CN118379449A - Space target data set construction method and system - Google Patents
Space target data set construction method and system Download PDFInfo
- Publication number
- CN118379449A CN118379449A CN202410489722.1A CN202410489722A CN118379449A CN 118379449 A CN118379449 A CN 118379449A CN 202410489722 A CN202410489722 A CN 202410489722A CN 118379449 A CN118379449 A CN 118379449A
- Authority
- CN
- China
- Prior art keywords
- noise
- space
- scene
- earth
- satellite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010276 construction Methods 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 34
- 230000000694 effects Effects 0.000 claims abstract description 30
- 238000005286 illumination Methods 0.000 claims abstract description 12
- 238000012545 processing Methods 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims description 33
- 230000036544 posture Effects 0.000 claims description 26
- 241000475481 Nebula Species 0.000 claims description 21
- 238000004422 calculation algorithm Methods 0.000 claims description 17
- 238000009826 distribution Methods 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 claims description 11
- 230000004927 fusion Effects 0.000 claims description 10
- 238000013519 translation Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 238000009827 uniform distribution Methods 0.000 claims description 3
- 238000012827 research and development Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 238000013515 script Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 7
- 238000004088 simulation Methods 0.000 description 7
- 238000013135 deep learning Methods 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 238000012549 training Methods 0.000 description 5
- 230000006399 behavior Effects 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000008676 import Effects 0.000 description 3
- 230000008447 perception Effects 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 108010068977 Golgi membrane glycoproteins Proteins 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/05—Geographic models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T15/00—3D [Three Dimensional] image rendering
- G06T15/04—Texture mapping
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T15/00—3D [Three Dimensional] image rendering
- G06T15/50—Lighting effects
- G06T15/506—Illumination models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/20—Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Graphics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Geometry (AREA)
- Architecture (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Processing Or Creating Images (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及数据集构建技术领域,具体涉及一种空间目标数据集构建方法及系统。The present invention relates to the technical field of data set construction, and in particular to a method and system for constructing a space target data set.
背景技术Background technique
随着世界各国对空间技术的日益关注,空间态势感知的重要性日渐上升。针对以卫星为主的重要空间目标的攻击、保护和在轨服务已成为世界各国航天技术的重要发展方向,而基于视觉的空间目标行为感知是其中的关键环节。空间目标行为感知涉及空间目标的位姿估计、关键部件的识别以及空间目标的识别,对于航天器的导航、定位、以及在轨服务等操作至关重要。这一技术能够帮助更好地理解和控制航天器的动态行为,为任务规划和决策提供支持。随着人工智能和机器学习技术的迅速发展,空间目标位姿估计以及目标识别技术也得到了显著的进步,深度学习模型已被成功应用于从复杂背景中识别目标形态,并估计其位姿参数。这些模型能够从大量的训练数据中学习到目标的特征,包括其形状、大小、纹理等,并通过这些特征来估计目标的类型、位置和姿态。As countries around the world pay more and more attention to space technology, the importance of space situational awareness is increasing. Attacking, protecting and on-orbit servicing important space targets, mainly satellites, has become an important development direction of space technology in countries around the world, and vision-based space target behavior perception is a key link. Space target behavior perception involves the estimation of the pose of space targets, the identification of key components and the identification of space targets, which is crucial for the navigation, positioning and on-orbit servicing of spacecraft. This technology can help better understand and control the dynamic behavior of spacecraft and provide support for mission planning and decision-making. With the rapid development of artificial intelligence and machine learning technologies, space target pose estimation and target recognition technologies have also made significant progress. Deep learning models have been successfully applied to identify target morphology from complex backgrounds and estimate their pose parameters. These models can learn the characteristics of targets from a large amount of training data, including their shape, size, texture, etc., and estimate the type, position and pose of the target through these characteristics.
然而,基于深度学习的空间目标行为感知研究需要大量的空间目标数据。国内外学者一般采用真实图片和仿真图片两种思路,其中,真实图片卫星细节度高,而且常带有地球背景,但是其数量较少,难以满足深度学习需要大量数据集的要求。因此一些学者基于STK等软件仿真卫星运行于地球轨道,截取图片建立卫星数据集,但是受限于卫星和地球的建模质量,构建的卫星图片与真实图片相差较大。使用此种仿真图片训练完成的深度学习算法难以应用于真实在轨卫星。因此有必要研究较为真实的、数量较大的空间目标数据集构建方法,克服真实图片数量较少和仿真图片真实度较低的缺点。However, the study of space target behavior perception based on deep learning requires a large amount of space target data. Domestic and foreign scholars generally adopt two ideas: real pictures and simulated pictures. Among them, real pictures have high satellite details and often have the background of the earth, but their number is small, which makes it difficult to meet the requirements of deep learning for a large number of data sets. Therefore, some scholars simulate satellites running in the earth's orbit based on software such as STK, and capture pictures to establish satellite data sets. However, due to the modeling quality of satellites and the earth, the constructed satellite pictures are quite different from real pictures. The deep learning algorithm trained with this kind of simulated pictures is difficult to apply to real satellites in orbit. Therefore, it is necessary to study the construction method of a relatively realistic and large number of space target data sets to overcome the shortcomings of a small number of real pictures and low authenticity of simulated pictures.
现有空间目标位姿估计数据集在规模、多样性和真实性方面存在的局限性,这些限制在很大程度上阻碍了空间飞行器导航的发展,以及深度学习算法在空间目标识别、跟踪和交互模拟中的应用。特别是,现有数据集往往因其规模较小、场景单一或缺乏真实世界复杂性而难以满足日益增长的技术需求。此外,获取大规模、高质量和多样化的空间目标位姿数据通常需要复杂的实验设计,这进一步限制了研究和应用的发展。The limitations of existing space object pose estimation datasets in terms of scale, diversity, and authenticity have largely hindered the development of space vehicle navigation and the application of deep learning algorithms in space object recognition, tracking, and interactive simulation. In particular, existing datasets are often small in scale, single in scene, or lack real-world complexity, which makes it difficult to meet the growing technical needs. In addition, obtaining large-scale, high-quality, and diverse space object pose data usually requires complex experimental design, which further limits the development of research and application.
发明内容Summary of the invention
鉴于以上问题,本发明提出一种空间目标数据集构建方法及系统。In view of the above problems, the present invention proposes a method and system for constructing a space target dataset.
根据本发明的一方面,提出一种空间目标数据集构建方法,该方法包括:According to one aspect of the present invention, a method for constructing a space target dataset is proposed, the method comprising:
步骤一、利用三维建模软件建立多个卫星空间几何模型;Step 1: Use 3D modeling software to build multiple satellite space geometry models;
步骤二、建立空间目标在轨场景,所述场景包括:包含地球背景的场景、包含不同太阳光照角度及效果的场景、引入深空背景噪声的场景;Step 2: Establishing an on-orbit scene of a space target, wherein the scene includes: a scene with an earth background, a scene with different sunlight angles and effects, and a scene with deep space background noise introduced;
步骤三、设置相关参数,使得多个卫星空间几何模型在所述空间目标在轨场景中进行运动,进而获得对应多个卫星、不同位姿的多组图片;所述参数包括旋转角速度、转动惯量;Step 3: setting relevant parameters so that multiple satellite space geometric models move in the space target on-orbit scene, thereby obtaining multiple sets of pictures corresponding to multiple satellites and different postures; the parameters include rotation angular velocity and moment of inertia;
步骤四、对所述对应多个卫星、不同位姿的多组图片进行处理,获得空间目标数据集。Step 4: Process the multiple groups of images corresponding to the multiple satellites and different postures to obtain a space target data set.
进一步地,所述包含地球背景的场景建立如下:创建地球模型,调整地球模型与卫星空间几何模型大小比例;将纹理图添加到地球模型的材质属性上,并调整透明度和饱和度来达到实现真实空间地球背景,其中纹理图类型包括颜色图、高度图、云层图;设置地球阴影部分光照和噪声的相关参数,其中地球阴影部分光照的参数包括灯光类型、颜色值、强度、位置、角度,噪声的参数包括噪声纹理和透明度;设置自转角速度、自转轴位置以控制地球模型旋转,进而实现地球自转场景。Furthermore, the scene containing the earth background is established as follows: create an earth model, adjust the size ratio of the earth model and the satellite space geometric model; add a texture map to the material properties of the earth model, and adjust the transparency and saturation to achieve a real space earth background, wherein the texture map types include color maps, height maps, and cloud maps; set relevant parameters of the lighting and noise of the shadow part of the earth, wherein the parameters of the lighting of the shadow part of the earth include light type, color value, intensity, position, and angle, and the parameters of the noise include noise texture and transparency; set the rotation angular velocity and rotation axis position to control the rotation of the earth model, thereby realizing the earth rotation scene.
进一步地,所述包含不同太阳光照角度及效果的场景建立如下:建立太阳模型,并调整太阳球体的比例;配置太阳球体的自发光材质颜色;设置定向光源在太阳球体球心位置、定向光源颜色;调整定向光源强度;设置定向光源与地球模型表面夹角范围。Furthermore, the scene containing different sunlight angles and effects is established as follows: establish a solar model and adjust the proportion of the solar sphere; configure the self-luminous material color of the solar sphere; set the directional light source at the center of the solar sphere and the color of the directional light source; adjust the intensity of the directional light source; set the angle range between the directional light source and the surface of the earth model.
进一步地,所述引入深空背景噪声的场景建立如下:创建深空背景,并设置天空盒材质为深空星系;采用改进融合噪声算法来生成随机且在视觉上连续的深空背景噪声,进而生成噪声贴图。Furthermore, the scene introducing deep space background noise is established as follows: creating a deep space background and setting the sky box material to a deep space galaxy; using an improved fusion noise algorithm to generate random and visually continuous deep space background noise, and then generating a noise map.
进一步地,所述采用改进融合噪声算法来生成随机且在视觉上连续的噪声包括:选择噪声源,所述噪声源包括使用改进柏林噪声生成恒星的基础分布、利用Simplex噪声增加星云细节和云雾效果、使用值噪声添加恒星高光和闪耀效果;定义权重函数,所述权重函数包括对应基础恒星场的权重Wstar(x,y)、对应星云细节的权重Wnebula(x,y)、对应高光和闪耀的权重Wglow(x,y);将噪声和权重函数叠加,生成深空背景噪声如下:Further, the use of the improved fusion noise algorithm to generate random and visually continuous noise includes: selecting a noise source, the noise source includes using improved Perlin noise to generate a basic distribution of stars, using Simplex noise to increase nebula details and fog effects, and using value noise to add star highlights and sparkle effects; defining a weight function, the weight function includes a weight W star (x, y) corresponding to the basic star field, a weight W nebula (x, y) corresponding to the nebula details, and a weight W glow (x, y) corresponding to the highlight and sparkle; superimposing the noise and the weight function to generate deep space background noise as follows:
式中,Noiseperlin(x,y)表示柏林噪声分布;Noisesimplex(x,y)表示Simplex噪声分布;Noisevalue(x,y)表示值噪声分布。Wherein, Noise perlin (x, y) represents Perlin noise distribution; Noise simplex (x, y) represents Simplex noise distribution; Noise value (x, y) represents value noise distribution.
进一步地,所述对应基础恒星场的权重Wstar(x,y)按照以下公式设置:Furthermore, the weight W star (x, y) of the corresponding basic star field is set according to the following formula:
Wstar(x,y)=1-Smootstep(Noiseperlin(x,y))W star (x,y)=1-Smootstep(Noise perlin (x,y))
式中,Smootstep表示平滑阶跃函数,用于平滑噪声值的过渡;Where Smootstep represents a smooth step function, which is used to smooth the transition of noise values;
所述对应星云细节的权重Wnebula(x,y)按照以下公式设置:The weight W nebula (x, y) corresponding to the nebula detail is set according to the following formula:
Wnebula(x,y)=Noisesimplex(x,y)α W nebula (x,y)=Noise simplex (x,y) α
式中,α>1表示增加局部对比度的指数;In the formula, α>1 represents an exponential increase in local contrast;
所述对应高光和闪耀的权重Wglow(x,y)按照以下公式设置:The weight W glow (x, y) corresponding to highlight and shine is set according to the following formula:
Wglow(x,y)=Noisevalue(x,y)>sW glow (x,y)=Noise value (x,y)>s
式中,s∈(0,1)表示随机阈值。Where s∈(0,1) represents a random threshold.
进一步地,所述设置相关参数,使得多个卫星空间几何模型在所述空间目标在轨场景中进行运动包括:控制改变卫星在所述空间目标在轨场景中的位置和旋转角速度,所述旋转角速度在卫星本体坐标系的三个轴上均有分量,三轴的角速度满足欧拉公式;利用相机模拟拍摄图像,获得对应多个卫星、不同位姿的多组图片;其中,引入随机扰动项,根据以下公式动态调整旋转角速度:Further, the setting of relevant parameters so that the multiple satellite space geometric models move in the space target on-orbit scene includes: controlling the change of the position and rotational angular velocity of the satellite in the space target on-orbit scene, wherein the rotational angular velocity has components on the three axes of the satellite body coordinate system, and the angular velocities of the three axes satisfy the Euler formula; using a camera to simulate shooting images to obtain multiple groups of pictures corresponding to multiple satellites and different postures; wherein a random disturbance term is introduced to dynamically adjust the rotational angular velocity according to the following formula:
ωi(t)=ai+bi·t+ci·sin(di·θi(t))ω i (t)=a i +b i ·t+c i ·sin(d i ·θ i (t))
式中,i表示偏航角、俯仰角、滚转角中的一个通道;ai、bi、ci和di分别代表初速度、加速度、姿态影响系数和姿态影响的周期性调制因素;θi(t)表示t时刻的欧拉角,且满足下式:Where i represents one channel among the yaw angle, pitch angle and roll angle; a i , b i , c i and d i represent the initial velocity, acceleration, attitude influence coefficient and periodic modulation factor of attitude influence respectively; θ i (t) represents the Euler angle at time t and satisfies the following formula:
θi(t+Δt)=θi(t)+(ωi(t)+∈i(t))Δtθ i (t+Δt)=θ i (t)+(ω i (t)+∈ i (t))Δt
其中Δt表示时间间隔;∈i(t)表示随机扰动项,且满足均匀分布U:∈i(t)~U(-δi(θi(t),t),δi(θi(t),t)),δi表示与扰动强度、当前姿态及时刻t相关的动态调整函数。Where Δt represents the time interval; ∈ i (t) represents the random disturbance term and satisfies the uniform distribution U: ∈ i (t)~U(-δ i (θ i (t),t),δ i (θ i (t),t)), δ i represents the dynamic adjustment function related to the disturbance intensity, current posture and time t.
进一步地,所述对应多个卫星、不同位姿的多组图片进行处理,获得空间目标数据集包括:获取卫星和相机的初始位置和姿态;以卫星本体坐标系和相机本体坐标系作为参考点,计算旋转矩阵和平移向量,包括:获取卫星相对于其自身本体坐标系的俯仰角、偏航角和翻滚角,根据这些角度值构造旋转矩阵如下:R=Ryaw(θyaw)·Rpitch(θpitch)·Rroll(θroll),其中Ryaw(θyaw)表示绕Y轴旋转,Rpitch(θpitch)表示绕X轴旋转,Rroll(θroll)表示绕Z轴旋转,根据旋转矩阵生成姿态数据;根据卫星本体坐标系的中心点坐标和相机本体坐标系的中心点坐标计算平移向量,根据平移向量生成位置数据。Further, the processing of multiple groups of pictures corresponding to multiple satellites and different postures to obtain a space target data set includes: obtaining the initial position and posture of the satellite and the camera; using the satellite body coordinate system and the camera body coordinate system as reference points, calculating the rotation matrix and the translation vector, including: obtaining the pitch angle, yaw angle and roll angle of the satellite relative to its own body coordinate system, constructing a rotation matrix according to these angle values as follows: R=R yaw (θ yaw )·R pitch (θ pitch )·R roll (θ roll ), wherein R yaw (θ yaw ) represents a rotation about the Y axis, R pitch (θ pitch ) represents a rotation about the X axis, and R roll (θ roll ) represents a rotation about the Z axis, and generating posture data according to the rotation matrix; calculating the translation vector according to the coordinates of the center point of the satellite body coordinate system and the coordinates of the center point of the camera body coordinate system, and generating position data according to the translation vector.
根据本发明的另一方面,提出一种空间目标数据集构建系统,该系统包括:According to another aspect of the present invention, a space target dataset construction system is provided, the system comprising:
模型建立模块,其配置成利用三维建模软件建立多个卫星空间几何模型;A model building module configured to build a plurality of satellite space geometric models using three-dimensional modeling software;
场景建立模块,其配置成建立空间目标在轨场景,所述场景包括:包含地球背景的场景、包含不同太阳光照角度及效果的场景、引入深空背景噪声的场景;A scene establishment module, configured to establish a space target on-orbit scene, the scene including: a scene containing the earth background, a scene containing different sunlight angles and effects, and a scene introducing deep space background noise;
图像获取模块,其配置成设置相关参数,使得多个卫星空间几何模型在所述空间目标在轨场景中进行运动,进而获得对应多个卫星、不同位姿的多组图片;所述参数包括旋转角速度、转动惯量;An image acquisition module is configured to set relevant parameters so that multiple satellite space geometric models move in the space target on-orbit scene, thereby obtaining multiple sets of pictures corresponding to multiple satellites and different postures; the parameters include rotation angular velocity and moment of inertia;
数据集构建模块,其配置成对所述对应多个卫星、不同位姿的多组图片进行处理,获得空间目标数据集。The data set construction module is configured to process the multiple groups of pictures corresponding to the multiple satellites and in different positions to obtain a space target data set.
进一步地,所述场景建立模块中所述包含地球背景的场景建立如下:创建地球模型,调整地球模型与卫星空间几何模型大小比例;将纹理图添加到地球模型的材质属性上,并调整透明度和饱和度来达到实现真实空间地球背景,其中纹理图类型包括颜色图、高度图、云层图;设置地球阴影部分光照和噪声的相关参数,其中地球阴影部分光照的参数包括灯光类型、颜色值、强度、位置、角度,噪声的参数包括噪声纹理和透明度;设置自转角速度、自转轴位置以控制地球模型旋转,进而实现地球自转场景;Furthermore, the scene including the earth background in the scene establishment module is established as follows: creating an earth model, adjusting the size ratio of the earth model and the satellite space geometric model; adding a texture map to the material properties of the earth model, and adjusting the transparency and saturation to achieve the real space earth background, wherein the texture map types include color maps, height maps, and cloud maps; setting the relevant parameters of the illumination and noise of the shadow part of the earth, wherein the parameters of the illumination of the shadow part of the earth include light type, color value, intensity, position, angle, and the parameters of the noise include noise texture and transparency; setting the rotation angular velocity and the rotation axis position to control the rotation of the earth model, thereby realizing the earth rotation scene;
所述包含不同太阳光照角度及效果的场景建立如下:建立太阳模型,并调整太阳球体的比例;配置太阳球体的自发光材质颜色;设置定向光源在太阳球体球心位置、定向光源颜色;调整定向光源强度;设置定向光源与地球模型表面夹角范围;The scene containing different sunlight angles and effects is established as follows: establish a sun model and adjust the proportion of the sun sphere; configure the self-luminous material color of the sun sphere; set the directional light source at the center of the sun sphere and the color of the directional light source; adjust the intensity of the directional light source; set the angle range between the directional light source and the surface of the earth model;
所述引入深空背景噪声的场景建立如下:创建深空背景,并设置天空盒材质为深空星系;采用改进融合噪声算法来生成随机且在视觉上连续的深空背景噪声,进而生成噪声贴图。The scene introducing deep space background noise is established as follows: creating a deep space background and setting the sky box material to a deep space galaxy; using an improved fusion noise algorithm to generate random and visually continuous deep space background noise, and then generating a noise map.
本发明的有益技术效果是:The beneficial technical effects of the present invention are:
本发明提出一种空间目标数据集构建方法及系统,在性能、精度、效率以及成本方面相比现有技术具有显著优势。具体来说,第一,大幅提高了数据集的规模和多样性:现有技术通常依赖于有限的物理实验或现场测量来获取数据,导致数据集规模小且场景单一,本发明能够生成包含数万到数百万个数据点的大规模数据集,覆盖从地球近地轨道到深空的多种场景,这种规模的扩展和场景的多样性对于训练和验证高性能空间目标跟踪算法至关重要;第二,显著提升了数据精度和真实性:现有数据集往往缺乏真实环境下的复杂性,影响深度学习网络对真实空间三维目标的泛化能力,本发明通过精确模拟空间环境中的物理特性(如光照变化、运动动态等),生成高度真实的数据集,模拟数据与实际观测数据之间的误差可以控制在3%以内,显著提高了数据的应用价值和算法的泛化能力,有助于提高训练网络对真实场景下的空间目标的识别能力、位姿估计能力;第三,显著降低了数据获取成本和时间:传统方法获取高质量空间目标数据成本高,周期长,本发明能在数小时内自动化生成完整的数据集,而传统方法可能需要数月乃至数年的时间,同时,成本仅为传统数据获取方法的5%以内,极大降低了研究和开发的门槛。The present invention proposes a method and system for constructing a space target dataset, which has significant advantages over the existing technologies in terms of performance, accuracy, efficiency and cost. Specifically, first, the scale and diversity of the dataset are greatly improved: the existing technologies usually rely on limited physical experiments or field measurements to obtain data, resulting in small datasets and single scenes. The present invention can generate large-scale datasets containing tens of thousands to millions of data points, covering a variety of scenes from low-Earth orbit to deep space. This scale expansion and scene diversity are crucial for training and verifying high-performance space target tracking algorithms; second, the data accuracy and authenticity are significantly improved: existing datasets often lack the complexity of real environments, which affects the generalization ability of deep learning networks for real space three-dimensional targets. The present invention accurately simulates the physical environment in space. Characteristics (such as lighting changes, motion dynamics, etc.) can be used to generate highly realistic data sets. The error between simulated data and actual observed data can be controlled within 3%, which significantly improves the application value of the data and the generalization ability of the algorithm, and helps to improve the ability of the training network to recognize and estimate the position and posture of spatial targets in real scenes; third, it significantly reduces the cost and time of data acquisition: the traditional method of obtaining high-quality spatial target data is costly and time-consuming. The present invention can automatically generate a complete data set within a few hours, while the traditional method may take months or even years. At the same time, the cost is only less than 5% of the traditional data acquisition method, which greatly reduces the threshold for research and development.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
本发明可以通过参考下文中结合附图所给出的描述而得到更好的理解,所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分,而且用来进一步举例说明本发明的优选实施例和解释本发明的原理和优点。The present invention can be better understood by referring to the description given below in conjunction with the accompanying drawings, which together with the following detailed description are included in this specification and form a part of this specification, and are used to further illustrate the preferred embodiments of the present invention and explain the principles and advantages of the present invention.
图1是本发明实施例所述的一种空间目标位姿数据集构建方法的流程图。FIG1 is a flow chart of a method for constructing a space target pose dataset according to an embodiment of the present invention.
图2是本发明实施例中建立的卫星模型示例图;其中(a)对应DAWN卫星模型;(b)对应STARLINK卫星模型;(c)对应James Webb Space Telescope卫星模型。FIG. 2 is an example diagram of satellite models established in an embodiment of the present invention; wherein (a) corresponds to the DAWN satellite model; (b) corresponds to the STARLINK satellite model; and (c) corresponds to the James Webb Space Telescope satellite model.
图3是本发明实施例中地球背景仿真示意图。FIG. 3 is a schematic diagram of earth background simulation in an embodiment of the present invention.
图4是本发明实施例中太阳光照角示意图。FIG. 4 is a schematic diagram of the solar illumination angle in an embodiment of the present invention.
图5是本发明实施例中带有星光噪声的深空背景图。FIG. 5 is a deep space background image with starlight noise according to an embodiment of the present invention.
图6是本发明实施例中DAWN卫星在轨某一姿态示意图。FIG6 is a schematic diagram of a certain posture of a DAWN satellite in orbit according to an embodiment of the present invention.
图7是本发明实施例中DAWN卫星在轨另一姿态示意图。FIG. 7 is a schematic diagram of another posture of the DAWN satellite in orbit according to an embodiment of the present invention.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明方案,在下文中将结合附图对本发明的示范性实施方式或实施例进行描述。显然,所描述的实施方式或实施例仅仅是本发明一部分的实施方式或实施例,而不是全部的。基于本发明中的实施方式或实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式或实施例,都应当属于本发明保护的范围。In order to enable those skilled in the art to better understand the scheme of the present invention, exemplary implementations or embodiments of the present invention will be described below in conjunction with the accompanying drawings. Obviously, the described implementations or embodiments are only implementations or embodiments of a part of the present invention, not all of them. Based on the implementations or embodiments of the present invention, all other implementations or embodiments obtained by ordinary technicians in the field without creative work should fall within the scope of protection of the present invention.
本发明的目的是提供一种能够大规模生产高质量、多样化且真实的空间目标位姿数据集的方法,该方法可为空间飞行器的导航、自主控制、深度学习训练和空间科学研究等领域提供强大的数据支持,从而推动这些领域的技术进步和应用拓展。The purpose of this invention is to provide a method that can mass-produce high-quality, diverse and realistic space target pose data sets, which can provide strong data support for fields such as space vehicle navigation, autonomous control, deep learning training and space science research, thereby promoting technological progress and application expansion in these fields.
本发明实施例提供了一种空间目标位姿数据集构建方法,如图1所示,所述方法包括:An embodiment of the present invention provides a method for constructing a space target pose dataset, as shown in FIG1 , the method comprising:
步骤一、利用三维建模软件建立多个卫星空间几何模型;Step 1: Use 3D modeling software to build multiple satellite space geometry models;
步骤二、建立空间目标在轨场景,所述场景包括:包含地球背景的场景、包含不同太阳光照角度及效果的场景、引入深空背景噪声的场景;Step 2: Establishing an on-orbit scene of a space target, wherein the scene includes: a scene with an earth background, a scene with different sunlight angles and effects, and a scene with deep space background noise introduced;
步骤三、设置相关参数,使得多个卫星空间几何模型在所述空间目标在轨场景中进行运动,进而获得对应多个卫星、不同位姿的多组图片;所述参数包括旋转角速度、转动惯量;Step 3: setting relevant parameters so that multiple satellite space geometric models move in the space target on-orbit scene, thereby obtaining multiple sets of pictures corresponding to multiple satellites and different postures; the parameters include rotation angular velocity and moment of inertia;
步骤四、对所述对应多个卫星、不同位姿的多组图片进行处理,获得空间目标数据集。Step 4: Process the multiple groups of images corresponding to the multiple satellites and different postures to obtain a space target data set.
方法始于步骤一。在步骤一中,利用三维建模软件建立多个卫星空间几何模型。The method starts from step 1. In step 1, a plurality of satellite space geometric models are established by using three-dimensional modeling software.
根据本发明实施例,基于三维建模软件,参照卫星结构图、尺寸图和示意图建立精细的卫星几何模型,按照尺寸要求建立卫星本体、天线、太阳能帆板、敏感元件(如高精度镜头、激光雷达)、天线等卫星组件,并将各组件按照卫星结构图组装起来,各组件都固定在卫星本体上。According to an embodiment of the present invention, based on three-dimensional modeling software, a detailed satellite geometric model is established with reference to the satellite structure diagram, dimension diagram and schematic diagram, and satellite components such as the satellite body, antenna, solar panels, sensitive elements (such as high-precision lenses, lidar), antenna, etc. are established according to size requirements, and the components are assembled according to the satellite structure diagram, and each component is fixed on the satellite body.
建立好模型结构后,需要对模型纹理和材质进行设置,为不同的组件分配不同的材质,以达到更加真实的效果。从NASA官网、Satellite Tool Kit(STK)或其他可靠源收集卫星模型的图片和资料。利用参考图片确定卫星的材料类型和颜色方案。基于收集的参考图片,使用图像编辑软件(如Adobe Photoshop或GIMP)制作或修改纹理贴图。这些贴图将包括卫星的各个部件的表面细节,比如金属质感、标识、损耗痕迹等。同时创建无缝纹理以避免在模型上出现明显的接缝。在三维建模软件的材质设置中指定贴图作为漫反射、镜面反射或法线贴图。After the model structure is established, the model texture and material need to be set, and different materials need to be assigned to different components to achieve a more realistic effect. Collect pictures and information of satellite models from NASA's official website, Satellite Tool Kit (STK) or other reliable sources. Use reference pictures to determine the material type and color scheme of the satellite. Based on the collected reference pictures, use image editing software (such as Adobe Photoshop or GIMP) to create or modify texture maps. These maps will include surface details of various parts of the satellite, such as metal texture, logos, signs of wear and tear, etc. At the same time, create seamless textures to avoid obvious seams on the model. Specify the map as a diffuse, specular or normal map in the material settings of the 3D modeling software.
细化模型视觉效果,对目标中金属材质的部件,设置表面金属度、高光、光泽、糙度为0.5。由于太阳能帆板的表面纹理比较丰富,对太阳能帆板表面纹理细化,将原本整体、光滑的太阳帆板,细化为与真实模型相似度较高的纹理丰富的帆板。Refine the model visual effect, set the surface metalness, highlight, gloss, and roughness of the metal material parts in the target to 0.5. Since the surface texture of the solar panels is relatively rich, the surface texture of the solar panels is refined, and the original overall and smooth solar panels are refined into panels with rich textures that are more similar to the real model.
模型建立完成后,导出为FBX格式的文件。建立的模型如图2(a)、2(b)、2(c)所示。After the model is built, it is exported as a file in FBX format. The built model is shown in Figures 2(a), 2(b), and 2(c).
然后执行步骤二,在步骤二中,建立空间目标在轨场景,所述场景包括:包含地球背景的场景、包含不同太阳光照角度及效果的场景、引入深空背景噪声的场景。Then, step 2 is executed. In step 2, an on-orbit scene of a space target is established. The scene includes: a scene containing an earth background, a scene containing different sunlight angles and effects, and a scene introducing deep space background noise.
根据本发明实施例,所述包含地球背景的场景建立如下:创建地球模型,调整地球模型与卫星空间几何模型大小比例;将纹理图添加到地球模型的材质属性上,并调整透明度和饱和度来达到实现真实空间地球背景,其中纹理图类型包括颜色图、高度图、云层图;设置地球阴影部分光照和噪声的相关参数,其中地球阴影部分光照的参数包括灯光类型、颜色值、强度、位置、角度,噪声的参数包括噪声纹理和透明度;设置自转角速度、自转轴位置以控制地球模型旋转,进而实现地球自转场景。According to an embodiment of the present invention, the scene including the earth background is established as follows: create an earth model, adjust the size ratio of the earth model and the satellite space geometric model; add a texture map to the material properties of the earth model, and adjust the transparency and saturation to achieve a real space earth background, wherein the texture map types include color maps, height maps, and cloud maps; set relevant parameters of the lighting and noise of the shadow part of the earth, wherein the parameters of the lighting of the shadow part of the earth include light type, color value, intensity, position, and angle, and the parameters of the noise include noise texture and transparency; set the rotation angular velocity and the rotation axis position to control the rotation of the earth model, thereby realizing the earth rotation scene.
具体地,建立地球背景需要考虑多种因素,如表面大气层透明度及饱和度、地球自转角速度、地球暗面灯光噪声合成等。Specifically, establishing the earth background requires considering many factors, such as the transparency and saturation of the surface atmosphere, the angular velocity of the earth's rotation, and the synthesis of light noise on the dark side of the earth.
首先,创建地球模型,例如,在Unity中创建一个球体来代表地球。可以通过Unity的GameObject菜单选择3D Object模块中的Sphere来创建一个基础的球体模型。First, create a model of the Earth. For example, create a sphere in Unity to represent the Earth. You can create a basic sphere model by selecting Sphere in the 3D Object module from Unity's GameObject menu.
接着,导入卫星空间几何模型文件,通过在Unity4的Inspector视图中调整模型的位置、旋转和缩放等属性,来调整模型在场景中的表现,同时设置目标本体坐标系的三个轴(X轴、Y轴、Z轴),调整地球模型与空间目标模型大小比例,需要通过调整球体的Scale(缩放比例)属性,以符合地球的相对大小,按照实际比例(地球与空间目标大小相对比例)。Next, import the satellite space geometry model file, and adjust the model's performance in the scene by adjusting the model's position, rotation, and scale in the Inspector view of Unity4. At the same time, set the three axes (X, Y, and Z) of the target body coordinate system, and adjust the size ratio of the earth model and the space target model. You need to adjust the sphere's Scale property to match the relative size of the earth, according to the actual ratio (the relative size ratio of the earth and the space target).
之后,为了对真实空间的地球背景进行还原,采用贴图方式给地球表面进行纹理贴图(包含地球表面白天夜晚场景对应的光面、暗面)。利用高质量的纹理图,包括表面地图、云图、夜光图等,在球体的材质属性中,将这些贴图添加到相应的纹理槽位上。以地球为例首先在Unity中创建一个Material(材质),用于给地球模型添加贴图。然后导入高清的地球表面贴图,这些贴图通常包括颜色贴图、高度图、云层贴图等。然后将贴图应用到之前创建的材质上,将这个材质应用到球体模型上,调整其透明度和饱和度来达到实现真实空间地球背景。确保贴图正确映射到球体上,以实现真实的地球外观。云层贴图可以分为:创建云层,在球体模型之外再添加一个略大的Sphere对象,用作云层,这个球体的材质应该是半透明的,并应用云层贴图;设置云层动态,为云层添加一个旋转脚本,但旋转速度可以略有不同,以模拟云层相对地面的移动。其中贴图参数如下表1所示。Afterwards, in order to restore the earth background in real space, the earth surface is textured by mapping (including the light and dark sides of the earth surface corresponding to the day and night scenes). Using high-quality texture maps, including surface maps, cloud maps, night light maps, etc., add these maps to the corresponding texture slots in the material properties of the sphere. Taking the earth as an example, first create a Material in Unity to add textures to the earth model. Then import high-definition earth surface maps, which usually include color maps, height maps, cloud maps, etc. Then apply the map to the previously created material, apply this material to the sphere model, and adjust its transparency and saturation to achieve the real space earth background. Make sure the map is correctly mapped to the sphere to achieve a realistic earth appearance. Cloud layer mapping can be divided into: creating clouds, adding a slightly larger Sphere object outside the sphere model to serve as the cloud layer, the material of this sphere should be translucent, and apply cloud layer mapping; setting cloud layer dynamics, adding a rotation script for the cloud layer, but the rotation speed can be slightly different to simulate the movement of the cloud layer relative to the ground. The mapping parameters are shown in Table 1 below.
表1贴图类型参数表Table 1 Map type parameter table
然后,设计背面灯光噪声。首先调整定向光(太阳光照)的位置和角度,以确保其能够正确照射到地球模型上,形成明暗分界线。然后添加噪声,在地球的背面(阴影部分),可以通过在材质中添加适当的噪声纹理,或者使用Shader来创建更加复杂的光照噪声效果,以增加视觉上的细节和真实感。其中噪声参数如下表2所示。Then, design the back lighting noise. First, adjust the position and angle of the directional light (sunlight) to ensure that it can correctly illuminate the earth model to form a light-dark boundary. Then add noise. On the back side of the earth (the shadow part), you can add appropriate noise textures to the material, or use Shader to create more complex lighting noise effects to increase visual details and realism. The noise parameters are shown in Table 2 below.
表2地球背景光照设定参数表Table 2 Earth background illumination setting parameters
然后,设置自转角速度、自转轴位置以控制地球模型旋转,进而实现地球自转场景,来达到实时对空间目标所在场景进行仿真。例如,首先在Unity中添加脚本,创建一个新的C#脚本文件,通过在脚本中编写自转角速度、自转轴位置代码来实现对球体旋转的控制,从而用于控制实现地球的自转。图3是地球背景仿真示意图。Then, set the rotation angular velocity and the rotation axis position to control the rotation of the earth model, and then realize the earth rotation scene to achieve real-time simulation of the scene where the space target is located. For example, first add a script in Unity and create a new C# script file. By writing the rotation angular velocity and rotation axis position code in the script, the rotation of the sphere can be controlled, so as to control the rotation of the earth. Figure 3 is a schematic diagram of the earth background simulation.
根据本发明实施例,所述包含不同太阳光照角度及效果的场景建立如下:建立太阳模型,并调整太阳球体的比例;配置太阳球体的自发光材质颜色;设置定向光源在太阳球体球心位置、定向光源颜色;调整定向光源强度;设置定向光源与地球模型表面夹角范围。According to an embodiment of the present invention, the scene containing different sunlight angles and effects is established as follows: establish a solar model and adjust the proportion of the solar sphere; configure the self-luminous material color of the solar sphere; set the directional light source at the center of the solar sphere and the color of the directional light source; adjust the intensity of the directional light source; set the angle range between the directional light source and the surface of the earth model.
具体地,首先,建立太阳球体。例如,在Unity场景中添加一个Sphere对象作为太阳。考虑到太阳在这种场景中主要作为光源,对其比例调整保持和地球一样。其次考虑太阳材质,本发明使用一个简单的自发光材质,其主要作用是充当光源。Specifically, first, a sun sphere is created. For example, a Sphere object is added to the Unity scene as the sun. Considering that the sun is mainly used as a light source in this scene, its proportion adjustment is kept the same as that of the earth. Secondly, considering the sun material, the present invention uses a simple self-luminous material, whose main function is to act as a light source.
其次,配置定向光源及属性。例如,选择定向光源,在Unity的光源选项中,选择Directional Light(定向光源);调整光源位置,将定向光源移至太阳球体的球心位置。模拟太阳作为一个发光体的效果,确保光线能够从太阳的位置均匀照射出去;设置定向光源半径,在Unity中定向光源通过调整光源的角度和范围来模拟太阳光的覆盖范围。定向光源主要模拟远距离的平行光,设定其方向与地球之间的关系此外本发明还对定向光属性作了强度调整,增加定向光源的强度,以模拟太阳光的亮度,增强Unity中太阳球体的亮度,突出其作为主光源的角色;然后是颜色设置,调整光源的颜色,以反映不同时间的日照效果。本发明使用更暖的色调(黄色到橙色)模拟日出和日落时的光线,使用较为白色的光线模拟正午时分的太阳光,使效果更加真实。Secondly, configure the directional light source and its properties. For example, select a directional light source, and in Unity's light source options, select Directional Light; adjust the light source position and move the directional light source to the center of the sun sphere. Simulate the effect of the sun as a luminous body to ensure that the light can be evenly irradiated from the sun's position; set the radius of the directional light source. In Unity, the directional light source simulates the coverage of sunlight by adjusting the angle and range of the light source. The directional light source mainly simulates parallel light from a long distance and sets the relationship between its direction and the earth. In addition, the present invention also adjusts the intensity of the directional light property, increases the intensity of the directional light source to simulate the brightness of sunlight, enhances the brightness of the sun sphere in Unity, and highlights its role as the main light source; then the color setting, adjusts the color of the light source to reflect the sunlight effect at different times. The present invention uses warmer tones (yellow to orange) to simulate the light at sunrise and sunset, and uses whiter light to simulate sunlight at noon, making the effect more realistic.
再次,调整太阳与地球的相对位置。本发明设置太阳球体远离地球,将太阳球体位置调整,使其在场景中远离地球模型。在Unity中保持太阳与地球间有足够的视觉距离,以强化光影效果。其次模拟太阳角度,通过旋转太阳球体或直接调整定向光源的方向,可以模拟太阳光线与地球的夹角,从而影响光照效果和地球上的昼夜变化,以此实现空间场景的真实模拟。太阳光照参数设计如下表3所示。光照角示意如图4所示。Again, adjust the relative position of the sun and the earth. The present invention sets the sun sphere away from the earth and adjusts the position of the sun sphere so that it is away from the earth model in the scene. In Unity, a sufficient visual distance is maintained between the sun and the earth to enhance the light and shadow effects. Secondly, simulate the sun angle. By rotating the sun sphere or directly adjusting the direction of the directional light source, the angle between the sun's rays and the earth can be simulated, thereby affecting the lighting effect and the day and night changes on the earth, thereby achieving a true simulation of the space scene. The design of the sunlight parameters is shown in Table 3 below. The illumination angle is shown in Figure 4.
表3太阳光照参数设计表Table 3 Sunlight Parameter Design Table
根据本发明实施例,所述引入深空背景噪声的场景建立如下:创建深空背景,并设置天空盒材质为深空星系;采用改进融合噪声算法来生成随机且在视觉上连续的深空背景噪声,进而生成噪声贴图。According to an embodiment of the present invention, the scene for introducing deep space background noise is established as follows: a deep space background is created, and the sky box material is set to a deep space galaxy; an improved fusion noise algorithm is used to generate random and visually continuous deep space background noise, and then a noise map is generated.
具体地,提供了一种在三维空间仿真环境中引入深空背景噪声的方法,旨在提升对真实空间深空背景环境的模拟,通过模拟太空环境中的背景噪声效果,为生成空间目标数据集提供更加真实的空间场景。利用Unity游戏开发引擎,通过特定算法生成背景噪声,并将其融入空间场景中,以模拟从地球外太空至深空的不同噪声级别和特征。Specifically, a method for introducing deep space background noise in a three-dimensional space simulation environment is provided, aiming to improve the simulation of the real deep space background environment, and to provide a more realistic space scene for generating space target data sets by simulating the background noise effect in the space environment. The Unity game development engine is used to generate background noise through a specific algorithm and integrate it into the space scene to simulate different noise levels and characteristics from outer space to deep space.
首先,创建深空背景。搭建背景模型,在仿真软件Unity中创建一个球形天空盒,作为模拟深空背景的基础。天空盒为观察空间目标提供全方位的视觉背景,以增强模拟环境的真实感和沉浸感。设置天空盒材质,选择深空星系的材质,并将其应用于天空盒内壁。该材质应包含高分辨率的星空图像,反映出深空的星光、星系和星云等元素。接着,采用改进融合噪声算法来生成背景噪声,该算法能生成随机但在视觉上连续的噪声模式,适合模拟深空背景中自然存在的光学噪声。最后,生成噪声贴图,利用噪声算法生成噪声贴图。该贴图模拟了因远处星系和星云而产生的光学噪声效果。其中带有星光背景噪声的深空背景如图5所示。First, create a deep space background. Build a background model and create a spherical skybox in the simulation software Unity as the basis for simulating the deep space background. The skybox provides an all-round visual background for observing space targets to enhance the realism and immersion of the simulated environment. Set the skybox material, select the material of the deep space galaxy, and apply it to the inner wall of the skybox. The material should contain high-resolution starry sky images, reflecting elements such as starlight, galaxies, and nebulae in the deep space. Next, use the improved fusion noise algorithm to generate background noise. The algorithm can generate random but visually continuous noise patterns, which is suitable for simulating the optical noise naturally present in the deep space background. Finally, generate a noise map and use the noise algorithm to generate a noise map. This map simulates the optical noise effect caused by distant galaxies and nebulae. The deep space background with starlight background noise is shown in Figure 5.
改进融合噪声算法为采用叠加噪声方法对传统噪声分布进行改进,具体的步骤如下:The improved fusion noise algorithm uses the superposition noise method to improve the traditional noise distribution. The specific steps are as follows:
1)选择噪声源。选择的噪声源主要来自以下几个噪声:基础恒星场,使用改进的柏林噪声生成恒星的基础分布。星云细节,利用Simplex噪声或OpenSimplex噪声增加星云的细节和云雾效果。高光和闪耀,使用值噪声来添加恒星的高光和闪耀效果,以增加场景的动态范围。1) Select the noise source. The selected noise sources mainly come from the following noises: Basic star field, using improved Perlin noise to generate the basic distribution of stars. Nebula details, using Simplex noise or OpenSimplex noise to increase the details and fog effects of the nebula. Highlights and shine, using value noise to add the highlights and shine effects of stars to increase the dynamic range of the scene.
2)定义权重函数,所述权重函数包括对应基础恒星场的权重Wstar(x,y)、对应星云细节的权重Wnebula(x,y)、对应高光和闪耀的权重Wglow(x,y)。2) Define a weight function, which includes a weight W star (x, y) corresponding to the basic star field, a weight W nebula (x, y) corresponding to the nebula details, and a weight W glow (x, y) corresponding to the highlight and flare.
恒星密度权重Wstar(x,y)用于控制基础恒星场的密度变化,基于渐变或随机分布来设置,以模拟恒星在空间中不均匀的分布,设置如下:The star density weight W star (x, y) is used to control the density variation of the basic star field. It is set based on a gradient or random distribution to simulate the uneven distribution of stars in space. The settings are as follows:
Wstar(x,y)=1.0-Smoothstep(Noiseperlin(x,y))W star (x,y)=1.0-Smoothstep(Noise perlin (x,y))
式中:Smoothstep是平滑阶跃函数,用于平滑噪声值的过渡;Noiseperlin(x,y)代表柏林噪声分布。Where: Smoothstep is a smooth step function used to smooth the transition of noise values; Noise perlin (x, y) represents the Perlin noise distribution.
星云细节权重Wnebula(x,y)用于调控星云的可见度和复杂度,依赖于另一种噪声模式的局部强度,设置如下:The nebula detail weight W nebula (x,y) is used to control the visibility and complexity of the nebula. It depends on the local intensity of another noise pattern and is set as follows:
Wnebula(x,y)=Noisesimplex(x,y)α W nebula (x,y)=Noise simplex (x,y) α
式中:α>1用于增加局部对比度的指数,以便更好地突出星云区域。Where: α>1 is an exponent used to increase the local contrast in order to better highlight the nebula area.
高光和闪耀权重Wglow(x,y)为一个随机阈值,以在特定的位置增加恒星的亮点,设置如下:The highlight and shine weight W glow (x,y) is a random threshold to increase the brightness of the star at a specific position. The settings are as follows:
Wglow(x,y)=Noisevalue(x,y)>sW glow (x,y)=Noise value (x,y)>s
式中:s∈(0,1)代表随机阈值范围。Where: s∈(0,1) represents the random threshold range.
3)叠加噪声和权重,则最终的深空背景噪声为:3) Superimposing noise and weight, the final deep space background noise is:
式中:表示Simplex噪声分布;Noisevalue(x,y)表示值噪声分布。Where: represents the Simplex noise distribution; Noise value (x, y) represents the value noise distribution.
通过调节不同噪声之间的影响权重参数,得到适合空间目标在轨场景的深空背景噪声。By adjusting the influence weight parameters between different noises, the deep space background noise suitable for the on-orbit scene of space targets can be obtained.
然后执行步骤三,在步骤三中,设置相关参数,使得多个卫星空间几何模型在所述空间目标在轨场景中进行运动,进而获得对应多个卫星、不同位姿的多组图片;所述参数包括旋转角速度、转动惯量。Then execute step three, in which relevant parameters are set so that multiple satellite space geometric models move in the on-orbit scene of the space target, thereby obtaining multiple groups of pictures corresponding to multiple satellites and different postures; the parameters include angular velocity of rotation and moment of inertia.
根据本发明实施例,利用Unity中的Transform组件,控制目标在场景中的位置和旋转,通过脚本设置这些参数的变化使目标的运动达到预期状态,如设置目标绕X轴以每秒2°的角速度旋转,可通过创建脚本将transform.eulerAngles.x参数设置为每秒变化2°。为了使位姿估计数据集中包含不同位姿的目标图片,给目标设置一个旋转角速度,该角速度在本体的三个轴上均有分量,这样就能尽可能获得不同位姿下的图片。According to an embodiment of the present invention, the Transform component in Unity is used to control the position and rotation of the target in the scene, and the changes of these parameters are set by scripts to make the movement of the target reach the expected state. For example, if the target is set to rotate around the X axis at an angular velocity of 2° per second, the transform.eulerAngles.x parameter can be set to change by 2° per second by creating a script. In order to include target images with different poses in the pose estimation data set, a rotation angular velocity is set for the target, and the angular velocity has components on the three axes of the body, so that images in different poses can be obtained as much as possible.
为考虑真实空间场景下的目标运动规律,三轴的角速度满足欧拉公式,其中Ix、Iy、Iz为绕物体X、Y、Z轴的转动惯量,Unity并没有提供直接在编辑器中设置转动惯量的选项,可以通过脚本间接设置转动惯量。通过脚本访问Rigidbody的inertiaTensor和inertiaTensorRotation属性,将三轴转动惯量设置为100、100、100,欧拉公式的表达式如下:To take into account the target motion law in the real space scene, the angular velocity of the three axes satisfies the Euler formula, where I x , I y , and I z are the moments of inertia around the object's X, Y, and Z axes. Unity does not provide an option to set the moment of inertia directly in the editor, but you can set the moment of inertia indirectly through the script. Access the inertiaTensor and inertiaTensorRotation properties of the Rigidbody through the script, set the moment of inertia of the three axes to 100, 100, and 100. The expression of the Euler formula is as follows:
由于卫星在运动过程中还会受到外部扰动(如太阳辐射压力、地球磁场、空气阻力等),这些扰动不仅仅是随机的,它们还可能随着卫星的姿态和轨道位置而变化。因此,引入随机扰动项反映这种依赖性,根据以下公式动态调整角速度:Since the satellite is also subject to external disturbances during its movement (such as solar radiation pressure, the earth's magnetic field, air resistance, etc.), these disturbances are not only random, they may also change with the satellite's attitude and orbital position. Therefore, a random disturbance term is introduced to reflect this dependence, and the angular velocity is dynamically adjusted according to the following formula:
ωi(t)=ai+bi·t+ci·sin(di·θi(t))ω i (t)=a i +b i ·t+c i ·sin(d i ·θ i (t))
其中,i∈{ψ,θ,α},分别代表偏航、俯仰、滚转;ai、bi、ci和di分别代表初速度、加速度、姿态影响系数和姿态影响的周期性调制因素;θi(t)是时间t时刻的欧拉角;∈i(t)代表随机扰动项,它模拟了外部环境扰动对卫星自旋角速度的影响。欧拉角又满足下式:Among them, i∈{ψ,θ,α}, respectively represents yaw, pitch, and roll; a i , b i , c i and d i respectively represent the initial velocity, acceleration, attitude influence coefficient and periodic modulation factor of attitude influence; θ i (t) is the Euler angle at time t; ∈ i (t) represents the random disturbance term, which simulates the influence of external environmental disturbance on the satellite's spin angular velocity. The Euler angle satisfies the following formula:
θi(t+Δt)=θi(t)+(ωi(t)+∈i(t))Δtθ i (t+Δt)=θ i (t)+(ω i (t)+∈ i (t))Δt
其中Δt表示时间间隔;∈i满足均匀分布:∈i(t)~U(-δi(θi(t),t),δi(θi(t),t));δi表示与扰动强度、当前姿态及时刻t相关的动态调整函数。δ的具体值取决于希望模拟的扰动强度,当前姿态以及时间t。例如,对于较小的卫星或者在较低轨道上的卫星,可能需要较小的δ值来反映相对较小的环境扰动影响。Where Δt represents the time interval; ∈ i satisfies the uniform distribution: ∈ i (t)~U(-δ i (θ i (t),t),δ i (θ i (t),t)); δ i represents the dynamic adjustment function related to the disturbance intensity, current attitude and time t. The specific value of δ depends on the disturbance intensity, current attitude and time t that you want to simulate. For example, for smaller satellites or satellites in lower orbits, a smaller δ value may be required to reflect the relatively small impact of environmental disturbances.
在Unity中通过GameObject>Camera来添加一个相机用于拍摄目标获得目标图像,在Unity编辑器的Hierarchy面板中,选择要修改的相机对象,在Inspector面板中,找到该相机对象的Camera组件,在Projection模块设置相机为透视投影模式,在Field ofView模块调整相机视场角的大小,ClippingPlanes中设置近裁剪面和远裁剪面,分别表示相机能够显示的最近和最远距离,超出此范围的物体不会被渲染。在Viewport Rect模块调整相机视口的位置和大小,同时设置获得图像的分辨率,如果图像分辨率时1024×1024,这意味着宽高比是1:1。在Unity相机组件中,将"Aspect"属性设置为1。通过Transform组件同样可以调整相机的位置与方向,在数据集图像的生成过程中,除了将相机正对于目标的情况,也要考虑在实际应用时,目标偏离出画面中央的情况,因此设置相机绕其Z轴进行小范围旋转,可通过C#脚本来设置该旋转,在脚本中控制相机的transform.Rotate(xAngle,yAngle,zAngle)参数,将zAngle设为2,xAngle和yAngle参数设为0,就能使目标位于图像不同位置。并在Inspector面板中设置target为空间目标对应的模块,使相机始终拍摄目标。不同姿态下的拍摄图如图6、7所示。In Unity, add a camera through GameObject>Camera to shoot the target and obtain the target image. In the Hierarchy panel of the Unity editor, select the camera object to be modified. In the Inspector panel, find the Camera component of the camera object. Set the camera to perspective projection mode in the Projection module, adjust the size of the camera's field of view in the Field of View module, and set the near clipping plane and far clipping plane in Clipping Planes, which respectively represent the closest and farthest distances that the camera can display. Objects beyond this range will not be rendered. Adjust the position and size of the camera's viewport in the Viewport Rect module, and set the resolution of the image to be obtained. If the image resolution is 1024×1024, this means that the aspect ratio is 1:1. In the Unity camera component, set the "Aspect" property to 1. The position and direction of the camera can also be adjusted through the Transform component. In the process of generating the dataset image, in addition to the situation where the camera is facing the target, it is also necessary to consider the situation where the target deviates from the center of the picture in actual application. Therefore, the camera is set to rotate around its Z axis in a small range. This rotation can be set through a C# script. In the script, control the camera's transform.Rotate(xAngle,yAngle,zAngle) parameters, set zAngle to 2, and set xAngle and yAngle parameters to 0, so that the target can be located at different positions in the image. And set the target to the module corresponding to the spatial target in the Inspector panel so that the camera always shoots the target. The pictures taken in different postures are shown in Figures 6 and 7.
然后执行步骤四,在步骤四中,对所述对应多个卫星、不同位姿的多组图片进行处理,获得空间目标数据集。Then, step 4 is executed. In step 4, the multiple groups of pictures corresponding to the multiple satellites and different postures are processed to obtain a space target data set.
根据本发明实施例,通过Unity游戏开发引擎实现,创建一个高度真实和准确的空间目标位姿数据集,包括但不限于空间导航、目标跟踪和机器学习训练等。通过模拟空间目标在轨运动和操作过程,能够生成包含详细位置和姿态信息的数据集。数据集包括对空间目标与拍摄相机的姿态标签数据,以及目标与拍摄相机位置标签数据。According to an embodiment of the present invention, a highly realistic and accurate space target pose data set is created through the Unity game development engine, including but not limited to space navigation, target tracking, and machine learning training. By simulating the on-orbit motion and operation process of the space target, a data set containing detailed position and pose information can be generated. The data set includes pose label data for the space target and the shooting camera, as well as the position label data of the target and the shooting camera.
首先,获取卫星和相机的初始位置和姿态;例如,在Unity环境中创建或导入所需的空间目标三维模型。设置空间目标和相机的初始位置和姿态,确保它们位于合适的初始状态。在场景中放置相机,根据需要模拟观测点的位置和轨道高度。调整相机的位置和朝向,以便它们能够捕捉到空间目标的各个角度。First, get the initial position and attitude of the satellite and camera; for example, create or import the required 3D model of the space target in the Unity environment. Set the initial position and attitude of the space target and camera to ensure that they are in the appropriate initial state. Place the camera in the scene and simulate the position and orbital altitude of the observation point as needed. Adjust the position and orientation of the camera so that they can capture all angles of the space target.
然后,生成姿态数据集。首先按照前述坐标系定义,为空间目标和相机各自定义一个本体坐标系。这些坐标系作为参考点,用于计算旋转矩阵和平移向量。首先是旋转矩阵计算:利用Unity中的变换组件(Transform),获取空间目标相对于其坐标系的俯仰角(Pitch)、偏航角(Yaw)和翻滚角(Roll)。根据这些角度值,构造旋转矩阵R。旋转矩阵R可以通过以下公式计算得到:Then, generate a posture data set. First, according to the above coordinate system definition, define a body coordinate system for the space target and the camera respectively. These coordinate systems are used as reference points to calculate the rotation matrix and translation vector. The first is the rotation matrix calculation: use the transformation component (Transform) in Unity to obtain the pitch angle (Pitch), yaw angle (Yaw) and roll angle (Roll) of the space target relative to its coordinate system. Based on these angle values, construct the rotation matrix R. The rotation matrix R can be calculated by the following formula:
R=Ryaw(θyaw)·Rpitch(θpitch)·Rroll(θroll)R=R yaw (θ yaw )·R pitch (θ pitch )·R roll (θ roll )
其中,各个旋转矩阵分别对应于绕Y轴、X轴和Z轴的旋转。The rotation matrices correspond to rotations around the Y axis, X axis, and Z axis, respectively.
分别为绕Z轴旋转(Roll):They are respectively rotation around the Z axis (Roll):
绕X轴旋转(Pitch):Rotation around the X axis (Pitch):
绕Y轴旋转(Yaw):Rotation around the Y axis (Yaw):
然后,生成位置数据集。先对平移向量矩阵计算,根据目标本体坐标系的中心点坐标和相机坐标系的中心点坐标,计算平移向量T,代表了从目标物体坐标系到相机坐标系的空间位移。之后生成位置数据:应用平移向量T,更新目标物体在相机视角下的位置。在Unity中,调整目标物体的Transform.position属性从而反应相对于相机的新位置。Then, generate the position data set. First, calculate the translation vector matrix. According to the coordinates of the center point of the target body coordinate system and the center point of the camera coordinate system, calculate the translation vector T, which represents the spatial displacement from the target object coordinate system to the camera coordinate system. Then generate the position data: apply the translation vector T to update the position of the target object in the camera's view. In Unity, adjust the Transform.position property of the target object to reflect the new position relative to the camera.
本发明另一实施例提出一种空间目标数据集构建系统,该系统包括:Another embodiment of the present invention provides a space target dataset construction system, the system comprising:
模型建立模块,其配置成利用三维建模软件建立多个卫星空间几何模型;A model building module configured to build a plurality of satellite space geometric models using three-dimensional modeling software;
场景建立模块,其配置成建立空间目标在轨场景,所述场景包括:包含地球背景的场景、包含不同太阳光照角度及效果的场景、引入深空背景噪声的场景;A scene establishment module, configured to establish a space target on-orbit scene, the scene including: a scene containing the earth background, a scene containing different sunlight angles and effects, and a scene introducing deep space background noise;
图像获取模块,其配置成设置相关参数,使得多个卫星空间几何模型在所述空间目标在轨场景中进行运动,进而获得对应多个卫星、不同位姿的多组图片;所述参数包括旋转角速度、转动惯量;An image acquisition module is configured to set relevant parameters so that multiple satellite space geometric models move in the space target on-orbit scene, thereby obtaining multiple sets of pictures corresponding to multiple satellites and different postures; the parameters include rotation angular velocity and moment of inertia;
数据集构建模块,其配置成对所述对应多个卫星、不同位姿的多组图片进行处理,获得空间目标数据集。The data set construction module is configured to process the multiple groups of pictures corresponding to the multiple satellites and in different positions to obtain a space target data set.
本实施例中,可选地,所述场景建立模块中所述包含地球背景的场景建立如下:创建地球模型,调整地球模型与卫星空间几何模型大小比例;将纹理图添加到地球模型的材质属性上,并调整透明度和饱和度来达到实现真实空间地球背景,其中纹理图类型包括颜色图、高度图、云层图;设置地球阴影部分光照和噪声的相关参数,其中地球阴影部分光照的参数包括灯光类型、颜色值、强度、位置、角度,噪声的参数包括噪声纹理和透明度;设置自转角速度、自转轴位置以控制地球模型旋转,进而实现地球自转场景;In this embodiment, optionally, the scene including the earth background in the scene establishment module is established as follows: create an earth model, adjust the size ratio of the earth model and the satellite space geometric model; add a texture map to the material properties of the earth model, and adjust the transparency and saturation to achieve the real space earth background, wherein the texture map types include color maps, height maps, and cloud maps; set the relevant parameters of the illumination and noise of the shadow part of the earth, wherein the parameters of the illumination of the shadow part of the earth include light type, color value, intensity, position, angle, and the parameters of the noise include noise texture and transparency; set the rotation angular velocity and the rotation axis position to control the rotation of the earth model, thereby realizing the earth rotation scene;
所述包含不同太阳光照角度及效果的场景建立如下:建立太阳模型,并调整太阳球体的比例;配置太阳球体的自发光材质颜色;设置定向光源在太阳球体球心位置、定向光源颜色;调整定向光源强度;设置定向光源与地球模型表面夹角范围;The scene containing different sunlight angles and effects is established as follows: establish a sun model and adjust the proportion of the sun sphere; configure the self-luminous material color of the sun sphere; set the directional light source at the center of the sun sphere and the color of the directional light source; adjust the intensity of the directional light source; set the angle range between the directional light source and the surface of the earth model;
所述引入深空背景噪声的场景建立如下:创建深空背景,并设置天空盒材质为深空星系;采用改进融合噪声算法来生成随机且在视觉上连续的深空背景噪声,进而生成噪声贴图。The scene introducing deep space background noise is established as follows: creating a deep space background and setting the sky box material to a deep space galaxy; using an improved fusion noise algorithm to generate random and visually continuous deep space background noise, and then generating a noise map.
本实施例所述一种空间目标数据集构建系统的功能可以由前述一种空间目标数据集构建方法说明,因此本实施例未详述部分,可参见以上方法实施例,在此不再赘述。The functions of the space target dataset construction system described in this embodiment can be described by the aforementioned space target dataset construction method. Therefore, for the parts not described in detail in this embodiment, please refer to the above method embodiments and will not be repeated here.
尽管根据有限数量的实施例描述了本发明,但是受益于上面的描述,本技术领域内的技术人员明白,在由此描述的本发明的范围内,可以设想其它实施例。对于本发明的范围,对本发明所做的公开是说明性的,而非限制性的,本发明的范围由所附权利要求书限定。Although the present invention has been described according to a limited number of embodiments, it will be apparent to those skilled in the art, with the benefit of the above description, that other embodiments are contemplated within the scope of the invention thus described. The disclosure of the present invention is intended to be illustrative rather than restrictive of the scope of the invention, which is defined by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410489722.1A CN118379449B (en) | 2024-04-23 | 2024-04-23 | Space target data set construction method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410489722.1A CN118379449B (en) | 2024-04-23 | 2024-04-23 | Space target data set construction method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118379449A true CN118379449A (en) | 2024-07-23 |
CN118379449B CN118379449B (en) | 2024-09-13 |
Family
ID=91912236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410489722.1A Active CN118379449B (en) | 2024-04-23 | 2024-04-23 | Space target data set construction method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118379449B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022001918A1 (en) * | 2020-06-30 | 2022-01-06 | 华为技术有限公司 | Method and apparatus for building predictive model, computing device, and storage medium |
CN117635816A (en) * | 2023-06-20 | 2024-03-01 | 西北工业大学 | A method and system for constructing spacecraft simulation data sets in space environment |
-
2024
- 2024-04-23 CN CN202410489722.1A patent/CN118379449B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022001918A1 (en) * | 2020-06-30 | 2022-01-06 | 华为技术有限公司 | Method and apparatus for building predictive model, computing device, and storage medium |
CN117635816A (en) * | 2023-06-20 | 2024-03-01 | 西北工业大学 | A method and system for constructing spacecraft simulation data sets in space environment |
Non-Patent Citations (3)
Title |
---|
EVAN L.KRAMER 等: "Vision-based spacecraft relative pose estimation in variable lighting conditions", 2022 IEEE AEROSPACE CONFERENCE(AERO), 10 August 2022 (2022-08-10), pages 1 - 12 * |
于鲲 等: "基于三维模型的空间目标视觉位姿测量", 仪器仪表学报, vol. 40, no. 04, 15 April 2019 (2019-04-15), pages 179 - 188 * |
李鹏 等: "空间目标光学特性实验测量映射关系研究", 国外电子测量技术, vol. 35, no. 03, 15 March 2016 (2016-03-15), pages 75 - 79 * |
Also Published As
Publication number | Publication date |
---|---|
CN118379449B (en) | 2024-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105354355B (en) | A kind of Design of Simulation System and implementation method based on three-dimensional motion what comes into a driver's | |
CA1282173C (en) | Digital visual and sensor simulation system for generating realistic scenes | |
CN114565742B (en) | Small celestial body surface dynamic simulation and landing visual simulation method | |
CN108074274A (en) | BIM model real-time rendering method and devices based on browser | |
CN103679799A (en) | A method for fast generating an optical starry sky background | |
CN111915710B (en) | Building rendering method based on real-time rendering technology | |
CN106716497A (en) | Using free-form deformations in surface reconstruction | |
CN115690336A (en) | Satellite beam coverage area visualization method, server and storage medium | |
CN110908510A (en) | An application method of oblique photography modeling data in immersive display device | |
Magnor et al. | Constrained inverse volume rendering for planetary nebulae | |
CN114491694B (en) | Space target data set construction method based on illusion engine | |
CN110400366B (en) | Real-time flood disaster visualization simulation method based on OpenGL | |
CN115292287A (en) | A method for automatic labeling and database construction of satellite feature component images | |
CN103679780B (en) | A kind of space target real time simulation method | |
CN108646922B (en) | Interactive digital globe and interaction method | |
CN118379449B (en) | Space target data set construction method and system | |
Beierle | High fidelity validation of vision-based sensors and algorithms for spaceborne navigation | |
CN104143206A (en) | Real-time realistic rendering method for sky | |
CN101915581B (en) | Comet optical surface signal simulation method for deep space exploration | |
CN117994407B (en) | Method and system for constructing and rendering optimization of natural phenomenon based on graphics | |
CN118153350B (en) | A three-dimensional starry sky construction and interactive visualization simulation method and system | |
JPH0241785B2 (en) | ||
Notosubagyo et al. | Unreal Engine Testbed for Computer Vision of Tall Lunar Tower Assembly | |
CN111680552A (en) | A method for intelligent identification of feature parts | |
CN103942363A (en) | Method for configuring optical loads of deep space probe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |