算机装置,包括:存储器、处理器以存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序以实现所述的一种基于轨迹解析解的实时轨迹规划方法。A computer device comprises: a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor executes the computer program to implement a real-time trajectory planning method based on trajectory analytical solution.
一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现所述的一种基于轨迹解析解的实时轨迹规划方法。A computer-readable storage medium stores a computer program, which, when executed by a processor, implements a real-time trajectory planning method based on trajectory analytical solution.
一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现所述的一种基于轨迹解析解的实时轨迹规划方法。A computer program product comprises a computer program, which, when executed by a processor, implements a real-time trajectory planning method based on trajectory analytical solution.
根据本发明提供的具体实施例,本发明公开了以下技术效果:According to the specific embodiments provided by the present invention, the present invention discloses the following technical effects:
本发明的目的是提供的一种基于轨迹解析解的实时轨迹规划方法、装置、介质及产品,通过分段控制横纵向飞行剖面,得到横向机动最省的禁飞区规避轨迹。该方法将常规的轨迹规划最优控制问题转化为仅含2n+1个轨迹参数化表达式剖面参数的多阶段参数规划问题,迭代过程完全解析,代码完全可调可控,具备实时应用能力。The purpose of the present invention is to provide a real-time trajectory planning method, device, medium and product based on trajectory analytical solution, which obtains the most economical no-fly zone avoidance trajectory for lateral maneuvering by controlling the lateral and longitudinal flight profiles in sections. The method converts the conventional trajectory planning optimal control problem into a multi-stage parameter planning problem containing only 2n +1 trajectory parameterized expression profile parameters, the iterative process is fully analytical, the code is fully adjustable and controllable, and has real-time application capabilities.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1为本发明实施例1提供的一种基于轨迹解析解的实时轨迹规划方法流程图;FIG1 is a flow chart of a real-time trajectory planning method based on trajectory analytical solution provided in Embodiment 1 of the present invention;
图2为本发明实施例1提供的横向加速度剖面参数化形式示意图。FIG. 2 is a schematic diagram of a parameterized form of a lateral acceleration profile provided in Example 1 of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
本发明的目的是提供一种基于轨迹解析解的实时轨迹规划方法、装置、介质及产品,能够提高禁飞区规避实时轨迹规划的效率和精度。The purpose of the present invention is to provide a real-time trajectory planning method, device, medium and product based on trajectory analytical solution, which can improve the efficiency and accuracy of real-time trajectory planning for avoiding no-fly zones.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above-mentioned objects, features and advantages of the present invention more obvious and easy to understand, the present invention is further described in detail below with reference to the accompanying drawings and specific embodiments.
实施例1:如图1所示,本实施例中的一种基于轨迹解析解的实时轨迹规划方法,包括:步骤101:获取飞行器的轨迹解析解和路径点约束。轨迹解析解是上层路径决策根据禁飞区信息和飞行器的状态,建立运动方程与摄动解析解间的解析误差关系,将解析误差关系转化为高阶形变方程并递阶求解后得到的。Embodiment 1: As shown in FIG1 , a real-time trajectory planning method based on trajectory analytical solution in this embodiment includes: Step 101: Obtaining trajectory analytical solution and path point constraints of an aircraft. The trajectory analytical solution is obtained by the upper-level path decision-making, according to the no-fly zone information and the state of the aircraft, establishing an analytical error relationship between the motion equation and the perturbation analytical solution, converting the analytical error relationship into a high-order deformation equation and recursively solving it.
步骤102:基于轨迹解析解确定轨迹参数化表达式。Step 102: Determine a trajectory parameterization expression based on the trajectory analytical solution.
步骤103:根据路径点约束、轨迹参数化表达式和轨迹约束,将轨迹参数化表达式规划最优控制问题转化为多阶段剖面参数规划问题。Step 103: According to the path point constraints, the trajectory parameterized expression and the trajectory constraints, the trajectory parameterized expression planning optimal control problem is converted into a multi-stage profile parameter planning problem.
步骤104:利用修正牛顿法对多阶段剖面参数规划问题进行迭代求解,确定最优禁飞区规避实时轨迹规划参数。Step 104: Use the modified Newton method to iteratively solve the multi-stage profile parameter planning problem to determine the optimal no-fly zone avoidance real-time trajectory planning parameters.
步骤105:基于禁飞区规避实时轨迹规划参数控制飞行器。Step 105: Control the aircraft based on the real-time trajectory planning parameters for avoiding the no-fly zone.
其中,多阶段剖面参数规划问题为:Among them, the multi-stage profile parameter planning problem is:
。 .
其中,J为多阶段剖面参数规划问题的目标函数;为自变量纵程在第i个路径点的值;为自变量纵程在第i-1个路径点的值;n为路径点约束中路径点的总数;为升力加速度剖面一阶项系数;为升力加速度剖面零阶项系数;为自变量纵程;为速度解析表达式;为横程解析表达式;为段末升力加速度;为段初升力加速度;为终端航程;为初始航程;为终端速度;为终端横程。Where, J is the objective function of the multi-stage profile parameter planning problem; The independent variable The value at the i -th path point; The independent variable The value at the i-1th waypoint; n is the total number of waypoints in the waypoint constraint; is the first-order coefficient of lift acceleration profile; is the zero-order coefficient of lift acceleration profile; is the independent variable longitudinal range; Analyze expressions for velocity; Analyze the expression for the horizontal process; is the lift acceleration at the end of the segment; is the initial lift acceleration; For terminal voyage; is the initial voyage; is the terminal velocity; The terminal horizontal stroke.
步骤104,包括:步骤104-1:利用拉格朗日乘子法,将对多阶段剖面参数规划问题无约束参数优化问题,并确定拉格朗日方程。Step 104 includes: Step 104-1: using the Lagrange multiplier method, the multi-stage profile parameter planning problem is transformed into an unconstrained parameter optimization problem, and the Lagrange equation is determined.
步骤104-2:计算各迭代剖面的初始剖面参数,根据初始剖面参数求解拉格朗日方程,得到初始拉格朗日乘子。Step 104 - 2: Calculate the initial profile parameters of each iterative profile, solve the Lagrangian equation according to the initial profile parameters, and obtain the initial Lagrangian multiplier.
步骤104-3:将初始拉格朗日乘子作为拉格朗日方程第1次迭代时的迭代参数。Step 104-3: Use the initial Lagrange multiplier as the iteration parameter of the first iteration of the Lagrange equation.
步骤104-4:获取当前步长。Step 104-4: Get the current step length.
步骤104-5:令迭代次数j=1。Step 104-5: Set the number of iterations j=1.
步骤104-6:根据第j次迭代时的迭代参数,确定第j次迭代时的雅可比矩阵和第j次迭代时海森矩阵。Step 104-6: Determine the Jacobian matrix at the jth iteration and the Hessian matrix at the jth iteration according to the iteration parameters at the jth iteration.
步骤104-7:根据第j次迭代时的雅可比矩阵和第j次迭代时海森矩阵,确定第j+1次迭代时的迭代参数。Step 104-7: Determine the iteration parameters at the j+1th iteration according to the Jacobian matrix at the jth iteration and the Hessian matrix at the jth iteration.
步骤104-8:根据第j+1次迭代时的迭代参数,确定第j+1次迭代时的雅可比矩阵。Step 104 - 8 : Determine the Jacobian matrix at the j+1th iteration according to the iteration parameter at the j+1th iteration.
步骤104-9:根据第j+1次迭代时的雅可比矩阵和当前步长判断是否满足收敛容差条件,得到第一判断结果。Step 104 - 9 : judging whether the convergence tolerance condition is satisfied according to the Jacobian matrix at the j+1th iteration and the current step length, and obtaining a first judgment result.
步骤104-10:若第一判断结果为否,则更新当前步长,令迭代次数j+1的数值增加1,并返回步骤104-7。更新当前步长,包括:确定当前步长与步长变化量的比值为更新后的当前步长。Step 104-10: If the first judgment result is no, then update the current step length, increase the value of the iteration number j+1 by 1, and return to step 104-7. Updating the current step length includes: determining the ratio of the current step length to the step length change as the updated current step length.
步骤104-11:若第一判断结果为是,则判断当前步长是否处于预设步长范围,得到第二判断结果。Step 104 - 11: If the first judgment result is yes, determine whether the current step length is within a preset step length range to obtain a second judgment result.
步骤104-12:若第二判断结果为否,则更新当前步长,令迭代次数j+1的数值增加1,并返回步骤104-7。Step 104 - 12: If the second judgment result is no, update the current step length, increase the value of the iteration number j+1 by 1, and return to step 104 - 7.
步骤104-13:若第二判断结果为是,则确定第j+1次迭代时的迭代参数为最优禁飞区规避实时轨迹规划参数。Step 104 - 13 : If the second judgment result is yes, then determine the iteration parameters at the j+1th iteration as the optimal no-fly zone avoidance real-time trajectory planning parameters.
其中,收敛容差条件为:The convergence tolerance condition is:
。 .
其中,为第j+1次迭代时的雅可比矩阵;为第j次迭代时的雅可比矩阵;为当前步长;为收敛容差。in, is the Jacobian matrix at the j+1th iteration; is the Jacobian matrix at the jth iteration; is the current step length; is the convergence tolerance.
步骤104-12,包括:确定当前步长与步长变化量的比值为更新后的当前步长。Step 104-12 includes: determining the ratio of the current step length to the step length change as the updated current step length.
步骤104-2,包括:步骤104-2-1:令剖面的一阶项初值的数值为0,求解解析解;所述解析解包括速度解析解、航向角解析解和横程解析解。Step 104-2 includes: Step 104-2-1: Order Initial value of the first-order term of the profile The value of is 0, and an analytical solution is obtained; the analytical solution includes a velocity analytical solution, a heading angle analytical solution and a lateral range analytical solution.
步骤104-2-2:基于速度解析解,构建每个子段轨迹的终端速度约束解析式。Step 104-2-2: Based on the velocity analytical solution, construct the terminal velocity constraint analytical expression of each sub-segment trajectory.
步骤104-2-3:反解多个所述终端速度约束解析式,得到每个子段轨迹对应的剖面参数;剖面为阻力加速度剖面;剖面为升力加速度剖面。Step 104-2-3: Inversely solve the multiple terminal velocity constraint analytical expressions to obtain the corresponding Profile parameters; The profile is the drag acceleration profile; The profile is the lift acceleration profile.
步骤104-2-4:根据横程解析解,得到每个子段轨迹的终端横程解析式。Step 104-2-4: Based on the analytical solution of the horizontal distance, obtain the analytical expression of the terminal horizontal distance of each sub-segment trajectory.
步骤104-2-5:反解多个所述终端横程解析式,得到每个子段轨迹对应的剖面参数。Step 104-2-5: Inversely solve the multiple terminal horizontal path analytical expressions to obtain the corresponding Section parameters.
步骤104-2-6:根据多个剖面参数和多个剖面参数构建初始拉格朗日乘子。Step 104-2-6: Based on multiple Section parameters and multiple The profile parameters construct the initial Lagrange multipliers.
其中,终端速度约束解析式为:The terminal velocity constraint analytical expression is:
。 .
其中,为终端速度约束;为终端纵程;为地球半径;为剖面参数的初值;为速度解析解;为平均径向距离;in, is the terminal velocity constraint; is the terminal longitudinal distance; is the radius of the Earth; for Section parameters The initial value of is the analytical solution for velocity; is the average radial distance;
剖面参数为: The profile parameters are:
。 .
其中,g为重力加速度;Where g is the acceleration due to gravity;
终端横程解析式为:The terminal cross-distance analytical formula is:
。 .
剖面参数为: The profile parameters are:
。 .
其中,为子段轨迹的终端横程约束;为自变量纵程在第i个路径点的值;为自变量纵程在第i-1个路径点的值;表示平均速度;in, is the terminal traverse constraint of the sub-segment trajectory; The independent variable The value at the i-th path point; The independent variable The value at the i-1th path point; Indicates average speed;
雅可比矩阵为:The Jacobian matrix is:
。 .
其中,为第j次迭代时的雅可比矩阵;为拉格朗日函数对参数p的偏导;为拉格朗日函数对参数λ的偏导;为性能指标的一阶导;为协态;为约束函数对参数p的偏导;为约束函数;in, is the Jacobian matrix at the jth iteration; is the partial derivative of the Lagrangian function with respect to the parameter p; is the partial derivative of the Lagrangian function with respect to the parameter λ; is the first derivative of the performance index; For the co-state; is the partial derivative of the constraint function with respect to the parameter p; is the constraint function;
海森矩阵为:The Hessian matrix is:
。 .
其中,为海森矩阵;、、和均为海森矩阵元素;为性能指标的二阶导;为约束函数一阶导的转置;为约束函数二阶导。in, is the Hessian matrix; , , and All are Hessian matrix elements; is the second-order derivative of the performance index; is the transpose of the first-order derivative of the constraint function; is the second-order derivative of the constraint function.
根据轨迹参数化表达式,建立轨迹规划问题的参数化模型,并设计飞行剖面参数求解方法,实时生成禁飞区规避轨迹。首先,由于轨迹参数化表达式由横纵向飞行剖面控制,即升阻比在铅锤面的分量(剖面)和升力加速度在水平面的分量(剖面),因此设计参数化剖面,将轨迹规划最优控制问题转化为多阶段剖面参数规划问题;然后,提出多阶段剖面参数规划问题的定制化实时求解方法,解析选取参数迭代初值和下降梯度;最后,设计基于修正牛顿法的参数迭代求解算法,实现轨迹规划问题的实时应用。According to the trajectory parameterization expression, a parameterized model of the trajectory planning problem is established, and a flight profile parameter solution method is designed to generate a no-fly zone avoidance trajectory in real time. First, since the trajectory parameterization expression is controlled by the lateral and longitudinal flight profiles, that is, the component of the lift-to-drag ratio on the plumb plane ( profile) and the component of lift acceleration in the horizontal plane ( profile), so a parameterized profile is designed to transform the trajectory planning optimal control problem into a multi-stage profile parameter planning problem; then, a customized real-time solution method for the multi-stage profile parameter planning problem is proposed, and the initial value and descent gradient of parameter iteration are selected analytically; finally, a parameter iteration solution algorithm based on the modified Newton method is designed to realize the real-time application of the trajectory planning problem.
1 多阶段轨迹规划参数化建模。1 Parametric modeling of multi-stage trajectory planning.
根据上层路径决策得到的禁飞区规避路径,以路径点分分割点将轨迹分段,建立多阶段剖面参数方程,基于轨迹的同伦解析解、飞行剖面参数方程、再入终端约束、路径点约束及最小控制力性能指标,将禁飞区规避轨迹规划问题转化为多阶段轨迹参数化表达式剖面参数规划问题。According to the no-fly zone avoidance path obtained by the upper-level path decision, the trajectory is divided into segments by path point segmentation points, and a multi-stage profile parameter equation is established. Based on the homotopy analytical solution of the trajectory, the flight profile parameter equation, the re-entry terminal constraint, the path point constraint and the minimum control force performance index, the no-fly zone avoidance trajectory planning problem is transformed into a multi-stage trajectory parameterized expression profile parameter planning problem.
基于轨迹同伦解析解,在广义赤道坐标系下,以飞行纵程为自变量,可以得到飞行速度V、横程、航迹偏角ξ的轨迹参数化表达式,从而对终端飞行状态进行解析预测。其中,轨迹通过规划剖面和剖面进行控制,剖面控制速度、航程,决定纵向飞行轨迹;剖面控制航向和横程,决定横向飞行轨迹。Based on the trajectory homology analytical solution, in the generalized equatorial coordinate system, the flight longitudinal distance As independent variables, we can get the flight speed V and the horizontal range. , the trajectory parameterized expression of the track deviation angle ξ , so as to make an analytical prediction of the terminal flight state. Among them, the trajectory is planned by Section and The profile is controlled. The profile controls speed and range and determines the longitudinal flight trajectory; The profile controls the heading and range, determining the lateral flight trajectory.
本发明将剖面和剖面形式设计为如下形式:The present invention will Section and The section form is designed as follows:
(1) (1)
其中,为第i段轨迹的升力加速度在水平面的分量,为自变量纵程在各路径点的值,第三子式为剖面的连接约束,剖面形式的示意图如图2所示。 i 为待求解的剖面控制参数,共2n+1个。in, is the component of the lift acceleration of the i -th trajectory in the horizontal plane, The independent variable The value at each path point, the third minor formula is Connection constraints for sections, A schematic diagram of the cross-section is shown in FIG2 . i is the section control parameter to be solved, 2 n +1 in total.
由于HGV的再入走廊狭窄且不规则,考虑到剖面的灵活性和物理可执行性,将横向剖面采用分段多项式的形式,根据路径点个数n(包含终点)将轨迹分为n个子段,每段分别为线性形式,且在路径点处连接。此外,由于再入滑翔过程中往往采用小攻角变化率,以最大程度减小飞行器流场变化,进而减小飞行器上气动加热分布情况的变化,而攻角直接影响了升阻比的大小,因此本发明将剖面设置为常数,以符合实际物理意义。在实际飞行中,将根据与标称剖面的偏差在剖面参数附近范围调整,即通过闭环跟踪制导校正飞行剖面,在满足各类过程约束的基础上实现终端控制。Since the reentry corridor of HGV is narrow and irregular, considering the flexibility and physical feasibility of the profile, the transverse profile is in the form of a piecewise polynomial, and the trajectory is divided into n sub-segments according to the number of path points n (including the end point), each of which is in linear form and connected at the path point. In addition, since a small angle of attack change rate is often used during the reentry glide process to minimize the change of the aircraft flow field, thereby reducing the change of the aerodynamic heating distribution on the aircraft, and the angle of attack directly affects the size of the lift-to-drag ratio, the present invention will The profile is set as a constant to conform to the actual physical meaning. In actual flight, it will be adjusted in the range near the profile parameters according to the deviation from the nominal profile, that is, the flight profile is corrected through closed-loop tracking and guidance, and terminal control is achieved on the basis of satisfying various process constraints.
为了与禁飞区规避路径决策-轨迹规划问题的性能指标保持一致,多阶段轨迹参数化表达式剖面参数规划问题的性能指标也设定为最小累计横向控制力。由于,可得:In order to be consistent with the performance index of the no-fly zone avoidance path decision-trajectory planning problem, the performance index of the multi-stage trajectory parameterization expression profile parameter planning problem is also set to the minimum cumulative lateral control force. ,Available:
(2) (2)
此外,根据再入滑翔的终端约束,上层路径决策得到的路径点约束,以及各子段之间的连接约束,结合滑翔轨迹的同伦解析方程,从而建立轨迹参数化表达式预测的终端约束方程。终端约束包括终端速度约束、终端位置即横程约束,路径点约束为各子段轨迹的终端横程约束,且第n段轨迹终端横程=。In addition, based on the terminal constraints of the reentry glide, the path point constraints obtained by the upper path decision, and the connection constraints between the sub-segments, combined with the homotopy analytical equation of the glide trajectory, the terminal constraint equation predicted by the trajectory parameterization expression is established. The terminal constraints include the terminal velocity Constraints, terminal positions, or horizontal travel Constraints, the path point constraints are the terminal traverse distances of each sub-segment trajectory Constraint, and the terminal horizontal distance of the nth track = .
综合上述约束和指标,HGV禁飞区规避轨迹规划最优控制问题可简化为如下所示的多阶段参数规划问题:Combining the above constraints and indicators, the optimal control problem of HGV no-fly zone avoidance trajectory planning can be simplified to a multi-stage parameter planning problem as shown below:
问题4.1 HGV禁飞区规避多阶段轨迹参数化表达式剖面参数规划问题:Problem 4.1 HGV no-fly zone avoidance multi-stage trajectory parameterization expression profile parameter planning problem:
(3) (3)
其中,为自变量纵程在各路径点的值,且第n段轨迹终端纵程=,第n段轨迹初始纵程=0,即各子段轨迹的终端纵程,在通过解析解计算第二子式时,第i段轨迹的初始横程为上第i-1段轨迹的终端横程,即=0,第n段轨迹初始横程=,i=1,…,n-1。in, The independent variable The value at each path point, and the vertical distance of the terminal of the nth track = , the initial longitudinal distance of the nth track =0, that is, the terminal longitudinal distance of each sub-segment trajectory. When the second sub-formula is calculated by analytical solution, the initial horizontal distance of the i -th segment trajectory is the terminal horizontal distance of the i -1-th segment trajectory, that is, =0, initial horizontal distance of the nth track = , i =1,…, n -1.
记优化指标为J(p),式(3)中2n个约束组成的非线性方程组可简写为F(p)=0,其中为优化参数向量。则问题4.1可简记为如下形式:The optimization index is J ( p ), and the nonlinear equation system consisting of 2n constraints in formula (3) can be abbreviated as F ( p ) = 0, where is the optimization parameter vector. Then problem 4.1 can be simplified as follows:
(4) (4)
问题4.1是一个仅含等式约束的参数优化问题。根据最优化理论,采用拉格朗日乘子法,将其化为无约束参数优化问题求解。定义拉格朗日方程:Problem 4.1 is a parameter optimization problem with only equality constraints. According to optimization theory, the Lagrange multiplier method is used to transform it into an unconstrained parameter optimization problem. Define the Lagrange equation:
(5) (5)
其中,为待求解的拉格朗日乘子向量,则上述问题的一阶必要条件为:in, is the Lagrange multiplier vector to be solved, then the first-order necessary condition for the above problem is:
(6) (6)
根据一阶必要条件,可得到4n+1个等式组成的非线性方程组,非线性方程组的4n+1个求解参数为y=(p;λ)因此,多阶段轨迹剖面参数规划问题可转化为求解非线性方程组(式(6)),本发明采用牛顿法进行求解。According to the first-order necessary conditions, a nonlinear equation group consisting of 4n +1 equations can be obtained, and the 4n +1 solution parameters of the nonlinear equation group are y =( p ; λ ). Therefore, the multi-stage trajectory profile parameter planning problem can be transformed into a nonlinear equation group (Equation (6)). The present invention adopts Newton's method to solve it.
2 多阶段轨迹参数规划的定制化。2 Customization of multi-stage trajectory parameter planning.
牛顿迭代法是求解参数规划问题的有效途径之一,然而,当迭代变量较多时,使用原始牛顿法不容易收敛,且受初值影响较大,难以实时应用。为此,本发明提出两种定制化策略求解多阶段轨迹剖面参数规划问题:①剖面参数迭代初值的定制;②剖面参数下降梯度的定制。Newton iteration method is one of the effective ways to solve parameter planning problems. However, when there are many iterative variables, the original Newton method is not easy to converge and is greatly affected by the initial value, making it difficult to apply in real time. To this end, the present invention proposes two customized strategies to solve the multi-stage trajectory profile parameter planning problem: ① customization of the initial value of the profile parameter iteration; ② customization of the profile parameter descent gradient.
2.1 剖面参数迭代初值的定制。2.1 Customization of initial values of profile parameter iteration.
由于轨迹的同伦解析解形式过于复杂,难以选择初值,本发明基于摄动理论得到的解析解析解,解析推导得到剖面参数的一个近似可行解,作为牛顿迭代法的初值,以充分接近收敛域。Since the homotopy analytical solution of the trajectory is too complex and it is difficult to select the initial value, the analytical solution obtained by the present invention based on the perturbation theory is , an approximate feasible solution of the profile parameters is obtained analytically, which is used as the initial value of the Newton iteration method , in order to be sufficiently close to the convergence region.
令剖面一阶项的初值为,求解解析解,作为剖面参数的迭代初值。其中,根据终端速度约束,求解参数的初值,并根据每子段轨迹的终端横程约束,求解参数的初值,i=1,…,n。另外,设置,共同作为牛顿迭代的初值,进一步迭代得到剖面参数的精确值。make The initial value of the first-order term of the profile is , solve the analytical solution as the initial value of the iteration of the profile parameters. Among them, according to the terminal velocity constraint , solve for the parameters The initial value of , and according to the terminal trajectories of each sub-segment , solve for the parameters The initial value of , i =1,…, n . In addition, set , together as the initial value of Newton iteration , and further iterations are performed to obtain the precise values of the profile parameters.
速度解析解 )仅与剖面的参数有关。由的解析解可得:Velocity analytical solution ) only with The parameters of the profile are related to The analytical solution of is:
(7) (7)
即:Right now:
(8) (8)
则参数k 10 0可反解得到:Then the parameter k 10 0 can be inversely solved to obtain:
(9) (9)
进一步,根据航向角和横程的解析解,得到每子段轨迹的终端横程解析式,令,求解参数。由于将的解析解带入解析公式后,被积函数不可积,在求解航向角和横程时将速度近似为常数。因此,可得:Furthermore, according to the heading angle He Hengcheng The analytical solution of each sub-segment trajectory is obtained Analytical expression, let , solve for the parameters . Because The analytical solution is introduced into After analyzing the formula, the integrand is not integrable. He Hengcheng The velocity is approximated as a constant .therefore, Available:
(10) (10)
其中,表示第i段轨迹终端航向角。in, Indicates the terminal heading angle of the i-th trajectory.
由的解析解可得:Depend on The analytical solution of is:
(11) (11)
则参数可反解得到:Then the parameter The inverse solution is:
(12) (12)
综上,牛顿迭代法的初值可表示如下:In summary, the initial value of Newton's iteration method is It can be expressed as follows:
(13) (13)
本方法得到的初值是问题4.1的一个近似可行解,相比随机选取初值更有助于牛顿法的收敛。The initial value obtained by this method is an approximate feasible solution to Problem 4.1, which is more conducive to the convergence of Newton's method than randomly selecting initial values.
2.2 剖面参数下降梯度的定制。2.2 Customization of profile parameter descent gradient.
为了使用牛顿迭代法,需要得到拉格朗日方程的一二阶导数,即雅可比矩阵和海森矩阵。由于同伦解析解应用的高斯-勒让德积分公式多,反向求导困难且计算耗时长。因此,基于轨迹的解析解求解、,以加快牛顿法迭代的计算效率。注意中F(p)根据轨迹的同伦解析解得到,解析解仅用作求导。In order to use the Newton iteration method, it is necessary to obtain the first and second order derivatives of the Lagrange equation, that is, the Jacobian matrix and the Hessian matrix Since the homotopy analytical solution uses many Gauss-Legendre integral formulas, the reverse derivation is difficult and the calculation is time-consuming. Therefore, the trajectory-based analytical solution is used to solve , , in order to speed up the computational efficiency of Newton's method iteration. Here, F ( p ) is obtained based on the homotopy analytical solution of the trajectory, and the analytical solution is only used for derivation.
拉格朗日函数可表示为以下形式:The Lagrangian function can be expressed as follows:
(14) (14)
其中,为第1段轨迹横向升力加速度,为第2段轨迹横向升力加速度,为第n-1段轨迹横向升力加速度,为第n段轨迹横向升力加速度。in, is the lateral lift acceleration of the first trajectory, is the lateral lift acceleration of the second trajectory, is the lateral lift acceleration of the n-1th trajectory, is the lateral lift acceleration of the nth trajectory.
拉格朗日函数关于迭代参数y=[p;λ]的雅可比矩阵可表示为以下形式:The Jacobian matrix of the Lagrangian function with respect to the iteration parameter y = [ p ; λ ] It can be expressed as follows:
(15) (15)
拉格朗日函数关于迭代参数y=[p;λ]的海森矩阵可表示为以下形式:The Hessian matrix of the Lagrangian function with respect to the iteration parameter y = [ p ; λ ] It can be expressed as follows:
(16) (16)
其中,将、写作以下形式:Among them, , Write in the following format:
(17) (17)
(18) (18)
其中,、、、、、、、、、、、、、、、、、、、、、、、和均为海森阵元素;、、、、、、、、、、、、、、、、、、、、、、、和均为约束函数梯度元素in, , , , , , , , , , , , , , , , , , , , , , , , and All are Heisen array elements; , , , , , , , , , , , , , , , , , , , , , , , and These are all constraint function gradient elements
基于轨迹的解析解,解析求解式(15)、(16)中导数各个分量的具体形式,从而得到、的近似解析解。下面给出各个分量的解析计算。Based on the analytical solution of the trajectory, the specific forms of the derivative components in equations (15) and (16) are analytically solved to obtain , The approximate analytical solution of . The analytical calculations of each component are given below.
首先,根据解析解,介绍计算式(15)中F(p)的和各轨迹子段,用于求导,如下:First, based on the analytical solution, we introduce the calculation method of F ( p ) in equation (15). and each trajectory segment , used for derivation, as follows:
(19) (19)
(20) (20)
(21) (twenty one)
其中:为航向角解析解,为第二多项式为第三多项式、维多项式系数、第k段轨迹纵程。in: is the analytical solution of the heading angle, The second polynomial is the third polynomial, dimensional polynomial coefficients, The longitudinal course of the kth trajectory.
(22) (twenty two)
将高斯-勒让德积分公式写作求积节点处函数的累加和形式,,为求积系数和求积节点。本发明采用10阶勒让德多项式,由勒让德零点通过变量置换到积分区间上确定,同样由积分区间[-1,1]上的求积系数通过变量置换到各轨迹子段积分区间,即:Write the Gauss-Legendre integral formula as the cumulative sum of functions at the quadrature nodes, , The present invention adopts the 10th order Legendre polynomial, Legendre Zero Determined by replacing the variables on the integral interval, Similarly, the integral coefficient on the integral interval [-1,1] By replacing the variables to the integral interval of each trajectory sub-segment ,Right now:
(23) (twenty three)
然后,根据式(19)-式(21),式(15)、式(16)中各分量可解析求解如下所示:Then, according to formula (19)-formula (21), formula (15) and formula (16) Each component can be solved analytically as follows:
(24) (twenty four)
(25) (25)
(26) (26)
(27) (27)
(28) (28)
(29) (29)
(30) (30)
(31) (31)
其中,为约束函数梯度元素、为约束函数梯度元素、为多项式系数、为约束函数梯度元素、为约束函数梯度元素、为横程解析解、横向加速度、为约束函数梯度元素、为约束函数梯度元素、为约束函数梯度元素,式(25)-式(28)中,式(29)-式(31)中。in, is the gradient element of the constraint function, is the gradient element of the constraint function, are the polynomial coefficients, is the gradient element of the constraint function, is the gradient element of the constraint function, is the analytical solution for the horizontal process, Lateral acceleration, is the gradient element of the constraint function, is the gradient element of the constraint function, is the gradient element of the constraint function, in equations (25) to (28) , in formula (29)-formula (31) .
进一步,式(15)中拉格朗日函数关于剖面参数p的一阶导数可解析求解如下所示:Furthermore, the first-order derivative of the Lagrangian function in equation (15) with respect to the profile parameter p can be solved analytically as follows:
(32) (32)
(33) (33)
(34) (34)
其中,和均为雅可比矩阵元素,为第i段纵程,为约束函数,和均为剖面系数,为约束函数梯度元素,和均为协态,、和均为约束函数二阶导元素,和均为海森矩阵元素,i=1,…,n。最后,令,式(16)中拉格朗日函数关于剖面参数p的二阶导数可解析求解如下所示:in, and are all Jacobian matrix elements, is the i-th longitudinal section, is the constraint function, and are the section coefficients, is the gradient element of the constraint function, and All are cooperative. , and They are all second-order derivative elements of constraint functions. and are all Hessian matrix elements, i = 1,…, n . Finally, let , the second-order derivative of the Lagrangian function with respect to the profile parameter p in equation (16) can be solved analytically as follows:
(35) (35)
(36) (36)
(37) (37)
(38) (38)
(39) (39)
(40) (40)
通过上述推导,可以得到式(15)、式(16)中各个分量的解析形式,从而得到、的解析解,保证了在迭代过程中实时更新求解,直至牛顿法的收敛。Through the above derivation, we can get the analytical form of each component in equation (15) and equation (16), thus obtaining , The analytical solution of ensures that the solution is updated in real time during the iteration process until the Newton method converges.
3 实时轨迹规划参数化求解算法。3 Parameterized solution algorithm for real-time trajectory planning.
在多阶段轨迹参数规划定制化方法的基础上,为提升参数迭代的收敛范围,设计一种基于修正牛顿法的多阶段轨迹参数求解算法,完成实时轨迹规划。On the basis of the customized method of multi-stage trajectory parameter planning, in order to improve the convergence range of parameter iteration, a multi-stage trajectory parameter solving algorithm based on the modified Newton method is designed to complete real-time trajectory planning.
牛顿迭代法的一般表达式可表示为:The general expression of Newton's iteration method can be expressed as:
(41) (41)
其中,j为迭代次数,j=0时为迭代初值。Among them, j is the number of iterations, and j = 0 is the initial value of the iteration.
本发明采用定制化的修正牛顿法,扩大收敛范围,引入下降步长修正牛顿迭代过程,基于一维线搜索准则(Armjio准则)确保每次迭代结果都是下降过程。既保持了牛顿迭代的收敛速度,又能放宽对初始值选取的要求,提高迭代的收敛特性。The present invention adopts a customized modified Newton method to expand the convergence range and introduce a descending step length. The Newton iteration process is modified, and the one-dimensional line search criterion (Armjio criterion) is used to ensure that the result of each iteration is a descending process. This not only maintains the convergence speed of the Newton iteration, but also relaxes the requirements for the selection of initial values, thus improving the convergence characteristics of the iteration.
修正牛顿法将牛顿法的迭代公式修改如下:Modified Newton's method Modify the iterative formula of Newton's method as follows:
(42) (42)
当初值距离的根较远时,若无法满足:The initial value distance When the root is far away, if it cannot meet the following conditions:
(43) (43)
迭代将不收敛,一旦初始值进入收敛域内,牛顿法就有平方收敛的速度。因此,Armijo准则的目的就是选取迭代步长使式(43)成立。The iteration will not converge. Once the initial value enters the convergence domain, Newton's method converges at a quadratic rate. Therefore, the purpose of the Armijo criterion is to select the iteration step size. So equation (43) holds true.
令为y j 处的下降方向,根据一阶泰勒展开,若满足:make is the descending direction at y j . According to the first-order Taylor expansion, if it satisfies:
(44) (44)
则称步长满足Armjio准则,其中是泰勒展开式补足系数。Step length Satisfies the Armjio criterion, where are the complementary coefficients of the Taylor expansion.
构造一维线搜索,设置初始步长,若不满足式(44),则以为倍数递减,直到满足式(44)时停止,选择相应的即可。Construct a one-dimensional line search and set the initial step size , if it does not satisfy equation (44), then The multiple decreases until it satisfies formula (44), and then selects the corresponding That's it.
因此,得到禁飞区规避实时轨迹规划参数化求解算法如下。Therefore, the parameterized solution algorithm for real-time trajectory planning to avoid no-fly zones is obtained as follows.
初始化:规避路径的路径点个数n,HGV状态初值x 0,路径点横纵程、,终端速度,轨迹的同伦解析解,解析解。Initialization: the number of path points n of the avoidance path, the initial value of the HGV state x 0 , the horizontal and vertical ranges of the path points , , terminal velocity , the homotopy analytical solution of the trajectory , analytical solution .
1:令迭代次数j=0,设置修正牛顿法参数。1: Set the number of iterations j = 0 and set the parameters of the modified Newton method .
2:解析计算迭代剖面参数和拉格朗日乘子初值(式(13))。2: Analytical calculation of iterative profile parameters and initial values of Lagrange multipliers (Formula (13)).
3:解析计算拉格朗日函数关于迭代参数的雅可比矩阵(式(15))。3: Analytical calculation of Lagrangian function with respect to iteration parameters The Jacobian matrix (Formula (15)).
4:whiledo。4: while do.
5:解析计算拉格朗日函数关于迭代参数的海森矩阵(式(16))。5: Analytical calculation of Lagrangian function with respect to iteration parameters The Hessian matrix (Formula (16)).
6:更新剖面参数,得到(式(42))。6: Update the profile parameters and get (Formula (42)).
7:解析计算拉格朗日函数关于迭代参数的雅可比矩阵(式(15))。7: Analytical calculation of Lagrangian function with respect to iteration parameters The Jacobian matrix (Formula (15)).
8:whiledo。8: while do.
9:。9: .
10:更新剖面参数,得到(式(42))。10: Update the profile parameters and get (Formula (42)).
11:解析计算拉格朗日函数关于迭代参数的雅可比矩阵(式(15))。11: Analytical calculation of Lagrangian function with respect to iteration parameters The Jacobian matrix (Formula (15)).
12:endwhile。12: endwhile.
13:令j=j+1,y j =y j+1,。13: Let j = j +1, y j = y j +1 , .
14:。14: .
15:endwhile。15:endwhile.
16:returny j 。16: return y j .
算法步骤可归纳如下:The algorithm steps can be summarized as follows:
1)计算各迭代剖面参数和拉格朗日乘子初值。1) Calculate the initial values of each iterative profile parameter and Lagrange multiplier .
2)设置牛顿迭代初始步长。2) Set the initial step size of Newton iteration .
3)计算拉格朗日函数关于迭代参数的雅可比矩阵和海森矩阵,得到更新的参数。3) Calculate the Lagrangian function with respect to the iteration parameter The Jacobian matrix and the Hessian matrix , get the updated parameters .
4)计算,判断是否满足收敛容差ε n ,若满足,迭代停止,输出最优解,否则,执行步骤5)。4) Calculation , determine whether the convergence tolerance ε n is met. If so, the iteration stops and the optimal solution is output , otherwise, go to step 5).
5)采用2范数度量向量,判断步长是否满足Armjio准则,若满足,令j=j+1,=,返回步骤2),否则,不断令,更新参数,直至满足Armjio准则或充分小,令j=j+1,=,返回步骤2)。5) Use 2-norm to measure vector and determine step size Does it satisfy the Armjio criterion? If so, let j = j +1. = , return to step 2), otherwise, keep making , update the parameters , until the Armjio criterion is met or is sufficiently small, let j = j +1, = , return to step 2).
本发明提出了基于轨迹同伦解析解的实时轨迹规划问题的参数化建模、定制化与迭代求解方法,通过分段控制横纵向飞行剖面,得到横向机动最省的禁飞区规避轨迹。该方法将常规的轨迹规划最优控制问题转化为仅含2n+1个轨迹参数化表达式剖面参数的多阶段参数规划问题,迭代过程完全解析,代码完全可调可控,具备实时应用能力。The present invention proposes a parametric modeling, customization and iterative solution method for real-time trajectory planning problems based on trajectory homology analytical solutions. By controlling the lateral and longitudinal flight profiles in sections, a no-fly zone avoidance trajectory with the most economical lateral maneuvers is obtained. This method transforms the conventional trajectory planning optimal control problem into a multi-stage parameter planning problem containing only 2n+1 trajectory parameterized expression profile parameters. The iterative process is completely analytical, the code is fully adjustable and controllable, and has real-time application capabilities.
实施例2:一种计算机装置,包括:存储器、处理器以存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序以实现实施例1中的一种基于轨迹解析解的实时轨迹规划方法的步骤。Embodiment 2: A computer device comprises: a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor executes the computer program to implement the steps of a real-time trajectory planning method based on trajectory analytical solution in Embodiment 1.
实施例3:一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现实施例1中的一种基于轨迹解析解的实时轨迹规划方法的步骤。Embodiment 3: A computer-readable storage medium having a computer program stored thereon, which, when executed by a processor, implements the steps of a real-time trajectory planning method based on trajectory analytical solution in Embodiment 1.
实施例4:一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现实施例1中的一种基于轨迹解析解的实时轨迹规划方法的步骤。Embodiment 4: A computer program product comprises a computer program, which, when executed by a processor, implements the steps of a real-time trajectory planning method based on trajectory analytical solution in Embodiment 1.
实施例5:一种计算机设备,该计算机设备可以是数据库。该计算机设备包括处理器、存储器、输入/输出接口(Input/Output,简称I/O)和通信接口。其中,处理器、存储器和输入/输出接口通过系统总线连接,通信接口通过输入/输出接口连接到系统总线。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质和内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储待处理事务。该计算机设备的输入/输出接口用于处理器与外部设备之间交换信息。该计算机设备的通信接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现实施例1中的一种基于轨迹解析解的实时轨迹规划方法。Embodiment 5: A computer device, which may be a database. The computer device includes a processor, a memory, an input/output interface (Input/Output, referred to as I/O) and a communication interface. Among them, the processor, the memory and the input/output interface are connected through a system bus, and the communication interface is connected to the system bus through the input/output interface. Among them, the processor of the computer device is used to provide computing and control capabilities. The memory of the computer device includes a non-volatile storage medium and an internal memory. The non-volatile storage medium stores an operating system, a computer program and a database. The internal memory provides an environment for the operation of the operating system and the computer program in the non-volatile storage medium. The database of the computer device is used to store pending transactions. The input/output interface of the computer device is used to exchange information between the processor and an external device. The communication interface of the computer device is used to communicate with an external terminal through a network connection. When the computer program is executed by the processor, a real-time trajectory planning method based on trajectory analytical solution in Embodiment 1 is implemented.
需要说明的是,本发明所涉及的对象信息(包括但不限于对象设备信息、对象个人信息等)和数据(包括但不限于用于分析的数据、存储的数据、展示的数据等),均为经对象授权或者经过各方充分授权的信息和数据,且相关数据的收集、使用和处理需要遵守相关国家和地区的相关法律法规和标准。It should be noted that the object information (including but not limited to object device information, object personal information, etc.) and data (including but not limited to data used for analysis, stored data, displayed data, etc.) involved in the present invention are all information and data authorized by the object or fully authorized by all parties, and the collection, use and processing of relevant data must comply with relevant laws, regulations and standards of relevant countries and regions.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本发明所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-OnlyMemory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random AccessMemory,SRAM)或动态随机存取存储器(Dynamic RandomAccess Memory,DRAM)等。本发明所提供的各实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本发明所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。Those skilled in the art can understand that all or part of the processes in the above-mentioned embodiments can be completed by instructing the relevant hardware through a computer program, and the computer program can be stored in a non-volatile computer-readable storage medium. When the computer program is executed, it can include the processes of the embodiments of the above-mentioned methods. Among them, any reference to the memory, database or other medium used in the embodiments provided by the present invention can include at least one of non-volatile and volatile memory. Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive random access memory (ReRAM), magnetoresistive random access memory (MRAM), ferroelectric random access memory (FRAM), phase change memory (PCM), graphene memory, etc. Volatile memory can include random access memory (RAM) or external cache memory, etc. As an illustration and not limitation, RAM can be in various forms, such as static random access memory (SRAM) or dynamic random access memory (DRAM). The database involved in each embodiment provided by the present invention may include at least one of a relational database and a non-relational database. Non-relational databases may include distributed databases based on blockchains, etc., but are not limited to this. The processor involved in each embodiment provided by the present invention may be a general-purpose processor, a central processing unit, a graphics processor, a digital signal processor, a programmable logic device, a data processing logic device based on quantum computing, etc., but are not limited to this.
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments may be arbitrarily combined. To make the description concise, not all possible combinations of the technical features in the above embodiments are described. However, as long as there is no contradiction in the combination of these technical features, they should be considered to be within the scope of this specification.
本发明中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。The present invention uses specific examples to illustrate the principles and implementation methods of the present invention. The above examples are only used to help understand the method and core ideas of the present invention. At the same time, for those skilled in the art, according to the ideas of the present invention, there will be changes in the specific implementation methods and application scope. In summary, the content of this specification should not be understood as limiting the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410873553.1A CN118424296B (en) | 2024-07-02 | 2024-07-02 | A real-time trajectory planning method, device, medium and product based on trajectory analytical solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410873553.1A CN118424296B (en) | 2024-07-02 | 2024-07-02 | A real-time trajectory planning method, device, medium and product based on trajectory analytical solution |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118424296A true CN118424296A (en) | 2024-08-02 |
CN118424296B CN118424296B (en) | 2024-09-03 |
Family
ID=92310550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410873553.1A Active CN118424296B (en) | 2024-07-02 | 2024-07-02 | A real-time trajectory planning method, device, medium and product based on trajectory analytical solution |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118424296B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108387140A (en) * | 2018-01-19 | 2018-08-10 | 北京航空航天大学 | A kind of parsing reentry guidance method considering multiple no-fly zone constraints |
CN109508030A (en) * | 2018-11-27 | 2019-03-22 | 北京航空航天大学 | A kind of collaboration parsing reentry guidance method considering more no-fly zone constraints |
US20220111962A1 (en) * | 2020-10-12 | 2022-04-14 | Volocopter Gmbh | Aerial vehicle and method and computer-aided system for controlling an aerial vehicle |
CN116382343A (en) * | 2023-04-20 | 2023-07-04 | 北京航空航天大学 | Rapid generation method and device for obstacle avoidance track of aircraft |
CN117313233A (en) * | 2023-09-22 | 2023-12-29 | 哈尔滨工业大学 | Neural network-based boosting gliding aircraft emission data calculation method |
-
2024
- 2024-07-02 CN CN202410873553.1A patent/CN118424296B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108387140A (en) * | 2018-01-19 | 2018-08-10 | 北京航空航天大学 | A kind of parsing reentry guidance method considering multiple no-fly zone constraints |
CN109508030A (en) * | 2018-11-27 | 2019-03-22 | 北京航空航天大学 | A kind of collaboration parsing reentry guidance method considering more no-fly zone constraints |
US20220111962A1 (en) * | 2020-10-12 | 2022-04-14 | Volocopter Gmbh | Aerial vehicle and method and computer-aided system for controlling an aerial vehicle |
CN116382343A (en) * | 2023-04-20 | 2023-07-04 | 北京航空航天大学 | Rapid generation method and device for obstacle avoidance track of aircraft |
CN117313233A (en) * | 2023-09-22 | 2023-12-29 | 哈尔滨工业大学 | Neural network-based boosting gliding aircraft emission data calculation method |
Non-Patent Citations (1)
Title |
---|
张源 等: "复杂禁飞区高超声速飞行器路径-轨迹双层规划", 宇航学报, vol. 43, no. 05, 31 May 2022 (2022-05-31), pages 615 - 627 * |
Also Published As
Publication number | Publication date |
---|---|
CN118424296B (en) | 2024-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jones et al. | Optimal control of nonlinear groundwater hydraulics using differential dynamic programming | |
CN109885891A (en) | A GPU parallel acceleration trajectory planning method for smart cars | |
Han et al. | An adaptive geometry parametrization for aerodynamic shape optimization | |
CN117581166A (en) | Random nonlinear predictive controller and method based on uncertainty propagation by means of Gaussian hypothesis density filters | |
CN105159294B (en) | For the design method of fork truck fuzzy logic motion controller | |
CN110412877A (en) | An Optimal Control Method for Path Planning of Shipboard Aircraft Deck Based on NSP Algorithm | |
CN109460629A (en) | A kind of cooling fan performance optimization method based on approximate model method | |
CN108958238A (en) | A kind of robot area Dian Dao paths planning method based on covariant cost function | |
CN102682172B (en) | Numerous-parameter optimization design method based on parameter classification for supercritical aerofoil | |
CN112857385B (en) | A fast local path planning method for unmanned vehicles based on non-uniform grid model | |
CN114200936B (en) | AGV real-time path planning method based on optimal control and width learning | |
CN107123265A (en) | A kind of traffic status of express way method of estimation based on parallel computation | |
Li et al. | Data‐driven urban traffic model‐free adaptive iterative learning control with traffic data dropout compensation | |
Wang et al. | Path tracking method based on model predictive control and genetic algorithm for autonomous vehicle | |
Yu et al. | Environmental landscape art design using dynamic nonlinear parameterization | |
Bai et al. | Motion planning and tracking control of autonomous vehicle based on improved A∗ algorithm | |
Yin et al. | An anti-disturbance lane-changing trajectory tracking control method combining extended Kalman filter and robust tube-based model predictive control | |
CN118424296B (en) | A real-time trajectory planning method, device, medium and product based on trajectory analytical solution | |
CN107491841A (en) | Nonlinear optimization method and storage medium | |
CN108197368B (en) | Method for simply and conveniently calculating geometric constraint and weight function of complex aerodynamic shape of aircraft | |
Kalra et al. | Automated scheme for linearisation points selection in TPWL method applied to non‐linear circuits | |
Winter et al. | NURBS-based shape and parameter optimization of structural components with an adaptive amount of control points | |
Liu et al. | SOMTP: A Self-Supervised Learning-Based Optimizer for MPC-Based Safe Trajectory Planning Problems in Robotics | |
Jahanpour | High speed contouring enhanced with C2 PH quintic spline curves | |
Zhang et al. | An NSGA-II-based multi-objective trajectory planning method for autonomous driving |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |