[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN118286549A - 用于呼吸流治疗系统的呼吸速率监测 - Google Patents

用于呼吸流治疗系统的呼吸速率监测 Download PDF

Info

Publication number
CN118286549A
CN118286549A CN202410211353.XA CN202410211353A CN118286549A CN 118286549 A CN118286549 A CN 118286549A CN 202410211353 A CN202410211353 A CN 202410211353A CN 118286549 A CN118286549 A CN 118286549A
Authority
CN
China
Prior art keywords
patient
flow
respiratory
signal
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410211353.XA
Other languages
English (en)
Inventor
R·M·J·威廉姆斯
C·G·查尔斯
D·M·拉塞尔
B·J·赖安
B·A·爱德华兹
A·K·古利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fisher and Paykel Healthcare Ltd
Original Assignee
Fisher and Paykel Healthcare Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fisher and Paykel Healthcare Ltd filed Critical Fisher and Paykel Healthcare Ltd
Publication of CN118286549A publication Critical patent/CN118286549A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6844Monitoring or controlling distance between sensor and tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0066Blowers or centrifugal pumps
    • A61M16/0069Blowers or centrifugal pumps the speed thereof being controlled by respiratory parameters, e.g. by inhalation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • A61M16/026Control means therefor including calculation means, e.g. using a processor specially adapted for predicting, e.g. for determining an information representative of a flow limitation during a ventilation cycle by using a root square technique or a regression analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0666Nasal cannulas or tubing
    • A61M16/0672Nasal cannula assemblies for oxygen therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/16Devices to humidify the respiration air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/16Devices to humidify the respiration air
    • A61M16/161Devices to humidify the respiration air with means for measuring the humidity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0666Nasal cannulas or tubing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • A61M2016/102Measuring a parameter of the content of the delivered gas
    • A61M2016/1025Measuring a parameter of the content of the delivered gas the O2 concentration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • A61M2016/102Measuring a parameter of the content of the delivered gas
    • A61M2016/103Measuring a parameter of the content of the delivered gas the CO2 concentration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0208Oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3365Rotational speed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3368Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3375Acoustical, e.g. ultrasonic, measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/52General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/42Rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/43Composition of exhalation
    • A61M2230/432Composition of exhalation partial CO2 pressure (P-CO2)
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B7/00Respiratory apparatus
    • A62B7/02Respiratory apparatus with compressed oxygen or air
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B9/00Component parts for respiratory or breathing apparatus
    • A62B9/003Means for influencing the temperature or humidity of the breathing gas

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Otolaryngology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本申请涉及用于呼吸流治疗系统的呼吸速率监测。一种系统和方法可以通过对来自气体流的信号进行一个或多个频率分析来确定使用呼吸装置的患者的呼吸速率。来自所述气体流的所述信号可能是随所述患者的呼吸而变化的一种信号。所述系统可以包括非密封的患者接口,诸如在经鼻高流量治疗中的鼻插管或者任何其他患者接口。所述呼吸系统还可以检测所述患者是否已取下所述患者接口和/或连接到所述患者接口的所述患者是否正在说话或进食。所述患者使用所述呼吸系统的数据和所述患者的呼吸速率可以提供治疗顺应性和长期使用趋势信息和/或所述患者的呼吸功能和/或其他生理功能的进展。

Description

用于呼吸流治疗系统的呼吸速率监测
本申请是2018年11月12日提交的、名称为“用于呼吸流治疗系统的呼吸速率监测”的发明专利申请201880072258.9的分案申请。
技术领域
本披露内容涉及一种用于对接受呼吸流治疗的患者的呼吸速率进行监测的方法和系统。具体地,本披露内容涉及对接受经鼻高流量治疗的患者的呼吸速率进行监测。
背景技术
呼吸辅助设备用于在比如医院、医疗设施、住院护理或家庭环境等各种环境中向用户或患者递送气体流。呼吸辅助或呼吸治疗设备(统称为“呼吸设备”或“呼吸装置”)可以用于利用气体流递送补充氧气或其他气体,和/或利用加湿设备递送经加热和加湿的气体。呼吸设备可以允许对气体流的特性(包括流量、温度、气体浓度、湿度、压力等)进行调整和控制。使用比如流量传感器和/或压力传感器等传感器来测量气体流的特性。
发明内容
使用呼吸装置的患者的呼吸速率可能是有用的信息。患者的呼吸速率数据可以告知临床医生关于患者的健康、呼吸装置的使用和/或患者的呼吸功能的进展。呼吸速率数据也可以用于改善呼吸装置本身的功能性。
通过使用呼吸装置的患者的吸气和呼气可能会影响装置中的气体流。这是因为当患者通过患者接口(诸如面罩或鼻插管)吸气时,对患者接口中的气体流的阻力会降低;当患者呼气时,对患者接口中的气体流的阻力会增加。在密封系统中,这种吸气和呼气相对容易测量。然而,在未密封的系统(诸如鼻高流量系统)中,由于系统的开放性质,更难确定患者的吸气和呼气。
在密封的呼吸系统中,呼吸装置可以控制气体流速或压力中的一个,从而使气体流速或压力中的另一个在患者呼入和呼出时表现出可观察的变化。在这些密封的系统中,吸气或呼气的开始可以用作装置改变气体的压力和/或流速的触发事件。这些呼吸装置可以通过在时域中监测信号(诸如流速或压力)的波动来确定患者的呼吸速率。例如,峰值检测机制可以从信号确定何时发生呼吸。当信号为流速时,峰值可以指示吸气。可以通过确定触发事件(诸如吸气或呼气)的发生频率来获得呼吸速率。
在采用未密封的患者接口的呼吸装置中,诸如在鼻高流量系统中,可能难以观察到时域中信号的波动。未密封的呼吸系统中的装置可以不断地调节其流动发生器马达的转速来维持目标流速。由于鼓风机自动补偿其输出流速,因此由于患者的呼吸而导致的目标流速的变化通常相对较小。与密封系统相比,未密封或非密封的呼吸系统也可以具有较低的气体流阻抗。低阻抗可能是由于来自患者的鼻孔(其未密封)的泄漏和/或患者可选地通过他或她的嘴呼吸的能力。
此外,鼻高流量系统中的高流速可能导致湍流。湍流可能会增加信号中的噪声,这可能使时域信号分析(诸如触发事件的识别)复杂化。小信号变化和气体流的信号中增加的噪声的组合可能使得难以基于分析时域中的信号来确定呼吸周期或呼吸频率。
基于分析时域中的信号来确定呼吸周期或呼吸频率也可能导致通过在没有呼吸的情况下检测到呼吸来错误地测量呼吸速率。容易将时域信号的不规则性误认为是呼吸触发事件。
密封的系统可以被设计成能够快速地读取呼吸速率,以允许检测呼吸速率的突然改变和相位信息两者,从而允许呼吸同步。快速读取设计可能会损害呼吸速率测量的准确性。
本披露内容披露了一种用于通过对来自气体流的信号进行频率分析来确定从呼吸系统接受呼吸治疗的患者的呼吸速率的过程。当患者接口是非密封装置(诸如经鼻高流量治疗中的鼻插管)或任何其他患者接口(诸如面罩、鼻罩、鼻枕面罩、气管内导管、气管造口术接口或其他接口(诸如在持续气道正压通气(CPAP)治疗和/或双水平气道正压治疗中))时,可以使用本文披露的过程。
本文披露的频率分析可以从可用数据中提取幅值和频率信息。由于信号的不规则性,提取的数据不太容易出现呼吸触发的错误。与从时域流速信号中测量呼吸周期相比,频率分析可以在各种呼吸装置中提供更可靠的呼吸速率数据。与提供快速读取相比,本文披露的过程还着重于在略微更长的时间段内提供患者的呼吸速率的更准确的测量。
本披露内容还披露了进行气体流动参数的时域和/或频域分析以通过确定是否可以从气体流量信号中检测出患者呼吸来检测患者与呼吸系统的连接和断开的过程。可以将患者断开的确定馈送到呼吸装置和/或其他患者监测装置的其他控制功能中,诸如用于在患者已取下患者接口时中断氧气递送控制。
本文披露的呼吸速率确定过程还可以监测患者是否已取下患者接口和/或连接到患者接口的患者是否正在说话或进食,这可以提高呼吸速率确定的准确性。患者使用呼吸系统的数据和患者的呼吸速率可以提供治疗顺应性和长期使用趋势信息和/或患者的呼吸功能的进展。
一种被配置为向患者递送呼吸治疗并且还被配置为提供与患者的呼吸有关的信息的呼吸系统可以包括呼吸气体流动路径,所述呼吸气体流动路径被配置为向患者提供呼吸气体;以及一个或多个处理器,所述一个或多个处理器被配置为接收响应于气体流动参数、由流动发生器产生的气体流量、随患者的呼吸而变化的气体流动参数的信号,所述一个或多个处理器被进一步配置成用于至少部分地基于所述信号来确定所述患者的呼吸速率。所述系统可以是非密封系统。所述系统可以被配置为递送经鼻高流量治疗。所述系统可以是密封系统。所述信号可以由传感器输出,所述一个或多个处理器与所述传感器电连通。所述信号可以从系统参数导出。所述传感器可以包括流速传感器、压力传感器、马达转速传感器和/或二氧化碳传感器。所述传感器可以至少部分地在所述气体流动路径内。所述传感器可以在所述气体流动路径之外。所述一个或多个处理器可以被配置为基于响应于两个或更多个气体流动参数的信号来确定所述患者的所述呼吸速率。所述一个或多个处理器可以被配置为基于测量的气体流动参数与期望的参数值之间的差值来确定所述患者的所述呼吸速率。所述气体流动参数可以是流速。所述一个或多个处理器可以被配置为进一步基于目标流速来确定所述患者的所述呼吸速率。所述一个或多个处理器可以被配置为进一步基于测量的流动阻力和测量的马达转速来确定所述患者的所述呼吸速率。所述一个或多个处理器可以被配置为进一步基于测量的流动阻力和测量的马达转速的函数来确定所述患者的所述呼吸速率。所述一个或多个处理器可以被配置为至少部分地基于所述流速的测量值与所述目标流速之间的差值来确定所述患者的所述呼吸速率。所述一个或多个处理器可以被配置为至少部分地基于所述流速的测量值与测量的流动阻力和测量的马达转速的乘积或者所述测量的流动阻力和所述测量的马达转速的函数之间的差值来确定所述患者的所述呼吸速率。所述系统可以包括热敏电阻流量传感器或声学流速传感器。所述热敏电阻流量传感器可以被配置为当所述气体在所述热敏电阻周围流动并经过所述热敏电阻时,使热敏电阻在恒定的目标温度下运行。所述热敏电阻流量传感器可以被配置为维持第一目标温度和第二目标温度。所述第一目标温度和所述第二目标温度可以分别对应于在约50℃至约70℃之间、以及在约90℃至约110℃之间。所述第一目标温度和所述第二目标温度可以分别对应于约66℃和约100℃。所述第一目标温度和所述第二目标温度可以分别与约0℃至约60℃之间以及约20℃至约100℃之间的气体流温度范围相关联。所述第一目标温度和所述第二目标温度可以分别与约0℃至约40℃之间以及约30℃至约70℃之间的气体流温度范围相关联。所述一个或多个处理器可以被配置为通过连接或旁路所述热敏电阻流量传感器的热敏电阻电路内的电阻器而在所述第一目标温度与所述第二目标温度之间改变。所述热敏电阻电路可以包括惠斯通电桥配置,所述惠斯通电桥配置具有第一分压器臂和第二分压器臂,所述热敏电阻位于所述第一分压器臂和所述第二分压器臂上。所述气体流动参数可以是所述流动发生器的马达转速。所述马达转速可以由马达转速传感器测量和/或从所述马达的一个或多个参数导出。所述一个或多个处理器可以被配置为至少部分地基于期望的马达转速来确定所述患者的所述呼吸速率。所述一个或多个处理器可以被配置为至少部分地基于所述测量的马达转速与期望的马达转速之间的差值来确定所述患者的所述呼吸速率。所述气体流动参数可以是压力。所述一个或多个处理器可以被配置为至少部分地基于期望的压力来确定所述患者的所述呼吸速率。所述一个或多个处理器可以被配置为至少部分地基于流动阻力和马达转速的函数来确定所述患者的所述呼吸速率。所述一个或多个处理器可以被配置为至少部分地基于所述测量的压力与期望的压力之间的差值或者所述测量的压力与流动阻力和马达转速的函数之间的差值来确定所述患者的所述呼吸速率。可以通过绝对压力传感器和/或压差传感器来测量所述压力。所述气体流动参数可以是流动阻力。所述一个或多个处理器可以被配置为至少部分地基于期望的流动阻力来确定所述患者的所述呼吸速率。所述一个或多个处理器可以被配置为至少部分地基于所述测量的流动阻力与期望的流动阻力之间的差值来确定所述患者的所述呼吸速率。所述气体流动参数可以是二氧化碳浓度。所述一个或多个处理器可以被配置为至少部分地基于所述二氧化碳浓度来确定所述患者的所述呼吸速率。所述一个或多个处理器可以被配置为进行频率分析以确定所述呼吸速率。所述频率分析可以包括离散傅里叶变换。所述频率分析可以包括格兹尔(Goertzel)算法。所述一个或多个处理器可以被配置为在运行所述Goertzel算法之前应用指数衰减。所述频率分析可以包括在约71Hz至约2Hz之间、或者约50Hz至约2.5Hz之间、或者约40Hz至约3Hz之间、或者约25Hz至约4Hz之间、或者约20Hz至约5Hz之间或约10Hz的采样率。所述呼吸速率可以是从所述频率分析确定的具有最高幅值的频率。所述一个或多个处理器可以被配置为对所述测量的参数与所述期望的参数值之间的差值进行所述频率分析以确定所述呼吸速率。所述一个或多个处理器可以进一步被配置为将第一回溯函数应用于所述测量的参数与期望的参数值之间的差值来获得第二信号;从所述第二信号确定第二呼吸速率;并且输出最终的呼吸速率作为所述确定的呼吸速率和所述第二确定的呼吸速率的平均值。所述一个或多个处理器可以进一步被配置为将第二回溯函数应用于所述测量的参数和所述期望的参数值之间的差值来获得第三信号;从所述第三信号确定第三呼吸速率;并且输出最终的呼吸速率作为所述确定的呼吸速率、所述第二确定的呼吸速率和所述第三确定的呼吸速率的平均值。所述第一回溯函数或所述第二回溯函数可以具有至少部分地基于所述确定的呼吸速率来确定的回溯周期。所述第二呼吸速率和/或所述第三呼吸速率可以通过频率分析来确定。所述一个或多个处理器可以进一步被配置为至少部分地基于对所述测量的参数与所述期望的参数值之间的所述差值、所述第二信号和所述第三信号的所述频率分析的结果来计算一个或多个截止值。所述一个或多个截止值可以包括散度、幅值和/或百分位截止值。所述一个或多个处理器可以被配置为基于所述一个或多个截止值来计算信号质量置信度值。所述一个或多个处理器可以进一步被配置为将回溯函数应用于所述测量的参数与期望的参数值之间的差值来获得回溯信号,并且将所述测量的参数与所述期望的参数值之间的所述差值与所述回溯信号进行比较以确定相关系数,所述相关系数有助于确定所述患者是否连接到所述系统。所述回溯函数可以包括对应于所述确定的呼吸速率的呼吸周期的一半的回溯周期。所述一个或多个处理器可以被配置为基于所述相关系数来计算呼吸加权系数,并且基于所述呼吸加权系数来确定所述患者是否连接到所述系统。所述一个或多个处理器可以进一步被配置为分析所述测量的参数与所述期望的参数值之间的所述差值来进行边界计数,其中,所述边界计数可以包括当所述差值的大小超过边界值时对实例进行计数,其中,所述差值的所述大小超过所述边界值可以是指示所述患者连接到所述系统的因素。所述边界值可以低于由患者的呼吸引起的参数变化。当患者未连接到所述系统时,所述边界值可以高于最大参数变化。所述边界值可以在最大值与最小值之间是可变化的。所述一个或多个处理器可以进一步被配置为将呼吸加权系数和所述边界计数组合以获得加权值,所述加权值被添加到运行总计。所述一个或多个处理器可以被配置为需要用于运行总计的预定量的时间超过指示所述患者连接到所述系统的阈值。所述一个或多个处理器可以被配置为使控制回路中的所述运行总计衰减,以便要求所述患者有规律地呼吸以便使所述运行总计保持高于所述阈值。所述预定量的时间可以是约5秒至约60秒、或约40秒、或约20秒。所述一个或多个处理器可以输出关于所述患者是否连接到所述系统和/或所述患者的呼吸速率的数据,以便存储在电子存储器中。所述一个或多个处理器可以被配置为在所述信号质量置信度值超过预定阈值的情况下输出最终的呼吸速率来进行显示。所述一个或多个处理器可以被配置为在所述信号质量置信度值不超过所述预定阈值的情况下输出指示不确定的呼吸速率值的消息来进行显示。所述一个或多个处理器可以被配置为仅在所述一个或多个处理器检测到所述患者连接到所述系统时才将所述信号质量置信度值与所述预定阈值进行比较。所述一个或多个处理器可以被配置为通过在时域、频域或两者中分析所述测量的参数与所述期望的参数值之间的所述差值来确定所述患者是否连接到所述系统。所述系统可以包括患者接口,所述患者接口是鼻插管、面罩、鼻罩、气管内导管或气管造口术接口。所述系统可以包括加湿器,所述加湿器被配置为对流向所述患者的所述气体进行加湿。所述系统可以包括显示器,所述显示器被配置为从所述一个或多个处理器接收并显示与所述患者的呼吸速率有关的信息。所述一个或多个处理器可以被配置为至少部分地基于所述信号来确定所述患者是否已移除所述患者接口或与所述系统断开。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来记录顺应性数据。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的马达转速控制。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的氧气供应控制。
一种被配置为向患者递送呼吸治疗并且还被配置为提供与患者的呼吸有关的信息的呼吸系统可以包括呼吸气体流动路径,所述呼吸气体流动路径被配置为向患者提供呼吸气体;以及一个或多个处理器,所述一个或多个处理器被配置为接收响应于气体流动参数、由流动发生器产生的气体流量、随患者的呼吸而变化的气体流动参数的信号,所述一个或多个处理器被进一步配置成用于至少部分地基于来自所述传感器的所述信号来确定所述患者是否连接到所述系统。所述系统可以是非密封系统。所述系统可以被配置为递送经鼻高流量治疗。所述系统可以是密封系统。所述信号可以由传感器输出,所述一个或多个处理器与所述传感器电连通。所述信号可以从系统参数导出。所述传感器可以包括流速传感器、压力传感器、马达转速传感器和/或二氧化碳传感器。所述传感器可以至少部分地在所述气体流动路径内。所述传感器可以在所述气体流动路径之外。所述一个或多个处理器可以被配置为基于响应于两个或更多个气体流动参数的信号来确定所述患者的所述呼吸速率。所述一个或多个处理器可以被配置为基于以下项来确定所述患者是否连接到所述系统:基于来自所述传感器的所述信号的测量的气体流动参数与期望的参数值之间的差值。所述气体流动参数可以是流速、压力、流动阻力、所述流动发生器的马达转速和/或二氧化碳浓度。所述流速可以通过热敏电阻流量传感器或声学流速传感器来测量。所述流速可以由热敏电阻流量传感器测量,所述热敏电阻流量传感器被配置为当所述气体在所述热敏电阻周围流动并经过所述热敏电阻时,使所述热敏电阻在恒定的目标温度下运行。所述热敏电阻流量传感器可以被配置为维持第一目标温度和第二目标温度。所述一个或多个处理器可以被配置为基于测量的流速与目标流速之间的差值来确定所述患者是否连接到所述系统。所述一个或多个处理器可以被配置为基于测量的流速与测量的流动阻力与测量的马达转速的乘积之间的差值或者所述测量的流速与所述测量的流动阻力和测量的马达转速的函数之间的差值来确定所述患者是否连接到所述系统。所述马达转速可以由所述马达转速传感器测量和/或从所述流动发生器马达的一个或多个参数导出。所述一个或多个处理器可以被配置为基于测量的马达转速与期望的马达转速之间的差值来确定所述患者是否连接到所述系统。可以通过绝对压力传感器和/或压差传感器来测量所述压力。所述一个或多个处理器可以被配置为基于测量的压力与期望的压力之间的差值或者所述测量的压力与流动阻力和马达转速的函数之间的差值来确定所述患者是否连接到所述系统。可以至少基于所述测量的流速和所述测量的压力或者基于所述测量的流速和所述测量的马达转速来确定所述流动阻力。所述一个或多个处理器可以被配置为基于测量的流动阻力与期望的流动阻力之间的差值来确定所述患者是否连接到所述系统。所述一个或多个处理器可以被配置为基于所述测量的气体流动参数与所述期望的参数值之间的所述差值的时域分析和/或频率分析来确定所述患者是否连接到所述系统。所述一个或多个处理器可以被配置为分析所述测量的参数与所述期望的参数值之间的所述差值来进行边界计数,其中,所述边界计数可以包括当所述差值的大小超过边界值时对实例进行计数,其中,超过所述边界值的所述差值的所述大小可以是指示所述患者连接到所述系统的因素。所述边界值可以低于由患者的呼吸引起的参数变化。当患者未连接到所述系统时,所述边界值可以高于最大参数变化。所述边界值可以在最大值与最小值之间是可变化的。所述一个或多个处理器可以被配置为至少部分地基于所述测量的参数与所述期望的参数值之间的所述差值来确定所述患者的呼吸速率;将回溯函数应用于所述测量的参数与所述期望的参数值之间的所述差值来获得回溯信号,其中,所述回溯函数可以包括对应于所述确定的呼吸速率的呼吸周期的一半的回溯周期;并且将所述测量的参数与所述期望的参数值之间的所述差值与所述回溯信号进行比较以确定相关系数,所述相关系数有助于确定所述患者是否连接到所述系统。所述呼吸速率可以通过频率分析来确定。所述频率分析可以包括离散傅里叶变换。所述频率分析可以包括格兹尔(Goertzel)算法。所述一个或多个处理器可以被配置为在运行所述Goertzel算法之前应用指数衰减。所述频率分析可以包括在约71Hz至约2Hz之间、或者约50Hz至约2.5Hz之间、或者约40Hz至约3Hz之间、或者约25Hz至约4Hz之间、或者约20Hz至约5Hz之间或约10Hz的采样率。所述呼吸速率可以是从所述频率分析确定的具有最高幅值的频率。所述一个或多个处理器可以被配置为基于所述相关系数来计算呼吸加权系数,并且基于所述呼吸加权系数来确定所述患者是否连接到所述系统。所述一个或多个处理器可以进一步被配置为将呼吸加权系数和所述边界计数组合以获得加权值,所述加权值被添加到运行总计。所述一个或多个处理器可以被配置为需要用于运行总计的预定量的时间超过指示所述患者连接到所述系统的阈值。所述一个或多个处理器可以被配置为使控制回路中的所述运行总计衰减,以便要求所述患者有规律地呼吸以便使所述运行总计保持高于所述阈值。所述预定量的时间可以是约5秒至约60秒、或约40秒、或约20秒。所述一个或多个处理器可以输出关于所述患者是否连接到所述系统的数据,以便存储在电子存储器中。所述系统可以包括患者接口,所述患者接口是鼻插管、面罩、鼻罩、气管内导管或气管造口术接口。所述系统可以包括加湿器,所述加湿器被配置为对流向所述患者的所述气体进行加湿。所述系统可以包括显示器,所述显示器被配置为从所述一个或多个处理器接收并显示与所述患者的呼吸速率有关的信息。所述一个或多个处理器可以被配置为至少部分地基于所述信号来确定所述患者是否已移除所述患者接口或与所述系统断开。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来记录顺应性数据。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的马达转速控制。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的氧气供应控制。
一种分析来自被配置为经由患者接口将呼吸治疗递送给患者的呼吸系统的气体流的信号的方法可以包括:从传感器接收指示气体流动参数的信号,所述气体流由所述呼吸装置的流动发生器产生,所述气体流动参数随所述患者的呼吸而变化;处理所述信号以计算所述参数的值;响应于所述计算的参数值与期望的参数值之间的差值而产生变化信号;并且至少部分地基于所述变化信号来确定所述患者的呼吸速率和/或所述患者是否连接到所述系统。确定可以通过对所述变化信号进行频率分析。所述呼吸速率可以是从所述频率分析确定的具有最高幅值的频率。所述频率分析可以包括对所述变化信号运行Goertzel算法。所述频率分析可以进一步包括在运行所述Goertzel算法之前将指数衰减应用到所述变化信号。确定所述患者的呼吸速率可以进一步包括从所述变化信号中减去一个或多个预定的回溯周期的先前的变化信号以获得一个或多个附加信号,对所述一个或多个附加信号运行所述Goertzel算法以获得一个或多个附加的呼吸速率值,并且基于所述确定的呼吸速率和所述一个或多个附加呼吸速率值来计算最终的呼吸速率。确定所述患者是否连接到所述系统可以进一步包括从所述变化信号中减去预定的回溯周期的先前的变化信号以获得第二信号,将所述变化信号与所述第二信号进行比较以确定相关系数,所述相关系数有助于确定所述患者是否连接到所述系统。确定所述患者是否连接到所述系统可以进一步包括:基于所述相关系数来计算呼吸加权系数;并且基于所述呼吸加权系数来确定所述患者是否连接到所述系统。确定所述患者是否连接到所述系统可以进一步包括对所述变化信号进行边界计数,所述边界计数包括当所述变化信号的幅值超过边界值时对实例进行计数,其中,超过所述边界值的所述幅值可以是指示所述患者连接到所述系统的因素。确定所述患者是否连接到所述系统可以进一步包括将所述呼吸加权系数和边界计数组合以获得加权值,所述加权值被添加到运行总计。确定所述患者是否连接到所述系统可以进一步包括需要用于所述运行总计的预定量的时间超过指示所述患者连接到所述系统的阈值。确定所述患者是否连接到所述系统可以进一步包括使控制回路中的所述运行总计衰减,以便要求所述患者有规律地呼吸以便使所述运行总计保持在所述阈值以上。所述方法进一步包括至少部分地基于所述信号来确定所述患者是否已移除所述患者接口或与所述系统断开。所述方法进一步包括至少部分地基于所述患者是否连接到所述系统的确定来记录顺应性数据。所述方法进一步包括至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的马达转速控制。所述方法进一步包括至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的氧气供应控制。
一种将回溯函数应用于与被配置为经由患者接口将呼吸治疗递送给患者的呼吸系统的气体流相关的信号的方法可以包括:从传感器接收指示气体流动参数的信号,所述气体流由所述呼吸装置的流动发生器产生,所述气体流动参数随所述患者的呼吸而变化;处理所述信号以计算所述参数的值;并且基于所述信号和预定的回溯周期的先前信号来获得回溯信号。所述方法可以进一步包括至少部分地基于所述信号和所述回溯信号来确定所述患者的呼吸速率和/或所述患者是否连接到所述系统。所述方法可以进一步包括响应于所述计算的参数值与期望的参数值之间的差值而产生变化信号,其中,获得是通过从所述变化信号中减去所述预先确定的回溯周期的先前的变化信号的。所述回溯周期可以是恒定值。所述回溯周期可以从所述患者的呼吸速率来确定。所述回溯周期可以是所述呼吸速率的一半或整个呼吸周期。所述呼吸速率可以至少部分地基于所述气体流动参数或者由所述传感器测量的所述气体流动参数与期望的参数值之间的差值来确定。所述呼吸速率可以通过所述信号或所述变化信号的频率分析来确定。所述呼吸速率可以是从所述频率分析确定的具有最高幅值的频率。所述频率分析可以包括格兹尔(Goertzel)算法。所述频率分析可以进一步包括在运行所述Goertzel算法之前将指数衰减应用到所述信号或所述变化信号。确定所述患者的呼吸速率可以进一步包括从所述回溯信号确定附加呼吸速率,并且基于所述确定的呼吸速率和所述附加呼吸速率来计算最终的呼吸速率。确定所述患者是否连接到所述系统可以进一步包括对所述变化信号进行边界计数,所述边界计数包括当所述变化信号的幅值超过边界值时对实例进行计数,其中,超过所述边界值的所述幅值是指示所述患者连接到所述系统的因素。确定所述患者是否连接到所述系统可以进一步包括将所述变化信号与所述回溯信号进行比较以确定相关系数,所述相关系数有助于确定所述患者是否已连接到所述系统。确定所述患者是否连接到所述系统可以进一步包括:基于所述相关系数来计算呼吸加权系数;并且基于所述呼吸加权系数来确定所述患者是否连接到所述系统。确定所述患者是否连接到所述系统可以进一步包括将所述呼吸加权系数和边界计数组合以获得加权值,所述加权值被添加到运行总计。确定所述患者是否连接到所述系统可以进一步包括使控制回路中的所述运行总计衰减,以便要求用于接收对于所述运行总计所需的所述数量的数据点的预定量的时间达到指示所述患者正在使用所述系统呼吸的阈值。获得回溯信号可以包括从所述信号中减去预定的回溯周期的先前信号。获得回溯信号可以包括将所述信号与所述先前信号相加。所述一个或多个处理器可以被配置为至少部分地基于所述信号来确定所述患者是否已移除所述患者接口或与所述系统断开。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来记录顺应性数据。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的马达转速控制。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的氧气供应控制。所述第一目标温度和所述第二目标温度可以分别对应于在约50℃至约70℃之间、以及在约90℃至约110℃之间。所述第一目标温度和所述第二目标温度可以分别对应于约66℃和约100℃。所述第一目标温度和所述第二目标温度可以分别与约0℃至约60℃之间以及约20℃至约100℃之间的气体流温度范围相关联。所述第一目标温度和所述第二目标温度可以分别与约0℃至约40℃之间以及约30℃至约70℃之间的气体流温度范围相关联。所述一个或多个处理器可以被配置为通过连接或旁路所述热敏电阻流量传感器的热敏电阻电路内的电阻器而在所述第一目标温度与所述第二目标温度之间改变。所述热敏电阻电路可以包括惠斯通电桥配置,所述惠斯通电桥配置具有第一分压器臂和第二分压器臂,所述热敏电阻位于所述第一分压器臂和所述第二分压器臂上。所述方法进一步包括至少部分地基于所述信号来确定所述患者是否已移除所述患者接口或与所述系统断开。所述方法进一步包括至少部分地基于所述患者是否连接到所述系统的确定来记录顺应性数据。所述方法进一步包括至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的马达转速控制。所述方法进一步包括至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的氧气供应控制。
一种被配置为将呼吸治疗递送给患者并且还被配置为提供与所述患者的呼吸有关的信息的呼吸系统可以包括传感器,所述传感器被至少部分地放置在由流动发生器产生的气体流的路径内并且被配置为输出响应于气体流动参数的信号,所述气体流动参数随着患者的呼吸而变化;以及一个或多个处理器,所述一个或多个处理器与所述传感器电连通,并且被配置为至少部分地基于从所述传感器输出的所述信号来确定所述患者的呼吸速率。所述系统可以是非密封系统。所述系统可以被配置为递送经鼻高流量治疗。所述系统可以是密封系统。所述传感器可以包括流速传感器、压力传感器和/或二氧化碳传感器。所述一个或多个处理器可以进一步被配置为对从所述传感器输出的所述信号进行频率分析,以确定所述患者的所述呼吸速率。所述一个或多个处理器可以被配置为基于所述信号输出的导出信号来确定所述患者的所述呼吸速率。所述导出信号可以是所述气体流动参数的测量值与期望值之间的差值。所述气体流动参数可以是流速。所述导出信号可以是所述流速的测量值与所述目标流速之间的差值。所述导出信号可以是所述流速的测量值与流动阻力和由所述马达传感器测量的马达转速的乘积或者所述流动阻力和马达转速的函数之间的差值。所述一个或多个处理器可以被配置为从马达转速传感器接收指示流动发生器的马达转速的信号,并且至少部分地基于指示所述马达转速的所述信号来确定所述患者的所述呼吸速率。所述系统可以包括马达转速传感器。所述一个或多个处理器可以被配置为至少部分地基于期望的马达转速来确定所述患者的所述呼吸速率。所述气体流动参数可以是压力。所述一个或多个处理器可以被配置为至少部分地基于期望的压力来确定所述患者的所述呼吸速率。所述一个或多个处理器可以被配置为至少部分地基于流动阻力和马达转速的函数来确定所述患者的所述呼吸速率。所述气体流动参数可以是流动阻力。所述流动阻力可以从所述流速以及所述压力或所述马达转速之一来计算。所述一个或多个处理器可以被配置为至少部分地基于期望的流动阻力来确定所述患者的所述呼吸速率。所述气体流动参数可以是二氧化碳浓度。所述一个或多个处理器可以被配置为至少部分地基于所述二氧化碳浓度来确定所述患者的所述呼吸速率。所述流速传感器可以是热敏电阻流量传感器。所述压力传感器可以包括绝对压力传感器和/或压差传感器。所述一个或多个处理器可以被配置为对所述导出信号进行频率分析以确定所述呼吸速率。所述频率分析可以包括离散傅里叶变换。所述频率分析可以包括格兹尔(Goertzel)算法。所述一个或多个处理器可以被配置为在运行所述Goertzel算法之前将指数衰减应用到所述信号输出。所述频率分析可以包括在约71Hz至约2Hz之间、或者约50Hz至约2.5Hz之间、或者约40Hz至约3Hz之间、或者约25Hz至约4Hz之间、或者约20Hz至约5Hz之间或约10Hz的采样率。所述一个或多个处理器可以被配置为至少部分地基于所述信号来确定所述患者是否已移除所述患者接口或与所述系统断开。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来记录顺应性数据。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的马达转速控制。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的氧气供应控制。
一种被配置为将呼吸治疗递送给患者并且还被配置为提供与所述患者的呼吸有关的信息的呼吸系统可以包括传感器,所述传感器被至少部分地放置在由流动发生器产生的气体流的路径内并且被配置为输出响应于气体流动参数的信号,所述气体流动参数随着患者的呼吸而变化;以及一个或多个处理器,所述一个或多个处理器与所述传感器电连通并且被配置为至少部分地基于从所述传感器输出的所述信号来测量所述气体流动参数,所述一个或多个处理器被进一步配置成用于对从所述传感器输出的所述信号进行频率分析以确定所述患者的呼吸速率。所述系统可以是非密封系统。所述系统可以被配置为递送经鼻高流量治疗。所述系统可以是密封系统。所述呼吸速率可以是从所述频率分析确定的具有最高幅值的频率。所述系统可以进一步包括第二传感器,所述第二传感器被至少部分地放置在所述气体流动路径内并且被配置为输出响应于第二气体流动参数的第二信号,所述第二气体流动参数随着患者的呼吸而变化,其中,所述一个或多个处理器与所述传感器电连通并且被配置为至少部分地基于从所述第二传感器输出的所述第二信号来测量所述第二气体流动参数,所述一个或多个处理器被进一步配置成用于对从所述第二传感器输出的所述第二信号进行频率分析,并且其中,所述患者的所述呼吸速率从由所述第一信号输出和所述第二信号输出的所述频率分析确定的每个频率的幅值的组合来确定。所述系统可以进一步包括所述流动发生器和与所述流动发生器流体连通的患者接口,其中,所述传感器位于所述流动发生器附近的呼吸装置壳体内或者所述患者接口内。所述频率分析可以包括离散傅里叶变换。所述频率分析可以包括格兹尔(Goertzel)算法。所述一个或多个处理器可以被配置为在运行所述Goertzel算法之前将指数衰减应用到所述信号输出。所述频率分析可以包括在约71Hz至约2Hz之间、或者约50Hz至约2.5Hz之间、或者约40Hz至约3Hz之间、或者约25Hz至约4Hz之间、或者约20Hz至约5Hz之间或约10Hz的采样率。所述流速传感器可以包括声学传感器或热敏电阻流量传感器。所述热敏电阻流量传感器可以被配置为当所述气体在所述热敏电阻周围流动并经过所述热敏电阻时,使所述热敏电阻在恒定的目标温度下运行。所述热敏电阻流量传感器可以被配置为当所述气体在所述热敏电阻周围流动并经过所述热敏电阻时,在所述热敏电阻上维持多个目标温度。所述热敏电阻流量传感器可以被配置为维持第一目标温度和第二目标温度。所述系统可以包括患者接口,所述患者接口是鼻插管、面罩、鼻罩、气管内导管或气管造口术接口。所述系统可以包括加湿器,所述加湿器被配置为对流向所述患者的所述气体进行加湿。所述系统可以包括显示器,所述显示器被配置为从所述一个或多个处理器接收并显示与所述患者的呼吸速率有关的信息。所述一个或多个处理器可以被配置为至少部分地基于所述信号来确定所述患者是否已移除所述患者接口或与所述系统断开。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来记录顺应性数据。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的马达转速控制。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的氧气供应控制。
一种被配置为将呼吸治疗递送给患者并且还被配置为提供与所述患者的呼吸有关的信息的呼吸系统可以包括流速传感器,所述流速传感器被至少部分地放置在由流动发生器产生的气体流的路径内并且被配置为输出响应于气体流速的信号;以及一个或多个处理器,所述一个或多个处理器与所述传感器电连通并且被配置为至少部分地基于从所述流速传感器输出的所述信号来测量所述气体流速,所述一个或多个处理器被进一步配置成用于对流速变化信号进行频率分析以确定所述患者的呼吸速率,所述流速变化信号至少部分地从所述测量的气体流速导出。所述系统可以是非密封系统。所述系统可以被配置为递送经鼻高流量治疗。所述系统可以是密封系统。所述流速变化信号可以是所述测量的流速与目标流速之间的差值,所述目标流速被配置为由所述一个或多个处理器改变流动发生器的马达转速来维持。所述流量变化信号可以是所述测量的流速与流动阻力和流动发生器的马达转速的乘积之间的差值。所述流动阻力可以至少部分地基于所述测量的气体流速和所述马达转速来确定。所述呼吸速率可以是从所述频率分析确定的具有最高幅值的频率。所述一个或多个处理器可以进一步被配置为将第一回溯函数应用于所述流速变化信号以获得第二信号;对所述第二信号进行频率分析以确定第二呼吸速率;并且输出最终的呼吸速率作为所述确定的呼吸速率和所述第二确定的呼吸速率的平均值。所述一个或多个处理器可以进一步被配置为将第二回溯函数应用于所述流速变化信号以获得第三信号;对所述第三信号进行频率分析以确定第三呼吸速率;并且输出最终的呼吸速率作为所述确定的呼吸速率、所述第二确定的呼吸速率和所述第三确定的呼吸速率的平均值。所述第一回溯函数或所述第二回溯函数可以具有至少部分地基于所述确定的呼吸速率来确定的回溯周期。所述一个或多个处理器可以进一步被配置为至少部分地基于所述流速变化信号、所述第二信号和所述第三信号的所述频率分析的结果来计算一个或多个截止值。所述一个或多个截止值可以包括散度、幅值和/或百分位截止值。所述一个或多个处理器可以被配置为基于所述一个或多个截止值来计算信号质量置信度值。所述一个或多个处理器被进一步配置成用于将回溯函数应用于所述流速变化信号以获得回溯信号,并且将所述流速变化信号与所述回溯信号进行比较以确定相关系数,所述相关系数有助于确定所述患者是否连接到所述系统。所述回溯函数可以包括对应于所述确定的呼吸速率的呼吸周期的一半的回溯周期。所述一个或多个处理器可以被配置为基于所述相关系数来计算呼吸加权系数,并且基于所述呼吸加权系数来确定所述患者是否连接到所述系统。所述一个或多个处理器可以进一步被配置为分析所述流速变化信号以进行边界计数,其中,所述边界计数可以包括当所述测量的流速超过边界流速值时对实例进行计数,其中,超过边界流速值的所述测量的流速可以是所述患者连接到所述系统的指示。所述边界流速值可以低于由患者的呼吸引起的流量变化。当患者未连接到所述系统时,所述边界流速值可以高于最大流量变化。所述边界流速值可以在最大值与最小值之间是可变化的。所述一个或多个处理器可以进一步被配置为将所述相关系数和所述边界计数组合以获得加权值,所述加权值被添加到运行总计。所述一个或多个处理器可以被配置为使控制回路中的所述运行总计衰减,以便要求所述患者在所述运行总计达到指示所述患者正在使用所述系统呼吸的阈值之前使用所述系统呼吸预定量的时间。所述预定量的时间可以是约5秒至约60秒、或约40秒、或约20秒。所述一个或多个处理器可以输出关于所述患者是否连接到所述系统和/或所述患者的呼吸速率数据的数据,以便存储在电子存储器中。所述一个或多个处理器可以被配置为在所述信号质量置信度值超过预定阈值的情况下输出最终的呼吸速率来进行显示。所述一个或多个处理器可以被配置为在所述信号质量置信度值不超过预定阈值的情况下输出指示不确定的呼吸速率值的消息来进行显示。所述一个或多个处理器可以被配置为仅在所述一个或多个处理器检测到所述患者连接到所述系统时才将所述最终的呼吸速率值与所述信号质量置信度值进行比较。所述一个或多个处理器可以被配置为通过在所述时域、所述频域或两者中分析所述流速变化信号来确定所述患者是否连接到所述系统。所述系统可以进一步包括所述流动发生器和与所述流动发生器流体连通的患者接口,其中,所述传感器位于所述流动发生器附近的呼吸装置壳体内或者所述患者接口内。所述频率分析可以包括离散傅里叶变换。所述频率分析可以包括格兹尔(Goertzel)算法。所述一个或多个处理器可以被配置为在运行所述Goertzel算法之前将指数衰减应用到所述信号输出。所述频率分析可以包括在约71Hz至约2Hz之间、或者约50Hz至约2.5Hz之间、或者约40Hz至约3Hz之间、或者约25Hz至约4Hz之间、或者约20Hz至约5Hz之间或约10Hz的采样率。所述流速传感器可以包括声学传感器或热敏电阻流量传感器。所述热敏电阻流量传感器可以被配置为当所述气体在所述热敏电阻周围流动并经过所述热敏电阻时,使所述热敏电阻在恒定的目标温度下运行。所述热敏电阻流量传感器可以被配置为当所述气体在所述热敏电阻周围流动并经过所述热敏电阻时,在所述热敏电阻上维持多个目标温度。所述热敏电阻流量传感器可以被配置为维持第一目标温度和第二目标温度。所述系统可以包括患者接口,所述患者接口是鼻插管、面罩、鼻罩、气管内导管或气管造口术接口。所述系统可以包括加湿器,所述加湿器被配置为对流向所述患者的所述气体进行加湿。所述系统可以包括显示器,所述显示器被配置为从所述一个或多个处理器接收并显示与所述患者的呼吸速率有关的信息。所述一个或多个处理器可以被配置为至少部分地基于所述信号来确定所述患者是否已移除所述患者接口或与所述系统断开。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来记录顺应性数据。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的马达转速控制。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的氧气供应控制。
一种被配置为将呼吸治疗递送给患者并且还被配置为检测所述患者是否连接到所述系统的呼吸系统可以包括流速传感器,所述流速传感器被至少部分地放置在由流动发生器产生的气体流的路径内并且被配置为输出响应于气体流速的信号;以及一个或多个处理器,所述一个或多个处理器与所述传感器电连通并且被配置为至少部分地基于从所述流速传感器输出的所述信号来测量所述气体流速,并且至少部分地从所述测量的气体流速导出流速变化信号,其中,所述一个或多个处理器被进一步配置成用于分析所述流速变化信号以进行边界计数,并且至少部分地基于所述边界计数来确定所述患者是否连接到所述系统,其中,所述边界计数包括当所述测量的流速超过边界流速值时对实例进行计数。所述系统可以是非密封系统。所述系统可以被配置为递送经鼻高流量治疗。所述系统可以是密封系统。所述传感器可以包括流速传感器、压力传感器和/或二氧化碳传感器。所述流速变化信号可以是所述测量的流速与目标流速之间的差值,所述目标流速被配置为由所述一个或多个处理器改变流动发生器的马达转速来维持。所述流量变化信号可以是所述测量的流速与流动阻力和流动发生器的马达转速的乘积之间的差值。所述流动阻力可以至少部分地基于所述测量的气体流速和所述马达转速来确定。所述边界流速值低于由患者的呼吸引起的流量变化。当患者未连接到所述系统时,所述边界流速值高于最大流量变化。所述边界流速值可以在最大值与最小值之间是可变化的。所述一个或多个处理器可以输出所述患者是否连接到所述系统的数据以便存储在电子存储器中。所述系统可以进一步包括所述流动发生器和与所述流动发生器流体连通的患者接口,其中,所述传感器位于所述流动发生器附近的呼吸装置壳体内或者所述患者接口内。所述频率分析可以包括离散傅里叶变换。所述频率分析可以包括格兹尔(Goertzel)算法。所述一个或多个处理器可以被配置为在运行所述Goertzel算法之前将指数衰减应用到所述信号输出。所述频率分析可以包括在约71Hz至约2Hz之间、或者约50Hz至约2.5Hz之间、或者约40Hz至约3Hz之间、或者约25Hz至约4Hz之间、或者约20Hz至约5Hz之间或约10Hz的采样率。所述流速传感器可以包括声学传感器或热敏电阻流量传感器。所述热敏电阻流量传感器可以被配置为当所述气体在所述热敏电阻周围流动并经过所述热敏电阻时,使所述热敏电阻在恒定的目标温度下运行。所述热敏电阻流量传感器可以被配置为当所述气体在所述热敏电阻周围流动并经过所述热敏电阻时,在所述热敏电阻上维持多个目标温度。所述热敏电阻流量传感器可以被配置为维持第一目标温度和第二目标温度。所述系统可以包括患者接口,所述患者接口是鼻插管、面罩、鼻罩、气管内导管或气管造口术接口。所述系统可以包括加湿器,所述加湿器被配置为对流向所述患者的所述气体进行加湿。所述系统可以包括显示器,所述显示器被配置为从所述一个或多个处理器接收并显示与所述患者的呼吸速率有关的信息。所述一个或多个处理器可以被配置为至少部分地基于所述信号来确定所述患者是否已移除所述患者接口或与所述系统断开。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来记录顺应性数据。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的马达转速控制。所述一个或多个处理器可以被配置为至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的氧气供应控制。
一种确定从呼吸系统接受呼吸治疗的患者的呼吸速率和/或患者与所述系统断开的方法可以包括:从至少部分地放置在由流动发生器产生的气体流的路径内的传感器接收响应于气体流动参数的信号,所述气体流动参数随患者的呼吸而变化;处理所述信号以测量所述气体流动参数;并且对从所述传感器输出的所述信号进行频率分析,以确定所述患者的呼吸速率。所述系统可以是非密封系统。所述系统可以被配置为递送经鼻高流量治疗。所述系统可以是密封系统。所述呼吸速率可以是从所述频率分析确定的具有最高幅值的频率。所述方法可以进一步包括:从至少部分地放置在所述气体流的路径内的第二传感器接收响应于第二气体流动参数的第二信号,所述第二气体流动参数随患者的呼吸而变化;处理所述第二信号以测量所述第二气体流动参数;对从所述第二传感器输出的所述第二信号进行频率分析;并且将由所述第一信号和所述第二信号的所述频率分析确定的每个频率的幅值进行组合,以确定所述患者的所述呼吸速率。所述系统可以进一步包括所述流动发生器和与所述流动发生器流体连通的患者接口,其中,所述传感器位于所述流动发生器附近的呼吸装置壳体内或者所述患者接口内。所述频率分析可以包括离散傅里叶变换。所述频率分析可以包括格兹尔(Goertzel)算法。所述一个或多个处理器可以被配置为在运行所述Goertzel算法之前将指数衰减应用到所述信号输出。所述频率分析可以包括在约71Hz至约2Hz之间、或者约50Hz至约2.5Hz之间、或者约40Hz至约3Hz之间、或者约25Hz至约4Hz之间、或者约20Hz至约5Hz之间或约10Hz的采样率。所述流速传感器可以包括声学传感器或热敏电阻流量传感器。所述热敏电阻流量传感器可以被配置为当所述气体在所述热敏电阻周围流动并经过所述热敏电阻时,使所述热敏电阻在恒定的目标温度下运行。所述热敏电阻流量传感器可以被配置为当所述气体在所述热敏电阻周围流动并经过所述热敏电阻时,在所述热敏电阻上维持多个目标温度。所述热敏电阻流量传感器可以被配置为维持第一目标温度和第二目标温度。所述系统可以包括患者接口,所述患者接口是鼻插管、面罩、鼻罩、气管内导管或气管造口术接口。所述系统可以包括加湿器,所述加湿器被配置为对流向所述患者的所述气体进行加湿。所述系统可以包括显示器,所述显示器被配置为从所述一个或多个处理器接收并显示与所述患者的呼吸速率有关的信息。所述方法进一步包括至少部分地基于所述信号来确定所述患者是否已移除所述患者接口或与所述系统断开。所述方法进一步包括至少部分地基于所述患者是否连接到所述系统的确定来记录顺应性数据。所述方法进一步包括至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的马达转速控制。所述方法进一步包括至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的氧气供应控制。
一种确定从呼吸系统接受呼吸治疗的患者的呼吸速率和/或患者与所述系统断开和/或连接的方法可以包括:从至少部分地放置在由流动发生器产生的气体流的路径内的流速传感器接收响应于气体流速的信号;并且处理从所述流速传感器输出的所述信号,以测量所述气体流速;至少部分地从所述测量的气体流速导出流速变化信号;并且对所述流速变化信号进行频率分析,以确定所述患者的呼吸速率。所述系统可以是非密封系统。所述系统可以被配置为递送经鼻高流量治疗。所述系统可以是密封系统。所述流速变化信号可以是所述测量的流速与目标流速之间的差值,所述目标流速被配置为由所述一个或多个处理器改变流动发生器的马达转速来维持。所述流量变化信号可以是所述测量的流速与流动阻力和流动发生器的马达转速的乘积之间的差值。所述流动阻力可以至少部分地基于所述测量的气体流速和所述马达转速来确定。所述呼吸速率可以是从所述频率分析确定的具有最高幅值的频率。所述方法可以进一步包括将第一回溯函数应用于所述流速变化信号以获得第二信号;对所述第二信号进行频率分析以确定第二呼吸速率;并且输出最终的呼吸速率作为所述确定的呼吸速率和所述第二确定的呼吸速率的平均值。所述方法可以进一步包括将第二回溯函数应用于所述流速变化信号以获得第三信号;对所述第三信号进行频率分析以确定第三呼吸速率;并且输出最终的呼吸速率作为所述确定的呼吸速率、所述第二确定的呼吸速率和所述第三确定的呼吸速率的平均值。所述第一回溯函数或所述第二回溯函数可以具有至少部分地基于所述确定的呼吸速率来确定的回溯周期。所述方法可以进一步包括至少部分地基于所述流速变化信号、所述第二信号和所述第三信号的所述频率分析的结果来计算一个或多个截止值。所述一个或多个截止值可以包括散度、幅值和/或百分位截止值。所述方法可以进一步包括基于所述一个或多个截止值来计算信号质量置信度值。所述方法可以进一步包括将回溯函数应用于所述流速变化信号以获得回溯信号,并且将所述流速变化信号与所述回溯信号进行比较以确定相关系数,所述相关系数有助于确定所述患者是否连接到所述系统。所述回溯函数可以包括对应于所述确定的呼吸速率的呼吸周期的一半的回溯周期。所述方法可以进一步包括基于所述相关系数来计算呼吸加权系数,并且基于所述呼吸加权系数来确定所述患者是否连接到所述系统。所述方法可以进一步包括分析所述流速变化信号以进行边界计数,其中,所述边界计数可以包括当所述测量的流速超过边界流速值时对实例进行计数,其中,超过边界流速值的所述测量的流速可以是所述患者连接到所述系统的指示。所述边界流速值可以低于由患者的呼吸引起的流量变化。当患者未连接到所述系统时,所述边界流速值可以高于最大流量变化。所述边界流速值可以在最大值与最小值之间是可变化的。所述方法可以进一步包括将所述相关系数和所述边界计数组合以获得加权值,所述加权值被添加到运行总计。所述方法可以进一步包括使控制回路中的所述运行总计衰减,以便要求所述患者在所述运行总计达到指示所述患者正在使用所述系统呼吸的阈值之前使用所述系统呼吸预定量的时间。所述预定量的时间可以是约5秒至约60秒、或约40秒、或约20秒。所述方法可以进一步包括输出所述患者是否连接到所述系统的数据和/或所述患者的呼吸速率数据,以便存储在电子存储器中。所述方法可以进一步包括在所述信号质量置信度值超过预定阈值的情况下输出最终的呼吸速率来进行显示。所述方法可以进一步包括在所述信号质量置信度值不超过预定阈值的情况下输出指示不确定的呼吸速率值的消息来进行显示。所述方法可以进一步包括仅在所述一个或多个处理器检测到所述患者连接到所述系统时才将所述最终的呼吸速率值与所述信号质量置信度值进行比较。所述方法可以进一步包括通过在所述时域、所述频域或两者中分析所述流速变化信号来确定所述患者是否连接到所述系统。所述系统可以进一步包括所述流动发生器和与所述流动发生器流体连通的患者接口,其中,所述传感器位于所述流动发生器附近的呼吸装置壳体内或者所述患者接口内。所述频率分析可以包括离散傅里叶变换。所述频率分析可以包括格兹尔(Goertzel)算法。所述一个或多个处理器可以被配置为在运行所述Goertzel算法之前将指数衰减应用到所述信号输出。所述频率分析可以包括在约71Hz至约2Hz之间、或者约50Hz至约2.5Hz之间、或者约40Hz至约3Hz之间、或者约25Hz至约4Hz之间、或者约20Hz至约5Hz之间或约10Hz的采样率。所述流速传感器可以包括声学传感器或热敏电阻流量传感器。所述热敏电阻流量传感器可以被配置为当所述气体在所述热敏电阻周围流动并经过所述热敏电阻时,使所述热敏电阻在恒定的目标温度下运行。所述热敏电阻流量传感器可以被配置为当所述气体在所述热敏电阻周围流动并经过所述热敏电阻时,在所述热敏电阻上维持多个目标温度。所述热敏电阻流量传感器可以被配置为维持第一目标温度和第二目标温度。所述系统可以包括患者接口,所述患者接口是鼻插管、面罩、鼻罩、气管内导管或气管造口术接口。所述系统可以包括加湿器,所述加湿器被配置为对流向所述患者的所述气体进行加湿。所述系统可以包括显示器,所述显示器被配置为从所述一个或多个处理器接收并显示与所述患者的呼吸速率有关的信息。所述方法进一步包括至少部分地基于所述信号来确定所述患者是否已移除所述患者接口或与所述系统断开。所述方法进一步包括至少部分地基于所述患者是否连接到所述系统的确定来记录顺应性数据。所述方法进一步包括至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的马达转速控制。所述方法进一步包括至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的氧气供应控制。
一种确定患者是否连接到呼吸系统的方法可以包括:从至少部分地放置在由流动发生器产生的气体流的路径内的流速传感器接收响应于气体流速的信号;处理从所述流速传感器输出的所述信号,以测量所述气体流速;至少部分地从所述测量的气体流速导出流速变化信号;分析所述流速变化信号以进行边界计数,其中,所述边界计数包括当所述测量的流速超过边界流速值时对实例进行计数;并且至少部分地基于所述边界计数来确定所述患者是否连接到所述系统。所述系统可以是非密封系统。所述系统可以被配置为递送经鼻高流量治疗。所述系统可以是密封系统。所述传感器可以包括流速传感器、压力传感器和/或二氧化碳传感器。所述流速变化信号可以是所述测量的流速与目标流速之间的差值,所述目标流速被配置为由所述一个或多个处理器改变流动发生器的马达转速来维持。所述流量变化信号可以是所述测量的流速与流动阻力和流动发生器的马达转速的乘积之间的差值。所述流动阻力可以至少部分地基于所述测量的气体流速和所述马达转速来确定。所述边界流速值低于由患者的呼吸引起的流量变化。当患者未连接到所述系统时,所述边界流速值高于最大流量变化。所述边界流速值可以在最大值与最小值之间是可变化的。所述方法可以进一步包括输出关于所述患者是否连接到所述系统的数据,以便存储在电子存储器中。所述系统可以进一步包括所述流动发生器和与所述流动发生器流体连通的患者接口,其中,所述传感器位于所述流动发生器附近的呼吸装置壳体内或者所述患者接口内。所述频率分析可以包括离散傅里叶变换。所述频率分析可以包括格兹尔(Goertzel)算法。所述方法可以进一步包括在运行所述Goertzel算法之前将指数衰减应用到所述信号输出。所述频率分析可以包括在约71Hz至约2Hz之间、或者约50Hz至约2.5Hz之间、或者约40Hz至约3Hz之间、或者约25Hz至约4Hz之间、或者约20Hz至约5Hz之间或约10Hz的采样率。所述流速传感器可以包括声学传感器或热敏电阻流量传感器。所述热敏电阻流量传感器可以被配置为当所述气体在所述热敏电阻周围流动并经过所述热敏电阻时,使所述热敏电阻在恒定的目标温度下运行。所述热敏电阻流量传感器可以被配置为当所述气体在所述热敏电阻周围流动并经过所述热敏电阻时,在所述热敏电阻上维持多个目标温度。所述热敏电阻流量传感器可以被配置为维持第一目标温度和第二目标温度。所述系统可以包括患者接口,所述患者接口是鼻插管、面罩、鼻罩、气管内导管或气管造口术接口。所述系统可以包括加湿器,所述加湿器被配置为对流向所述患者的所述气体进行加湿。所述系统可以包括显示器,所述显示器被配置为从所述一个或多个处理器接收并显示与所述患者的呼吸速率有关的信息。所述方法进一步包括至少部分地基于所述信号来确定所述患者是否已移除所述患者接口或与所述系统断开。所述方法进一步包括至少部分地基于所述患者是否连接到所述系统的确定来记录顺应性数据。所述方法进一步包括至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的马达转速控制。所述方法进一步包括至少部分地基于所述患者是否连接到所述系统的确定来激活或去激活所述呼吸装置中的氧气供应控制。
在一些配置中,一种被配置为向患者递送呼吸治疗并且还被配置为提供与所述患者有关的信息的呼吸系统可以包括呼吸装置,所述呼吸装置包括控制器,其中,所述控制器可以被配置为:接收气体流的第一参数的测量值或者代表所述装置的部件的性能的测量值,所述第一参数指示所述患者的呼吸作用;接收气体流的第二参数的测量值或者代表所述装置的部件的性能的测量值,其中,所述第二参数可以具有对所述第一参数的假定效果;确定所述假定效果是否有效;并且响应于所述假定效果无效而从经验证的第一参数数据集中丢弃所述第一参数,所述控制器还被配置为使用所述经验证的第一参数数据集来关于所述患者进行评估。
在一些配置中,所述评估可以包括所述患者的呼吸速率的评估。在一些配置中,所述评估可以包括所述患者是否佩戴所述系统的患者接口的评估。
在一些配置中,所述第一参数可以是流速。
在一些配置中,所述装置可以进一步包括鼓风机,所述鼓风机包括马达,并且所述第二参数可以是马达转速。
在一些配置中,如果所述马达转速低于第一阈值,则所述假定效果可能是无效的。在一些配置中,如果所述马达转速的最近改变高于第二阈值,则所述假定效果可能是无效的。
在一些配置中,所述第二参数可以是压力。
在一些配置中,所述第一参数可以是流速、压力、马达转速、马达的功率、流动阻力、二氧化碳数据、湿度、其变型或者其任何组合。
在一些配置中,所述气体流可以包括环境空气。
在一些配置中,所述气体流可以包括补充气体。
在一些配置中,所述补充气体可以包括氧气。
在一些配置中,所述控制器可以被配置为在所述环境空气和所述补充气体已混合之后测量所述气体流的成分。
在一些配置中,如果所述气体流的所述成分的最近改变高于第三阈值,则所述假定效果可能是无效的。
在一些配置中,所述控制器可以被配置为测量进入所述装置的所述补充气体的流速。
在一些配置中,如果所述补充气体的所述流速的最近改变高于第三阈值,则所述假定效果可能是无效的。
在一些配置中,所述控制器可以被配置为控制进入所述装置的所述补充气体的所述流速。
在一些配置中,所述控制器可以被配置为在所述假定效果是有效的情况下使用所述假定效果来进行关于所述患者的所述评估。
在一些配置中,所述控制器可以被配置为从所述第一参数减去所述假定效果以输出经修改的第一参数并且基于所述经修改的第一参数来进行所述评估。
在一些配置中,所述控制器可以被配置为对经验证的第一参数数据集进行频率分析以进行所述评估。
在一些配置中,所述系统可以包括非密封系统。
在一些配置中,所述系统可以被配置为递送经鼻高流量治疗。
在一些配置中,所述系统可以包括密封系统。
在一些配置中,所述系统可以被配置为递送CPAP治疗。
在一些配置中,所述系统可以被配置为递送双水平治疗。
在一些配置中,一种使用呼吸系统向患者递送呼吸治疗的方法,其中,所述呼吸系统还可以被配置为提供与所述患者有关的信息,所述方法可以包括:使用呼吸装置的控制器,接收气体流的第一参数的测量值或者代表所述装置的部件的性能的测量值,所述第一参数指示所述患者的呼吸作用;接收气体流的第二参数的测量值或者代表所述装置的部件的性能的测量值,其中,所述第二参数可以具有对所述第一参数的假定效果;确定所述假定效果是否有效;并且响应于所述假定效果无效而从经验证的第一参数数据集中丢弃所述第一参数,所述控制器还被配置为使用所述经验证的第一参数数据集来关于所述患者进行评估。
在一些配置中,所述评估可以包括所述患者的呼吸速率的评估。在一些配置中,所述评估可以包括所述患者是否佩戴所述系统的患者接口的评估。
在一些配置中,所述第一参数可以是流速。
在一些配置中,所述装置可以进一步包括鼓风机,所述鼓风机包括马达,并且所述第二参数可以是马达转速。
在一些配置中,如果所述马达转速低于第一阈值,则所述假定效果可能是无效的。在一些配置中,如果所述马达转速的最近改变高于第二阈值,则所述假定效果可能是无效的。
在一些配置中,所述第二参数可以是压力。
在一些配置中,所述第一参数可以是流速、压力、马达转速、马达的功率、流动阻力、二氧化碳数据、湿度、其变型或者其任何组合。
在一些配置中,所述气体流可以包括环境空气。
在一些配置中,所述气体流可以包括补充气体。
在一些配置中,所述补充气体可以包括氧气。
在一些配置中,所述方法可以进一步包括在所述环境空气和所述补充气体已混合之后测量所述气体流的成分。
在一些配置中,如果所述气体流的所述成分的最近改变高于第三阈值,则所述假定效果可能是无效的。
在一些配置中,所述方法可以进一步包括测量进入所述装置的所述补充气体的流速。
在一些配置中,如果所述补充气体的所述流速的最近改变高于第三阈值,则所述假定效果可能是无效的。
在一些配置中,所述方法可以进一步包括控制进入所述装置的所述补充气体的所述流速。
在一些配置中,所述方法可以进一步包括所述假定效果是有效的则使用所述假定效果来进行关于所述患者的所述评估。
在一些配置中,所述方法可以进一步包括从所述第一参数减去所述假定效果以输出经修改的第一参数并且基于所述经修改的第一参数来进行所述评估。
在一些配置中,所述方法可以进一步包括对经验证的第一参数数据集进行频率分析以进行所述评估。
在一些配置中,所述系统可以包括非密封系统。
在一些配置中,所述系统可以被配置为递送经鼻高流量治疗。
在一些配置中,所述系统可以包括密封系统。
在一些配置中,所述系统可以被配置为递送CPAP治疗。
在一些配置中,所述系统可以被配置为递送双水平治疗。
在一些配置中,一种被配置为向患者递送呼吸治疗并且还被配置为提供与所述患者有关的信息的呼吸系统可以包括呼吸装置,所述呼吸装置包括控制器,其中,所述控制器可以被配置为:接收气体流的第一参数的测量值或者代表所述装置的部件的性能的测量值,所述第一参数指示所述患者的呼吸作用;接收气体流的第二参数的测量值或者代表所述装置的部件的性能的测量值;确定所述第二参数对所述第一参数的假定效果;并且使用来自所述第一参数的所述假定效果来关于所述患者进行评估,以输出经修改的第一参数。
在一些配置中,所述控制器可以被配置为从所述第一参数减去所述假定效果以输出经修改的第一参数并且基于所述经修改的第一参数来进行所述评估。
在一些配置中,所述评估可以包括所述患者的呼吸速率的评估。在一些配置中,所述评估可以包括所述患者是否佩戴所述系统的患者接口的评估。
在一些配置中,所述第一参数可以是流速。
在一些配置中,所述装置可以进一步包括鼓风机,所述鼓风机包括马达,并且所述第二参数可以是马达转速。
在一些配置中,所述控制器可以被配置为在所述马达转速低于第一阈值的情况下确定所述假定效果是否有效以及所述假定效果是否无效。
在一些配置中,所述控制器可以被配置为在所述马达转速的最近改变高于第二阈值的情况下确定所述假定效果是否有效以及所述假定效果是否可能无效。
在一些配置中,所述第二参数可以是压力。
在一些配置中,所述第一参数可以是流速、压力、马达转速、马达的功率、流动阻力、二氧化碳数据、湿度、其变型或者其任何组合。
在一些配置中,所述气体流可以包括环境空气。
在一些配置中,所述气体流可以包括补充气体。
在一些配置中,所述补充气体可以包括氧气。
在一些配置中,所述控制器可以被配置为在所述环境空气和所述补充气体已混合之后测量所述气体流的成分。
在一些配置中,所述控制器可以被配置为在所述气体流的所述成分的最近改变高于第三阈值的情况下确定所述假定效果是否有效以及所述假定效果是否可能无效。
在一些配置中,所述控制器可以被配置为测量进入所述装置的所述补充气体的流速。
在一些配置中,所述控制器可以被配置为在所述补充气体的所述流速的最近改变高于第三阈值的情况下确定所述假定效果是否有效以及所述假定效果是否可能无效。
在一些配置中,所述控制器可以被配置为控制进入所述装置的所述补充气体的所述流速。
在一些配置中,所述控制器可以被配置为对经修改的第一参数数据集进行频率分析以进行所述评估。
在一些配置中,所述系统可以包括非密封系统。
在一些配置中,所述系统可以被配置为递送经鼻高流量治疗。
在一些配置中,所述系统可以包括密封系统。
在一些配置中,所述系统可以被配置为递送CPAP治疗。
在一些配置中,所述系统可以被配置为递送双水平治疗。
在一些配置中,一种使用呼吸系统向患者递送呼吸治疗的方法,其中,所述呼吸系统还可以被配置为提供与所述患者有关的信息,所述方法可以包括:使用呼吸装置的控制器,接收气体流的第一参数的测量值或者代表所述装置的部件的性能的测量值,所述第一参数指示所述患者的呼吸作用;接收气体流的第二参数的测量值或者代表所述装置的部件的性能的测量值;确定所述第二参数对所述第一参数的假定效果;并且使用来自所述第一参数的所述假定效果来关于所述患者进行评估,以输出经修改的第一参数。
在一些配置中,所述方法可以进一步包括从所述第一参数减去所述假定效果以输出经修改的第一参数并且基于所述经修改的第一参数来进行所述评估。
在一些配置中,所述评估可以包括所述患者的呼吸速率的评估。在一些配置中,所述评估可以包括所述患者是否佩戴所述系统的患者接口的评估。
在一些配置中,所述第一参数可以是流速。
在一些配置中,所述装置可以进一步包括鼓风机,所述鼓风机包括马达,并且所述第二参数可以是马达转速。
在一些配置中,所述方法可以进一步包括在所述马达转速低于第一阈值的情况下确定所述假定效果是否有效以及所述假定效果是否可能无效。
在一些配置中,所述方法可以进一步包括在所述马达转速的最近改变高于第二阈值的情况下确定所述假定效果是否有效以及所述假定效果是否可能无效。
在一些配置中,所述第二参数可以是压力。
在一些配置中,所述第一参数可以是流速、压力、马达转速、马达的功率、流动阻力、二氧化碳数据、湿度、其变型或者其任何组合。
在一些配置中,所述气体流可以包括环境空气。
在一些配置中,所述气体流可以包括补充气体。
在一些配置中,所述补充气体可以包括氧气。
在一些配置中,所述方法可以进一步包括在所述环境空气和所述补充气体已混合之后测量所述气体流的成分。
在一些配置中,所述方法可以进一步包括在所述气体流的所述成分的最近改变高于第三阈值的情况下确定所述假定效果是否有效以及所述假定效果是否可能无效。
在一些配置中,所述方法可以进一步包括测量进入所述装置的所述补充气体的流速。
在一些配置中,所述方法可以进一步包括在所述补充气体的所述流速的最近改变高于第三阈值的情况下确定所述假定效果是否有效以及所述假定效果是否可能无效。
在一些配置中,所述方法可以进一步包括控制进入所述装置的所述补充气体的所述流速。
在一些配置中,所述方法可以进一步包括对经修改的第一参数进行频率分析以进行所述评估。
在一些配置中,所述系统可以包括非密封系统。
在一些配置中,所述系统可以被配置为递送经鼻高流量治疗。
在一些配置中,所述系统可以包括密封系统。
在一些配置中,所述系统可以被配置为递送CPAP治疗。
在一些配置中,所述系统可以被配置为递送双水平治疗。
在一些配置中,一种被配置为向患者递送呼吸治疗并且还被配置为提供与所述患者有关的信息的呼吸系统可以包括呼吸装置,所述呼吸装置包括控制器和鼓风机,所述鼓风机被配置为产生气体流,所述鼓风机包括马达;其中,所述控制器可以被配置为接收气体流量测量值以及指示所述鼓风机对所述气体流的影响的测量值,所述控制器被配置为至少部分地基于指示所述鼓风机对所述气体流的影响的所述测量值来确定是否将所述气体流量测量值添加到经验证的气体流量数据集中,以及至少部分地基于所述经验证的气体流量数据集来确定患者连接和/或患者呼吸速率。
在一些配置中,如果指示所述鼓风机对所述气体流的影响的所述测量值低于第一阈值,则可以丢弃所述气体流量测量值。
在一些配置中,如果指示所述鼓风机对所述气体流的影响的所述测量值的最近改变高于第二阈值,则可以丢弃所述气体流量测量值。
在一些配置中,指示所述鼓风机对所述气体流的影响的所述测量值可以是所述鼓风机的马达转速。
在一些配置中,指示所述鼓风机对所述气体流的影响的所述测量值可以是所述鼓风机两端的压降。
在一些配置中,所述第一参数可以是流速、压力、流动阻力、二氧化碳数据、湿度、其变型或者其任何组合。
在一些配置中,所述气体流可以包括环境空气。
在一些配置中,所述气体流可以包括补充气体。
在一些配置中,所述补充气体可以包括氧气。
在一些配置中,所述控制器可以被配置为在所述环境空气和所述补充气体已混合之后测量所述气体流的成分。
在一些配置中,如果所述气体流的所述成分的最近改变高于第三阈值,则可以丢弃所述气体流量测量值。
在一些配置中,所述控制器可以被配置为测量进入所述装置的所述补充气体的流速。
在一些配置中,如果所述补充气体的所述流速的最近改变高于第三阈值,则可以丢弃所述气体流量测量值。
在一些配置中,所述控制器可以被配置为控制进入所述装置的所述补充气体的所述流速。
在一些配置中,所述控制器可以被配置为进行所述经验证的流量数据集的频率分析以确定患者连接和/或患者呼吸速率。
在一些配置中,所述系统可以包括非密封系统。
在一些配置中,所述系统可以被配置为递送经鼻高流量治疗。
在一些配置中,所述系统可以包括密封系统。
在一些配置中,所述系统可以被配置为递送CPAP治疗。
在一些配置中,所述系统可以被配置为递送双水平治疗。
在一些配置中,一种使用呼吸系统向患者递送呼吸治疗的方法,其中,所述呼吸系统还可以被配置为提供与所述患者有关的信息,并且可以包括控制器和鼓风机,所述鼓风机被配置为产生气体流,所述鼓风机包括马达,所述方法可以包括使用所述控制器,接收气体流量测量值以及指示所述鼓风机对所述气体流的影响的测量值;并且至少部分地基于指示所述鼓风机对所述气体流的影响的所述测量值来确定是否将所述气体流量测量值添加到经验证的气体流量数据集中,以及至少部分地基于所述经验证的气体流量数据集来确定患者连接和/或患者呼吸速率。
在一些配置中,如果指示所述鼓风机对所述气体流的影响的所述测量值低于第一阈值,则可以丢弃所述气体流量测量值。
在一些配置中,如果指示所述鼓风机对所述气体流的影响的所述测量值的最近改变高于第二阈值,则可以丢弃所述气体流量测量值。
在一些配置中,指示所述鼓风机对所述气体流的影响的所述测量值可以是所述鼓风机的马达转速。
在一些配置中,指示所述鼓风机对所述气体流的影响的所述测量值可以是所述鼓风机两端的压降。
在一些配置中,所述第一参数可以是流速、压力、流动阻力、二氧化碳数据、湿度、其变型或者其任何组合。
在一些配置中,所述气体流可以包括环境空气。
在一些配置中,所述气体流可以包括补充气体。
在一些配置中,所述补充气体可以包括氧气。
在一些配置中,所述方法可以进一步包括在所述环境空气和所述补充气体已混合之后测量所述气体流的成分。
在一些配置中,所述方法可以进一步包括在所述气体流的所述成分的最近改变高于第三阈值的情况下丢弃所述气体流量测量值。
在一些配置中,所述方法可以进一步包括测量进入所述装置的所述补充气体的流速。
在一些配置中,所述方法可以进一步包括在所述补充气体的所述流速的最近改变高于第三阈值的情况下丢弃所述气体流量测量值。
在一些配置中,所述方法可以进一步包括控制进入所述装置的所述补充气体的所述流速。
在一些配置中,所述方法可以进一步包括进行所述经验证的流量数据集的频率分析以确定患者连接和/或患者呼吸速率。
在一些配置中,所述系统可以包括非密封系统。
在一些配置中,所述系统可以被配置为递送经鼻高流量治疗。
在一些配置中,所述系统可以包括密封系统。
在一些配置中,所述系统可以被配置为递送CPAP治疗。
在一些配置中,所述系统可以被配置为递送双水平治疗。
在一些配置中,一种被配置为向患者递送呼吸治疗并且还被配置为提供与所述患者有关的信息的呼吸系统可以包括呼吸装置,所述呼吸装置包括控制器和鼓风机,所述鼓风机被配置为产生气体流,所述鼓风机包括马达;其中,所述控制器可以被配置为接收气体流量测量值以及指示所述鼓风机对所述气体流的影响的测量值,所述控制器被配置为评估由所述鼓风机对所述气体流的影响而产生的气体流动参数值,并且确定由所述鼓风机对所述气体流的影响而产生的所述测量的气体参数与所述评估的气体流动参数值之间的差值。
在一些配置中,所述控制器可以被配置为至少部分地基于所述差值来确定患者连接。
在一些配置中,所述控制器可以被配置为至少部分地基于所述差值来评估呼吸速率。
在一些配置中,所述气体流动参数可以是流速、压力、流动阻力、二氧化碳数据、湿度、其变型或者其任何组合。
在一些配置中,指示所述鼓风机对所述气体流的影响的所述测量值可以是所述鼓风机的马达转速。
在一些配置中,指示所述鼓风机对所述气体流的影响的所述测量值可以是所述鼓风机两端的压降。
在一些配置中,由指示所述鼓风机的影响的所述测量值产生的所述评估的气体流动参数值可以高于阈值。
在一些配置中,所述控制器可以被配置为通过从所述测量的气体流动参数中减去所述差值来修改所述测量的气体流动参数,并且对所述经修改的测量的气体流动参数进行频率分析。
在一些配置中,所述系统可以包括非密封系统。
在一些配置中,所述系统可以被配置为递送经鼻高流量治疗。
在一些配置中,所述系统可以包括密封系统。
在一些配置中,所述系统可以被配置为递送CPAP治疗。
在一些配置中,所述系统可以被配置为递送双水平治疗。
在一些配置中,一种使用呼吸系统向患者递送呼吸治疗的方法,其中,所述呼吸系统还可以被配置为提供与所述患者有关的信息,并且可以包括控制器和鼓风机,所述鼓风机被配置为产生气体流,所述鼓风机包括马达,所述方法可以包括使用所述控制器,接收气体流量测量值以及指示所述鼓风机对所述气体流的影响的测量值;评估由所述鼓风机对所述气体流的影响而产生的气体流动参数值;并且确定由所述鼓风机对所述气体流的影响而产生的所述测量的气体参数与所述评估的气体流动参数值之间的差值。
在一些配置中,所述方法可以进一步包括至少部分地基于所述差值来确定患者连接。
在一些配置中,所述方法可以进一步包括至少部分地基于所述差值来评估呼吸速率。
在一些配置中,所述气体流动参数可以是流速、压力、流动阻力、二氧化碳数据、湿度、其变型或者其任何组合。
在一些配置中,指示所述鼓风机对所述气体流的影响的所述测量值可以是所述鼓风机的马达转速。
在一些配置中,指示所述鼓风机对所述气体流的影响的所述测量值可以是所述鼓风机两端的压降。
在一些配置中,由指示所述鼓风机的影响的所述测量值产生的所述评估的气体流动参数值可以高于阈值。
在一些配置中,所述方法可以进一步包括通过从所述测量的气体流动参数中减去所述差值来修改所述测量的气体流动参数,并且对所述经修改的测量气体流动参数进行频率分析。
在一些配置中,所述系统可以包括非密封系统。
在一些配置中,所述系统可以被配置为递送经鼻高流量治疗。
在一些配置中,所述系统可以包括密封系统。
在一些配置中,所述系统可以被配置为递送CPAP治疗。
在一些配置中,所述系统可以被配置为递送双水平治疗。
在一些配置中,一种被配置为向患者递送呼吸治疗并且还被配置为提供与所述患者的呼吸有关的信息的呼吸系统可以包括呼吸装置,所述呼吸装置包括控制器,其中,所述控制器可以被配置为:接收指示所述患者的呼吸作用的气体流的参数的信号;对所述信号进行频率分析;识别由所述频率分析产生的所述信号的多个局部最大值;并且输出所述多个局部最大值中幅值最大的频率作为评估的呼吸速率。
在一些配置中,所述控制器可以进一步被配置为对与每个局部最大值相关联的每个波形的幅值进行滤波。
在一些配置中,所述输出频率可以是所述最高滤波幅值的频率。
在一些配置中,所述控制器可以被配置为在两个至五个局部最大值之间进行识别。在一些配置中,所述控制器被配置为识别两个局部最大值。在一些配置中,所述控制器被配置为识别三个局部最大值。
在一些配置中,在频率分析算法的每次迭代中,如果每个局部最大值的频率在先前局部最大值的一定距离内,则可以评估所述每个局部最大值是由与所述先前的局部最大值相同的波形引起。
在一些配置中,如果评估局部最大值是由与先前的局部最大值相同的波形引起的,则可以使用所述局部最大值的幅值和所述先前的局部最大值的滤波幅值来确定所述局部最大值的所述幅值的滤波值。
在一些配置中,如果局部最大值的频率不在任何先前局部最大值的频率的一定距离内,则可以确定所述局部最大值是由新的波形引起。
在一些配置中,如果评估局部最大值是由新的波形引起的,则所述局部最大值的幅值的滤波值可以从零开始,所述局部最大值的所述幅值的所述滤波值是使用所述局部最大值的所述幅值以及为零的假定的先前幅值来确定的。
在一些配置中,所述频率分析可以包括Goertzel算法。
在一些配置中,所述Goertzel算法可以包括经修改的Goertzel算法。
在一些配置中,所述Goertzel算法可以评估典型的呼吸速率范围内的频率的幅值。
在一些配置中,所述控制器可以进一步确定所述评估的呼吸速率的信号质量。
在一些配置中,所述参数可以是流速、压力、马达转速、马达的功率、流动阻力、二氧化碳数据、湿度、其变型或者其任何组合。
在一些配置中,所述系统可以包括非密封系统。
在一些配置中,所述系统可以被配置为递送经鼻高流量治疗。
在一些配置中,所述系统可以包括密封系统。
在一些配置中,所述系统可以被配置为递送CPAP治疗。
在一些配置中,所述系统可以被配置为递送双水平治疗。
在一些配置中,一种使用呼吸系统向患者递送呼吸治疗的方法,其中,所述呼吸系统还可以被配置为提供与所述患者的呼吸有关的信息,所述方法可以包括:接收指示所述患者的呼吸作用的气体流的参数的信号;对所述信号进行频率分析;识别由所述频率分析产生的所述信号的多个局部最大值;并且输出所述多个局部最大值中幅值最大的频率作为评估的呼吸速率。
在一些配置中,所述方法可以进一步包括对与每个局部最大值相关联的每个波形的幅值进行滤波。
在一些配置中,所述输出频率可以是所述最高滤波幅值的频率。
在一些配置中,所述方法可以进一步包括在两个至五个局部最大值之间进行识别。在一些配置中,所述方法可以进一步包括识别两个局部最大值。在一些配置中,所述方法可以进一步包括识别三个局部最大值。
在一些配置中,在频率分析算法的每次迭代中,所述方法可以进一步包括在每个局部最大值的频率在先前局部最大值的一定距离内的情况下评估所述每个局部最大值是由与先前的局部最大值相同的波形引起。
在一些配置中,所述方法可以进一步包括:在评估局部最大值是由与先前的局部最大值相同的波形引起的情况下,使用所述局部最大值的所述幅值和所述先前的局部最大值的滤波幅值来确定所述局部最大值的所述幅值的滤波值。
在一些配置中,所述方法可以进一步包括:在局部最大值的频率不在任何先前局部最大值的频率的一定距离内的情况下,确定所述局部最大值是由新的波形引起。
在一些配置中,所述方法可以进一步包括:在评估局部最大值是由新的波形引起的情况下,所述局部最大值的幅值的滤波值从零开始,所述局部最大值的所述幅值的所述滤波值是使用所述局部最大值的所述幅值以及为零的假定的先前幅值来确定的。
在一些配置中,所述频率分析可以包括Goertzel算法。
在一些配置中,所述Goertzel算法可以包括经修改的Goertzel算法。
在一些配置中,所述Goertzel算法可以评估典型的呼吸速率范围内的频率的幅值。
在一些配置中,所述方法可以进一步包括确定所述评估的呼吸速率的信号质量。
在一些配置中,所述参数可以是流速、压力、马达转速、马达的功率、流动阻力、二氧化碳数据、湿度、其变型或者其任何组合。
在一些配置中,所述系统可以被配置为递送经鼻高流量治疗。
在一些配置中,所述系统可以包括密封系统。
在一些配置中,所述系统可以被配置为递送CPAP治疗。
在一些配置中,所述系统可以被配置为递送双水平治疗。
在一些配置中,一种被配置为向患者递送呼吸治疗并且还被配置为提供与所述患者的呼吸有关的信息的呼吸系统可以包括呼吸装置,所述呼吸装置包括控制器,其中,所述控制器可以被配置为:接收指示所述患者的呼吸作用的气体流的参数的信号;评估所述患者的呼吸速率;评估所述评估的呼吸速率的信号质量;并且基于具有足够质量的所述评估的呼吸速率来输出所述评估的呼吸速率以便在显示屏上显示。
在一些配置中,所述控制器被配置为通过对所述信号进行频率分析来确定所述评估的呼吸速率。
在一些配置中,所述频率分析可以包括Goertzel算法。
在一些配置中,所述Goertzel算法可以包括经修改的Goertzel算法。
在一些配置中,所述Goertzel算法可以评估典型的呼吸速率范围内的频率的幅值。
在一些配置中,评估所述信号质量可以部分地基于所述评估的呼吸速率的最近改变的幅值。
在一些配置中,评估所述信号质量可以部分地基于评估的呼吸周期中的最近改变的幅值。
在一些配置中,最近改变的较大幅值可以指示较差的信号质量。
在一些配置中,评估所述信号质量可以部分地基于所述评估的呼吸速率的最近改变的幅值并且部分地基于评估的呼吸周期中的最近改变的幅值。
在一些配置中,评估所述信号质量可以部分地基于评估的呼吸速率和评估的呼吸周期中的每一个的运行方差。
在一些配置中,评估所述信号质量可以部分地基于与所述评估的呼吸速率相关联的频率变换的幅值。
在一些配置中,较小幅值可以指示较差的信号质量。
在一些配置中,所述参数可以是流速、压力、马达转速、马达的功率、流动阻力、二氧化碳数据、湿度、其变型或者其任何组合。
在一些配置中,所述系统可以包括非密封系统。
在一些配置中,所述系统可以被配置为递送经鼻高流量治疗。
在一些配置中,所述系统可以包括密封系统。
在一些配置中,所述系统可以被配置为递送CPAP治疗。
在一些配置中,所述系统可以被配置为递送双水平治疗。
在一些配置中,一种使用呼吸系统向患者递送呼吸治疗的方法,其中,所述呼吸系统还可以被配置为提供与所述患者的呼吸有关的信息,所述方法可以包括:接收指示所述患者的呼吸作用的气体流的参数的信号;评估所述患者的呼吸速率;评估所述评估的呼吸速率的信号质量;并且基于具有足够质量的所述评估的呼吸速率来输出所述评估的呼吸速率以便在显示屏上显示。
在一些配置中,所述方法可以进一步包括通过对所述信号进行频率分析来确定所述评估的呼吸速率。
在一些配置中,所述频率分析可以包括Goertzel算法。
在一些配置中,所述Goertzel算法可以包括经修改的Goertzel算法。
在一些配置中,所述Goertzel算法可以评估典型的呼吸速率范围内的频率的幅值。
在一些配置中,评估所述信号质量可以部分地基于所述评估的呼吸速率的最近改变的幅值。
在一些配置中,评估所述信号质量可以部分地基于评估的呼吸周期中的最近改变的幅值。
在一些配置中,最近改变的较大幅值可以指示较差的信号质量。
在一些配置中,评估所述信号质量可以部分地基于所述评估的呼吸速率的最近改变的幅值并且部分地基于评估的呼吸周期中的最近改变的幅值。
在一些配置中,评估所述信号质量可以部分地基于评估的呼吸速率和评估的呼吸周期中的每一个的运行方差。
在一些配置中,评估所述信号质量可以部分地基于与所述评估的呼吸速率相关联的频率变换的幅值。
在一些配置中,较小幅值可以指示较差的信号质量。
在一些配置中,所述参数可以是流速、压力、马达转速、马达的功率、流动阻力、二氧化碳数据、湿度、其变型或者其任何组合。
在一些配置中,所述系统可以包括非密封系统。
在一些配置中,所述系统可以被配置为递送经鼻高流量治疗。
在一些配置中,所述系统可以包括密封系统。
在一些配置中,所述系统可以被配置为递送CPAP治疗。
在一些配置中,所述系统可以被配置为递送双水平治疗。
附图说明
参考某些实施例的附图来描述本披露内容的这些和其他特征、方面和优点,这些附图旨在示意性地展示某些实施例而不是限制本披露内容。
图1示意性地示出了被配置为向患者提供呼吸治疗的呼吸系统。
图2是具有处于适当位置的加湿室和提起的手柄/杆件的示例性呼吸装置的前视图。
图3是对应于图2的顶视图。
图4是对应于图2的右侧视图。
图5是对应于图2的左侧视图。
图6是对应于图2的后视图。
图7是对应于图2的左前方透视图。
图8是对应于图2的后前方透视图。
图9是对应于图2的底视图。
图10示出了流量治疗设备的空气和氧气入口布置的示例性配置。
图11示出了呼吸装置的空气和氧气入口布置的另一示例性配置。
图12是示出图11的空气和氧气入口布置的其他细节的横截面视图。
图13是示出图11的空气和氧气入口布置的其他细节的另一横截面视图。
图14是示出图11的空气和氧气入口布置的其他细节的纵截面视图。
图15是呼吸装置的主壳体的上机壳部件和下机壳部件的分解图。
图16是主壳体的下机壳的左前侧透视图,示出了用于接纳马达/传感器模块子组件的壳体。
图17是呼吸装置的主壳体的第一底侧透视图,示出位于壳体内部的用于马达/传感器模块子组件的凹部。
图18是呼吸装置的主壳体的第二底侧透视图,示出了用于马达/传感器模块子组件的凹部。
图19A展示了与呼吸系统的部件相互作用和/或向其提供控制和指导的控制系统的框图。
图19B展示了示例性控制器的框图。
图20展示了马达和/或传感器模块的框图。
图21展示了示例性马达和/或传感器模块的感测室。
图22A展示了用于从气体流动参数确定呼吸速率的示例性框图。
图22B展示了将指数衰减应用到气体流动参数信号的示例性效果。
图23A展示了使用来自Goertzel算法的输出来确定呼吸速率评估值的示例性流程图。
图23B展示了使用流动参数数据来确定患者连接和/或呼吸速率的示例性流程图。
图23C展示了确定流动参数数据是否适用于确定患者接口附接和/或呼吸速率的示例性流程图。
图23D展示了修改流速数据以消除马达转速的假定效果的示例性流程图。
图24A-24B展示了用于使用参数变化信号来确定呼吸速率的示例性框图。
图24C展示了回溯函数的示例性应用。
图24D-E展示了用于使用流速变化信号来确定呼吸速率的示例性框图。
图25展示了示例性流速变化信号。
图26A-26B展示了用于确定是否检测到患者呼吸的示例性框图。
图27展示了用于显示呼吸速率确定的示例性流程图。
具体实施方式
尽管下文描述某些实例,但本领域技术人员将了解,本披露内容延伸超出具体披露的实例和/或用途以及其明显的修改和等效物。因此,意图是本文所披露的披露内容的范围不应受到以下描述的任何特定实例的限制。
示例性流量治疗设备的概述
在图1中提供了呼吸系统10的示意图。呼吸系统10可以包括主装置壳体100。主装置壳体100可以包含可以为马达/叶轮布置的形式的流动发生器11、可选的加湿器或加湿室12、控制器13以及用户界面14。用户界面14可以包括显示器以及一个或多个输入装置,诸如一个或多个按钮、触摸屏、触摸屏与一个或多个按钮的组合等。控制器13可以包括一个或多个硬件和/或软件处理器,并且可以被配置或编程用于控制该设备的部件,包括但不限于操作流动发生器11以产生用于递送给患者的气体流、操作加湿器12(如果存在)以加湿和/或加热气体流、接收来自用户界面14的用户输入以便对呼吸系统10进行重新配置和/或用户定义的操作、以及(例如,在显示器上)向用户输出信息。用户可以是患者、医疗保健专业人员或其他人。
继续参考图1,患者呼吸导管16可以联接到呼吸系统10的主装置壳体100中的气体流出口21,并且联接到患者接口17(诸如非密封接口,如具有歧管19和鼻叉18的鼻插管)。患者呼吸导管16也可以联接到面罩、鼻罩、鼻枕罩、气管内导管、气管造口术接口等。
气体流可以由流动发生器11产生,并且可以在经由患者导管16通过患者接口17递送至患者之前进行加湿。控制器13可以控制流动发生器11以产生期望流速的气体流、和/或控制一个或多个阀以控制空气和氧气或其他可呼吸气体的混合。控制器13可以控制加湿室12中的加热元件(如果存在)将气体加热至期望的温度,该期望的温度实现用于递送至患者的温度和/或湿度的期望的水平。患者导管16可以具有加热元件16a,诸如加热线,以加热穿行至患者的气体流。加热元件16a也可以受控制器13的控制。
系统10可以使用与控制器13通信的一个或多个超声换能器、诸如热敏电阻流量传感器的一个或多个流量传感器、一个或多个压力传感器、一个或多个温度传感器、一个或多个湿度传感器或其他传感器,以便以提供合适的治疗的方式来监测气体流的特征和/或操作系统10。气体流特性可包括气体浓度、流速、压力、温度、湿度或其他。诸如压力、温度、湿度和/或流量传感器的传感器3a、3b、3c、20、25可以放置在主装置壳体100、患者导管16和/或患者接口17中的各个位置。控制器13可以接收来自传感器的输出,以帮助其以提供合适的治疗的方式来操作呼吸系统10,诸如以确定气体流的合适的目标温度、流速和/或压力。提供合适的治疗可能包括满足患者的吸气需求。
系统10可以包括无线数据发射器和/或接收器、或收发器15,以使控制器13能够以无线方式从操作传感器接收数据信号8和/或控制系统10的各种部件。此外或替代性地,数据发射器和/或接收器15可以将数据递送到远程服务器或实现对系统10的远程控制。系统10可以包括例如使用缆线或电线的有线连接,以使控制器13能够从操作传感器接收数据信号8和/或控制系统10的各种部件。
流量治疗设备10可以包括高流量治疗设备。如本文所使用,“高流量”治疗是指以满足或超过患者的峰值吸气需求的相对高流速向患者的气道施用气体。用于实现“高流量”的流速可以是以下列出的流速中的任一者。例如,在一些配置中,对于成人患者,“高流量治疗”可以是指以以下流速向患者递送气体:大于或等于约10升每分钟(10LPM),诸如约10LPM与约100LPM之间、或约15LPM与约95LPM之间、或约20LPM与约90LPM之间、或约25LPM与约85LPM之间、或约30LPM与约80LPM之间、或约35LPM与约75LPM之间、或约40LPM与约70LPM之间、或约45LPM与约65LPM之间、或约50LPM与约60LPM之间。在一些配置中,对于新生儿、婴儿或儿童患者,“高流量治疗”可以是指以以下流量向患者递送气体:大于1LPM,诸如约1LPM与约25LPM之间、或约2LPM与约25LPM之间、或约2LPM与约5LPM之间、或约5LPM与约25LPM之间、或约5LPM与约10LPM之间、或约10LPM与约25LPM之间、或约10LPM与约20LPM之间、或约10LPM与15LPM之间、或约20LPM与25LPM之间。用于成人患者、新生儿、婴儿或儿童患者的高流量治疗设备可以以约1LPM与约100LPM之间的流速或以上文概述的子范围中的任何子范围中的流速向患者递送气体。
高流量治疗可以在满足或超过患者的吸气需求、增强患者的氧合和/或减少呼吸功方面是有效的。另外,高流量治疗可以在鼻咽中产生冲洗效果,使得上气道的解剖学无效腔被流入的高气体流量冲洗。冲洗效果可以产生可供用于每一次呼吸的新鲜气体储备,同时最小化对二氧化碳、氮气等的再呼吸。
用于高流量治疗的患者接口可以是非密封接口,以防止气压伤(这可能包括由于相对于大气的压力差而对肺或患者的呼吸系统的其他器官造成的组织损伤)。患者接口可以是具有歧管和鼻叉的鼻插管、和/或面罩、和/或鼻枕罩、和/或鼻罩、和/或气管造口术接口、或任何其他适合类型的患者接口。
图2至图18示出了具有主壳体100的呼吸系统10的示例性呼吸装置。主壳体100具有主壳体上机壳102和主壳体下机壳202。主壳体上机壳102具有外周壁布置106(参见图15)。外周壁布置限定了加湿器或加湿室隔间108以用于接纳可移除的加湿室300。可移除的加湿室300容纳了诸如水等合适的液体,以用于加湿可以被递送给患者的气体。
在所示形式中,主壳体上机壳102的外周壁布置106可以包括:基本上竖直的左侧外壁110,该左侧外壁在主壳体100的前后方向上定向;基本上竖直的左侧内壁112,该左侧内壁在主壳体100的前后方向上定向;以及互连壁114,该互连壁在左侧外壁110的上端与左侧内壁112的上端之间延伸并且互连这些上端。主壳体上机壳102可以进一步包括:基本上竖直的右侧外壁116,该右侧外壁在主壳体100的前后方向上定向;基本上竖直的右侧内壁118,该右侧内壁在主壳体100的前后方向上定向;以及互连壁120,该互连壁在右侧外壁116的上端与右侧内壁118的上端之间延伸并且互连这些上端。这些互连壁114、120朝向主壳体100的相应外边缘成角度,但可以替代性地是基本上水平的或向内成角度。
主壳体上机壳102可以进一步包括基本上竖直的后外壁122。主壳体上机壳102的上部部分可以包括向前成角度的表面124。表面124可以具有用于接纳显示器和用户界面模块14的凹部126。显示器可以被配置为实时地显示感测到的一种或多种气体的特性。互连壁128可以在后外壁122的上端与表面124的后边缘之间延伸并且互连该上端与该后边缘。
基本上竖直的壁部分130可以从表面124的前端向下延伸。基本上水平的壁部分132可以从壁部分130的下端向前延伸以形成凸缘。基本上竖直的壁部分134可以从壁部分132的前端向下延伸并且终止于加湿室隔间108的基本上水平的底板部分136。左侧内壁112、右侧内壁118、壁部分134以及底板部分136一起可以限定加湿室隔间108。加湿室隔间108的底板部分136可以具有凹部138,用于接纳用于加热加湿室300中的液体以供在加湿过程期间使用的加热器布置,诸如加热板140或一个或多个其他适合的加热元件。
主壳体下机壳202可以通过适合的紧固件或者一体的附接特征(例如像夹子)是可附接到上机壳102上的。主壳体下机壳202可以包括:基本上竖直的左侧外壁210,该左侧外壁在主壳体100的前后方向上定向并且与上机壳102的左侧外壁110毗连;以及基本上竖直的右侧外壁216,该右侧外壁在主壳体100的前后方向上定向并且与上机壳102的右侧外壁116毗连。主壳体下机壳202可以进一步包括基本上竖直的后外壁222,该后外壁与上机壳102的后外壁122毗连。
壳体下机壳202可以具有唇缘242,该唇缘与壳体上机壳102的唇缘142毗连并且还形成用于接纳杆件500的手柄部分506的该凹部的一部分。下唇缘242可以包括指向前方的突起243,该突起充当杆件500的手柄部分506的固位件。代替杆件500,该系统可以具有弹簧加载的防护件,以将加湿室300固位在加湿室隔间108中。
壳体下机壳202的底侧可以包括底壁230。相应互连壁214、220、228可以在基本上竖直的壁210、216、222与底壁230之间延伸并且互连这些壁与该底壁。底壁230可以包括具有多个孔的格栅232以使得能够在从加湿室300泄露(例如,由于溢出)的情况下排出液体。底壁230还可以包括长形的前后定向的狭槽234。狭槽234还可以使得能够在从加湿室300泄露的情况下排出液体,而不使液体进入电子器件壳体。在所示的构型中,狭槽234相对于格栅232的孔可以是宽的和长形的,以最大化液体的排出。
如图17至图18所示,下机壳202可以具有用于接纳马达和/或传感器模块的马达凹部250。马达和/或传感器模块可以是不可从主壳体100移除的。马达和/或传感器模块可以是可从主壳体100移除的,如图17-18所示。可以在底壁230中邻近其后边缘设置凹部开口251以用于接纳马达和/或传感器模块。连续的、气体不可渗透的、未中断的外周壁252可以与下机壳202的底壁230整体形成,并且从开口251的周边向上延伸。外周壁252的后部部分254具有第一高度,并且外周壁252的前部部分256具有第二高度,该第二高度大于该第一高度。外周壁252的后部部分254终止于基本上水平的台阶258,该台阶又终止于外周壁252的上辅助后部部分260。外周壁252的前部部分256和上辅助后部部分260终止于顶板262处。除了气体流通道,所有壁和顶板262可以是连续的、气体不可渗透的且未中断的。因此,除了气体流通道,整个马达凹部250可以是气体不可渗透的且未中断的。
马达和/或传感器模块可以是可插入凹部250中的并且可以是可附接到下机壳202上的。在将马达和/或传感器模块插入到下机壳202中后,气体流通道管264可以延伸穿过向下延伸管133并且被软密封件密封。
加湿室300可以如下地流体联接到设备10:通过加湿室300从壳体100的前部处的位置朝向壳体100后部的方向进入加湿室隔间108中的在向后方向上的线性滑入运动。气体出口端口322可以与马达处于流体连通。
如图8所示的气体入口端口340(经加湿的气体返回)可以包括可移除的L形弯管。可移除的弯管可以进一步包括患者出口端口344,所述患者出口端口用于联接到患者导管16以便将气体递送到患者接口17。气体出口端口322、气体入口端口340以及患者出口端口344可以各自包括软密封件(诸如O形环密封件或T形密封件),以便在设备10、加湿室300以及患者导管16之间提供密封的气体通路。
加湿室气体入口端口306可以与气体出口端口322互补,并且加湿室气体出口端口308可以与气体入口端口340互补。这些端口的轴线可以彼此平行,以便使得加湿室300能够以线性运动被插入到室隔间108中。
呼吸装置可以具有与马达处于流体连通的空气和氧气(或替代性辅助气体)入口,以便使得马达能够将空气、氧气(或替代性辅助气体)或其混合物递送至加湿室300,从而递送至患者。如图10所示,该装置可以具有组合的空气/氧气(或替代性辅助气体)入口布置350。这种布置可以包括通入壳体100中的组合的空气/氧气端口352、过滤器354、以及具有铰链358的盖356。气体管还可以可选地横向或沿另一个合适的方向延伸,并且与氧气(或替代性辅助气体)源流体连通。端口352可以与马达402流体联接。例如,端口352可以经由端口352与马达和/或传感器模块400中的入口孔或端口(该入口孔或端口进而将通向马达)之间的气体流通道而与马达和/或传感器模块400联接。
该装置可以具有图11至图14所示的布置来使得马达能够向加湿室300并由此向患者递送空气、氧气(或替代性辅助气体)或其适合的混合物。这种布置可以包括位于壳体100的下机壳202的后壁222中的空气入口356’。空气入口356’包括具有带有孔和/或狭槽的适合格栅布置的刚性板。消音泡沫可以邻近该板设置在该板的内侧上。空气过滤箱354’可以邻近空气入口356’被定位在主壳体100的内部,并且包括空气出口端口360以用于经由马达/传感器模块400中的空气入口端口404向马达递送经过滤的空气。空气过滤箱354’可以包括过滤器,该过滤器被配置为从气体流中去除微粒(例如灰尘)和/或病原体(例如病毒或细菌)。软密封件(诸如O形环密封件)可以设置在空气出口端口360与空气入口端口404之间,以便在这些部件之间进行密封。该装置可以包括邻近壳体100的一侧被定位在该壳体的后端处的分开的氧气入口端口358’,氧气端口358’用于接纳来自氧气源(诸如管输氧气储槽或源)的氧气。氧气入口端口358’与阀362流体连通。阀362可以适当地是螺管阀,以能够控制添加到被递送到加湿室300的气体流中的氧气的量。氧气端口358’和阀362可以与其他辅助气体一起使用,以控制其他辅助气体到气体流的添加。其他辅助气体可以包括对于可用于气体治疗的多种气体中的任何一种或多种,包括但不限于氦氧混合气和一氧化氮。
如图13至图16所示,壳体下机壳202可以包括合适的电子器件板272,诸如感测电路板。电子器件板可以邻近壳体下机壳202的相应外侧壁210、216定位。电子器件板272可以容纳适合的电气或电子部件或与其电连通,该电气或电子部件是诸如但不限于微处理器、电容器、电阻器、二极管、运算放大器、比较器以及开关。传感器可以与电子器件板272一起使用。电子器件板272的部件(诸如但不限于一个或多个微处理器)可以充当该设备的控制器13。
电子器件板272中的一者或两者可以与设备10的电气部件(包括显示单元和用户界面14、马达、阀362以及加热板140)电连通,以便操作马达来提供气体的期望流速、操作加湿室12来将气体流加湿并加热到适当的水平、并且向该气体流供应适当量的氧气(或适当量替代性辅助气体)。
电子器件板272可以与从壳体上机壳102的后壁122突起的连接器布置274电连通。连接器布置274可以联接到警报器、脉搏血氧仪端口和/或其他适合的附件。电子器件板272还可以与还可以设置在壳体上机壳102的后壁122中的电连接器276电连通,以向该装置的部件提供干线电力或电池电力。
如上所述,操作传感器(诸如流量、温度、湿度和/或压力传感器)可以被放置在呼吸装置、患者导管16和/或插管17中的各个位置。电子器件板272可以与这些传感器电连通。来自传感器的输出可以由控制器13接收,以辅助控制器13以提供包括满足吸气需求的最佳治疗的方式来操作呼吸系统10。
如上所述,电子器件板272以及其他电气和电子部件可以与气体流动路径气动隔离以提高安全性。这种密封还防止水进入。
控制系统
图19A展示了示例性控制系统920的框图900,该示例性控制系统可以检测患者状况并控制包括气体源在内的呼吸系统的操作。控制系统920可以管理流经呼吸系统的气体在递送给患者时的流速。例如,控制系统920可以通过控制鼓风机(以下也称为“鼓风机马达”)930的马达转速的输出或共混器中的阀932的输出来增加或减小流速。控制系统920可以自动确定用于特定患者的流速的设定值或个性化值,如下所述。流速可以由控制系统920优化以改善患者的舒适度和治疗。
控制系统920还可以生成音频和/或显示/视觉输出938、939。例如,流量治疗设备可以包括显示器和/或扬声器。显示器可以向医师指示由控制系统920生成的任何警告或警报。显示器还可以指示医师可以调整的控制参数。例如,控制系统920可以自动推荐针对特定患者的流速。控制系统920还可以确定患者的呼吸状态,包括但不限于生成患者的呼吸速率,并将其发送到显示器,这将在下文更详细地描述。
控制系统920可以改变加热器控制输出,以控制一个或多个加热元件(例如,以维持递送到患者的气体的温度设定点)。控制系统920还可以改变加热元件的操作或占空比。加热器控制输出可以包括一个或多个加热板控制输出934和一个或多个经加热呼吸管控制输出936。
控制系统920可以基于一个或多个接收到的输入901-916来确定输出930-939。输入901-916可以对应于由控制器600(图19B所示)自动接收的传感器测量值。控制系统920可以接收传感器输入,包括但不限于一个或多个温度传感器输入901、一个或多个流速传感器输入902、马达转速输入903、一个或多个压力传感器输入904、一个或多个气体分数传感器输入905、一个或多个湿度传感器输入906、一个或多个脉搏血氧仪(例如SpO2)传感器输入907、一个或多个已存储或用户参数908、占空比或脉冲宽度调制(PWM)输入909、一个或多个电压输入910、一个或多个电流输入911、一个或多个声学传感器输入912、一个或多个功率输入913、一个或多个电阻输入914、一个或多个CO2传感器输入915、和/或肺活量计输入916。控制系统920可以接收来自用户的输入或存储在存储器624(图19B中示出)中的参数值。控制系统920可以在患者的治疗时间上动态地调节用于患者的流速。控制系统920可以连续地检测系统参数和患者参数。基于本文的披露内容,本领域普通技术人员将理解,任何其他合适的输入和/或输出可以与控制系统920一起使用。
控制器
图19B展示了控制器600的实施例的框图。控制器600可以包括用于检测输入条件和控制输出条件的编程指令。编程指令可以存储在控制器600的存储器624中。编程指令可以对应于本文描述的方法、过程和功能。编程指令可以由控制器600的一个或多个硬件处理器622执行。可以使用C、C++、JAVA或任何其他合适的编程语言来实现编程指令。可以在诸如ASIC和FPGA等专用电路系统628中实现编程指令的一些或全部部分。
控制器600还可以包括用于接收传感器信号的电路628。控制器600可以进一步包括显示器630,用于传输患者和呼吸辅助系统的状态。显示器630还可以显示警告和/或其他警报。显示器630可以被配置用于实时或以其他方式显示所感测的一种或多种气体的特性。控制器600还可以经由诸如显示器630等用户界面接收用户输入。用户界面可以包括一个或多个按钮和/或一个或多个拨号盘。用户界面可以包括触摸屏。
马达和/或传感器模块
本文所述的呼吸系统的任何特征(包括但不限于加湿室、流动发生器、用户界面、控制器、以及被配置为将呼吸系统的气体流出口联接到患者接口的患者呼吸导管)可以与本文描述的任何传感器模块组合。
图20展示了马达和/或传感器模块2000的框图,其可以由呼吸装置(图17和图18所示)中的凹部250容纳。马达和/或传感器模块可以包括鼓风机2001,该鼓风机带走室内空气以递送给患者。鼓风机2001可以是离心鼓风机。
可以使用一个或多个传感器(例如,霍尔效应传感器)来测量鼓风机马达的马达转速。鼓风机马达可以包括无刷直流马达,无需使用单独的传感器即可从中测量马达转速。例如,在无刷直流马达的操作期间,可以从马达的未通电绕组中测量反电动势,从中可以确定马达位置,这进而可以用来计算马达转速。此外,可以使用马达驱动器来测量马达电流,该马达电流可以与测量的马达转速一起使用以计算马达转矩。鼓风机马达可以包括低惯性马达。
室内空气可以进入室内空气入口2002,该室内空气入口通过入口端口2003进入鼓风机2001。入口端口2003可以包括阀2004,加压气体可以通过阀进入鼓风机2001。阀2004可以控制氧气进入鼓风机2001的流动。阀2004可以是任何类型的阀,包括比例阀或二位阀。在一些实施例中,入口端口不包括阀。
鼓风机2001可以以大于1,000RPM且小于30,000RPM、大于2,000RPM且小于21,000RPM或在任何前述值之间的马达速度运行。鼓风机2001的操作混合通过入口端口2003进入鼓风机2001的气体。使用鼓风机2001作为混合器可以降低否则在具有单独混合器(诸如,包括挡板的静态混合器)的系统中将会发生的压降,因为混合需要能量。
混合的空气可以通过导管2005离开鼓风机2001,并进入传感器室2007中的流动路径2006。具有传感器2008的感测电路板可以定位在传感器室2007中,使得感测电路板至少部分地浸没在气体流中。感测电路板上的传感器2008中的至少一些传感器可以定位在气体流内以测量流内的气体特性。在穿过传感器室2007中的流动路径2006之后,气体可以离开2009到达加湿室。
在将传感器定位在鼓风机和/或混合器的上游的系统上,将传感器2008定位在组合的鼓风机与混合器2001的下游可以提高测量的准确性,诸如气体分数浓度的测量(包括氧气浓度)。这种定位可以得到可重复的流动曲线。此外,将传感器定位在组合的鼓风机与混合器的下游避免了否则可能会发生的压降,因为在鼓风机之前进行感测的情况下,在入口与感测系统之间需要单独的混合器(诸如带挡板的静态混合器)。混合器可以导致混合器两端的压降。将传感器定位在鼓风机之后可以允许鼓风机成为混合器,而静态混合器会降低压力,相反,鼓风机会增加压力。另外,将感测电路板和传感器2008的至少一部分浸入流动路径中可以提高测量的准确性,因为传感器浸入流中意味着它们更能在气体流动时经受相同的条件(诸如温度和压力),并且因此提供气体流特性的更好表示。
转到图21,离开鼓风机的气体可以进入传感器室400中的流动路径402,该流动路径可以位于马达和/或传感器模块内。流动路径402可以具有弯曲的形状。流动路径402可以被构造成具有没有急转弯的弯曲形状。流动路径402可以具有弯曲的端部,在弯曲的端部之间具有更直线的部分。弯曲的流动路径形状可以通过部分地使测量区域与流动路径重合以形成该流动路径的测量部分来减小气体流中的压降而不降低流测量的灵敏度,这将在下文参考图23A-23B进行描述。
具有传感器(诸如声学发射器和/或接收器、湿度传感器、温度传感器、热敏电阻等)的感测电路板404可以定位在传感器室400中,使得感测电路板404至少部分地浸入流动路径402中。将感应电路板和传感器的至少一部分浸没在流动路径中可以提高测量的准确性,因为浸入流动路径中的传感器更能在气体流动时经受相同的条件(诸如温度和压力),因此提供气体流特性的更好表示。在穿过传感器室400中的流动路径402之后,气体可以排出到加湿室。
可以使用至少两个不同类型的传感器来测量气体流速。第一类型的传感器可以包括热敏电阻,其可以通过监测气体流与热敏电阻之间的热传递来确定流速。在气体在热敏电阻周围流动并经过该热敏电阻时,热敏电阻流量传感器可以使热敏电阻在流量内的恒定目标温度下运行。传感器可以测量将热敏电阻维持在目标温度下所需的电量。目标温度可以被配置为高于气体流的温度,使得在较高的流速下需要更多的功率来将热敏电阻维持在目标温度下。
热敏电阻流速传感器还可以在热敏电阻上维持多个(例如,两个、三个或更多个)恒定温度,以避免目标温度和气体流温度之间的差值过小或过大。多个不同的目标温度可以允许热敏电阻器流速传感器在气体的大温度范围内准确。例如,热敏电阻器电路可以被配置为能够在两个不同的目标温度之间切换,使得气体流的温度将总是落在相对于这两个目标温度之一的一定范围内(例如,不太近也不太远)。热敏电阻电路可以被配置为在约50℃至约70℃或约66℃的第一目标温度下操作。第一目标温度可以与约0℃至约60℃之间或约0℃至约40℃之间的期望的流温度范围相关联。热敏电阻电路可以被配置为在约90℃至约110℃或约100℃的第二目标温度下操作。第二目标温度可以与约20℃至约100℃之间或约30℃至约70℃之间的期望的流温度范围相关联。
该控制器可以被配置为通过连接或旁路该热敏电阻器电路内的电阻器来调整该热敏电阻器电路以在至少该第一目标温度模式与该第二目标温度模式之间改变。该热敏电阻器电路可以被布置成包括第一分压器臂和第二分压器臂的惠斯通电桥配置。该热敏电阻可以位于分压器臂中的一个上。热敏电阻流速传感器的更多细节在2017年9月3日提交的PCT申请号PCT/NZ2017/050119中进行描述,该申请是本披露内容的附录A并且通过援引以其全部内容并入本文。
第二类型的传感器可以包括声学传感器组件。包括声学发射器和/或接收器的声学传感器可以用来测量声学信号的飞行时间以确定气体速度和/或成分,这些声学传感器可以在流治疗设备中使用。在一个超声感测(包括超声发射器和/或接收器)拓扑中,驱动器使第一传感器(诸如超声换能器)在第一方向上产生超声脉冲。第二传感器(诸如第二超声换能器)接收该脉冲并且提供该脉冲在第一超声换能器与第二超声换能器之间的飞行时间的测量值。使用该飞行时间测量值,气体流在超声换能器之间的声速可以通过呼吸系统的处理器或控制器来计算。第二传感器可以在与第一方向相反的第二方向上发射脉冲并且第一传感器可以接收该脉冲,以提供飞行时间的第二测量值,从而允许确定气体流的特性(诸如流量或速度)。在另一种声学感测拓扑中,由诸如超声波换能器的声学发射器发射的声脉冲可以由诸如麦克风的声学接收器接收。声学流速传感器的更多细节在2016年12月2日提交的PCT申请号PCT/NZ2016/050193中进行描述,该申请通过援引以其全部内容并入本文。
可以结合来自第一类型传感器和第二类型传感器两者的读数来确定更准确的流量测量值。例如,先前确定的流速和来自一种类型的传感器的一个或多个输出可以用于确定预测的当前流速。然后可以使用来自第一类型传感器和第二类型传感器中的另一个的一个或多个输出来更新预测的当前流速,以便计算最终的流速。
气体流动参数的频率分析
本披露内容披露了通过对来自气体流的信号进行一个或多个频率分析来使用诸如本文所述的呼吸系统来确定患者的呼吸速率的过程。来自气体流的信号可能是随患者的呼吸而变化的一种信号。信号的实例可以包括流速、压力、马达转速、马达的功率、流动阻力、二氧化碳数据、湿度、其变型和/或其任何组合。本文描述的过程可以利用呼吸装置内已存在的一个或多个传感器。这些传感器可以被至少部分地放置在气体流动路径内。传感器也可以在气体流动路径之外。
频率分析可以从可用数据中提取幅值和频率信息,并且因此由于信号的不规则性,可能不太可能出现错误。与从流速信号中测量呼吸周期相比,频率分析可以在各种呼吸装置中提供更可靠的呼吸速率数据。与快速且可能不准确的读数相比,本文披露的过程还着重于在略微更长的时间段内提供患者的呼吸速率的更准确的测量。与可能不准确的快速读数相比,患者的呼吸速率的更准确的测量在允许临床医生做出与患者的状况有关的判断中更有用。
与流动发生器流体连接的呼吸系统的患者接口可以是非密封接口,诸如鼻插管。本文描述的过程可以克服在未密封系统中测量呼吸速率的困难,该未密封系统可能具有比诸如面罩的密封系统更大量的泄漏。本文描述的过程也可以应用于具有患者接口的呼吸系统,该患者接口是面罩、鼻罩、鼻枕罩、气管内导管和/或气管造口术接口。本文所述的过程可以与鼻高流量系统、持续气道正压通气(CPAP)装置和/或双水平气道正压装置一起使用。
频率分析可以从控制值分析气体流动参数的波动。可以通过获取测量值与期望值之间的差值来隔离波动。期望值可以是目标值、先前值的平均值,也可以是基于其他参数(诸如将电路的典型电阻乘以马达转速以获得流速的评估值)计算的期望值。频率分析也可以通过忽略频率平面中等于零频率下的平均值的幅值来分析气体流动参数的绝对值,该平均值是参数的平均值而不是呼吸速率。如下文将描述的,也可以去除0Hz下的幅值。
可以从上述任何传感器信号来计算用于确定患者的呼吸速率的气体流动参数。可以在沿着气体流动路径的任何点、从流动发生器的入口直到患者接口的任何位置处测量气体流动参数。气体流动参数可以在流动发生器出口之后的流动通道中测量。与在患者接口中相反,测量呼吸装置内部的气体流动参数可以允许传感器更靠近控制器和/或避免需要用患者接口代替传感器。在患者接口处测量气体流动参数可能导致来自患者呼吸的气体流动参数比在呼吸装置内部更大且更容易测量的波动。
气体流速参数可以包括气体流速。当患者在连接到患者接口时正在呼吸时,控制器或一个或多个处理器可以从流速传感器获得指示流速的信号。当患者吸气时,患者接口中的流动阻力减小,并且流速增加。当患者呼气时,患者接口中的流动阻力增加,并且流速降低。控制器可以调节流动发生器以实现目标流速。然而,因为由于患者的呼吸引起的流速变化与抵消的变化之间的时间延迟,因此仍可以在流速信号中检测到呼吸信号。
为确定呼吸速率而分析的流速测量可以是用于控制流动发生器的相同流速测量,或者是不同的流速测量。流速可以至少部分地由上文描述的声学流量传感器和/或热敏电阻流量传感器来测量。热敏电阻流量传感器可以具有比声学流量传感器更低的噪声,同时具有足够高的采样率,并且足够快以为此处描述的过程产生流速读数。
本文所述的呼吸装置可以基于测量的参数与参数的目标值之间的差值来控制流动发生器,诸如鼓风机。参数的目标值可以是恒定的或者随时间变化,诸如与患者的呼吸同步。如上所述,即使当装置试图保持流动参数恒定时,本文描述的过程也可以有利地检测流动参数中的呼吸信号。
气体流速参数还可包括气体流动压力。压力传感器可以是用于测量气体流的绝对压力的绝对压力传感器,或者是用于测量环境压力与绝对气体流的压力之间的差值的压差传感器。压力测量值也可以是一个测量绝对气体流动压力并且另一个测量环境压力的两个绝对压力传感器的测量值之间的差值。
图22A展示了用于通过频率分析确定患者呼吸速率的示例性过程。来自被配置用于测量气体流动参数的传感器的传感器输出2202可以馈送到信号处理算法2204中。传感器可以位于气体流动路径中、至少部分地在气体流动路径中或者在气体流动路径的外部。气体流动参数可能随患者的呼吸而变化。气体流动参数可以是流速、压力、二氧化碳数据等。控制器或一个或多个处理器可以运行信号处理算法2204以处理信号输出2202并测量气体流动参数。气体流动参数信号2206可以被馈送到信号分析算法2008中。
信号分析算法2008可以包括针对离散时间序列的频率分析。频率分析可以包括离散傅里叶变换(DFT)。离散傅里叶变换采用离散时间序列数据,并且将其转换为包含频率、幅值和相位信息的复数序列。DFT的基本形式是:
其中,Xk是复数的输出序列,xn是输入序列,并且k是感兴趣的频率。通过对每个频率下的Xk的实部和虚部进行平方、将它们相加并取平方根,可以提取每个频率下的幅值。幅值表示评估的时间序列中对应频率的强度。
数据点之间的时间将频率分辨率限制在该范围内。为了能够可靠地检测数据集内的频率,采样频率必须至少是将要测量的频率的两倍。该最大可检测频率应当至少与可能需要检测的任何频率一样高。本文所述的过程可能需要测量至少高达每分钟60次呼吸或1Hz的患者呼吸,这需要至少每个样本2Hz或500ms的采样率。本文所述的过程可能需要测量至少高达每分钟90次呼吸或1.5Hz的患者呼吸,这需要每个样本3Hz或333ms的采样率。本文所述的过程可能需要测量高达每分钟150次呼吸或4.5Hz的患者呼吸。采样率也可以高于为了提供缓冲而要测量的最大可检测频率的两倍。
然而,更高的采样率有更高的计算要求。采样率进一步受到传感器可以递送数据的速率的限制。例如,如果使用流速作为气体流动参数,则热敏电阻传感器可以快至每14ms或者以71.4Hz的频率递送一个数据点。
为了平衡对检测到呼吸速率的置信需要和防止采样率过高的需要,信号分析算法2208的采样率可以在约14ms(71.4Hz)与约500ms(2Hz)之间,或者在约20ms(50Hz)与约400ms(2.5Hz)之间,或者在约25ms(40Hz)与约333ms(3Hz)之间,或者在约40ms(25Hz)与约250ms(4Hz)之间,或者在约50ms(20Hz)与约200ms(5Hz)之间或者约100ms(10Hz)。
由信号分析算法2208确定的主导频率可以是来自输出序列的呼吸速率。主导频率是导致最大幅值的频率。与可能影响气体流动参数的其他因素相比,由于患者的呼吸可能导致气体流动参数的最大变化,因此可以将主导频率假定为呼吸速率。唯一的例外是,如上所述,在使用气体流动参数的绝对值而不是来自平均值或目标的波动的配置中,忽略0Hz下出现的幅值。0Hz处的大幅值表示气体流动参数的平均值而不是呼吸速率。
频率分析可以包括Goertzel算法,与DFT相比,其可以减少信号分析算法2208的计算量。可以为Goertzel算法选择的参数可以包括例如最大频率、离散频率之间的间隔、以及衰减常数(将在下文进行描述)。
最大频率决定了由Goertzel算法确定的频率。患者的呼吸速率可以落在可能频率的定义范围内。Goertzel算法分析特定频率的幅值,其结果与DFT的结果的平方相等,但是仅适用于由算法2208定义的频率范围。在一些配置中,最大频率可以设置为60min-1,这可以捕获患者的典型呼吸速率,并且可以忽略更高的频率(通常可能不指示患者的呼吸)。可以针对不同的患者调整最大频率,诸如针对婴儿是120min-1
频率之间的间隔确定Goertzel算法在捕获0与最大频率之间的所有频率中的可靠性如何。较小的间距使算法在捕获更多频率时更可靠。然而,在评估更多数量的频率时,计算成本会增加。如果使用DFT,则不需要选择频率间隔,因为DFT可以捕获所有频率信息,但是DFT的计算成本比Goertzel算法显著更高。所需的间隔还取决于衰减常数,因为较长的衰减周期将导致较少的平滑,这进而需要频率之间的较小间隔。
可以选择频率之间的间隔,使得对于0与最大频率之间的任何频率,至少70%、优选地至少85%的能量被捕获。Goertzel算法是有利的,因为在评估有限数量的频率时,它比DFT的计算要求更低。例如,可以在从约0.02Hz至约1.01Hz的范围内以约0.01-0.03Hz或约0.02Hz的增量来评估算法2208。该范围相当于每分钟约1.2次呼吸到每分钟60.6次呼吸之间,这可以以每分钟约0.6次呼吸至每分钟约1.8次呼吸或每分钟约1.2次呼吸为增量捕获相当一部分可能的人类呼吸速率。由于在Goertzel算法中未采样0Hz,因此Goertzel算法还可以解决上述在0Hz处的较大幅值的问题。由于没有为各种频率计算相位信息,因此Goertzel算法可以进一步减少计算需求,这对于确定患者的呼吸速率的目的并非必需的。
Goertzel算法通过使用以下公式在每个样本进入时为每个测试频率计算中间变量来迭代地工作:
s[n]=x[n]+2cos(ω0)s[n-1]-s[n-2]
其中,s是中间值,x是信号,n是样本数,并且ω是要测试的感兴趣的角频率。
在计算中间变量之后,使用以下公式评估每个频率的幅值:
y[n]=(s[n-2])2+(s[n-1])2-(2cos(w0)·s[n-2]·s[n-1])
其中,y是样本n处的感兴趣频率的幅值。
信号分析算法2208可以进一步包括在使用Goertzel算法评估信号2206之前,将指数衰减应用到参数信号2206。图22B展示了将指数衰减应用到气体流动参数信号的示例性效果。在本披露内容中对Goertzel算法的引用还可以包括修改的Goertzel算法,该算法包括指数衰减的应用。可以在Goertzel算法的每次迭代评估之前通过使用以下两个公式来完成指数衰减。
其中,Δt是采样时间,并且kf是衰减常数。每个评估频率的衰减常数可以变化,并且可以基于确定信号中是否存在所述频率所需的样本数量和/或其他因素。
指数衰减可以对最近的样本进行优先排序,并且限制Goertzel算法的采样时间。衰减常数影响先前数据衰减得有多快。较长的衰减周期可以指示频率评估值更为精确,然而,如果患者的呼吸速率改变,则评估值可能需要更长的时间才能改变。较短的衰减周期可以允许频率评估值更快地改变,然而频率评估值本身可能不太准确。在一些配置中使用的衰减常数可以提供每分钟3次呼吸的拐角频率。
指数衰减的另一个优点是在频域中结果的平滑效果,其中,信号中存在的每个频率的幅值被扩展到相邻频率。当使用Goertzel算法时,这种效果可能是理想的,因为数据中的波形有时可能以两个测试频率之间的频率存在,并且否则可能会丢失。在对数据进行平滑处理时,可以将该波形模糊化到相邻频率中和/或在相邻频率处检测到,从而增加了Goertzel算法能够准确测量患者的呼吸速率的可能性。然而,使数据平滑可能会降低频率分析的可靠性。可以选择指数衰减常数来平衡数据平滑效果和频率分析的可靠性。
指数衰减对参数信号的示例性效果如图22B所示,其中,线A代表0.25Hz的输入频率,并且线B是应用指数衰减后呈现给Goertzel算法的有效信号。
返回图22A,在使用信号分析算法2208的频率分析期间,从数据计算各种频率的幅值,这表示数据中的每个频率信号的强度。由算法2208确定的主导频率或导致最大幅值的频率是呼吸速率2210。如图23A所示,在实现Goertzel算法的一些配置中,在算法的每次迭代中,控制器都可以在步骤2302接收从算法输出的幅值。在步骤2304处,控制器可以识别由Goertzel算法输出的幅值的局部最大值。局部最大值被定义为比相邻频率的幅值大的幅值,并且与任何较大的局部最大值相距足够的距离。控制器可以在算法的每次迭代中识别出两个或多个(诸如两个、三个、四个、五个、六个或更多)最大局部最大值。
在识别出局部最大值之后,控制器可以将滤波器应用于两个或更多个局部最大值的每个幅值。为了应用滤波器,在判定步骤2306处,控制器从先前的迭代中识别出局部极大值中的任何一个的频率是否接近于两个或更多个局部极大值中的一个的频率。将每个最新的局部极大值单独与每个先前的局部极大值进行比较,以确定是否存在匹配。如果局部最大值之一接近先前局部最大值之一(诸如与先前局部最大值之一基本相同或在预定距离内),则滤波器在步骤2308处确定最新的局部最大值的滤波频率时,使用先前的局部最大值的先前的经滤波幅值的值和最新的局部最大值的幅值。最新的局部最大值接近先前的局部最大值可以指示最新的局部最大值是由与先前的局部最大值相同的波形引起的。如果局部极大值之一不接近先前局部极大值中的任何一个,则控制器以零开始新的局部极大值的滤波幅值(即,假设先前局部极大值的滤波幅值为零值),并且在步骤2310处将滤波器应用于最新的局部最大值,以获得局部最大值的滤波幅值。当局部最大值之一不接近任何先前的局部最大值时,假定最新的局部最大值是由新的波形引起的。
一旦已确定所有最新的局部最大值的滤波幅值,则在步骤2312处,控制器选择两个到五个滤波幅值中的最高值。假定与最高的滤波幅值的值相关联的频率最能指示患者的呼吸速率。由于上述滤波,该方法可以允许控制器忽略短期高幅值信号,因为这些信号不太可能与患者的呼吸相对应。
在步骤2314处,控制器可以将另一个滤波器应用于以上随时间变化的选择的频率,以给出患者的经滤波的呼吸速率。在算法的每次迭代中,使用最新的频率更新经滤波的呼吸速率。在步骤2314处的滤波器还可以通过来自Goertzel算法的频率的幅值来对频率值进行加权,使得当呼吸信号更强时呼吸速率的评估值被更快地更新。
该过程可以可选地包括来自第二传感器的第二传感器输入2212,该第二传感器输入被配置为监测第二气体流动参数。第二传感器可以位于气体流动路径中、至少部分地在气体流动路径中或者在气体流动路径的外部。气体流动参数和第二气体流动参数可以是压力和流速等。第二传感器输入2212可以被馈送到信号处理算法2214中,该信号处理算法可以具有与信号处理算法2204相同或相似的特征。可以将使用信号处理算法2214获得的第二参数信号2216馈送到信号分析算法2218中,该信号分析算法可以具有与信号处理算法2208相同或相似的特征。
一旦针对每个气体流动参数确定了每个频率的幅值2220、2222,就可以将对应频率处的幅值2220、2222组合成组合幅值,该组合幅值指示跨各种气体流动参数的频率的强度。可选地,当将幅值加在一起时,可以缩放每个气体流动参数的幅值,以确保对每个测量值进行适当的加权。幅值可以缩放预设量、特定参数的平均绝对值、特定参数的平均频率幅值的值和/或特定参数的最大频率幅值的值。该过程可以可选地在多个两个的气体流动参数上组合对应频率下的幅值。
示例性数据预处理阶段
信号处理算法2204还可以包括预处理阶段,以在输出第一流量参数信号2206或第二流量参数信号2216之前评估和/或修改气体流动参数。控制器可以在使用气体流动参数来确定患者附接和/或呼吸速率评估值之前实现预处理阶段。该阶段可以允许控制器决定气体流动参数是否适用于确定患者附接和/或呼吸速率,和/或从流动参数中去除某些特征,使得被馈送到信号分析算法中的流动参数信号可以更代表患者的呼吸正对气体流动参数(诸如流速、压力等)的任何效果。
评估数据的适用性
控制器基于许多因素来确定流动参数数据是否适用于确定患者接口附接和/或呼吸速率。图23B展示了用于这种确定的示例性过程。流动参数可以是流速。流动参数也可以是压力或本文披露的其他类型的参数,其方程与应用于流速数据的方程略有不同。
如图23B所示,在步骤2320处,控制器可以接收第一流动参数数据,并且在步骤2322,控制器可以接收与第一流动参数数据不同类型的第二流动参数数据。假定第二参数对第一参数具有效果。例如,马达转速和/或氧气流速或浓度可能对气体流速具有效果,该效果与患者的呼吸对气体流速的效果是分开的。在判定步骤2324处,控制器可以确定假定效果是否有效。例如,如果假定效果大于最小阈值,则假定效果可以是有效的。如果假定效果无效(诸如低于最小阈值),则可能难以准确地预测第二参数对第一参数的效果。在步骤2326处,控制器可以丢弃第一参数值并返回步骤2320。如果假定效果是有效的,诸如通过大于最小阈值,则在步骤2328处,控制器可以减去第二参数对第一参数的假定效果。在步骤2330处,控制器可以使用经修改的第一参数数据来确定患者是否连接到患者接口和/或评估患者的呼吸速率。
图23C展示了实现图23B的过程的实例。在图23C的过程中,第一参数可以包括流速数据,并且该或这些第二参数可以包括马达转速、氧气流速和/或氧气浓度。在步骤2340处,控制器可以接收马达转速数据和流速数据。为了在流速数据中识别患者的呼吸,马达需要以足够的转速运行。如果马达转速太低,则可能无法准确预测马达转速对流速的效果。因此,在步骤2342处,控制器可以将马达转速与最小马达转速阈值进行比较。如果马达转速低于阈值,则在步骤2344处,认为流速数据不合适,并且丢弃流速数据点。
如果马达转速高于阈值,则在步骤2346处,控制器计算马达转速的最近改变。马达转速的改变可能会导致流速的改变,这使得在流速数据中识别患者的呼吸更加困难。虽然可以从流速数据中某种程度地消除马达转速的效果,但是马达转速的较大改变可能会使数据对于识别患者的呼吸过于不可靠。因此,在步骤2348处,控制器可以将运行滤波器应用于马达转速的相对改变,以便生成表示马达转速的最近相对改变的第一值。在判定步骤2350处,控制器可以将第一值与第一阈值进行比较。如果第一值高于第一阈值,则控制器认为该数据不合适,并且在步骤2344处丢弃流量数据点。
流速还可能受到来自补充气体源的补充气体的流速或浓度的效果,诸如来自补充氧气源的氧气。尽管以使用氧气为例展示了图23C,但是所进行的与氧气的流速或浓度有关的步骤也可以对与环境空气混合的任何其他补充气体的流速或浓度进行。在步骤2352处,控制器可以可选地接收氧气体流速数据或氧气浓度数据。在步骤2354处,控制器可以可选地计算氧气流速或氧气浓度的最近改变。如果流速或氧气浓度改变,则总流速的最终改变可能会使在流速信号中识别患者的呼吸更加困难。因此,在步骤2356处,控制器可以可选地将运行滤波器应用于气体的氧气浓度或氧气流速的改变,以便生成代表氧气浓度或流速的最近改变的第二值。在判定步骤2358处,控制器可以可选地将第二值与第二阈值进行比较。如果第二值高于第二阈值,则控制器可以确定流速数据不合适,并且可以在步骤2344处丢弃流量数据点。如果第二值低于阈值,则在步骤2360处,控制器可以可选地前进到修改流速数据,以去除马达转速和/或氧气浓度或流速对流速数据的效果(诸如图23D所示)。在步骤2362处,控制器可以使用流速数据或经修改的流速数据来确定患者是否连接到患者接口和/或评估患者的呼吸速率。
为了进行上述确定,可以使用氧气浓度数据或氧气流速数据。氧气浓度数据可以使用呼吸装置中的一个或多个传感器(诸如超声传感器)来确定。来自氧气源的氧气流速可以由位于氧气源下游的氧气体流速传感器确定。
修改数据
如上所述,如果控制器认为该数据合适,则可以修改流速(或任何其他流动参数数据)以消除马达(或其他因素,诸如氧气浓度或流速)的效果。修改气体流动参数可能涉及从气体流动参数(诸如马达转速)中消除其他变量的假定效果。仅当气体流动参数数据满足特定条件时,这种假定效果才有效。如上所述,如果不满足这些标准,则可以丢弃数据。
图23D展示了修改流速数据以消除马达转速的效果的示例性过程。可以使用马达转速和流导来估算马达的效果。在步骤2380处,控制器可以测量瞬时流导。流导随时间变化近似恒定,并且因此可以使用低通滤波器进行评估。控制器使用当前马达转速和测量的流速来测量每次迭代的瞬时流导。在步骤2382处,控制器对瞬时流导进行滤波,以便确定经滤波的流导。
在判定步骤2384处,控制器可以将瞬时流导与经滤波的流导进行比较,以查看差值是否显著不同。如果差值显著,则可能是物理系统发生了某些改变,诸如插管的附接或脱离。通过在判定步骤2386处获得两个变量的差值并将其与最小阈值进行比较,可以将瞬时流导与经滤波的流导进行比较。如果该差值超过阈值,则该差值被认为是显著的,并且控制器可以在步骤2388处重置经滤波的流导。当插管已经与患者附接或者脱离患者时,该重置可以允许装置快速调整其对流导的评估。
在步骤2390处,控制器还可以基于瞬时流导与经滤波流导之间的差值来改变经滤波流导计算的滤波系数。当流导的方差较高时,诸如在首次附接插管时,这允许经滤波流导更快地改变。控制器然后可以返回到步骤2380以开始过程的新的迭代。
如果该差值未超过阈值,则该差值被认为是不显著的,并且在步骤2392处,控制器可以评估马达对流速的效果。控制器可以使用经滤波的流导和马达转速来输出效果值。在步骤2394处,可以从流速数据中减去或以其他方式去除该值以给出处理后的流速数据。处理后的流速数据可以更好地指示患者的呼吸流量(尽管处理后的流速数据仍可能包含信号噪声)。
控制器还可以跟踪流导的最新改变。通过将最后两个瞬时流导值之间的差值与运行总计相加,可以跟踪改变,该运行总计然后随时间衰减。对衰减的运行总计进行滤波,以获得流导的经滤波的最近改变。流导的经滤波的最近改变可以与处理后的流速数据一起用于频率分析算法的其他部分。
使用变化测量的示例性频率分析过程
图24A和图24B展示了通过对参数变化信号2456进行频率分析的呼吸速率确定的过程。图22、图24A和图24B中的过程的特征可以相互结合。参数变化信号可以从测量的参数值2452与期望的参数值2454之间的差值导出。期望参数值可以是目标值、基于其他参数的测量值确定的值和/或其他。该参数可以包括流速、压力、呼吸回路的流动阻力、马达转速或其他。如上所述,可以通过一个或多个传感器和/或从其他参数测量流速、压力和/或马达转速。所述流动阻力可以从所述流速以及所述压力或所述马达转速之一来计算。可以将低通滤波器应用于基于流速和压力或马达转速之一计算的流动阻力值,诸如移动平均值、巴特沃斯滤波器、卡尔曼滤波器或扩展卡尔曼滤波器。
参数变化信号2456可以包括测量的流速与目标流速之间的差值,或者测量的流速与测量的流动阻力和测量的马达转速的乘积之间的差值,或者测量的压力与期望压力之间的差值,或者测量的流动阻力与期望的流动阻力之间的差值,或者测量的马达转速与期望的马达转速之间的差值,或者测量的流速与测量的流动阻力和测量的马达转速的函数之间的差值,或者测量的压力与基于测量的压力和测量的马达转速的测量的流动阻力的函数之间的差值。
参数变化信号2456可以被馈送到信号分析算法2408中。信号分析算法2408可以包括如上所述的任何频率分析算法,诸如Goertzel算法。在图24A中,控制器可以输出如从信号分析算法2408确定的第一呼吸速率2410作为患者的呼吸速率。
图24D和图24E分别展示了使用流速值确定患者呼吸速率的过程,如图24A和图24B所示。图22、图24A,图24B和图24C-D中的过程的特征可以相互结合。可以在控制流动发生器以尝试实现目标流速的同时分析流速。馈送到信号分析算法2408中的信号可以是流速变化信号2406。流速变化信号2406可以是测量的流速2402与目标流速2404之间的差值。测量的流速可以是由本文披露的任何流速传感器(诸如热敏电阻流量传感器)测量的流速。信号分析算法2408可以是如上所述的任何频率分析,诸如Goertzel算法,可以输出如从信号分析算法2408确定的第一呼吸速率2410作为患者的呼吸速率。在图24D中,第一呼吸速率2410可以作为患者的呼吸速率输出。
在图24B中,可以运行多个频率分析。多个频率分析可以与信号分析算法2408相同或相似或不同。除了在参数变化信号2456上运行信号分析算法2408以确定第一呼吸速率2410之外,第一呼吸速率2410还可以用于确定第一回溯函数2412的回溯周期。可以在参数变化信号2456上运行第一回溯函数2412以获得第二信号2413。回溯函数可以从当前参数变化信号2456中减去回溯周期之前的参数变化信号2456。例如,如图24C所示,当感兴趣的参数是流速并且回溯周期是呼吸循环周期的一半时,回溯函数可以从当前的流速变化信号A中减去先前的流速变化信号B。如图24C所示,当回溯周期是呼吸循环周期的一半时,来自先前呼吸循环的一半的参数变化信号的值可以是当前值的共轭。如果第一呼吸速率2410的评估值是正确的,则取这些值的差值(C=A-B)可以使呼吸循环波形的幅值加倍。如果第一呼吸速率2410的评估值是不正确的,则可以从信号A中减去信号B的非互补部分。为了确定呼吸速率的目的,所得的数据集可能甚至不够清楚。
可以对第二信号2413运行信号分析算法2414,以便确定第二呼吸速率2416。运行导致单独的信号分析算法(诸如另一种Goertzel算法)的回溯函数可以从单个Goertzel算法中识别出否则可能导致不准确的呼吸速率确定的事件。事件的实例可以包括一个或多个鼻叉被阻塞,这可能导致流速变化信号中的较大的直流项。在使用减法方法时可以去除直流项。
如果第一呼吸速率2410的评估值是正确的,则当在第二信号2413上运行信号分析算法2414时,可以观察到相同或相似的第二呼吸速率2416,其幅值不同。可能增加的信号噪声的效果可能不会对第二信号上的呼吸速率确定具有显著效果。信号噪声的绝对值可能会增加,但是由于呼吸波形可能会加倍,因此相对信号噪声可能减少。
如果第一呼吸速率的评估值不正确,则可以从第二信号2413中减去参数变化信号2456的非互补部分。为了确定呼吸速率的目的,所得的数据集可能甚至不够清楚。从该数据确定的第二呼吸速率2416可以不同于第一呼吸速率2410,从而指示第一呼吸速率2410是不正确的。
信号分析算法2414还可以可选地在组合上运行,例如,当第一回溯函数2412的回溯周期为全呼吸周期时,其可以是参数变化信号2456和第二信号2413的总和或相加。参数的当前值与来自回溯函数的参数的值相同。然而,该相加方法可能无法去除参数变化信号2456中的某些伪像,该伪像可以通过减法来去除。可以通过加法将仍保留在参数变化信号中的任何直流项加倍,而减法可以去除直流项。
第二回溯函数2418也可以在参数变化信号2456上运行以获得第三信号2419。第二回溯函数2418可以具有恒定的回溯周期。回溯周期可以小于整个呼吸周期。较短的回溯周期可以允许分析更多的最新数据,并且在呼吸速率改变时减少单信号分析算法中的不准确性。从当前参数变化信号2456减去短回溯周期之前的参数变化信号2456可以消除诸如来自马达控制的伪像。在第三信号2419中设置的结果数据可以有效地是测量参数的一阶导数。另一信号分析算法2420可以在第三信号2419上运行以确定第三呼吸速率2422,该第三呼吸速率可以与正常呼吸条件下的第一呼吸速率2410相似。
在图24D中,可以运行多个频率分析。多个频率分析可以与信号分析算法2408相同或相似或不同。除了在流速变化信号2406上运行信号分析算法2408以确定第一呼吸速率2410之外,第一呼吸速率2410还可以用于确定第一回溯函数2412的回溯周期。第一回溯函数2412可以在流速变化信号2406上运行以获得第二信号2413。回溯函数可以从当前流速变化信号2406中减去回溯周期之前的流速变化信号2406。
可以对第二信号2413运行信号分析算法2414,以便确定第二呼吸速率2416。运行导致单独的信号分析算法(诸如另一种Goertzel算法)的回溯函数可以从单个Goertzel算法中识别出否则可能导致不准确的呼吸速率确定的事件。事件的实例可以包括一个或多个鼻叉被阻塞,这可能导致流速变化信号中的较大的直流项。在使用减法方法时可以去除直流项。
如果第一呼吸速率2410的评估值是正确的,则当在第二信号2413上运行信号分析算法2414时,可以观察到相同或相似的第二呼吸速率2416,其幅值不同。可能增加的信号噪声的效果可能不会对第二信号上的呼吸速率确定具有显著效果。
如果第一呼吸速率的评估值不正确,则可以从第二信号2413中减去流速变化信号2406的非互补部分。为了确定呼吸速率的目的,所得的数据集可能甚至不够清楚。从该数据确定的第二呼吸速率2416可以不同于第一呼吸速率2410,从而指示第一呼吸速率2410是不正确的。
例如当第一回溯函数2412的回溯周期为全呼吸周期时,信号分析算法2414还可以可选地在流速变化信号2406和第二信号2413的组合上运行。参数的当前值与来自回溯函数的参数的值相同。然而,该相加方法可能无法去除流速变化信号2406中的某些伪像,这些伪像可以通过减法来去除。可以通过加法将仍保留在参数变化信号中的任何直流项加倍,而减法可以去除直流项。
第二回溯函数2418也可以在流速变化信号2406上运行以获得第三信号2419。第二回溯函数2418可以具有恒定的回溯周期。回溯周期可以小于整个呼吸周期。较短的回溯周期可以允许分析更多的最新数据,并且在呼吸速率改变时减少单信号分析算法中的不准确性。从当前流速变化信号2406减去短回溯周期之前的流速变化信号2406可以消除来自马达控制的伪像。在第三信号2419中设置的结果数据可以有效地是测量流速的一阶导数。另一信号分析算法2420可以在第三信号2419上运行以确定第三呼吸速率2422,该第三呼吸速率可以与正常呼吸条件下的第一呼吸速率2410相似。
在图24B和图24E中,三种信号分析算法2408、2414、2420可以同时运行。可以将具有对应的幅值数据的三个呼吸速率2410、2416、2422进行比较,以查看三个呼吸速率2410、2416、2422是否一致。可以通过计算三个呼吸速率2410、2416、2422的平均值来确定最终的呼吸速率2430。最终的呼吸速率2430可以是来自每种信号分析算法的例如在过去的二十、十五、十或五秒钟内所有呼吸速率评估值的滚动平均值。与运行单个信号分析算法相比,包括运行三种信号分析算法的过程可以使最终的呼吸速率的计算更稳健。
控制器还可以根据用对应的幅值数据对三个呼吸速率2410、2416、2422的确定来计算其他变量,诸如多个截止值2426。多个截止值2426可以包括散度、幅值和/或百分位截止值。多个截止值2426可以用于确定信号质量评估值2428。每个变量也可以被计算为例如在最近的二十、十五、十或五秒内的滚动平均值。
散度可以是三个测量的呼吸速率2410、2416、2422之间的距离。在正常的呼吸条件下,散度可以接近0。在患者讲话或与呼吸系统断开的情况下,诸如当患者已移除患者接口或者当患者接口断开时,散度可以高达约40。幅值可以是根据三个信号分析算法2408、2414、2420中的每一个确定的最大呼吸幅值的平均值。百分位可以是主导频率的百分比,这些主导频率具有的幅值的强度高于某个阈值。这些截止值2426可以各自被转换成0到1之间的质量系数,其中,1是可能的最高确定性。
然后将这三个质量系数相乘在一起,以得出单个信号质量评估值2428。信号质量评估值2428也可以在0和1之间。可以将信号质量评估值2428与阈值进行比较。如果信号质量评估值2428超过阈值,则可以显示最终的呼吸速率2430。仅当检测到连接到患者接口的患者时才显示最终的呼吸速率2430,这可以在信号质量评估值2428超过阈值时假定,或者使用以下所述的其他过程确定。如果信号质量评估值2428不超过阈值,则即使患者连接到呼吸系统,最终的呼吸速率2430也可能不被显示。低的信号质量评估值可能是由其他情况引起的,诸如当连接到呼吸系统的患者正在通过他或她的嘴呼吸、说话和/或进食时。
此外,信号质量评估值2428可以具有两个阈值。当呼吸装置的显示器没有显示呼吸速率时,可以使用第一阈值,并且超过该阈值的信号质量评估值2428可以触发该装置开始显示呼吸速率。当呼吸速率已经被显示时,可以使用第二阈值,并且信号质量评估值2428下降到阈值以下可以触发该装置停止显示最终的呼吸速率。第一阈值可以高于第二阈值。通过防止由于信号质量评估值跨单个阈值来回移动而导致显示器闪烁的情况,两个级别的阈值可能优于使用单个阈值。
当处理信号输出以产生流速变化信号2406时,目标流速2404可以用流动阻力乘以流动发生器的马达转速来代替。可以通过以下方法确定流动阻力:首先将测量的流速除以马达转速,然后在结果值上应用低通滤波器,诸如移动平均值、巴特沃思滤波器、卡尔曼滤波器或扩展卡尔曼滤波器。流速变化参数可以是测量的流速与流动阻力和马达转速的乘积之差。
示例性患者检测过程
如上所述,当患者通过他或她的鼻子向呼吸系统的患者接口呼吸时,由于由吸入和呼出引起的流动阻力变化,在流速中检测到呼吸信号。还存在其他情况,其中,诸如当连接到呼吸系统的患者接口的患者正在通过他或她的嘴呼吸、说话和/或进食时呼吸信号也会变得模糊不清或减弱。也可以将患者与呼吸系统断开,使得气体流动参数中没有呼吸信号。
呼吸系统能够区分这些不同的情况可能是有利的。了解患者是否连接到呼吸系统或者正在通过他或她的嘴说话、进食和/或呼吸可以帮助控制器确定频率分析的主导频率是否为呼吸速率。患者断开的检测也可以具有其他应用,下文将对其进行更详细的描述。
确定患者附接的一种方式是直接测量信号噪声(诸如标准偏差),并且将信号噪声与阈值进行比较。然而,一些伪造或真实的数据点可能会对信号噪声的计算具有较大的效果。
确定患者是否连接的另一种更稳健的方式可以基于本文所述的参数变化信号的幅值,诸如流速变化信号中的流量变化。与信号噪声相比,患者的呼吸可能会在参数变化(诸如流速变化)中产生更大的波动。控制器可以对参数变化信号(诸如流速变化信号)的数据点的数量进行计数,这些数据点超出一组限制或边界值。控制器可以然后通过超出边界值的数据点是由患者引起的置信度来权衡计数。当参数变化(诸如流速变化)超过边界值作为患者附接的指示时,控制器也可以对每个实例进行计数。
图25展示了各种因素如何影响患者的流速变化的实例,该流速变化被计算为在20秒钟的时间段内测量的流速与目标流速之间的差值。如图所示,不是由患者的呼吸引起的基线流速变化A可以基本上在边界值之内,而由患者的呼吸引起的流速变化B可以基本上在边界值之外。边界值可以低于当患者连接时通常期望的流速变化,但是高于当患者接口与患者断开时(诸如当坐在桌子上时)通常期望的最大流速变化。由于流速变化可能会随目标流速的改变而改变,因此边界值可以是由诸如以下的等式定义的变量:
其中,截止值呼吸是边界值,截止值最大是可能的最高边界值,截止值斜率是最大边界值与最小边界值之间的差值,最大值流量是可以在装置上设置的最高流速,最小值流量是可以在装置上设置的最低流速,并且设定流量(setFLOW)是当前由用户(诸如临床医生或患者)设置的目标流速。
图26A展示了基于参数变化信号的频率分析来确定患者是否连接的另一种更稳健的方式。图26B展示了基于流速变化信号的频率分析来确定患者是否连接的另一种更稳健的方式。图26B是实现如图26A所示的过程的实例。图22、图24A-D和图26A-B中的过程的特征可以相互结合。
如图26A所示,类似于上述过程,控制器可以对参数变化信号2656运行信号分析算法2608(诸如Goertzel算法),该参数变化信号可以是测量参数2652与上述期望的参数值2654之间的差值。可以从信号分析算法2608确定呼吸速率2610。控制器可以对参数变化信号2656运行回溯函数2614。回溯函数2614可以具有回溯周期,该回溯周期是对应于呼吸速率2610的呼吸周期的一半。控制器可以然后通过将运行回溯函数2614之后的回溯信号与参数变化信号2656进行比较来确定相关系数2616。
如图26B所示,类似于上述过程,控制器可以对流速变化信号2606运行信号分析算法2608(诸如Goertzel算法),该流速变化信号可以是测量流速2602与目标流速2604之间的差值。可以从信号分析算法2608确定呼吸速率2610。控制器可以对流速变化信号运行回溯函数2614。回溯函数2614可以具有回溯周期,该回溯周期是对应于呼吸速率2610的呼吸周期的一半。控制器可以然后在将运行回溯函数2614之后的回溯信号与信号2606进行比较之后来确定相关系数2616。
如果流速波动是由于患者连接到呼吸系统,具体地是由患者的呼吸引起的,则从回溯函数2614获得的回溯信号和图26A中的参数变化信号2656可以彼此共轭,使得相关系数可以为-1。如果流速波动是由于患者连接到呼吸系统,具体地是由患者的呼吸引起的,则回溯信号和图26B中的流速信号2606可以彼此共轭,使得相关系数可以为-1。为了允许仍然对诸如来自低噪声呼吸信号的具有较低相关系数(接近0)的数据进行计数,可以如下定义用于计算呼吸加权系数的等式:
呼吸加权系数=C-相关系数
其中,C是常数。
如果流量控制器是流量变化的主要原因(诸如当一个或多个鼻叉被阻塞或者当患者断开时),则图26A中的参数变化信号2656具有带有正相关系数的较大的直流项,从而导致呼吸加权系数为0或更低,控制器可以将其计数为0。如果流量控制器是流量变化的主要原因(诸如当一个或多个鼻叉被阻塞或者当患者断开时),则图26B中的流速变化具有带有正相关系数的较大的直流项,从而导致呼吸加权系数为0或更低,控制器可以将其计数为0。
仅当呼吸权重系数大于0时,控制器才可以确定已检测到呼吸信号和/或患者连接到呼吸系统2618。
如图26A所示,控制器还可以在时域和频域中结合对呼吸信号检测的分析来确定患者是否连接到呼吸系统。如上所述,控制器可以在图26A中的时域参数变化信号2656中进行边界计数2618。可以针对边界值测量参数变化信号2656,并且如果参数变化信号2656在边界值之外,则控制器可以将分配值1,或者如果参数变化信号2656在边界值内,则分配值0。如图26B所示,控制器还可以在时域和频域中结合对呼吸信号检测的分析来确定患者是否连接到呼吸系统。如上所述,控制器可以在时域流速变化信号中进行边界计数2618。可以针对边界值测量流速变化信号2606,并且如果信号2606在边界值之外,则控制器可以将分配值1,或者如果信号2606在边界值内,则分配值0。
如图26A和图26B所示,控制器可以将呼吸加权系数乘以来自边界计数2618的二进制值。如果边界计数为0,则加权计数值2620仍为0。如果边界计数为1,则加权计数值2620不为零,并且可以添加到运行总计2624中。
可以将运行总计2624与用于确定患者是否连接的阈值进行比较。检测患者呼吸所需的时间量可以取决于呼吸计数总阈值的水平。所述控制器可以被配置为需要用于运行总计的最小量的时间超过指示所述患者连接到所述系统的阈值。控制器还可以在控制回路中运行达运行总计2624。随着控制回路的每次迭代,运行总数2624可以一定速率衰减2622。在控制回路中使运行总计衰减可能要求所述患者有规律地呼吸以便使所述运行总计保持高于所述阈值。衰减速率可以是恒定的和/或可以调整以改变患者需要在患者接口上呼吸的最小时间量,因为运行总计可以达到阈值。最小时间量可以是约5秒至约60秒、或约10秒至约40秒、或约20秒。
在图26A或图26B中的每个过程周期中,可以针对阈值测试运行总计。如果超过阈值,则控制器可以认为患者连接到系统2618。
呼吸检测过程的示例性应用
确定患者是否连接到患者接口可以告知呼吸速率确定的准确性和/或用于其他目的。其他目的之一是用于附着跟踪的过程。附着跟踪是用于衡量患者顺应性的重要因素,尤其是出于保险报销的目的。附着跟踪会告知用户、临床医生、保险提供者或其他人患者是否连接,并且是顺应性度量的一部分,该顺应性度量告知人们患者是否按期望使用了规定治疗。为了力求患者顺应性,也就是说,高估患者顺应性比低估患者顺应性更可取,检测到患者连接到患者接口的任何时间都将在坚持治疗的一分钟记录在呼吸装置的电子存储器中。为了将一分钟记录为非顺应性的,运行总数必须低于指示整个分钟内患者连接的阈值。附着追踪可以进一步包括在存储器上记录患者的呼吸速率测量值。
呼吸装置可以记录患者附接到装置上所花费的总时间量和/或记录装置开启时间,其中,附着是装置开启的持续时间的百分比。还可以通过更高级别的设置菜单来选择性地可访问与附着有关的数据。可以对菜单进行密码加密,以防止患者访问菜单和/或以其他方式受到保护。通过将呼吸装置连接到第二装置(诸如计算机或USB),也可以可选地记录顺应性数据以便传输到服务器和/或可用于下载。
临床医生可以使用患者的呼吸速率记录来评估治疗效果和/或患者的他或她的呼吸功能的进展。医院可以将呼吸速率用作患者的健康状况的总体评估中的变量。呼吸速率数据还可以用于预测疾病的发作,诸如慢性阻塞性肺病(COPD)恶化。医院可以结合其他因素分析呼吸速率,诸如氧饱和度、输送的氧气浓度、体温、血压、心率和/或意识。
患者断开检测也可以被馈送到马达转速控制信号中。通常,流量中增加的阻力可能会导致流速的降低,这进而可能导致控制器增加马达转速,从而使流速返回其目标值。相反,流量中减小的阻力可能会导致流速的增加,这进而可能导致控制器减小马达转速,从而使流速返回其目标值。如果控制器知道流动阻力减小是由于患者断开所引起的,则尽管流动阻力减小,控制器仍可以可选地允许马达转速保持不变。
患者断开检测也可以被馈送到氧气递送控制中。如果患者暂时取下患者接口,则患者的氧饱和度可能降低,并且呼吸装置的控制器可能开始增加将要递送给患者的气体的混合物中的氧气浓度。当患者接口重新附接到患者身上时,气体流中的氧气浓度可能较高,这可能导致患者的氧饱和度达到峰值,并且对患者有害。可以将患者断开检测纳入装置的氧气递送控制中,使得在确定患者与装置断开时,控制器不会开始增加氧气递送或者控制器切换到特定值。
显示呼吸速率
图27展示了用于显示患者的呼吸速率信息的示例性过程。在框2702,控制器可以从本文描述的任何算法接收一个或多个呼吸速率值。在判定框2704,控制器可以确定患者是否连接到系统。控制器可以使用上述的任何患者检测过程或其任何组合。
如果未检测到患者,则在框2706,控制器可以不输出或者可以停止输出该或这些呼吸速率值来进行显示。在框2708,控制器还可以可选地输出未检测到患者的消息来进行显示。该消息的实例可以是“--”图标。
如果检测到患者,则在判定框2710,控制器可以确定呼吸速率是否被测量到所需的置信度,诸如通过如上所述将信号质量评估值与阈值进行比较。如果超过信号置信度阈值,则在框2712,控制器可以输出该或这些呼吸速率值以便进行显示。如果未超过信号置信度阈值,则在框2714,控制器可以不输出或者可以停止输出该或这些呼吸速率值以便进行显示。如上所述,控制器可以具有两个阈值,一个阈值用于系统已经显示呼吸速率值时,并且另一个阈值用于系统未显示呼吸速率值时。控制器还可以通过计算最新的呼吸速率评估值与经滤波的呼吸速率评估值之间的差值来评估呼吸速率评估值的信号质量。然后对差值进行滤波以获得呼吸速率的最近改变。控制器还可以通过计算最新的呼吸周期评估值与经滤波的呼吸周期评估值之间的差值来评估呼吸速率评估值的信号质量。然后对差值进行滤波以获得呼吸周期中的最近改变。如果呼吸速率或呼吸周期的最近改变或呼吸速率和呼吸周期中的最近改变的组合最近改变低于阈值,则认为呼吸率评估值具有明显或足够的信号质量。较高的改变可以指示较低或较差的信号质量。控制器还可以部分基于与评估的呼吸速率相关联的频率变换(诸如Goertzel变换)的幅值来评估信号质量。较高的幅值可以指示较高的信号质量。信号质量的评估可以用于确定是否诸如在本文披露的呼吸装置实例的图形用户界面上显示了评估的呼吸速率。如果评估值被认为具有明显或足够的信号质量,则控制器可以输出呼吸速率评估值以便进行显示。控制器还可以通过计算呼吸速率评估值、呼吸周期评估值或两者中的运行方差来评估呼吸速率评估值的信号质量。对于呼吸速率或呼吸率的较低的值,呼吸速率的较小改变(例如,从每分钟4次呼吸更改为每分钟5次呼吸的改变)可能会导致较大的变化,这与评估的呼吸速率更大时(例如,从每分钟15次呼吸改变为每分钟16次呼吸)相比可能导致较低、较差或显著更低的信号质量。这对于呼吸周期反之亦然。因此,在确定信号质量时,考虑呼吸速率的变化和呼吸周期的变化两者可能是优选的。
与患者检测不同,呼吸速率是否被正确评估的确定可能宁愿过于不正确,患者检测可能力求患者附接到患者接口。如果控制器无法决定患者是否连接,则假定患者连接是较安全的。如果评估值可能不正确,则不显示呼吸速率评估值也是较安全的。
在框2716,控制器可以可选地丢弃呼吸速率值。在框2718,控制器还可以可选地输出加载消息以便进行显示。加载消息的实例可以是旋转圆圈指示符或其他。
随时间变化的呼吸速率可以显示在曲线图上。该曲线图可以示出呼吸速率如何随时间改变。显示的呼吸速率可以是例如最近45、30、20或15秒的平均呼吸速率。当新数据变得可用时,该曲线图可以实时更新。曲线图的时间标度可以固定为例如至少几个小时,或者也可以进行调整以适合可用数据集的大小。该装置可以具有例如至少几个小时或更长时间的最大时间标度。
该曲线图可以显示在本文所述的图形用户界面上。该曲线图可以在默认显示上,或者也可以从默认显示中排除,但是通过与图形用户界面进行交互是可访问的。例如,用户可以按下装置上的触摸屏或按钮,其中,选择当前呼吸速率的显示会带出呼吸速率随时间变化的曲线图。
呼吸速率数据可以传达到服务器。数据可以包括瞬时呼吸速率和/或平均呼吸速率。该数据可以伴随有呼吸幅值数据和/或什么呼吸速率数据满足例如使用本文所述的过程确定的可靠性阈值的指示符。该装置可以被编程来仅发送满足可靠性阈值的呼吸速率数据。
呼吸装置可以显示基于患者的呼吸值的其他信息。可以单独使用呼吸速率数据(诸如瞬时和/或平均速率)向临床医生输出患者状况的警报,诸如患者需要立即关注,和/或输出以便显示预测疾病的发作(诸如COPD恶化)的警报。警报可以是视觉的、听觉的和/或触觉的。该装置可以输出不同的警报来指示不同的问题。该装置还可以将警报传达给服务器。
该装置可以输出呼吸速率的改变的警报。可以通过将一个或多个最近值与一个或多个先前值进行比较来识别改变。当特定数量的最近值与特定数量的先前值相差特定量时,该装置可以输出警报。可以将一个或多个最近值减小为单个值,诸如平均值、中位数、众数、最高、最低或者任何其他选择标准。也可以将一个或多个先前值减小为单个值,诸如平均值、中位数、众数、最高、最低或者任何其他选择标准。先前值可以来自最近值之前的固定量的时间。先前值也可以是固定的,诸如在治疗开始时测量的一组值。先前值还可以包含一个或多个最近值之外的所有数据。
警报的阈值可以是一个或多个先前值与一个或多个最近值之间的固定改变和/或一个或多个先前值与一个或多个最近值之间的百分比改变。可以将一个或多个最近值与具有固定呼吸速率的一个或多个阈值进行比较。固定呼吸速率可以由临床医生预先编程、设置和/或基于一个或多个患者参数。患者参数可以包括患者的痛苦和/或关于患者的其他参数,诸如体重、年龄和/或性别。患者的痛苦可以包括慢性阻塞性肺疾病(COPD)、肺炎、哮喘、支气管肺发育不良、心力衰竭、囊胞性纤维症、睡眠呼吸暂停、肺部疾病、呼吸系统创伤和/或急性呼吸窘迫。该装置可以针对一个或多个不同的阈值具有一个或多个不同的警报。
除非上下文清楚地另外要求,否则在整个说明书和权利要求书中,词语“包括”、“包含”等应在包含性的意义上解释,而不是在排他性或穷举的意义上,也就是说,在“包含但不限于”的意义上解释。
虽然已经在某些实施例和实例的背景下描述了本披露内容,但本领域的技术人员应当理解的是,本披露内容在具体披露的实施例之外延伸到其他替代实施例和/或用途以及其明显的变更和等效物。此外,虽然已经详细地展示并描述了本披露内容的这些实施例的几种变化,但处于本披露内容的范围内的其他变更对本领域的普通技术人员而言将是清楚的。还考虑到可以对这些实施例的特定特征和方面作出不同的组合或子组合,并且这些组合或子组合仍属于本披露内容的范围内。例如,以上结合一个实施例描述的特征可以用于本文描述的不同实施例,并且该组合仍然落入本披露内容的范围内。应理解的是,所披露的实内容施例的各个特征和方面可以彼此组合或取代,以形成本披露内容的实施例的变化的模式。因此,意图是本披露内容的范围不应被上文描述的特定实施例限制。因此,除非另有说明或除非明显不兼容,否则本发明的每个实施例除了本文描述的其必要特征之外,还可以包括来自本文披露的本发明的每个其他实施例的在本文中描述的一个或多个特征。
结合特定的方面、实施例或实例描述的特征、材料、特性或组应被理解为适用于在本部分或本说明书中其他地方描述的任何其他的方面、实施例或实例,除非与其不相容。在本说明书(包括任何所附权利要求、摘要和附图)中披露的所有特征和/或如此披露的任何方法或过程的所有步骤可以以任何组合进行组合,除了其中,至少一些这样的特征和/或步骤是互斥的组合以外。本发明不局限于任何前述实施例的细节。本保护范围扩展到在本说明书(包括任何所附权利要求、摘要和附图)中披露的特征中的任何一个新颖的特征或其任何新颖的组合,或扩展到如此披露的任何方法或过程的步骤中的任何一个新颖的步骤或其任何新颖的组合。
此外,在本披露内容中在单独的实现方式的背景下描述的某些特征也可以在单个实现方式中组合地实施。与此相反,在单一实现方式的背景下描述的不同特征也可以在多个实现方式中分开地或以任何适合的子组合来实施。此外,尽管某些特征在上文可能被描述为以某些组合起作用,但是在一些情况下,可以从所要求保护的组合中去除该组合的一个或多个特征,并且该组合可以作为子组合或子组合的变体被要求保护。
此外,虽然某些操作可以以特定顺序在附图中描绘或在本说明书描述,但此类操作不需要按所示的特定顺序或按先后顺序来进行,或者不需要所有所示操作都被进行才能实现所希望的结果。未描绘或描述的其他操作可以被纳入这些示例性方法和过程中。例如,可以在任何所描述的操作之前、之后、同时或之间进行一个或多个附加操作。此外,可以在其他实现方式中将这些操作重新排列或重新排序。本领域技术人员将了解的是,在一些实施例中,所展示和/或披露的过程中采取的实际步骤可以不同于附图中所示的步骤。取决于实施例,可以去除上述某些步骤,可以添加其他步骤。此外,以上披露的特定实施例的特征和属性可以以不同的方式组合以形成另外的实施例,所有这些实施例都落入本披露内容的范围内。并且,上文描述的实现方式中的各种系统部件的分离不应被理解为在所有的实现方式中都要求这样的分离,而应理解的是,所描述的部件和系统通常可以被一起集成到单一产品中或包装到多个产品中。
出于此披露内容的目的,在此描述了某些方面、优点、和新颖特征。不一定根据任何具体实施例都可以实现所有这样的优点。因此,例如,本领域技术人员应认识到,本披露内容可以按实现如在此所传授的一个优点或一组优点的方式来实施或实行,而不一定实现如在此可能传授或建议的其他优点。
除非另外明确说明,或另外在如所使用的背景内理解的,否则条件性语言如“可”“可以”“可能”或“能”一般旨在传达:某些实施例包括而其他实施例不包括某些特征、元件和/或步骤。因此,这样的条件性语言一般不旨在暗示:特征、元件、和/或步骤是一个或多个实施例无论如何都需要的,或者一个或多个实施例一定包括用于在有或没有用户输入或提示的情况下决定这些特征、元件和/或步骤是否被包含在任何具体实施例中或是将在任何具体实施例中实施的逻辑。
本文使用的程度语言,例如本文使用的词语“大致”、“约”、“总体上”和“基本上”,表示接近于所叙述的值、量或特性、但仍然起到期望作用或实现期望结果的值、量或特性。例如,术语“大致”、“约”、“总体上”和“基本上”可以指在小于所述量的10%、小于所述量的5%、小于所述量的1%、小于所述量的0.1%、小于所述量的0.01%之内的量。
本披露内容的范围不旨在由本部分或本说明书中的其他地方的实施例的具体披露内容来限制,并且可以由如本部分中或本说明书中的其他地方或将来提出的权利要求所限定。权利要求的语言将基于权利要求中采用的语言广义地解释,并且不限于本说明书中或者在申请的诉讼期间描述的实例,这些实例应被解释为非排他性的。

Claims (1)

1.一种被配置为向患者递送呼吸治疗的呼吸系统,所述呼吸系统还被配置为提供与所述患者有关的信息,所述系统包括:
呼吸装置,所述呼吸装置包括控制器,其中,所述控制器被配置为:
接收气体流的第一参数的测量值或者代表所述装置的部件的性能的测量值,所述第一参数指示所述患者的呼吸作用;
接收气体流的第二参数的测量值或者代表所述装置的部件的性能的测量值,其中,所述第二参数对于所述第一参数具有假定效果;
确定所述假定效果是否有效;以及
响应于所述假定效果无效而从经验证的第一参数数据集中丢弃所述第一参数,所述控制器被配置为使用所述经验证的第一参数数据集来关于所述患者进行评估。
CN202410211353.XA 2017-11-22 2018-11-22 用于呼吸流治疗系统的呼吸速率监测 Pending CN118286549A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201762590249P 2017-11-22 2017-11-22
US62/590,249 2017-11-22
US201762596275P 2017-12-08 2017-12-08
US62/596,275 2017-12-08
PCT/IB2018/059195 WO2019102384A1 (en) 2017-11-22 2018-11-22 Respiratory rate monitoring for respiratory flow therapy systems
CN201880072258.9A CN111432866B (zh) 2017-11-22 2018-11-22 用于呼吸流治疗系统的呼吸速率监测

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201880072258.9A Division CN111432866B (zh) 2017-11-22 2018-11-22 用于呼吸流治疗系统的呼吸速率监测

Publications (1)

Publication Number Publication Date
CN118286549A true CN118286549A (zh) 2024-07-05

Family

ID=66630514

Family Applications (6)

Application Number Title Priority Date Filing Date
CN202410211353.XA Pending CN118286549A (zh) 2017-11-22 2018-11-22 用于呼吸流治疗系统的呼吸速率监测
CN202410211315.4A Pending CN118203728A (zh) 2017-11-22 2018-11-22 用于呼吸流治疗系统的呼吸速率监测
CN202410211329.6A Pending CN118142041A (zh) 2017-11-22 2018-11-22 用于呼吸流治疗系统的呼吸速率监测
CN202410211372.2A Pending CN118203729A (zh) 2017-11-22 2018-11-22 用于呼吸流治疗系统的呼吸速率监测
CN201880072258.9A Active CN111432866B (zh) 2017-11-22 2018-11-22 用于呼吸流治疗系统的呼吸速率监测
CN202410270488.3A Pending CN118454034A (zh) 2017-11-22 2018-11-22 用于呼吸流治疗系统的呼吸速率监测

Family Applications After (5)

Application Number Title Priority Date Filing Date
CN202410211315.4A Pending CN118203728A (zh) 2017-11-22 2018-11-22 用于呼吸流治疗系统的呼吸速率监测
CN202410211329.6A Pending CN118142041A (zh) 2017-11-22 2018-11-22 用于呼吸流治疗系统的呼吸速率监测
CN202410211372.2A Pending CN118203729A (zh) 2017-11-22 2018-11-22 用于呼吸流治疗系统的呼吸速率监测
CN201880072258.9A Active CN111432866B (zh) 2017-11-22 2018-11-22 用于呼吸流治疗系统的呼吸速率监测
CN202410270488.3A Pending CN118454034A (zh) 2017-11-22 2018-11-22 用于呼吸流治疗系统的呼吸速率监测

Country Status (6)

Country Link
US (2) US11883594B2 (zh)
EP (2) EP4438094A3 (zh)
CN (6) CN118286549A (zh)
AU (2) AU2018372766B2 (zh)
SG (1) SG11202004017XA (zh)
WO (1) WO2019102384A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111542363B (zh) 2017-10-06 2023-09-29 斐雪派克医疗保健有限公司 闭环氧气控制
CN118286549A (zh) 2017-11-22 2024-07-05 费雪派克医疗保健有限公司 用于呼吸流治疗系统的呼吸速率监测
AU2020231108A1 (en) * 2019-03-05 2021-08-12 Fisher & Paykel Healthcare Limited Patient attachment detection in respiratory flow therapy systems
US20210023317A1 (en) * 2019-07-26 2021-01-28 The Trustees Of The Stevens Institute Of Technology System for monitoring tracheostomy airflow
US20230137510A1 (en) 2019-11-04 2023-05-04 Fisher & Paykel Healthcare Limited Breathing assistance apparatuses and/or components thereof and/or uses thereof
US11172845B1 (en) * 2020-07-20 2021-11-16 Spotlight Labs Combined exhaled air and environmental gas sensor apparatus
WO2022159376A1 (en) * 2021-01-19 2022-07-28 American PAPR LLC Powered air purifying respirator
AU2022232001A1 (en) * 2021-03-08 2023-09-21 Fisher & Paykel Healthcare Limited Alarm for breathing assistance system
EP4079361A1 (en) * 2021-04-21 2022-10-26 Arçelik Anonim Sirketi A method of controlling a high flow oxygen device
CN113368351B (zh) * 2021-06-07 2022-08-26 中国人民解放军总医院第一医学中心 经鼻高流量呼吸频率监测方法及其呼吸支持设备
CN113546260B (zh) * 2021-06-07 2023-08-22 中国人民解放军总医院第一医学中心 监测经鼻高流量使用异常的方法、装置和存储介质
CN113558659B (zh) * 2021-07-30 2023-07-04 重庆安酷科技有限公司 一种高精度超声波肺功能检测仪及其检测方法
CN118159323A (zh) * 2021-11-05 2024-06-07 深圳迈瑞生物医疗电子股份有限公司 呼吸率监测方法及医疗通气设备

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPN547895A0 (en) * 1995-09-15 1995-10-12 Rescare Limited Flow estimation and compenstion of flow-induced pressure swings cpap treatment
US6920875B1 (en) * 1999-06-15 2005-07-26 Respironics, Inc. Average volume ventilation
US7487773B2 (en) 2004-09-24 2009-02-10 Nellcor Puritan Bennett Llc Gas flow control method in a blower based ventilation system
US11458270B2 (en) * 2005-09-12 2022-10-04 ResMed Pty Ltd High flow therapy device utilizing a non-sealing respiratory interface and related methods
US20070151563A1 (en) * 2005-12-23 2007-07-05 Kenji Ozaki Apparatus and method for controlling gas-delivery mechanism for use in respiratory ventilators
US8322339B2 (en) * 2006-09-01 2012-12-04 Nellcor Puritan Bennett Llc Method and system of detecting faults in a breathing assistance device
JP5553967B2 (ja) * 2007-04-13 2014-07-23 レスメド・リミテッド モータ故障の検出のための方法及びシステム
CN113855953B (zh) * 2007-05-11 2024-10-29 瑞思迈私人有限公司 针对流量限制检测的自动控制
CA2696773A1 (en) * 2007-08-23 2009-02-26 Invacare Corporation Method and apparatus for adjusting desired pressure in positive airway pressure devices
EP2313138B1 (en) 2008-03-31 2018-09-12 Covidien LP System and method for determining ventilator leakage during stable periods within a breath
US9724016B1 (en) * 2009-10-16 2017-08-08 Masimo Corp. Respiration processor
BR112013014798B1 (pt) * 2010-12-17 2021-08-03 Koninklijke Philips N.V. Sistema e método para determinação um parâmentro de respiração de um indivíduo que recebe terapia
US9399109B2 (en) * 2012-03-02 2016-07-26 Breathe Technologies, Inc. Continuous positive airway pressure (CPAP) therapy using measurements of speed and pressure
EP2849643B1 (en) * 2012-05-14 2021-11-17 ResMed Motor Technologies Inc Control of pressure for breathing comfort
WO2013176557A1 (en) * 2012-05-23 2013-11-28 Fisher & Paykel Healthcare Limited Flow path fault detection method for a respiratory assistance apparatus
EP2866869B1 (en) * 2012-06-29 2018-03-07 ResMed Limited Pressure sensor evaluation for respiratory apparatus
US9872634B2 (en) * 2013-02-08 2018-01-23 Vital Connect, Inc. Respiratory rate measurement using a combination of respiration signals
EP3030302B1 (en) * 2013-09-04 2023-02-22 Fisher&Paykel Healthcare Limited Improvements to flow therapy
WO2015061848A1 (en) * 2013-10-30 2015-05-07 Resmed Limited Control for pressure of a patient interface
JP6310086B2 (ja) * 2014-01-16 2018-04-11 ノキア テクノロジーズ オサケユイチア 呼吸数の検出のための方法とデバイス
EP3107449A1 (en) * 2014-02-20 2016-12-28 Covidien LP Systems and methods for filtering autocorrelation peaks and detecting harmonics
US11433210B2 (en) * 2014-05-27 2022-09-06 Fisher & Paykel Healthcare Limited Gases mixing and measuring for a medical device
CN107427259B (zh) * 2014-12-31 2021-03-16 皇家飞利浦有限公司 用于执行对基于时间的二氧化碳图信号的直方图分析的系统以及其操作的方法
US11497870B2 (en) * 2015-02-24 2022-11-15 Somnetics International, Inc. Systems and methods for estimating flow in positive airway pressure therapy
NZ773715A (en) * 2015-03-13 2023-03-31 ResMed Pty Ltd Respiratory therapy apparatus and method
EP3334485B1 (en) * 2015-08-14 2024-03-06 ResMed Pty Ltd Monitoring respiratory pressure therapy
EP3359237B1 (en) * 2015-10-05 2024-08-21 Université Laval System for delivery of breathing gas to a patient
EP4023277B1 (en) 2015-12-02 2024-09-11 Fisher & Paykel Healthcare Limited Flow path sensing for flow therapy apparatus
EP4212197A1 (en) * 2016-01-18 2023-07-19 Fisher&Paykel Healthcare Limited Humidification of respiratory gases
CN114848997A (zh) * 2016-05-17 2022-08-05 菲舍尔和佩克尔保健有限公司 用于流量治疗设备的流动路径感测
AU2017326905B2 (en) 2016-09-16 2023-04-27 Fisher & Paykel Healthcare Limited Thermistor flow sensor having multiple temperature points
US10610659B2 (en) * 2017-03-23 2020-04-07 General Electric Company Gas mixer incorporating sensors for measuring flow and concentration
CN118286549A (zh) 2017-11-22 2024-07-05 费雪派克医疗保健有限公司 用于呼吸流治疗系统的呼吸速率监测

Also Published As

Publication number Publication date
CN111432866A (zh) 2020-07-17
AU2018372766A1 (en) 2020-04-30
US20240115824A1 (en) 2024-04-11
EP4438094A3 (en) 2024-10-16
EP3713629B1 (en) 2024-07-10
CN118142041A (zh) 2024-06-07
AU2018372766B2 (en) 2024-06-06
CN118203729A (zh) 2024-06-18
EP3713629A4 (en) 2021-08-18
US20210113796A1 (en) 2021-04-22
EP3713629A1 (en) 2020-09-30
WO2019102384A1 (en) 2019-05-31
CN118203728A (zh) 2024-06-18
CN118454034A (zh) 2024-08-09
SG11202004017XA (en) 2020-06-29
US11883594B2 (en) 2024-01-30
CN111432866B (zh) 2024-03-19
EP4438094A2 (en) 2024-10-02
AU2024216399A1 (en) 2024-09-19

Similar Documents

Publication Publication Date Title
CN111432866B (zh) 用于呼吸流治疗系统的呼吸速率监测
AU2017208697B2 (en) Humidification of respiratory gases
KR20190010874A (ko) 유동 치료 장치를 위한 유로 감지
JP7463389B2 (ja) 呼吸療法における調整可能な呼気リリーフ
US20240082521A1 (en) Determining inspiratory and expiratory parameters in respiratory flow therapy systems
TWI849071B (zh) 呼吸流治療系統中之患者附接性檢測
US20240207553A1 (en) Nasal minute ventilation and peak inspiratory flow in respiratory flow therapy systems
JPWO2020178746A5 (zh)
WO2024089654A1 (en) Determining work of breathing in respiratory flow therapy systems
TW202337390A (zh) 用於呼吸輔助設備和/或執行診斷之測量裝置及系統

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination