[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN118376247A - A real-time path planning system for robot navigation - Google Patents

A real-time path planning system for robot navigation Download PDF

Info

Publication number
CN118376247A
CN118376247A CN202410809106.XA CN202410809106A CN118376247A CN 118376247 A CN118376247 A CN 118376247A CN 202410809106 A CN202410809106 A CN 202410809106A CN 118376247 A CN118376247 A CN 118376247A
Authority
CN
China
Prior art keywords
data
navigation path
data area
robot
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410809106.XA
Other languages
Chinese (zh)
Other versions
CN118376247B (en
Inventor
高刘轩祺
贺建伟
范旭昊
王馨
翁语嫣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN202410809106.XA priority Critical patent/CN118376247B/en
Publication of CN118376247A publication Critical patent/CN118376247A/en
Application granted granted Critical
Publication of CN118376247B publication Critical patent/CN118376247B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种用于机器人导航的实时路径规划系统,具体涉及机器人技术领域,包括路径划分模块、环境数据采集模块、环境数据分析模块、机器人数据采集模块、机器人数据分析模块、综合分析模块,以及控制模块。本发明极大地提升了系统的效率和准确性,使得机器人导航的实时路径规划更为精准,从而显著减少了导航过程中的错误和延误,提高了整体的工作效率,本发明通过优化算法和数据处理技术,有效降低了系统的能耗,延长了机器人的使用寿命,降低了运营成本,本发明还提升了系统的稳定性和可靠性,能够在复杂多变的环境中保持稳定的性能,确保机器人能够在各种情况下顺利完成导航任务。

The present invention discloses a real-time path planning system for robot navigation, which specifically relates to the field of robot technology, including a path division module, an environmental data acquisition module, an environmental data analysis module, a robot data acquisition module, a robot data analysis module, a comprehensive analysis module, and a control module. The present invention greatly improves the efficiency and accuracy of the system, making the real-time path planning of robot navigation more accurate, thereby significantly reducing errors and delays in the navigation process and improving overall work efficiency. The present invention effectively reduces the energy consumption of the system, prolongs the service life of the robot, and reduces operating costs through optimization algorithms and data processing technologies. The present invention also improves the stability and reliability of the system, can maintain stable performance in complex and changeable environments, and ensures that the robot can successfully complete navigation tasks under various circumstances.

Description

一种用于机器人导航的实时路径规划系统A real-time path planning system for robot navigation

技术领域Technical Field

本发明涉及机器人技术领域,更具体地说,本发明涉及一种用于机器人导航的实时路径规划系统。The present invention relates to the field of robot technology, and more particularly to a real-time path planning system for robot navigation.

背景技术Background technique

随着科技的不断发展,机器人技术已经广泛应用于各个领域,其中机器人导航技术尤为关键,机器人导航技术是指机器人根据环境信息,通过自主规划路径并控制其运动方向,实现从一个地点到另一个地点的移动,在这个过程中,实时路径规划系统发挥着至关重要的作用,它不仅能够根据环境变化实时调整机器人的行进路径,还能确保机器人在复杂环境中安全、高效地完成任务。With the continuous development of science and technology, robotics technology has been widely used in various fields, among which robot navigation technology is particularly critical. Robot navigation technology refers to the robot moving from one place to another by autonomously planning paths and controlling its movement direction based on environmental information. In this process, the real-time path planning system plays a vital role. It can not only adjust the robot's travel path in real time according to environmental changes, but also ensure that the robot can complete tasks safely and efficiently in complex environments.

然而,现有的机器人导航实时路径规划系统在实际应用中仍存在一些问题和挑战,首先,环境信息的采集和分析不够全面和准确,导致机器人无法准确判断环境中的障碍物、路面条件以及电磁干扰等因素,从而影响了路径规划的准确性和效率,其次,传统的路径规划算法往往基于固定的规则和参数,缺乏灵活性和适应性,难以应对复杂多变的环境条件,此外,一些系统还存在计算量大、响应速度慢等缺点,无法满足实时性要求高的应用场景。However, the existing robot navigation real-time path planning system still has some problems and challenges in practical applications. First, the collection and analysis of environmental information is not comprehensive and accurate enough, which makes the robot unable to accurately judge factors such as obstacles, road conditions and electromagnetic interference in the environment, thus affecting the accuracy and efficiency of path planning. Secondly, traditional path planning algorithms are often based on fixed rules and parameters, lack flexibility and adaptability, and are difficult to cope with complex and changing environmental conditions. In addition, some systems have shortcomings such as large computational complexity and slow response speed, and cannot meet application scenarios with high real-time requirements.

发明内容Summary of the invention

为了克服现有技术的上述缺陷,本发明的实施例提供一种用于机器人导航的实时路径规划系统,通过以下方案,以解决上述背景技术中提出的问题。In order to overcome the above-mentioned defects of the prior art, an embodiment of the present invention provides a real-time path planning system for robot navigation, which solves the problems raised in the above-mentioned background technology through the following scheme.

为实现上述目的,本发明提供如下技术方案:一种用于机器人导航的实时路径规划系统,包括:To achieve the above object, the present invention provides the following technical solution: a real-time path planning system for robot navigation, comprising:

路径划分模块:用于将目标机器人的各导航路径数据确定为目标数据区域,将目标数据区域按照单个导航路径划分的方式划分为各导航路径数据,并将各导航路径依次标记为1、2……n,并按照基于终点距离划分的方式将各导航路径数据划分为各子数据区域,依次标记为1、2……m;Path division module: used to determine each navigation path data of the target robot as a target data area, divide the target data area into each navigation path data in the manner of dividing a single navigation path, and mark each navigation path as 1, 2...n in sequence, and divide each navigation path data into each sub-data area in the manner of dividing based on the end point distance, and mark them as 1, 2...m in sequence;

环境数据采集模块:用于采集各子数据区域的障碍物数据、路面数据以及电磁数据,并将采集到的数据传输到环境数据分析模块;Environmental data acquisition module: used to collect obstacle data, road surface data and electromagnetic data in each sub-data area, and transmit the collected data to the environmental data analysis module;

环境数据分析模块:包括障碍物数据分析单元、路面数据分析单元以及电磁数据分析单元,用于对环境数据采集模块传输的数据分析,并将分析结果传输到综合分析模块;Environmental data analysis module: including obstacle data analysis unit, road surface data analysis unit and electromagnetic data analysis unit, used to analyze the data transmitted by the environmental data acquisition module and transmit the analysis results to the comprehensive analysis module;

机器人数据采集模块:用于采集各子数据区域的动力响应数据、控制鲁棒性数据以及惯性测量数据,并将采集到的数据传输到机器人数据分析模块;Robot data acquisition module: used to collect dynamic response data, control robustness data and inertial measurement data of each sub-data area, and transmit the collected data to the robot data analysis module;

机器人数据分析模块:包括动力响应数据分析单元、控制鲁棒性数据分析单元以及惯性测量数据分析单元,用于对机器人数据采集模块传输的数据分析,并将分析结果传输到综合分析模块;Robot data analysis module: including a dynamic response data analysis unit, a control robustness data analysis unit and an inertial measurement data analysis unit, which are used to analyze the data transmitted by the robot data acquisition module and transmit the analysis results to the comprehensive analysis module;

综合分析模块:用于建立综合分析模型,将环境数据分析模块和机器人数据分析模块传输的数据导入综合分析模型中,计算出各导航路径的综合优化指数,并传输到控制模块;Comprehensive analysis module: used to establish a comprehensive analysis model, import the data transmitted by the environment data analysis module and the robot data analysis module into the comprehensive analysis model, calculate the comprehensive optimization index of each navigation path, and transmit it to the control module;

控制模块:用于建立综合优化指数预设值,用于对各导航路径的综合优化指数进行判断,并根据判断结果发出控制信号。Control module: used to establish a preset value of the comprehensive optimization index, to judge the comprehensive optimization index of each navigation path, and to send a control signal according to the judgment result.

优选的,所述障碍物数据包括障碍物点云密度、障碍物空间分布熵、障碍物动态变化频率,以及障碍物激光雷达反射率,分别标记为Bp、Bs、Bf,以及Bl,路面数据包括路面最大坡度角、路面弹性迟滞损耗、路面沉积物平均覆盖厚度,以及路面材质回波损耗,分别标记为Pc、Ph、Pl,以及Ps,电磁数据包括最大电磁干扰强度、电磁场主振荡频率、电磁场幅度变化范围,以及主要电磁场源距离,分别标记为Ec、Ed、Ev,以及Er。Preferably, the obstacle data include obstacle point cloud density, obstacle spatial distribution entropy, obstacle dynamic change frequency, and obstacle lidar reflectivity, which are marked as Bp, Bs, Bf, and Bl, respectively; the pavement data include maximum pavement slope angle, pavement elastic hysteresis loss, average pavement sediment coverage thickness, and pavement material return loss, which are marked as Pc, Ph, Pl, and Ps, respectively; the electromagnetic data include maximum electromagnetic interference intensity, electromagnetic field main oscillation frequency, electromagnetic field amplitude variation range, and main electromagnetic field source distance, which are marked as Ec, Ed, Ev, and Er, respectively.

优选的,所述障碍物数据分析单元用于建立障碍物数据分析模型,将环境数据采集模块传输的障碍物数据导入障碍物数据分析模型中,计算出各子数据区域的障碍物特征值,具体表示为:,RBi,j表示第i个导航路径第j个子数据区域的障碍物特征值,Bpi,j表示第i个导航路径第j个子数据区域的障碍物点云密度,Bsi,j表示第i个导航路径第j个子数据区域的障碍物空间分布熵,Bfi,j表示第i个导航路径第j个子数据区域的障碍物动态变化频率,Bli,j表示第i个导航路径第j个子数据区域的障碍物激光雷达反射率。Preferably, the obstacle data analysis unit is used to establish an obstacle data analysis model, import the obstacle data transmitted by the environment data acquisition module into the obstacle data analysis model, and calculate the obstacle characteristic value of each sub-data area, which is specifically expressed as: , RB i,j represents the obstacle characteristic value of the j-th sub-data area of the ith navigation path, Bp i,j represents the obstacle point cloud density of the j-th sub-data area of the ith navigation path, Bs i,j represents the obstacle spatial distribution entropy of the j-th sub-data area of the ith navigation path, Bf i,j represents the dynamic change frequency of the obstacle in the j-th sub-data area of the ith navigation path, and Bl i,j represents the obstacle lidar reflectivity of the j-th sub-data area of the ith navigation path.

优选的,所述路面数据分析单元用于建立路面数据分析模型,将环境数据采集模块传输的路面数据导入路面数据分析模型中,计算出各子数据区域的路面特征值,具体表示为:,RPi,j表示第i个导航路径第j个子数据区域的路面特征值,Pci,j表示第i个导航路径第j个子数据区域的路面最大坡度角,Phi,j表示第i个导航路径第j个子数据区域的路面弹性迟滞损耗,Pli,j表示第i个导航路径第j个子数据区域的路面沉积物平均覆盖厚度,Psi,j表示第i个导航路径第j个子数据区域的路面材质回波损耗。Preferably, the road surface data analysis unit is used to establish a road surface data analysis model, import the road surface data transmitted by the environmental data acquisition module into the road surface data analysis model, and calculate the road surface characteristic value of each sub-data area, which is specifically expressed as: , RP i,j represents the pavement characteristic value of the jth sub-data area of the ith navigation path, Pc i,j represents the maximum slope angle of the pavement in the jth sub-data area of the ith navigation path, Ph i,j represents the pavement elastic hysteresis loss in the jth sub-data area of the ith navigation path, Pl i,j represents the average coverage thickness of pavement sediments in the jth sub-data area of the ith navigation path, and Ps i,j represents the pavement material echo loss in the jth sub-data area of the ith navigation path.

优选的,所述电磁数据分析单元用于建立电磁数据分析模型,将环境数据采集模块传输的电磁数据导入电磁数据分析模型中,计算出各子数据区域的电磁特征值,具体表示为:,REi,j表示第i个导航路径第j个子数据区域的电磁特征值,Eci,j表示第i个导航路径第j个子数据区域的最大电磁干扰强度,Edi,j表示第i个导航路径第j个子数据区域的电磁场主振荡频率,Evi,j表示第i个导航路径第j个子数据区域的电磁场幅度变化范围,Eri,j表示第i个导航路径第j个子数据区域的主要电磁场源距离。Preferably, the electromagnetic data analysis unit is used to establish an electromagnetic data analysis model, import the electromagnetic data transmitted by the environmental data acquisition module into the electromagnetic data analysis model, and calculate the electromagnetic characteristic value of each sub-data area, which is specifically expressed as: , RE i,j represents the electromagnetic characteristic value of the jth sub-data area of the ith navigation path, Ec i,j represents the maximum electromagnetic interference intensity of the jth sub-data area of the ith navigation path, Ed i,j represents the main oscillation frequency of the electromagnetic field of the jth sub-data area of the ith navigation path, Ev i,j represents the range of variation of the electromagnetic field amplitude of the jth sub-data area of the ith navigation path, and Er i,j represents the distance from the main electromagnetic field source of the jth sub-data area of the ith navigation path.

优选的,所述环境数据分析模块通过第i个导航路径第j个子数据区域的障碍物特征值、第i个导航路径第j个子数据区域的路面特征值以及第i个导航路径第j个子数据区域的电磁特征值计算出第i个导航路径第j个子数据区域的综合环境特征值,具体表示为:i,j表示第i个导航路径第j个子数据区域的综合环境特征值。Preferably, the environmental data analysis module calculates the comprehensive environmental characteristic value of the jth sub-data area of the ith navigation path through the obstacle characteristic value of the jth sub-data area of the ith navigation path, the road characteristic value of the jth sub-data area of the ith navigation path, and the electromagnetic characteristic value of the jth sub-data area of the ith navigation path, which is specifically expressed as: i,j represents the comprehensive environmental characteristic value of the jth sub-data area of the ith navigation path.

优选的,所述动力响应数据包括动力输出反馈延迟、功率谐波失真率、能量储备充放电率,以及温度偏差,分别标记为Fd、Fh、Fl,以及Fe,控制鲁棒性数据包括控制器容错处理时延、冗余系统切换时间、故障模式切换成功率,以及异常状态恢复速率,分别标记为Ld、Lt、Ls,以及Lv,惯性测量数据包括加速度分辨率、角速度分辨率、姿态测量误差,以及零偏最大漂移,分别标记为Aj、Am、Ad,以及Ab。Preferably, the power response data include power output feedback delay, power harmonic distortion rate, energy reserve charge and discharge rate, and temperature deviation, which are marked as Fd, Fh, Fl, and Fe, respectively; the control robustness data include controller fault tolerance processing delay, redundant system switching time, fault mode switching success rate, and abnormal state recovery rate, which are marked as Ld, Lt, Ls, and Lv, respectively; the inertial measurement data include acceleration resolution, angular velocity resolution, attitude measurement error, and zero bias maximum drift, which are marked as Aj, Am, Ad, and Ab, respectively.

优选的,所述动力响应数据分析单元用于建立动力响应数据分析模型,将机器人数据采集模块传输的动力响应数据导入动力响应数据分析模型中,计算出各子数据区域的动力响应效能值,具体表示为:,RFi,j表示第i个导航路径第j个子数据区域的动力响应效能值,Fdi,j表示第i个导航路径第j个子数据区域的动力输出反馈延迟,Fhi,j表示第i个导航路径第j个子数据区域的功率谐波失真率,Fli,j表示第i个导航路径第j个子数据区域的能量储备充放电率,Fei,j表示第i个导航路径第j个子数据区域的温度偏差。Preferably, the power response data analysis unit is used to establish a power response data analysis model, import the power response data transmitted by the robot data acquisition module into the power response data analysis model, and calculate the power response efficiency value of each sub-data area, which is specifically expressed as: ,RF i,j represents the power response efficiency value of the jth sub-data area of the i-th navigation path, Fd i,j represents the power output feedback delay of the jth sub-data area of the i-th navigation path, Fh i,j represents the power harmonic distortion rate of the jth sub-data area of the i-th navigation path, Fl i,j represents the energy reserve charge and discharge rate of the jth sub-data area of the i-th navigation path, and Fe i,j represents the temperature deviation of the jth sub-data area of the i-th navigation path.

优选的,所述控制鲁棒性数据分析单元用于建立控制鲁棒性数据分析模型,将机器人数据采集模块传输的控制鲁棒性数据导入控制鲁棒性数据分析模型中,计算出各子数据区域的鲁棒性能评估值,具体表示为:,RLi,j表示第i个导航路径第j个子数据区域的鲁棒性能评估值,Ldi,j表示第i个导航路径第j个子数据区域的控制器容错处理时延,Lti,j表示第i个导航路径第j个子数据区域的冗余系统切换时间,Lsi,j表示第i个导航路径第j个子数据区域的故障模式切换成功率,Lvi,j表示第i个导航路径第j个子数据区域的异常状态恢复速率。Preferably, the control robustness data analysis unit is used to establish a control robustness data analysis model, import the control robustness data transmitted by the robot data acquisition module into the control robustness data analysis model, and calculate the robustness performance evaluation value of each sub-data area, which is specifically expressed as: ,RL i,j represents the robust performance evaluation value of the jth sub-data area of the ith navigation path, Ld i,j represents the controller fault-tolerant processing delay of the jth sub-data area of the ith navigation path, Lt i,j represents the redundant system switching time of the jth sub-data area of the ith navigation path, Ls i,j represents the failure mode switching success rate of the jth sub-data area of the ith navigation path, and Lv i,j represents the abnormal state recovery rate of the jth sub-data area of the ith navigation path.

优选的,所述惯性测量数据分析单元用于建立惯性测量数据分析模型,将机器人数据采集模块传输的惯性测量数据导入惯性测量数据分析模型中,计算出各子数据区域的惯性数据质量评估值,具体表示为:,RAi,j表示第i个导航路径第j个子数据区域的惯性数据质量评估值,Aji,j表示第i个导航路径第j个子数据区域的加速度分辨率,Ami,j表示第i个导航路径第j个子数据区域的角速度分辨率,Adi,j表示第i个导航路径第j个子数据区域的姿态测量误差,Abi,j表示第i个导航路径第j个子数据区域的零偏最大漂移。Preferably, the inertial measurement data analysis unit is used to establish an inertial measurement data analysis model, import the inertial measurement data transmitted by the robot data acquisition module into the inertial measurement data analysis model, and calculate the inertial data quality evaluation value of each sub-data area, which is specifically expressed as: , RA i,j represents the inertial data quality assessment value of the j-th sub-data area of the ith navigation path, Aj i,j represents the acceleration resolution of the j-th sub-data area of the ith navigation path, Am i,j represents the angular velocity resolution of the j-th sub-data area of the ith navigation path, Ad i,j represents the attitude measurement error of the j-th sub-data area of the ith navigation path, and Ab i,j represents the maximum zero bias drift of the j-th sub-data area of the ith navigation path.

优选的,所述机器人数据分析模块通过第i个导航路径第j个子数据区域的动力响应效能值、第i个导航路径第j个子数据区域的鲁棒性能评估值以及第i个导航路径第j个子数据区域的惯性数据质量评估值计算出第i个导航路径第j个子数据区域的机器人综合性能评估值,具体表示为:表示第i个导航路径第j个子数据区域的机器人综合性能评估值。Preferably, the robot data analysis module calculates the robot comprehensive performance evaluation value of the jth sub-data area of the ith navigation path through the dynamic response efficiency value of the jth sub-data area of the ith navigation path, the robust performance evaluation value of the jth sub-data area of the ith navigation path, and the inertial data quality evaluation value of the jth sub-data area of the ith navigation path, which is specifically expressed as: , Represents the comprehensive performance evaluation value of the robot in the jth sub-data area of the ith navigation path.

优选的,所述综合分析模型具体表示为:,ηi表示第i个导航路径的综合优化指数,κi,j表示第i个导航路径第j个子数据区域的综合环境特征值,表示第i个导航路径第j个子数据区域的机器人综合性能评估值。Preferably, the comprehensive analysis model is specifically expressed as: , η i represents the comprehensive optimization index of the ith navigation path, κ i,j represents the comprehensive environmental characteristic value of the jth sub-data area of the ith navigation path, Represents the comprehensive performance evaluation value of the robot in the jth sub-data area of the ith navigation path.

优选的,所述综合优化指数预设值标记为,当时,表示第i个导航路径的综合优化指数小于综合优化指数预设值,说明第i个导航路径的导航效果差,则将第i个导航路径标记为非优先导航路径,当时,表示第i个导航路径的综合优化指数大于综合优化指数预设值,说明第i个导航路径的导航效果良好,则将第i个导航路径标记为优先导航路径。Preferably, the preset value of the comprehensive optimization index is marked as ,when When , it means that the comprehensive optimization index of the i-th navigation path is less than the preset value of the comprehensive optimization index, indicating that the navigation effect of the i-th navigation path is poor, then the i-th navigation path is marked as a non-priority navigation path. When , it means that the comprehensive optimization index of the ith navigation path is greater than the preset value of the comprehensive optimization index, indicating that the navigation effect of the ith navigation path is good, then the ith navigation path is marked as the priority navigation path.

本发明的技术效果和优点:Technical effects and advantages of the present invention:

本发明通过路径划分模块够将整个导航路径划分为更小的、更易于管理的子区域或路径段;通过环境数据采集模块收集各子数据区域环境的数据,这些数据对于机器人进行准确的路径规划和导航至关重要,通过实时收集环境数据,机器人能够动态地调整其路径,以避开障碍物或利用环境中的有利因素;通过环境数据分析模块对环境数据进行分析和解释,以提供有关环境状态的有用信息,环境数据分析模块还可以预测环境的变化趋势,如障碍物的移动方向或速度,从而帮助机器人做出更准确的决策;通过机器人数据采集模块收集关于机器人自身状态的数据,这些数据对于机器人进行精确的自我定位和导航至关重要,通过实时收集机器人数据,系统可以确保机器人始终沿着正确的路径前进,并在需要时进行自我调整;通过机器人数据分析模块对机器人数据进行分析和解释,以提供有关机器人当前状态的有用信息,可以评估机器人的电池寿命、机械磨损或传感器性能,有助于机器人做出更明智的决策,如选择更节能的路径或及时更换磨损的部件;通过综合分析模块将环境数据和机器人数据融合在一起,以提供关于整个路径状态的综合优化指数,使用先进的算法和模型来评估各种可能的情况和策略,并选择最佳的路径规划方案,通过综合考虑环境条件和机器人状态,综合分析模块能够确保机器人始终以最优的方式运行;通过控制模块发出控制指令。The present invention can divide the entire navigation path into smaller and more manageable sub-areas or path segments through the path division module; collect data on the environment of each sub-data area through the environmental data acquisition module, which is essential for the robot to accurately plan and navigate the path. By collecting environmental data in real time, the robot can dynamically adjust its path to avoid obstacles or take advantage of favorable factors in the environment; analyze and interpret environmental data through the environmental data analysis module to provide useful information about the state of the environment. The environmental data analysis module can also predict the changing trend of the environment, such as the moving direction or speed of obstacles, so as to help the robot make more accurate decisions; collect data on the robot's own state through the robot data acquisition module, which is essential for the robot to accurately position and navigate itself. By collecting robot data, the system can ensure that the robot always moves along the correct path and adjusts itself when necessary; the robot data analysis module analyzes and interprets the robot data to provide useful information about the robot's current status. It can evaluate the robot's battery life, mechanical wear or sensor performance, which helps the robot make smarter decisions, such as choosing a more energy-efficient path or replacing worn parts in a timely manner; the comprehensive analysis module combines environmental data and robot data to provide a comprehensive optimization index about the entire path status, using advanced algorithms and models to evaluate various possible situations and strategies and select the best path planning solution. By comprehensively considering environmental conditions and robot status, the comprehensive analysis module can ensure that the robot always operates in the optimal manner; control instructions are issued through the control module.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为本发明的整体结构示意图。FIG1 is a schematic diagram of the overall structure of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.

参考图1所示的一种用于机器人导航的实时路径规划系统,包括路径划分模块、环境数据采集模块、环境数据分析模块、机器人数据采集模块、机器人数据分析模块、综合分析模块,以及控制模块。Referring to FIG. 1 , a real-time path planning system for robot navigation includes a path division module, an environmental data acquisition module, an environmental data analysis module, a robot data acquisition module, a robot data analysis module, a comprehensive analysis module, and a control module.

所述路径划分模块用于将目标机器人的各导航路径数据确定为目标数据区域,将目标数据区域按照单个导航路径划分的方式划分为各导航路径数据,并将各导航路径依次标记为1、2……n,并按照基于终点距离划分的方式将各导航路径数据划分为各子数据区域,依次标记为1、2……m。The path division module is used to determine the navigation path data of the target robot as a target data area, divide the target data area into each navigation path data in the manner of dividing a single navigation path, and mark each navigation path as 1, 2...n in sequence, and divide each navigation path data into each sub-data area in the manner of dividing based on the end point distance, and mark them as 1, 2...m in sequence.

所述环境数据采集模块用于采集各子数据区域的障碍物数据、路面数据以及电磁数据,并将采集到的数据传输到环境数据分析模块。The environmental data acquisition module is used to collect obstacle data, road surface data and electromagnetic data in each sub-data area, and transmit the collected data to the environmental data analysis module.

所述障碍物数据包括障碍物点云密度、障碍物空间分布熵、障碍物动态变化频率,以及障碍物激光雷达反射率,分别标记为Bp、Bs、Bf,以及Bl,路面数据包括路面最大坡度角、路面弹性迟滞损耗、路面沉积物平均覆盖厚度,以及路面材质回波损耗,分别标记为Pc、Ph、Pl,以及Ps,电磁数据包括最大电磁干扰强度、电磁场主振荡频率、电磁场幅度变化范围,以及主要电磁场源距离,分别标记为Ec、Ed、Ev,以及Er。The obstacle data include obstacle point cloud density, obstacle spatial distribution entropy, obstacle dynamic change frequency, and obstacle lidar reflectivity, which are marked as Bp, Bs, Bf, and Bl respectively. The pavement data include the maximum slope angle of the pavement, the elastic hysteresis loss of the pavement, the average coverage thickness of the pavement sediment, and the pavement material return loss, which are marked as Pc, Ph, Pl, and Ps respectively. The electromagnetic data include the maximum electromagnetic interference intensity, the main oscillation frequency of the electromagnetic field, the amplitude variation range of the electromagnetic field, and the distance from the main electromagnetic field source, which are marked as Ec, Ed, Ev, and Er respectively.

所述环境数据分析模块包括障碍物数据分析单元、路面数据分析单元以及电磁数据分析单元,用于对环境数据采集模块传输的数据分析,并将分析结果传输到综合分析模块。The environmental data analysis module includes an obstacle data analysis unit, a road surface data analysis unit and an electromagnetic data analysis unit, which are used to analyze the data transmitted by the environmental data acquisition module and transmit the analysis results to the comprehensive analysis module.

所述障碍物数据分析单元用于建立障碍物数据分析模型,将环境数据采集模块传输的障碍物数据导入障碍物数据分析模型中,计算出各子数据区域的障碍物特征值,具体表示为:,RBi,j表示第i个导航路径第j个子数据区域的障碍物特征值,Bpi,j表示第i个导航路径第j个子数据区域的障碍物点云密度,Bsi,j表示第i个导航路径第j个子数据区域的障碍物空间分布熵,Bfi,j表示第i个导航路径第j个子数据区域的障碍物动态变化频率,Bli,j表示第i个导航路径第j个子数据区域的障碍物激光雷达反射率。The obstacle data analysis unit is used to establish an obstacle data analysis model, import the obstacle data transmitted by the environment data acquisition module into the obstacle data analysis model, and calculate the obstacle characteristic value of each sub-data area, which is specifically expressed as: , RB i,j represents the obstacle characteristic value of the j-th sub-data area of the ith navigation path, Bp i,j represents the obstacle point cloud density of the j-th sub-data area of the ith navigation path, Bs i,j represents the obstacle spatial distribution entropy of the j-th sub-data area of the ith navigation path, Bf i,j represents the dynamic change frequency of the obstacle in the j-th sub-data area of the ith navigation path, and Bl i,j represents the obstacle lidar reflectivity of the j-th sub-data area of the ith navigation path.

所述路面数据分析单元用于建立路面数据分析模型,将环境数据采集模块传输的路面数据导入路面数据分析模型中,计算出各子数据区域的路面特征值,具体表示为:,RPi,j表示第i个导航路径第j个子数据区域的路面特征值,Pci,j表示第i个导航路径第j个子数据区域的路面最大坡度角,Phi,j表示第i个导航路径第j个子数据区域的路面弹性迟滞损耗,Pli,j表示第i个导航路径第j个子数据区域的路面沉积物平均覆盖厚度,Psi,j表示第i个导航路径第j个子数据区域的路面材质回波损耗。The road surface data analysis unit is used to establish a road surface data analysis model, import the road surface data transmitted by the environmental data acquisition module into the road surface data analysis model, and calculate the road surface characteristic value of each sub-data area, which is specifically expressed as: , RP i,j represents the pavement characteristic value of the jth sub-data area of the ith navigation path, Pc i,j represents the maximum slope angle of the pavement in the jth sub-data area of the ith navigation path, Ph i,j represents the pavement elastic hysteresis loss in the jth sub-data area of the ith navigation path, Pl i,j represents the average coverage thickness of pavement sediments in the jth sub-data area of the ith navigation path, and Ps i,j represents the pavement material echo loss in the jth sub-data area of the ith navigation path.

所述电磁数据分析单元用于建立电磁数据分析模型,将环境数据采集模块传输的电磁数据导入电磁数据分析模型中,计算出各子数据区域的电磁特征值,具体表示为:,REi,j表示第i个导航路径第j个子数据区域的电磁特征值,Eci,j表示第i个导航路径第j个子数据区域的最大电磁干扰强度,Edi,j表示第i个导航路径第j个子数据区域的电磁场主振荡频率,Evi,j表示第i个导航路径第j个子数据区域的电磁场幅度变化范围,Eri,j表示第i个导航路径第j个子数据区域的主要电磁场源距离。The electromagnetic data analysis unit is used to establish an electromagnetic data analysis model, import the electromagnetic data transmitted by the environmental data acquisition module into the electromagnetic data analysis model, and calculate the electromagnetic characteristic value of each sub-data area, which is specifically expressed as: , RE i,j represents the electromagnetic characteristic value of the jth sub-data area of the ith navigation path, Ec i,j represents the maximum electromagnetic interference intensity of the jth sub-data area of the ith navigation path, Ed i,j represents the main oscillation frequency of the electromagnetic field of the jth sub-data area of the ith navigation path, Ev i,j represents the range of variation of the electromagnetic field amplitude of the jth sub-data area of the ith navigation path, and Er i,j represents the distance from the main electromagnetic field source of the jth sub-data area of the ith navigation path.

所述环境数据分析模块通过第i个导航路径第j个子数据区域的障碍物特征值、第i个导航路径第j个子数据区域的路面特征值以及第i个导航路径第j个子数据区域的电磁特征值计算出第i个导航路径第j个子数据区域的综合环境特征值,具体表示为:,κi,j表示第i个导航路径第j个子数据区域的综合环境特征值。The environmental data analysis module calculates the comprehensive environmental characteristic value of the jth sub-data area of the ith navigation path through the obstacle characteristic value of the jth sub-data area of the ith navigation path, the road characteristic value of the jth sub-data area of the ith navigation path, and the electromagnetic characteristic value of the jth sub-data area of the ith navigation path, which is specifically expressed as: , κ i,j represents the comprehensive environmental characteristic value of the jth sub-data area of the ith navigation path.

所述机器人数据采集模块用于采集各子数据区域的动力响应数据、控制鲁棒性数据以及惯性测量数据,并将采集到的数据传输到机器人数据分析模块。The robot data acquisition module is used to collect the dynamic response data, control robustness data and inertial measurement data of each sub-data area, and transmit the collected data to the robot data analysis module.

所述动力响应数据包括动力输出反馈延迟、功率谐波失真率、能量储备充放电率,以及温度偏差,分别标记为Fd、Fh、Fl,以及Fe,控制鲁棒性数据包括控制器容错处理时延、冗余系统切换时间、故障模式切换成功率,以及异常状态恢复速率,分别标记为Ld、Lt、Ls,以及Lv,惯性测量数据包括加速度分辨率、角速度分辨率、姿态测量误差,以及零偏最大漂移,分别标记为Aj、Am、Ad,以及Ab。The power response data includes power output feedback delay, power harmonic distortion rate, energy reserve charge and discharge rate, and temperature deviation, which are marked as Fd, Fh, Fl, and Fe, respectively. The control robustness data includes controller fault tolerance processing delay, redundant system switching time, fault mode switching success rate, and abnormal state recovery rate, which are marked as Ld, Lt, Ls, and Lv, respectively. The inertial measurement data includes acceleration resolution, angular velocity resolution, attitude measurement error, and zero bias maximum drift, which are marked as Aj, Am, Ad, and Ab, respectively.

所述机器人数据分析模块包括动力响应数据分析单元、控制鲁棒性数据分析单元以及惯性测量数据分析单元,用于对机器人数据采集模块传输的数据分析,并将分析结果传输到综合分析模块。The robot data analysis module includes a dynamic response data analysis unit, a control robustness data analysis unit and an inertial measurement data analysis unit, which are used to analyze the data transmitted by the robot data acquisition module and transmit the analysis results to the comprehensive analysis module.

所述动力响应数据分析单元用于建立动力响应数据分析模型,将机器人数据采集模块传输的动力响应数据导入动力响应数据分析模型中,计算出各子数据区域的动力响应效能值,具体表示为:,RFi,j表示第i个导航路径第j个子数据区域的动力响应效能值,Fdi,j表示第i个导航路径第j个子数据区域的动力输出反馈延迟,Fhi,j表示第i个导航路径第j个子数据区域的功率谐波失真率,Fli,j表示第i个导航路径第j个子数据区域的能量储备充放电率,Fei,j表示第i个导航路径第j个子数据区域的温度偏差。The power response data analysis unit is used to establish a power response data analysis model, import the power response data transmitted by the robot data acquisition module into the power response data analysis model, and calculate the power response efficiency value of each sub-data area, which is specifically expressed as: , RF i,j represents the power response efficiency value of the jth sub-data area of the ith navigation path, Fd i,j represents the power output feedback delay of the jth sub-data area of the ith navigation path, Fh i,j represents the power harmonic distortion rate of the jth sub-data area of the ith navigation path, Fl i,j represents the energy reserve charge and discharge rate of the jth sub-data area of the ith navigation path, and Fe i,j represents the temperature deviation of the jth sub-data area of the ith navigation path.

所述控制鲁棒性数据分析单元用于建立控制鲁棒性数据分析模型,将机器人数据采集模块传输的控制鲁棒性数据导入控制鲁棒性数据分析模型中,计算出各子数据区域的鲁棒性能评估值,具体表示为:,RLi,j表示第i个导航路径第j个子数据区域的鲁棒性能评估值,Ldi,j表示第i个导航路径第j个子数据区域的控制器容错处理时延,Lti,j表示第i个导航路径第j个子数据区域的冗余系统切换时间,Lsi,j表示第i个导航路径第j个子数据区域的故障模式切换成功率,Lvi,j表示第i个导航路径第j个子数据区域的异常状态恢复速率。The control robustness data analysis unit is used to establish a control robustness data analysis model, import the control robustness data transmitted by the robot data acquisition module into the control robustness data analysis model, and calculate the robustness performance evaluation value of each sub-data area, which is specifically expressed as: , RL i,j represents the robust performance evaluation value of the jth sub-data area of the ith navigation path, Ld i,j represents the controller fault-tolerant processing delay of the jth sub-data area of the ith navigation path, Lt i,j represents the redundant system switching time of the jth sub-data area of the ith navigation path, Ls i,j represents the failure mode switching success rate of the jth sub-data area of the ith navigation path, and Lv i,j represents the abnormal state recovery rate of the jth sub-data area of the ith navigation path.

所述惯性测量数据分析单元用于建立惯性测量数据分析模型,将机器人数据采集模块传输的惯性测量数据导入惯性测量数据分析模型中,计算出各子数据区域的惯性数据质量评估值,具体表示为:,RAi,j表示第i个导航路径第j个子数据区域的惯性数据质量评估值,Aji,j表示第i个导航路径第j个子数据区域的加速度分辨率,Ami,j表示第i个导航路径第j个子数据区域的角速度分辨率,Adi,j表示第i个导航路径第j个子数据区域的姿态测量误差,Abi,j表示第i个导航路径第j个子数据区域的零偏最大漂移。The inertial measurement data analysis unit is used to establish an inertial measurement data analysis model, import the inertial measurement data transmitted by the robot data acquisition module into the inertial measurement data analysis model, and calculate the inertial data quality evaluation value of each sub-data area, which is specifically expressed as: , RA i,j represents the inertial data quality assessment value of the jth sub-data area of the ith navigation path, Aj i,j represents the acceleration resolution of the jth sub-data area of the ith navigation path, Am i,j represents the angular velocity resolution of the jth sub-data area of the ith navigation path, Ad i,j represents the attitude measurement error of the jth sub-data area of the ith navigation path, and Ab i,j represents the maximum zero bias drift of the jth sub-data area of the ith navigation path.

所述机器人数据分析模块通过第i个导航路径第j个子数据区域的动力响应效能值、第i个导航路径第j个子数据区域的鲁棒性能评估值以及第i个导航路径第j个子数据区域的惯性数据质量评估值计算出第i个导航路径第j个子数据区域的机器人综合性能评估值,具体表示为:表示第i个导航路径第j个子数据区域的机器人综合性能评估值。The robot data analysis module calculates the robot comprehensive performance evaluation value of the jth sub-data area of the ith navigation path through the dynamic response efficiency value of the jth sub-data area of the ith navigation path, the robust performance evaluation value of the jth sub-data area of the ith navigation path, and the inertial data quality evaluation value of the jth sub-data area of the ith navigation path, which is specifically expressed as: , Represents the comprehensive performance evaluation value of the robot in the jth sub-data area of the ith navigation path.

所述综合分析模块用于建立综合分析模型,将环境数据分析模块和机器人数据分析模块传输的数据导入综合分析模型中,计算出各导航路径的综合优化指数,并传输到控制模块。The comprehensive analysis module is used to establish a comprehensive analysis model, import the data transmitted by the environment data analysis module and the robot data analysis module into the comprehensive analysis model, calculate the comprehensive optimization index of each navigation path, and transmit it to the control module.

所述综合分析模型具体表示为:,ηi表示第i个导航路径的综合优化指数,κi,j表示第i个导航路径第j个子数据区域的综合环境特征值,表示第i个导航路径第j个子数据区域的机器人综合性能评估值。The comprehensive analysis model is specifically expressed as: , η i represents the comprehensive optimization index of the ith navigation path, κ i,j represents the comprehensive environmental characteristic value of the jth sub-data area of the ith navigation path, Represents the comprehensive performance evaluation value of the robot in the jth sub-data area of the ith navigation path.

所述控制模块用于建立综合优化指数预设值,用于对各导航路径的综合优化指数进行判断,并根据判断结果发出控制信号。The control module is used to establish a preset value of the comprehensive optimization index, to judge the comprehensive optimization index of each navigation path, and to send a control signal according to the judgment result.

所述综合优化指数预设值标记为,当时,表示第i个导航路径的综合优化指数小于综合优化指数预设值,说明第i个导航路径的导航效果差,则将第i个导航路径标记为非优先导航路径,当时,表示第i个导航路径的综合优化指数大于综合优化指数预设值,说明第i个导航路径的导航效果良好,则将第i个导航路径标记为优先导航路径。The preset value of the comprehensive optimization index is marked as ,when When , it means that the comprehensive optimization index of the i-th navigation path is less than the preset value of the comprehensive optimization index, indicating that the navigation effect of the i-th navigation path is poor, then the i-th navigation path is marked as a non-priority navigation path. When , it means that the comprehensive optimization index of the ith navigation path is greater than the preset value of the comprehensive optimization index, indicating that the navigation effect of the ith navigation path is good, then the ith navigation path is marked as the priority navigation path.

本发明通过路径划分模块够将整个导航路径划分为更小的、更易于管理的子区域或路径段;通过环境数据采集模块收集各子数据区域环境的数据,这些数据对于机器人进行准确的路径规划和导航至关重要,通过实时收集环境数据,机器人能够动态地调整其路径,以避开障碍物或利用环境中的有利因素;通过环境数据分析模块对环境数据进行分析和解释,以提供有关环境状态的有用信息,环境数据分析模块还可以预测环境的变化趋势,如障碍物的移动方向或速度,从而帮助机器人做出更准确的决策;通过机器人数据采集模块收集关于机器人自身状态的数据,这些数据对于机器人进行精确的自我定位和导航至关重要,通过实时收集机器人数据,系统可以确保机器人始终沿着正确的路径前进,并在需要时进行自我调整;通过机器人数据分析模块对机器人数据进行分析和解释,以提供有关机器人当前状态的有用信息,可以评估机器人的电池寿命、机械磨损或传感器性能,有助于机器人做出更明智的决策,如选择更节能的路径或及时更换磨损的部件;通过综合分析模块将环境数据和机器人数据融合在一起,以提供关于整个路径状态的综合优化指数,使用先进的算法和模型来评估各种可能的情况和策略,并选择最佳的路径规划方案,通过综合考虑环境条件和机器人状态,综合分析模块能够确保机器人始终以最优的方式运行;通过控制模块发出控制指令。The present invention can divide the entire navigation path into smaller and more manageable sub-areas or path segments through the path division module; collect data on the environment of each sub-data area through the environmental data acquisition module, which is essential for the robot to accurately plan and navigate the path. By collecting environmental data in real time, the robot can dynamically adjust its path to avoid obstacles or take advantage of favorable factors in the environment; analyze and interpret environmental data through the environmental data analysis module to provide useful information about the state of the environment. The environmental data analysis module can also predict the changing trend of the environment, such as the moving direction or speed of obstacles, so as to help the robot make more accurate decisions; collect data on the robot's own state through the robot data acquisition module, which is essential for the robot to accurately position and navigate itself. By collecting robot data, the system can ensure that the robot always moves along the correct path and adjusts itself when necessary; the robot data analysis module analyzes and interprets the robot data to provide useful information about the robot's current status. It can evaluate the robot's battery life, mechanical wear or sensor performance, which helps the robot make smarter decisions, such as choosing a more energy-efficient path or replacing worn parts in a timely manner; the comprehensive analysis module combines environmental data and robot data to provide a comprehensive optimization index about the entire path status, using advanced algorithms and models to evaluate various possible situations and strategies and select the best path planning solution. By comprehensively considering environmental conditions and robot status, the comprehensive analysis module can ensure that the robot always operates in the optimal manner; control instructions are issued through the control module.

其次:本发明公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计,在不冲突情况下,本发明同一实施例及不同实施例可以相互组合;Secondly: In the drawings of the embodiments disclosed in the present invention, only the structures related to the embodiments disclosed in the present invention are involved, and other structures can refer to the general design. In the absence of conflict, the same embodiment and different embodiments of the present invention can be combined with each other;

最后:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。Finally: The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention should be included in the protection scope of the present invention.

Claims (9)

1.一种用于机器人导航的实时路径规划系统,其特征在于,包括:1. A real-time path planning system for robot navigation, comprising: 路径划分模块:用于将目标机器人的各导航路径数据确定为目标数据区域,将目标数据区域按照单个导航路径划分的方式划分为各导航路径数据,并将各导航路径依次标记为1、2……n,并按照基于终点距离划分的方式将各导航路径数据划分为各子数据区域,依次标记为1、2……m;Path division module: used to determine each navigation path data of the target robot as a target data area, divide the target data area into each navigation path data in the manner of dividing a single navigation path, and mark each navigation path as 1, 2...n in sequence, and divide each navigation path data into each sub-data area in the manner of dividing based on the end point distance, and mark them as 1, 2...m in sequence; 环境数据采集模块:用于采集各子数据区域的障碍物数据、路面数据以及电磁数据,并将采集到的数据传输到环境数据分析模块;Environmental data acquisition module: used to collect obstacle data, road surface data and electromagnetic data in each sub-data area, and transmit the collected data to the environmental data analysis module; 环境数据分析模块:包括障碍物数据分析单元、路面数据分析单元以及电磁数据分析单元,用于对环境数据采集模块传输的数据分析,并将分析结果传输到综合分析模块;Environmental data analysis module: including obstacle data analysis unit, road surface data analysis unit and electromagnetic data analysis unit, used to analyze the data transmitted by the environmental data acquisition module and transmit the analysis results to the comprehensive analysis module; 机器人数据采集模块:用于采集各子数据区域的动力响应数据、控制鲁棒性数据以及惯性测量数据,并将采集到的数据传输到机器人数据分析模块;Robot data acquisition module: used to collect dynamic response data, control robustness data and inertial measurement data of each sub-data area, and transmit the collected data to the robot data analysis module; 机器人数据分析模块:包括动力响应数据分析单元、控制鲁棒性数据分析单元以及惯性测量数据分析单元,用于对机器人数据采集模块传输的数据分析,并将分析结果传输到综合分析模块;Robot data analysis module: including a dynamic response data analysis unit, a control robustness data analysis unit and an inertial measurement data analysis unit, which are used to analyze the data transmitted by the robot data acquisition module and transmit the analysis results to the comprehensive analysis module; 综合分析模块:用于建立综合分析模型,将环境数据分析模块和机器人数据分析模块传输的数据导入综合分析模型中,计算出各导航路径的综合优化指数,并传输到控制模块;Comprehensive analysis module: used to establish a comprehensive analysis model, import the data transmitted by the environment data analysis module and the robot data analysis module into the comprehensive analysis model, calculate the comprehensive optimization index of each navigation path, and transmit it to the control module; 控制模块:用于建立综合优化指数预设值,用于对各导航路径的综合优化指数进行判断,并根据判断结果发出控制信号。Control module: used to establish a preset value of the comprehensive optimization index, to judge the comprehensive optimization index of each navigation path, and to send a control signal according to the judgment result. 2.根据权利要求1所述的一种用于机器人导航的实时路径规划系统,其特征在于:所述障碍物数据包括障碍物点云密度、障碍物空间分布熵、障碍物动态变化频率,以及障碍物激光雷达反射率,分别标记为Bp、Bs、Bf,以及Bl,路面数据包括路面最大坡度角、路面弹性迟滞损耗、路面沉积物平均覆盖厚度,以及路面材质回波损耗,分别标记为Pc、Ph、Pl,以及Ps,电磁数据包括最大电磁干扰强度、电磁场主振荡频率、电磁场幅度变化范围,以及主要电磁场源距离,分别标记为Ec、Ed、Ev,以及Er。2. A real-time path planning system for robot navigation according to claim 1, characterized in that: the obstacle data includes obstacle point cloud density, obstacle spatial distribution entropy, obstacle dynamic change frequency, and obstacle laser radar reflectivity, respectively marked as Bp, Bs, Bf, and Bl; the road surface data includes the maximum road surface slope angle, road surface elastic hysteresis loss, average road surface sediment coverage thickness, and road surface material return loss, respectively marked as Pc, Ph, Pl, and Ps; the electromagnetic data includes the maximum electromagnetic interference intensity, the main oscillation frequency of the electromagnetic field, the electromagnetic field amplitude variation range, and the main electromagnetic field source distance, respectively marked as Ec, Ed, Ev, and Er. 3.根据权利要求1所述的一种用于机器人导航的实时路径规划系统,其特征在于:所述障碍物数据分析单元用于建立障碍物数据分析模型,将环境数据采集模块传输的障碍物数据导入障碍物数据分析模型中,计算出各子数据区域的障碍物特征值,具体表示为:,RBi,j表示第i个导航路径第j个子数据区域的障碍物特征值,Bpi,j表示第i个导航路径第j个子数据区域的障碍物点云密度,Bsi,j表示第i个导航路径第j个子数据区域的障碍物空间分布熵,Bfi,j表示第i个导航路径第j个子数据区域的障碍物动态变化频率,Bli,j表示第i个导航路径第j个子数据区域的障碍物激光雷达反射率。3. A real-time path planning system for robot navigation according to claim 1, characterized in that: the obstacle data analysis unit is used to establish an obstacle data analysis model, import the obstacle data transmitted by the environmental data acquisition module into the obstacle data analysis model, and calculate the obstacle characteristic value of each sub-data area, which is specifically expressed as: ,RB i,j represents the obstacle characteristic value of the jth sub-data area of the ith navigation path, Bp i,j represents the obstacle point cloud density of the jth sub-data area of the ith navigation path, Bs i,j represents the obstacle spatial distribution entropy of the jth sub-data area of the ith navigation path, Bf i,j represents the dynamic change frequency of the obstacle in the jth sub-data area of the ith navigation path, and Bl i,j represents the obstacle lidar reflectivity of the jth sub-data area of the ith navigation path. 4.根据权利要求1所述的一种用于机器人导航的实时路径规划系统,其特征在于:所述路面数据分析单元用于建立路面数据分析模型,将环境数据采集模块传输的路面数据导入路面数据分析模型中,计算出各子数据区域的路面特征值,具体表示为:,RPi,j表示第i个导航路径第j个子数据区域的路面特征值,Pci,j表示第i个导航路径第j个子数据区域的路面最大坡度角,Phi,j表示第i个导航路径第j个子数据区域的路面弹性迟滞损耗,Pli,j表示第i个导航路径第j个子数据区域的路面沉积物平均覆盖厚度,Psi,j表示第i个导航路径第j个子数据区域的路面材质回波损耗。4. A real-time path planning system for robot navigation according to claim 1, characterized in that: the road surface data analysis unit is used to establish a road surface data analysis model, import the road surface data transmitted by the environmental data acquisition module into the road surface data analysis model, and calculate the road surface characteristic value of each sub-data area, which is specifically expressed as: ,RP i,j represents the pavement characteristic value of the jth sub-data area of the ith navigation path, Pc i,j represents the maximum slope angle of the pavement in the jth sub-data area of the ith navigation path, Ph i,j represents the pavement elastic hysteresis loss in the jth sub-data area of the ith navigation path, Pl i,j represents the average coverage thickness of pavement sediments in the jth sub-data area of the ith navigation path, and Ps i,j represents the pavement material echo loss in the jth sub-data area of the ith navigation path. 5.根据权利要求1所述的一种用于机器人导航的实时路径规划系统,其特征在于:所述电磁数据分析单元用于建立电磁数据分析模型,将环境数据采集模块传输的电磁数据导入电磁数据分析模型中,计算出各子数据区域的电磁特征值,具体表示为:,REi,j表示第i个导航路径第j个子数据区域的电磁特征值,Eci,j表示第i个导航路径第j个子数据区域的最大电磁干扰强度,Edi,j表示第i个导航路径第j个子数据区域的电磁场主振荡频率,Evi,j表示第i个导航路径第j个子数据区域的电磁场幅度变化范围,Eri,j表示第i个导航路径第j个子数据区域的主要电磁场源距离。5. A real-time path planning system for robot navigation according to claim 1, characterized in that: the electromagnetic data analysis unit is used to establish an electromagnetic data analysis model, import the electromagnetic data transmitted by the environmental data acquisition module into the electromagnetic data analysis model, and calculate the electromagnetic characteristic value of each sub-data area, which is specifically expressed as: ,RE i,j represents the electromagnetic characteristic value of the jth sub-data area of the ith navigation path, Ec i,j represents the maximum electromagnetic interference intensity of the jth sub-data area of the ith navigation path, Ed i,j represents the main oscillation frequency of the electromagnetic field of the jth sub-data area of the ith navigation path, Ev i,j represents the range of variation of the electromagnetic field amplitude of the jth sub-data area of the ith navigation path, and Er i,j represents the distance of the main electromagnetic field source of the jth sub-data area of the ith navigation path. 6.根据权利要求1所述的一种用于机器人导航的实时路径规划系统,其特征在于:所述动力响应数据包括动力输出反馈延迟、功率谐波失真率、能量储备充放电率,以及温度偏差,分别标记为Fd、Fh、Fl,以及Fe,控制鲁棒性数据包括控制器容错处理时延、冗余系统切换时间、故障模式切换成功率,以及异常状态恢复速率,分别标记为Ld、Lt、Ls,以及Lv,惯性测量数据包括加速度分辨率、角速度分辨率、姿态测量误差,以及零偏最大漂移,分别标记为Aj、Am、Ad,以及Ab。6. A real-time path planning system for robot navigation according to claim 1, characterized in that: the power response data includes power output feedback delay, power harmonic distortion rate, energy reserve charge and discharge rate, and temperature deviation, respectively marked as Fd, Fh, Fl, and Fe; the control robustness data includes controller fault tolerance processing delay, redundant system switching time, fault mode switching success rate, and abnormal state recovery rate, respectively marked as Ld, Lt, Ls, and Lv; the inertial measurement data includes acceleration resolution, angular velocity resolution, attitude measurement error, and zero bias maximum drift, respectively marked as Aj, Am, Ad, and Ab. 7.根据权利要求1所述的一种用于机器人导航的实时路径规划系统,其特征在于:所述动力响应数据分析单元用于建立动力响应数据分析模型,将机器人数据采集模块传输的动力响应数据导入动力响应数据分析模型中,计算出各子数据区域的动力响应效能值,具体表示为:,RFi,j表示第i个导航路径第j个子数据区域的动力响应效能值,Fdi,j表示第i个导航路径第j个子数据区域的动力输出反馈延迟,Fhi,j表示第i个导航路径第j个子数据区域的功率谐波失真率,Fli,j表示第i个导航路径第j个子数据区域的能量储备充放电率,Fei,j表示第i个导航路径第j个子数据区域的温度偏差。7. A real-time path planning system for robot navigation according to claim 1, characterized in that: the power response data analysis unit is used to establish a power response data analysis model, import the power response data transmitted by the robot data acquisition module into the power response data analysis model, and calculate the power response efficiency value of each sub-data area, which is specifically expressed as: ,RF i,j represents the power response efficiency value of the jth sub-data area of the i-th navigation path, Fd i,j represents the power output feedback delay of the jth sub-data area of the i-th navigation path, Fh i,j represents the power harmonic distortion rate of the jth sub-data area of the i-th navigation path, Fl i,j represents the energy reserve charge and discharge rate of the jth sub-data area of the i-th navigation path, and Fe i,j represents the temperature deviation of the jth sub-data area of the i-th navigation path. 8.根据权利要求1所述的一种用于机器人导航的实时路径规划系统,其特征在于:所述控制鲁棒性数据分析单元用于建立控制鲁棒性数据分析模型,将机器人数据采集模块传输的控制鲁棒性数据导入控制鲁棒性数据分析模型中,计算出各子数据区域的鲁棒性能评估值,具体表示为:,RLi,j表示第i个导航路径第j个子数据区域的鲁棒性能评估值,Ldi,j表示第i个导航路径第j个子数据区域的控制器容错处理时延,Lti,j表示第i个导航路径第j个子数据区域的冗余系统切换时间,Lsi,j表示第i个导航路径第j个子数据区域的故障模式切换成功率,Lvi,j表示第i个导航路径第j个子数据区域的异常状态恢复速率。8. A real-time path planning system for robot navigation according to claim 1, characterized in that: the control robustness data analysis unit is used to establish a control robustness data analysis model, import the control robustness data transmitted by the robot data acquisition module into the control robustness data analysis model, and calculate the robustness performance evaluation value of each sub-data area, which is specifically expressed as: ,RL i,j represents the robust performance evaluation value of the jth sub-data area of the ith navigation path, Ld i,j represents the controller fault-tolerant processing delay of the jth sub-data area of the ith navigation path, Lt i,j represents the redundant system switching time of the jth sub-data area of the ith navigation path, Ls i,j represents the failure mode switching success rate of the jth sub-data area of the ith navigation path, and Lv i,j represents the abnormal state recovery rate of the jth sub-data area of the ith navigation path. 9.根据权利要求1所述的一种用于机器人导航的实时路径规划系统,其特征在于:所述综合分析模型具体表示为:i表示第i个导航路径的综合优化指数,κi,j表示第i个导航路径第j个子数据区域的综合环境特征值,表示第i个导航路径第j个子数据区域的机器人综合性能评估值。9. A real-time path planning system for robot navigation according to claim 1, characterized in that: the comprehensive analysis model is specifically expressed as: i represents the comprehensive optimization index of the ith navigation path, κ i,j represents the comprehensive environmental characteristic value of the jth sub-data area of the ith navigation path, Represents the comprehensive performance evaluation value of the robot in the jth sub-data area of the ith navigation path.
CN202410809106.XA 2024-06-21 2024-06-21 Real-time path planning system for robot navigation Active CN118376247B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410809106.XA CN118376247B (en) 2024-06-21 2024-06-21 Real-time path planning system for robot navigation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410809106.XA CN118376247B (en) 2024-06-21 2024-06-21 Real-time path planning system for robot navigation

Publications (2)

Publication Number Publication Date
CN118376247A true CN118376247A (en) 2024-07-23
CN118376247B CN118376247B (en) 2024-08-27

Family

ID=91909072

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410809106.XA Active CN118376247B (en) 2024-06-21 2024-06-21 Real-time path planning system for robot navigation

Country Status (1)

Country Link
CN (1) CN118376247B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107356254A (en) * 2017-06-07 2017-11-17 东南大学 Suitable for the particle group optimizing method of geomagnetic auxiliary navigation trajectory planning
US20180051991A1 (en) * 2016-08-17 2018-02-22 Sharp Laboratories Of America, Inc. Lazier graph-based path planning for autonomous navigation
US20230366687A1 (en) * 2022-05-13 2023-11-16 Optum, Inc. Machine learning techniques for traversal path optimization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180051991A1 (en) * 2016-08-17 2018-02-22 Sharp Laboratories Of America, Inc. Lazier graph-based path planning for autonomous navigation
CN107356254A (en) * 2017-06-07 2017-11-17 东南大学 Suitable for the particle group optimizing method of geomagnetic auxiliary navigation trajectory planning
US20230366687A1 (en) * 2022-05-13 2023-11-16 Optum, Inc. Machine learning techniques for traversal path optimization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李爱莲;高策;梁惠明;: "移动机器人导航方法的分析与研究", 仪表技术, no. 05, 15 May 2013 (2013-05-15) *

Also Published As

Publication number Publication date
CN118376247B (en) 2024-08-27

Similar Documents

Publication Publication Date Title
Wang et al. The improved pure pursuit algorithm for autonomous driving advanced system
CN108222093A (en) A kind of autonomous soil-shifting robot
CN108196554A (en) A kind of AGV Integrated guidance systems based on magnetic inductor and gyroscope
CN113037395A (en) Overwater and underwater cross-domain unmanned equipment cooperative operation method
CN114932562A (en) Underground cable tunnel inspection robot based on laser radar and implementation method
CN118376247B (en) Real-time path planning system for robot navigation
Shentu et al. Hybrid navigation system based autonomous positioning and path planning for mobile robots
CN111198567B (en) A multi-AGV collaborative dynamic tracking method and device
CN113325852B (en) Leader follower mode-based multi-agent formation change control method in advancing process
Sha et al. A type of energy-efficient target tracking approach based on grids in sensor networks
CN111811503B (en) Unscented Kalman Filter Fusion Localization Method Based on UWB and QR Code
Li et al. Adaptive virtual leader–leader–follower based formation switching for multiple autonomous tracked mobile robots in unknown obstacle environments
CN111121625A (en) Method for calibrating relative position of diagonally-arranged double laser radars
CN110297502B (en) Trajectory tracking control system and method of wire-controlled chassis based on UWB positioning
CN206848816U (en) Inertial guide car based on millimetre-wave radar air navigation aid
Wang et al. Mobile anchor node assisted node collaborative localization based on light reflection in WSN
Geng et al. Design and experiment of magnetic navigation control system based on fuzzy PID strategy
CN114415523B (en) Vehicle cooperative motion control method and system
CN115542904B (en) Grouping type collaborative fire-fighting robot fire scene internal grouping queue driving control method
CN117848350B (en) Unmanned aerial vehicle route planning method for power transmission line construction engineering
Zhu et al. Visual path tracking control for park scene
CN118295403A (en) A cooperative platoon control method for unmanned vehicles based on scene adaptive switching algorithm
Li Controller with Vehicular Communication Design for Vehicular Platoon System
CN119045522A (en) Heterogeneous unmanned robot collaborative formation obstacle avoidance method for complex environment
Li Research on the Multi-Armed Bandit Algorithm in Path Planning for Autonomous Vehicles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant