CN118266854B - Stereoscopic vision detection control system and method - Google Patents
Stereoscopic vision detection control system and method Download PDFInfo
- Publication number
- CN118266854B CN118266854B CN202410682979.9A CN202410682979A CN118266854B CN 118266854 B CN118266854 B CN 118266854B CN 202410682979 A CN202410682979 A CN 202410682979A CN 118266854 B CN118266854 B CN 118266854B
- Authority
- CN
- China
- Prior art keywords
- semantic
- vision
- sequence
- ability
- word
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004438 eyesight Effects 0.000 title claims abstract description 332
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000001514 detection method Methods 0.000 title claims abstract description 25
- 239000013598 vector Substances 0.000 claims abstract description 206
- 238000012360 testing method Methods 0.000 claims abstract description 150
- 230000010354 integration Effects 0.000 claims abstract description 20
- 230000004927 fusion Effects 0.000 claims abstract description 16
- 238000012545 processing Methods 0.000 claims description 29
- 230000011218 segmentation Effects 0.000 claims description 25
- 230000006870 function Effects 0.000 claims description 23
- 239000011159 matrix material Substances 0.000 claims description 19
- 230000000007 visual effect Effects 0.000 claims description 12
- 230000004913 activation Effects 0.000 claims description 10
- 235000004257 Cordia myxa Nutrition 0.000 claims description 5
- 244000157795 Cordia myxa Species 0.000 claims description 5
- 238000013507 mapping Methods 0.000 claims 1
- 238000007689 inspection Methods 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 10
- 238000004590 computer program Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 201000009487 Amblyopia Diseases 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 208000010415 Low Vision Diseases 0.000 description 3
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 208000004350 Strabismus Diseases 0.000 description 3
- 230000004382 visual function Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 230000004303 low vision Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000003058 natural language processing Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 208000029257 vision disease Diseases 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Ophthalmology & Optometry (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Machine Translation (AREA)
Abstract
本发明公开一种立体视检测控制系统和方法,涉及立体视检测技术领域。该方法包括:分别对获取的视力能力文本描述和视力测试需求文本描述进行语义编码后通过重要内容注意力整合网络以得到语义强化视力能力语义表示向量和语义强化视力测试需求语义表示向量;基于语义强化视力能力语义表示向量和语义强化视力测试需求语义表示向量之间的语义融合表示,来确定立体视电子视标的推荐结果。这样,通过使用立体视电子视标及建立针对立体视电子视标的智能化调整控制方案,可以减少纸质材料的消耗,提供更加便捷和个性化的检查体验。
The present invention discloses a stereoscopic vision detection control system and method, and relates to the field of stereoscopic vision detection technology. The method comprises: after semantic encoding the acquired text description of vision ability and the text description of vision test requirements, a semantically enhanced vision ability semantic representation vector and a semantically enhanced vision test requirement semantic representation vector are obtained through an important content attention integration network; based on the semantic fusion representation between the semantically enhanced vision ability semantic representation vector and the semantically enhanced vision test requirement semantic representation vector, a recommendation result of a stereoscopic electronic sight mark is determined. In this way, by using a stereoscopic electronic sight mark and establishing an intelligent adjustment control scheme for the stereoscopic electronic sight mark, the consumption of paper materials can be reduced, and a more convenient and personalized inspection experience can be provided.
Description
技术领域Technical Field
本发明涉及立体视检测技术领域,具体地,涉及一种立体视检测控制系统和方法。The present invention relates to the technical field of stereoscopic vision detection, and in particular to a stereoscopic vision detection control system and method.
背景技术Background technique
立体视是人体特有的一项高级视觉功能,是双眼视觉功能的重要组成部分,对判断斜弱视患者的双眼视觉功能及治疗具有重要意义,是眼科临床中重要检查项目之一。目前临床上对立体视的检查,大多是通过印刷的纸质版立体视检查画册进行近距离立体视检查。Stereoscopic vision is a high-level visual function unique to the human body and an important component of binocular vision. It is of great significance for judging the binocular vision function and treatment of patients with strabismus and amblyopia, and is one of the important examination items in ophthalmology. At present, most clinical examinations of stereoscopic vision are performed through close-range stereoscopic examinations using printed paper stereoscopic examination albums.
然而,纸质印刷随机点立体视检查图在亮度、颜色、形状等方面存在色彩单一等缺点,不适合弱视等低视力患者的临床检查。因此,期待一种解决方案。However, paper-printed random dot stereopsis examination charts have disadvantages such as single color in terms of brightness, color, shape, etc., and are not suitable for clinical examination of patients with low vision such as amblyopia. Therefore, a solution is expected.
发明内容Summary of the invention
提供该发明内容部分以便以简要的形式介绍构思,这些构思将在后面的具体实施方式部分被详细描述。该发明内容部分并不旨在标识要求保护的技术方案的关键特征或必要特征,也不旨在用于限制所要求的保护的技术方案的范围。This summary is provided to introduce concepts in a brief form that will be described in detail in the detailed description below. This summary is not intended to identify key features or essential features of the claimed technical solution, nor is it intended to limit the scope of the claimed technical solution.
第一方面,本发明提供了一种立体视检测控制方法,所述方法包括:In a first aspect, the present invention provides a stereoscopic vision detection control method, the method comprising:
获取客户对象的视力能力文本描述和视力测试需求文本描述;Obtain a text description of the customer's vision ability and a text description of the vision test requirements;
分别对所述视力能力文本描述和所述视力测试需求文本描述进行语义编码以得到视力能力词粒度语义编码特征向量的序列和视力测试需求词粒度语义编码特征向量的序列;Semantically encoding the vision ability text description and the vision test requirement text description respectively to obtain a sequence of vision ability word granularity semantic encoding feature vectors and a sequence of vision test requirement word granularity semantic encoding feature vectors;
将所述视力能力词粒度语义编码特征向量的序列和所述视力测试需求词粒度语义编码特征向量的序列通过重要内容注意力整合网络以得到语义强化视力能力语义表示向量和语义强化视力测试需求语义表示向量;The sequence of the granular semantic encoding feature vectors of the vision ability words and the sequence of the granular semantic encoding feature vectors of the vision test requirement words are passed through an important content attention integration network to obtain a semantically enhanced vision ability semantic representation vector and a semantically enhanced vision test requirement semantic representation vector;
基于所述语义强化视力能力语义表示向量和所述语义强化视力测试需求语义表示向量之间的语义融合表示,来确定立体视电子视标的推荐结果。Based on the semantic fusion representation between the semantically enhanced vision ability semantic representation vector and the semantically enhanced vision test requirement semantic representation vector, the recommendation result of the stereoscopic electronic sight mark is determined.
可选地,分别对所述视力能力文本描述和所述视力测试需求文本描述进行语义编码以得到视力能力词粒度语义编码特征向量的序列和视力测试需求词粒度语义编码特征向量的序列,包括:对所述视力能力文本描述进行分词处理后通过包含词嵌入层的语义编码器以得到所述视力能力词粒度语义编码特征向量的序列;对所述视力测试需求文本描述进行分词处理后通过所述包含词嵌入层的语义编码器以得到所述视力测试需求词粒度语义编码特征向量的序列。Optionally, the text description of vision ability and the text description of vision test requirements are semantically encoded respectively to obtain a sequence of semantically encoded feature vectors of vision ability word granularity and a sequence of semantically encoded feature vectors of vision test requirement word granularity, including: performing word segmentation processing on the text description of vision ability and then passing it through a semantic encoder including a word embedding layer to obtain a sequence of semantically encoded feature vectors of vision ability word granularity; performing word segmentation processing on the text description of vision test requirements and then passing it through the semantic encoder including a word embedding layer to obtain a sequence of semantically encoded feature vectors of vision test requirement word granularity.
可选地,对所述视力能力文本描述进行分词处理后通过包含词嵌入层的语义编码器以得到所述视力能力词粒度语义编码特征向量的序列,包括:对所述视力能力文本描述进行分词处理以将所述视力能力文本描述转化为由多个词组成的词序列;使用所述包含词嵌入层的语义编码器的词嵌入层将所述词序列中各个词映射到词向量以获得词向量的序列;使用所述包含词嵌入层的语义编码器对所述词向量的序列进行基于全局的上下文语义编码以获得所述视力能力词粒度语义编码特征向量的序列。Optionally, after word segmentation, the text description of the vision ability is passed through a semantic encoder including a word embedding layer to obtain a sequence of semantic encoding feature vectors of the vision ability word granularity, including: word segmentation of the text description of the vision ability to convert the text description of the vision ability into a word sequence composed of multiple words; using the word embedding layer of the semantic encoder including the word embedding layer to map each word in the word sequence to a word vector to obtain a sequence of word vectors; using the semantic encoder including the word embedding layer to perform global contextual semantic encoding on the sequence of word vectors to obtain a sequence of semantic encoding feature vectors of the vision ability word granularity.
可选地,将所述视力能力词粒度语义编码特征向量的序列和所述视力测试需求词粒度语义编码特征向量的序列通过重要内容注意力整合网络以得到语义强化视力能力语义表示向量和语义强化视力测试需求语义表示向量,包括:计算所述视力能力词粒度语义编码特征向量的序列中各个视力能力词粒度语义编码特征向量的显著性系数以得到显著性系数的序列;对所述显著性系数的序列进行归一化以得到自相关显著性系数的序列;以所述自相关显著性系数的序列作为权重,计算所述视力能力词粒度语义编码特征向量的序列的逐向量加权和以得到所述语义强化视力能力语义表示向量。Optionally, the sequence of the vision ability word granularity semantic encoding feature vectors and the sequence of the vision test requirement word granularity semantic encoding feature vectors are passed through an important content attention integration network to obtain a semantically enhanced vision ability semantic representation vector and a semantically enhanced vision test requirement semantic representation vector, including: calculating the significance coefficient of each vision ability word granularity semantic encoding feature vector in the sequence of the vision ability word granularity semantic encoding feature vectors to obtain a sequence of significance coefficients; normalizing the sequence of significance coefficients to obtain a sequence of autocorrelation significance coefficients; using the sequence of autocorrelation significance coefficients as weights, calculating the vector-by-vector weighted sum of the sequence of the vision ability word granularity semantic encoding feature vectors to obtain the semantically enhanced vision ability semantic representation vector.
可选地,计算所述视力能力词粒度语义编码特征向量的序列中各个视力能力词粒度语义编码特征向量的显著性系数以得到显著性系数的序列,包括:将所述视力能力词粒度语义编码特征向量的序列中各个视力能力词粒度语义编码特征向量通过全连接层进行处理以得到视力能力词粒度语义全连接编码特征向量的序列;将所述视力能力词粒度语义全连接编码特征向量的序列中的各个视力能力词粒度语义编码特征向量与对应的权重系数向量的转置向量进行相乘以得到所述显著性系数的序列。Optionally, the significance coefficient of each vision ability word granularity semantic coding feature vector in the sequence of vision ability word granularity semantic coding feature vectors is calculated to obtain a sequence of significance coefficients, including: processing each vision ability word granularity semantic coding feature vector in the sequence of vision ability word granularity semantic coding feature vectors through a fully connected layer to obtain a sequence of vision ability word granularity semantic fully connected coding feature vectors; multiplying each vision ability word granularity semantic coding feature vector in the sequence of vision ability word granularity semantic fully connected coding feature vectors with the transposed vector of the corresponding weight coefficient vector to obtain the sequence of significance coefficients.
可选地,所述全连接层使用Selu激活函数。Optionally, the fully connected layer uses a Selu activation function.
可选地,对所述显著性系数的序列进行归一化以得到自相关显著性系数的序列,包括:对所述显著性系数的序列进行基于softmax激活函数的归一化处理以得到所述自相关显著性系数的序列。Optionally, normalizing the sequence of significance coefficients to obtain a sequence of autocorrelation significance coefficients includes: performing normalization processing based on a softmax activation function on the sequence of significance coefficients to obtain the sequence of autocorrelation significance coefficients.
可选地,基于所述语义强化视力能力语义表示向量和所述语义强化视力测试需求语义表示向量之间的语义融合表示,来确定立体视电子视标的推荐结果,包括:将所述语义强化视力能力语义表示向量和所述语义强化视力测试需求语义表示向量通过基于CLIP模型的视力能力-视力测试需求协同编码器以得到视力能力-视力测试需求协同语义表示矩阵;将所述视力能力-视力测试需求通过基于解码器的立体视电子视标参数推荐器以得到所述推荐结果,所述推荐结果包括所述立体视电子视标的色彩值和亮度值。Optionally, based on the semantic fusion representation between the semantically enhanced vision ability semantic representation vector and the semantically enhanced vision test requirement semantic representation vector, a recommendation result of the stereoscopic electronic sight mark is determined, including: passing the semantically enhanced vision ability semantic representation vector and the semantically enhanced vision test requirement semantic representation vector through a CLIP model-based vision ability-vision test requirement collaborative encoder to obtain a vision ability-vision test requirement collaborative semantic representation matrix; passing the vision ability-vision test requirement through a decoder-based stereoscopic electronic sight mark parameter recommender to obtain the recommendation result, and the recommendation result includes the color value and brightness value of the stereoscopic electronic sight mark.
第二方面,本发明提供了一种立体视检测控制系统,所述系统包括:In a second aspect, the present invention provides a stereoscopic vision detection control system, the system comprising:
文本描述获取模块,用于获取客户对象的视力能力文本描述和视力测试需求文本描述;A text description acquisition module, used to acquire a text description of the vision ability of a customer object and a text description of vision test requirements;
语义编码模块,用于分别对所述视力能力文本描述和所述视力测试需求文本描述进行语义编码以得到视力能力词粒度语义编码特征向量的序列和视力测试需求词粒度语义编码特征向量的序列;A semantic encoding module, used for performing semantic encoding on the vision ability text description and the vision test requirement text description respectively to obtain a sequence of vision ability word granularity semantic encoding feature vectors and a sequence of vision test requirement word granularity semantic encoding feature vectors;
重要内容注意力整合模块,用于将所述视力能力词粒度语义编码特征向量的序列和所述视力测试需求词粒度语义编码特征向量的序列通过重要内容注意力整合网络以得到语义强化视力能力语义表示向量和语义强化视力测试需求语义表示向量;An important content attention integration module, used for passing the sequence of the granular semantic encoding feature vectors of the vision ability words and the sequence of the granular semantic encoding feature vectors of the vision test requirement words through an important content attention integration network to obtain a semantically enhanced vision ability semantic representation vector and a semantically enhanced vision test requirement semantic representation vector;
语义融合模块,用于基于所述语义强化视力能力语义表示向量和所述语义强化视力测试需求语义表示向量之间的语义融合表示,来确定立体视电子视标的推荐结果。The semantic fusion module is used to determine the recommendation result of the stereoscopic electronic sight mark based on the semantic fusion representation between the semantic enhancement vision ability semantic representation vector and the semantic enhancement vision test requirement semantic representation vector.
可选地,所述语义编码模块,包括:分词处理单元,用于对所述视力能力文本描述进行分词处理后通过包含词嵌入层的语义编码器以得到所述视力能力词粒度语义编码特征向量的序列;语义编码单元,用于对所述视力测试需求文本描述进行分词处理后通过所述包含词嵌入层的语义编码器以得到所述视力测试需求词粒度语义编码特征向量的序列。Optionally, the semantic encoding module includes: a word segmentation processing unit, used for performing word segmentation processing on the text description of vision ability and then passing it through a semantic encoder including a word embedding layer to obtain a sequence of semantic encoding feature vectors of the vision ability word granularity; a semantic encoding unit, used for performing word segmentation processing on the text description of vision test requirements and then passing it through the semantic encoder including a word embedding layer to obtain a sequence of semantic encoding feature vectors of the vision test requirement word granularity.
采用上述技术方案,通过分别对获取的视力能力文本描述和视力测试需求文本描述进行语义编码后通过重要内容注意力整合网络以得到语义强化视力能力语义表示向量和语义强化视力测试需求语义表示向量;基于语义强化视力能力语义表示向量和语义强化视力测试需求语义表示向量之间的语义融合表示,来确定立体视电子视标的推荐结果。这样,通过使用立体视电子视标及建立针对立体视电子视标的智能化调整控制方案,可以减少纸质材料的消耗,提供更加便捷和个性化的检查体验。The above technical solution is adopted to obtain the semantically enhanced vision ability semantic representation vector and the semantically enhanced vision test requirement semantic representation vector through the important content attention integration network after semantic encoding of the obtained vision ability text description and the vision test requirement text description; based on the semantic fusion representation between the semantically enhanced vision ability semantic representation vector and the semantically enhanced vision test requirement semantic representation vector, the recommendation result of the stereoscopic electronic sight mark is determined. In this way, by using the stereoscopic electronic sight mark and establishing an intelligent adjustment and control scheme for the stereoscopic electronic sight mark, the consumption of paper materials can be reduced, providing a more convenient and personalized inspection experience.
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。Other features and advantages of the present invention will be described in detail in the following detailed description.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
结合附图并参考以下具体实施方式,本发明各实施例的上述和其他特征、优点及方面将变得更加明显。贯穿附图中,相同或相似的附图标记表示相同或相似的元素。应当理解附图是示意性的,原件和元素不一定按照比例绘制。在附图中:The above and other features, advantages and aspects of the embodiments of the present invention will become more apparent with reference to the following detailed description in conjunction with the accompanying drawings. Throughout the drawings, the same or similar reference numerals represent the same or similar elements. It should be understood that the drawings are schematic and the originals and elements are not necessarily drawn to scale. In the drawings:
图1是根据一示例性实施例示出的一种立体视检测控制方法的流程图。Fig. 1 is a flow chart showing a stereoscopic vision detection control method according to an exemplary embodiment.
图2是根据一示例性实施例示出的一种立体视检测控制系统的框图。Fig. 2 is a block diagram showing a stereoscopic vision detection control system according to an exemplary embodiment.
图3是根据一示例性实施例示出的一种电子设备的框图。Fig. 3 is a block diagram of an electronic device according to an exemplary embodiment.
图4是根据一示例性实施例示出的一种立体视检测控制方法的应用场景图。Fig. 4 is a diagram showing an application scenario of a stereoscopic vision detection control method according to an exemplary embodiment.
具体实施方式Detailed ways
下面将参照附图更详细地描述本发明的实施例。虽然附图中显示了本发明的某些实施例,然而应当理解的是,本发明可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本发明。应当理解的是,本发明的附图及实施例仅用于示例性作用,并非用于限制本发明的保护范围。Embodiments of the present invention will be described in more detail below with reference to the accompanying drawings. Although certain embodiments of the present invention are shown in the accompanying drawings, it should be understood that the present invention can be implemented in various forms and should not be construed as being limited to the embodiments described herein, which are instead provided for a more thorough and complete understanding of the present invention. It should be understood that the drawings and embodiments of the present invention are only for exemplary purposes and are not intended to limit the scope of protection of the present invention.
应当理解,本发明的方法实施方式中记载的各个步骤可以按照不同的顺序执行,和/或并行执行。此外,方法实施方式可以包括附加的步骤和/或省略执行示出的步骤。本发明的范围在此方面不受限制。It should be understood that the various steps described in the method embodiments of the present invention may be performed in different orders and/or in parallel. In addition, the method embodiments may include additional steps and/or omit the steps shown. The scope of the present invention is not limited in this respect.
本文使用的术语“包括”及其变形是开放性包括,即“包括但不限于”。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”;术语“一些实施例”表示“至少一些实施例”。其他术语的相关定义将在下文描述中给出。The term "including" and its variations used herein are open inclusions, i.e., "including but not limited to". The term "based on" means "based at least in part on". The term "one embodiment" means "at least one embodiment"; the term "another embodiment" means "at least one additional embodiment"; the term "some embodiments" means "at least some embodiments". The relevant definitions of other terms will be given in the following description.
需要注意,本发明中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。It should be noted that the concepts such as "first" and "second" mentioned in the present invention are only used to distinguish different devices, modules or units, and are not used to limit the order or interdependence of the functions performed by these devices, modules or units.
需要注意,本发明中提及的“一个”、“多个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非在上下文另有明确指出,否则应该理解为“一个或多个”。It should be noted that the modifications of "one" and "plurality" mentioned in the present invention are illustrative rather than restrictive, and those skilled in the art should understand that unless otherwise clearly indicated in the context, it should be understood as "one or more".
本发明实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。The names of the messages or information exchanged between multiple devices in the embodiments of the present invention are only used for illustrative purposes, and are not used to limit the scope of these messages or information.
立体视是一种高级的视觉功能,它能够使人们感知到物体的深度和空间关系,从而在日常生活中进行精确的定位和判断。立体视是双眼视觉的一个重要组成部分,它依赖于双眼的协同工作,通过比较两眼接收到的略有差异的图像,大脑可以合成一个具有深度感的三维图像。Stereoscopic vision is an advanced visual function that enables people to perceive the depth and spatial relationship of objects, so as to make accurate positioning and judgment in daily life. Stereoscopic vision is an important part of binocular vision. It relies on the coordinated work of both eyes. By comparing the slightly different images received by the two eyes, the brain can synthesize a three-dimensional image with a sense of depth.
立体视在眼科临床检查中扮演着至关重要的角色,特别是在评估和治疗斜视和弱视患者时。斜视是指眼睛无法正常对准同一目标,而弱视则是指一只或两只眼睛的视力低于正常水平,且无法通过矫正镜片来改善。立体视的检查有助于医生了解患者的双眼视觉功能,判断是否存在立体视觉障碍,并据此制定相应的治疗方案。Stereoscopic vision plays a vital role in clinical ophthalmology examinations, especially in the evaluation and treatment of patients with strabismus and amblyopia. Strabismus is the inability of the eyes to focus on the same target, while amblyopia is the subnormal vision of one or both eyes that cannot be improved by corrective lenses. Stereoscopic vision examinations help doctors understand the patient's binocular vision function, determine whether there is a stereoscopic vision disorder, and develop appropriate treatment plans accordingly.
目前,临床常用的立体视检查方法之一是使用纸质版立体视检查画册。这些画册通常含有随机点图案,通过特殊的眼镜或裸眼观察,患者可以感知到隐藏在图案中的立体图像。然而,这种方法存在一些局限性。纸质印刷的画册在亮度、颜色和形状方面可能不够丰富,这可能导致色彩单一,影响检查的准确性。特别是对弱视等低视力患者,这种检查方式可能不太适用,因为他们的视觉系统对细节和颜色的敏感度较低。At present, one of the commonly used methods for clinical stereopsis examination is to use paper stereopsis examination albums. These albums usually contain random dot patterns, and patients can perceive the stereoscopic images hidden in the patterns through special glasses or naked eye observation. However, this method has some limitations. Paper-printed albums may not be rich enough in brightness, color, and shape, which may result in a single color and affect the accuracy of the examination. Especially for patients with low vision such as amblyopia, this examination method may not be suitable because their visual system is less sensitive to details and colors.
为了克服这些限制,眼科医生和研究人员正在探索更先进的立体视检查方法。例如,数字立体视检查系统可以提供更多样化的图像和更丰富的色彩,适应不同患者的视力水平。此外,虚拟现实(VR)技术的应用也在立体视检查中展现出潜力,它能够提供沉浸式的立体视觉体验,有助于更准确地评估患者的立体视觉能力。To overcome these limitations, ophthalmologists and researchers are exploring more advanced stereoscopic examination methods. For example, digital stereoscopic examination systems can provide more diverse images and richer colors to adapt to the vision levels of different patients. In addition, the application of virtual reality (VR) technology also shows potential in stereoscopic examinations, which can provide an immersive stereoscopic visual experience and help to more accurately assess patients' stereoscopic vision ability.
为了解决上述问题,本发明提供了一种立体视检测控制系统和方法,通过分别对获取的视力能力文本描述和视力测试需求文本描述进行语义编码后通过重要内容注意力整合网络以得到语义强化视力能力语义表示向量和语义强化视力测试需求语义表示向量;基于语义强化视力能力语义表示向量和语义强化视力测试需求语义表示向量之间的语义融合表示,来确定立体视电子视标的推荐结果。这样,通过使用立体视电子视标及建立针对立体视电子视标的智能化调整控制方案,可以减少纸质材料的消耗,提供更加便捷和个性化的检查体验。In order to solve the above problems, the present invention provides a stereoscopic vision detection control system and method, which respectively semantically encodes the obtained text description of vision ability and the text description of vision test requirements, and then obtains a semantically enhanced vision ability semantic representation vector and a semantically enhanced vision test requirement semantic representation vector through an important content attention integration network; based on the semantic fusion representation between the semantically enhanced vision ability semantic representation vector and the semantically enhanced vision test requirement semantic representation vector, the recommendation result of the stereoscopic electronic sight mark is determined. In this way, by using stereoscopic electronic sight marks and establishing an intelligent adjustment control scheme for stereoscopic electronic sight marks, the consumption of paper materials can be reduced, providing a more convenient and personalized inspection experience.
以下结合附图对本发明的具体实施方式进行详细说明。The specific implementation modes of the present invention are described in detail below with reference to the accompanying drawings.
图1是根据一示例性实施例示出的一种立体视检测控制方法的流程图,如图1所示,该方法包括:FIG. 1 is a flow chart of a stereoscopic vision detection control method according to an exemplary embodiment. As shown in FIG. 1 , the method includes:
S101、获取客户对象的视力能力文本描述和视力测试需求文本描述;S101. Obtain a text description of the vision ability and vision test requirements of the customer object;
S102、分别对所述视力能力文本描述和所述视力测试需求文本描述进行语义编码以得到视力能力词粒度语义编码特征向量的序列和视力测试需求词粒度语义编码特征向量的序列;S102, semantically encoding the vision ability text description and the vision test requirement text description respectively to obtain a sequence of vision ability word granularity semantic encoding feature vectors and a sequence of vision test requirement word granularity semantic encoding feature vectors;
S103、将所述视力能力词粒度语义编码特征向量的序列和所述视力测试需求词粒度语义编码特征向量的序列通过重要内容注意力整合网络以得到语义强化视力能力语义表示向量和语义强化视力测试需求语义表示向量;S103, passing the sequence of the granular semantic encoding feature vectors of the vision ability words and the sequence of the granular semantic encoding feature vectors of the vision test requirement words through an important content attention integration network to obtain a semantically enhanced vision ability semantic representation vector and a semantically enhanced vision test requirement semantic representation vector;
S104、基于所述语义强化视力能力语义表示向量和所述语义强化视力测试需求语义表示向量之间的语义融合表示,来确定立体视电子视标的推荐结果。S104. Determine a recommendation result of a stereoscopic electronic sight mark based on a semantic fusion representation between the semantically enhanced vision ability semantic representation vector and the semantically enhanced vision test requirement semantic representation vector.
针对上述技术问题,本申请的技术构思是通过基于自然语言处理技术的文本语义理解和语义分析,从客户的视力能力文本描述和视力测试需求文本描述中分别捕捉客户的视力情况和测试需求信息,随后利用深度学习算法将两者进行关键语义信息强化和融合交互,形成关于客户视力以及视力测试需求的语义协同关联特征表示,并基于此来实现对立体视电子视标的色彩值和亮度值的智能化推荐。这样,通过使用立体视电子视标及建立针对立体视电子视标的智能化调整控制方案,可以减少纸质材料的消耗,提供更加便捷和个性化的检查体验。In response to the above technical problems, the technical concept of this application is to capture the customer's vision and test requirements from the text description of the customer's vision ability and the text description of the vision test requirements through text semantic understanding and semantic analysis based on natural language processing technology, and then use deep learning algorithms to enhance and integrate the key semantic information of the two to form a semantic collaborative correlation feature representation of the customer's vision and vision test requirements, and based on this, to achieve intelligent recommendation of the color value and brightness value of the stereoscopic electronic sight mark. In this way, by using stereoscopic electronic sight marks and establishing an intelligent adjustment and control scheme for stereoscopic electronic sight marks, the consumption of paper materials can be reduced, providing a more convenient and personalized inspection experience.
基于此,在本申请的技术方案中,首先,获取客户对象的视力能力文本描述和视力测试需求文本描述。应可以理解,每位客户(患者)的视力状况和测试需求都是独特的。具体来说,视力能力文本描述可以提供患者目前的视觉功能水平,包括视力、视野、立体视能力等,这有助于系统了解患者的视力状况。而视力测试需求文本描述则涉及患者需要进行的具体测试类型,如近距离或远距离立体视测试,以及测试的难度级别等。这有助于进行测试内容的定制化和个性化。Based on this, in the technical solution of the present application, first, a text description of the customer's vision ability and a text description of the vision test requirements are obtained. It should be understood that the vision condition and test requirements of each customer (patient) are unique. Specifically, the text description of vision ability can provide the patient's current level of visual function, including vision, visual field, stereoscopic vision ability, etc., which helps the system understand the patient's vision condition. The text description of vision test requirements involves the specific type of test that the patient needs to undergo, such as close or long-distance stereoscopic vision tests, and the difficulty level of the test. This helps to customize and personalize the test content.
在本发明的一个实施例中,分别对所述视力能力文本描述和所述视力测试需求文本描述进行语义编码以得到视力能力词粒度语义编码特征向量的序列和视力测试需求词粒度语义编码特征向量的序列,包括:对所述视力能力文本描述进行分词处理后通过包含词嵌入层的语义编码器以得到所述视力能力词粒度语义编码特征向量的序列;对所述视力测试需求文本描述进行分词处理后通过所述包含词嵌入层的语义编码器以得到所述视力测试需求词粒度语义编码特征向量的序列。In one embodiment of the present invention, the vision ability text description and the vision test requirement text description are semantically encoded respectively to obtain a sequence of vision ability word granularity semantic encoding feature vectors and a sequence of vision test requirement word granularity semantic encoding feature vectors, including: performing word segmentation processing on the vision ability text description and then passing it through a semantic encoder including a word embedding layer to obtain a sequence of vision ability word granularity semantic encoding feature vectors; performing word segmentation processing on the vision test requirement text description and then passing it through the semantic encoder including a word embedding layer to obtain a sequence of vision test requirement word granularity semantic encoding feature vectors.
然后,对所述视力能力文本描述进行分词处理后通过包含词嵌入层的语义编码器以得到视力能力词粒度语义编码特征向量的序列;并对所述视力测试需求文本描述进行分词处理后通过所述包含词嵌入层的语义编码器以得到视力测试需求词粒度语义编码特征向量的序列。具体地,在本申请的技术方案中,通过分词处理能够分别将所述视力能力文本描述和所述视力测试需求文本描述中连续的文本字符分割成有意义的单元,例如词汇或词组,使得后续模型能够基于文本描述中的基本结构进行语义理解;词嵌入层能够分别将所述视力能力文本描述和所述视力测试需求文本描述分词后得到的各个词汇或词组进行嵌入转化,以转换为结构化的向量表示;再通过语义编码器来分别捕捉所述视力能力文本描述和所述视力测试需求文本描述中的语义特征和文本内容。Then, after word segmentation processing is performed on the text description of vision ability, a sequence of semantically encoded feature vectors of the word granularity of vision ability is obtained through a semantic encoder including a word embedding layer; and after word segmentation processing is performed on the text description of vision test requirements, a sequence of semantically encoded feature vectors of the word granularity of vision test requirements is obtained through a semantic encoder including a word embedding layer. Specifically, in the technical solution of the present application, the continuous text characters in the text description of vision ability and the text description of vision test requirements can be segmented into meaningful units, such as words or phrases, respectively, through word segmentation processing, so that the subsequent model can perform semantic understanding based on the basic structure in the text description; the word embedding layer can embed and transform each word or phrase obtained after word segmentation of the text description of vision ability and the text description of vision test requirements, so as to convert them into structured vector representations; and then the semantic encoder is used to capture the semantic features and text content in the text description of vision ability and the text description of vision test requirements, respectively.
进一步地,在本发明的一个实施例中,对所述视力能力文本描述进行分词处理后通过包含词嵌入层的语义编码器以得到所述视力能力词粒度语义编码特征向量的序列,包括:对所述视力能力文本描述进行分词处理以将所述视力能力文本描述转化为由多个词组成的词序列;使用所述包含词嵌入层的语义编码器的词嵌入层将所述词序列中各个词映射到词向量以获得词向量的序列;使用所述包含词嵌入层的语义编码器对所述词向量的序列进行基于全局的上下文语义编码以获得所述视力能力词粒度语义编码特征向量的序列。Furthermore, in one embodiment of the present invention, after word segmentation, the text description of the vision ability is passed through a semantic encoder including a word embedding layer to obtain a sequence of semantic encoding feature vectors of the vision ability word granularity, including: word segmentation of the text description of the vision ability to convert the text description of the vision ability into a word sequence composed of multiple words; using the word embedding layer of the semantic encoder including the word embedding layer to map each word in the word sequence to a word vector to obtain a sequence of word vectors; using the semantic encoder including the word embedding layer to perform global context-based semantic encoding on the sequence of word vectors to obtain a sequence of semantic encoding feature vectors of the vision ability word granularity.
然而,由于所述视力能力文本描述和所述视力测试需求文本描述中不同词汇或词组所表达的语义特征对上下文的理解而言通常具有不同的重要性和影响力。针对这一特性,在本申请的技术方案中,期待将所述视力能力词粒度语义编码特征向量的序列和所述视力测试需求词粒度语义编码特征向量的序列通过重要内容注意力整合网络以显化文本描述中的关键语义信息,从而得到语义强化视力能力语义表示向量和语义强化视力测试需求语义表示向量。However, since the semantic features expressed by different words or phrases in the text description of vision ability and the text description of vision test requirements usually have different importance and influence on the understanding of the context. In view of this feature, in the technical solution of the present application, it is expected that the sequence of the granular semantic encoding feature vectors of the vision ability words and the sequence of the granular semantic encoding feature vectors of the vision test requirements words are integrated through an important content attention network to manifest the key semantic information in the text description, thereby obtaining a semantically enhanced vision ability semantic representation vector and a semantically enhanced vision test requirement semantic representation vector.
在本申请的实施例中,将所述视力能力词粒度语义编码特征向量的序列和所述视力测试需求词粒度语义编码特征向量的序列通过重要内容注意力整合网络以得到语义强化视力能力语义表示向量和语义强化视力测试需求语义表示向量的过程包括:先计算所述视力能力词粒度语义编码特征向量的序列中各个视力能力词粒度语义编码特征向量的显著性系数以得到显著性系数的序列;接着,对所述显著性系数的序列进行归一化以得到自相关显著性系数的序列;再以所述自相关显著性系数的序列作为权重,计算所述视力能力词粒度语义编码特征向量的序列的逐向量加权和以得到所述语义强化视力能力语义表示向量。也就是,通过所述重要内容注意力整合网络来捕捉所述视力能力词粒度语义编码特征向量的序列中的全文语义自相关性,并以此全文语义自相关性来对各个视力能力词粒度语义编码特征向量对上下文理解的重要性和影响力进行量化。In an embodiment of the present application, the process of passing the sequence of the vision ability word granularity semantic encoding feature vectors and the sequence of the vision test requirement word granularity semantic encoding feature vectors through an important content attention integration network to obtain a semantically enhanced vision ability semantic representation vector and a semantically enhanced vision test requirement semantic representation vector includes: first calculating the significance coefficient of each vision ability word granularity semantic encoding feature vector in the sequence of the vision ability word granularity semantic encoding feature vector to obtain a sequence of significance coefficients; then, normalizing the sequence of significance coefficients to obtain a sequence of autocorrelation significance coefficients; and then using the sequence of autocorrelation significance coefficients as weights, calculating the vector-by-vector weighted sum of the sequence of the vision ability word granularity semantic encoding feature vectors to obtain the semantically enhanced vision ability semantic representation vector. That is, the full-text semantic autocorrelation in the sequence of the vision ability word granularity semantic encoding feature vectors is captured through the important content attention integration network, and the importance and influence of each vision ability word granularity semantic encoding feature vector on context understanding is quantified based on this full-text semantic autocorrelation.
进一步地,在本发明的一个实施例中,计算所述视力能力词粒度语义编码特征向量的序列中各个视力能力词粒度语义编码特征向量的显著性系数以得到显著性系数的序列,包括:将所述视力能力词粒度语义编码特征向量的序列中各个视力能力词粒度语义编码特征向量通过全连接层进行处理以得到视力能力词粒度语义全连接编码特征向量的序列;将所述视力能力词粒度语义全连接编码特征向量的序列中的各个视力能力词粒度语义编码特征向量与对应的权重系数向量的转置向量进行相乘以得到所述显著性系数的序列。Furthermore, in one embodiment of the present invention, the significance coefficient of each vision ability word granularity semantic coding feature vector in the sequence of the vision ability word granularity semantic coding feature vector is calculated to obtain a sequence of significance coefficients, including: processing each vision ability word granularity semantic coding feature vector in the sequence of the vision ability word granularity semantic coding feature vector through a fully connected layer to obtain a sequence of vision ability word granularity semantic fully connected coding feature vectors; multiplying each vision ability word granularity semantic coding feature vector in the sequence of the vision ability word granularity semantic fully connected coding feature vector with the transposed vector of the corresponding weight coefficient vector to obtain the sequence of significance coefficients.
更进一步地,在本发明的一个实施例中,所述全连接层使用Selu激活函数。Furthermore, in one embodiment of the present invention, the fully connected layer uses a Selu activation function.
更进一步地,在本发明的一个实施例中,对所述显著性系数的序列进行归一化以得到自相关显著性系数的序列,包括:对所述显著性系数的序列进行基于softmax激活函数的归一化处理以得到所述自相关显著性系数的序列。Furthermore, in one embodiment of the present invention, the sequence of significance coefficients is normalized to obtain a sequence of autocorrelation significance coefficients, including: performing normalization processing based on a softmax activation function on the sequence of significance coefficients to obtain the sequence of autocorrelation significance coefficients.
具体地,在本发明的一个实施例中,以如下整合公式将所述视力能力词粒度语义编码特征向量的序列和所述视力测试需求词粒度语义编码特征向量的序列通过重要内容注意力整合网络以得到语义强化视力能力语义表示向量和语义强化视力测试需求语义表示向量;其中,所述整合公式为:Specifically, in one embodiment of the present invention, the sequence of the granular semantic encoding feature vectors of the vision ability words and the sequence of the granular semantic encoding feature vectors of the vision test requirement words are integrated through an important content attention integration network to obtain a semantically enhanced vision ability semantic representation vector and a semantically enhanced vision test requirement semantic representation vector; wherein the integration formula is:
; ;
; ;
; ;
其中,为第个显著性系数,为第个权重系数矩阵,为第个权重系数向量的转置向量,为第个偏置向量,表示Selu激活函数,为所述视力能力词粒度语义编码特征向量的序列中第个视力能力词粒度语义编码特征向量,和为数值不同的超参数,表示输入到所述Selu激活函数中的数值,表示激活函数,为第个自相关显著性系数,为所述视力能力词粒度语义编码特征向量的序列的长度,为所述语义强化视力能力语义表示向量。in, For the The significance coefficient, For the A weight coefficient matrix, For the The transposed vector of the weight coefficient vector, For the A bias vector, represents the Selu activation function, is the first in the sequence of the granular semantic encoding feature vectors of the vision ability word The granular semantic encoding feature vector of vision ability words, and are hyperparameters with different values, represents the value input into the Selu activation function, express Activation function, For the The autocorrelation significance coefficient is is the length of the sequence of the granular semantic encoding feature vectors of the vision ability word, A vision-enhanced semantic representation vector is provided for the semantics.
应可以理解,计算所述显著性系数的过程是通过全连接层来学习各个视力能力词粒度语义编码特征向量的文本语义特征,更具体地,是通过(训练得到的)权重系数矩阵、(训练得到的)权重系数向量以及(训练得到的)偏置向量来自动学习这种文本语义特征。且值得一提的是,普通的全连接层通常没有权重系数向量,在本申请的技术方案中,设有权重系数向量的用意是将各个视力能力词粒度语义编码特征向量的文本语义特征进行数值化表示,即各个显著性系数。然后,通过对所述显著性系数的序列进行基于softmax激活函数的归一化处理以量化各个视力能力词粒度语义编码特征向量所对应的显著性系数的重要性和整体相关性,即全文语义自相关性。也就是说,在本申请的技术方案中,重要内容注意力整合网络的本质是一种权重概率分布机制,即对重要的内容分配更大的权重,对其他内容减少权重。这样的机制更专注于找到输入数据中与当前数据显著相关的有用信息。It should be understood that the process of calculating the significance coefficient is to learn the text semantic features of each vision ability word granular semantic coding feature vector through a fully connected layer, more specifically, to automatically learn this text semantic feature through a (trained) weight coefficient matrix, a (trained) weight coefficient vector and a (trained) bias vector. And it is worth mentioning that the ordinary fully connected layer usually does not have a weight coefficient vector. In the technical solution of the present application, the purpose of providing a weight coefficient vector is to numerically represent the text semantic features of each vision ability word granular semantic coding feature vector, that is, each significance coefficient. Then, the sequence of the significance coefficients is normalized based on the softmax activation function to quantify the importance and overall relevance of the significance coefficients corresponding to each vision ability word granular semantic coding feature vector, that is, the full text semantic autocorrelation. That is to say, in the technical solution of the present application, the essence of the important content attention integration network is a weight probability distribution mechanism, that is, to assign greater weights to important content and reduce weights to other content. Such a mechanism is more focused on finding useful information in the input data that is significantly related to the current data.
随后,将所述语义强化视力能力语义表示向量和所述语义强化视力测试需求语义表示向量通过基于CLIP模型的视力能力-视力测试需求协同编码器以得到视力能力-视力测试需求协同语义表示矩阵。也就是,通过所述基于CLIP模型的视力能力-视力测试需求协同编码器来整合两者的语义信息,确保它们在语义空间中的一致性,并形成能够全面反映患者的视力状况和测试需求的综合表示。进一步地,将所述视力能力-视力测试需求通过基于解码器的立体视电子视标参数推荐器以得到推荐结果,所述推荐结果包括立体视电子视标的色彩值和亮度值。Subsequently, the semantically enhanced vision ability semantic representation vector and the semantically enhanced vision test requirement semantic representation vector are passed through a vision ability-vision test requirement collaborative encoder based on the CLIP model to obtain a vision ability-vision test requirement collaborative semantic representation matrix. That is, the semantic information of the two is integrated through the vision ability-vision test requirement collaborative encoder based on the CLIP model to ensure their consistency in the semantic space and form a comprehensive representation that can fully reflect the patient's vision condition and test requirements. Further, the vision ability-vision test requirement is passed through a decoder-based stereoscopic electronic sight mark parameter recommender to obtain a recommendation result, and the recommendation result includes the color value and brightness value of the stereoscopic electronic sight mark.
在本发明的一个实施例中,基于所述语义强化视力能力语义表示向量和所述语义强化视力测试需求语义表示向量之间的语义融合表示,来确定立体视电子视标的推荐结果,包括:将所述语义强化视力能力语义表示向量和所述语义强化视力测试需求语义表示向量通过基于CLIP模型的视力能力-视力测试需求协同编码器以得到视力能力-视力测试需求协同语义表示矩阵;将所述视力能力-视力测试需求通过基于解码器的立体视电子视标参数推荐器以得到所述推荐结果,所述推荐结果包括所述立体视电子视标的色彩值和亮度值。In one embodiment of the present invention, a recommendation result of a stereoscopic electronic sight mark is determined based on the semantic fusion representation between the semantically enhanced vision ability semantic representation vector and the semantically enhanced vision test requirement semantic representation vector, including: passing the semantically enhanced vision ability semantic representation vector and the semantically enhanced vision test requirement semantic representation vector through a CLIP model-based vision ability-vision test requirement collaborative encoder to obtain a vision ability-vision test requirement collaborative semantic representation matrix; passing the vision ability-vision test requirement through a decoder-based stereoscopic electronic sight mark parameter recommender to obtain the recommendation result, and the recommendation result includes the color value and brightness value of the stereoscopic electronic sight mark.
优选地,将所述视力能力-视力测试需求协同语义表示矩阵通过基于解码器的立体视电子视标参数推荐器以得到推荐结果包括以下步骤:Preferably, the visual ability-visual test requirement collaborative semantic representation matrix is passed through a decoder-based stereoscopic electronic sight mark parameter recommender to obtain a recommendation result, comprising the following steps:
将所述视力能力-视力测试需求协同语义表示矩阵展开以获得视力能力-视力测试需求协同语义表示向量;Expanding the vision ability-vision test requirement collaborative semantic representation matrix to obtain a vision ability-vision test requirement collaborative semantic representation vector;
计算所述视力能力-视力测试需求协同语义表示向量与其长度的平方根和其二范数的平方根的倒数的点加之和得到第一视力能力-视力测试需求协同语义表示中间向量;Calculate the point sum of the vision ability-vision test requirement collaborative semantic representation vector and the square root of its length and the reciprocal of the square root of its second norm to obtain a first vision ability-vision test requirement collaborative semantic representation intermediate vector;
计算所述第一视力能力-视力测试需求协同语义表示中间向量的以自然常数为底的指数函数以获得第二视力能力-视力测试需求协同语义表示中间向量;Calculating an exponential function with a natural constant as the base of the intermediate vector of the first vision ability-vision test requirement collaborative semantic representation to obtain a second vision ability-vision test requirement collaborative semantic representation intermediate vector;
计算所述视力能力-视力测试需求协同语义表示向量与其一范数和权重超参数的点乘之积得到第三视力能力-视力测试需求协同语义表示中间向量;Calculate the dot product of the vision ability-vision test requirement collaborative semantic representation vector and its norm and weight hyperparameter to obtain a third vision ability-vision test requirement collaborative semantic representation intermediate vector;
计算所述第二视力能力-视力测试需求协同语义表示中间向量与所述第三视力能力-视力测试需求协同语义表示中间向量的点加之和得到优化的视力能力-视力测试需求协同语义表示向量;Calculating the point sum of the second vision ability-vision test requirement collaborative semantic representation intermediate vector and the third vision ability-vision test requirement collaborative semantic representation intermediate vector to obtain an optimized vision ability-vision test requirement collaborative semantic representation vector;
将所述优化的视力能力-视力测试需求协同语义表示向量基于所述视力能力-视力测试需求协同语义表示矩阵的展开转换为优化的视力能力-视力测试需求协同语义表示矩阵;Converting the optimized vision ability-vision test requirement collaborative semantic representation vector into an optimized vision ability-vision test requirement collaborative semantic representation matrix based on the expansion of the vision ability-vision test requirement collaborative semantic representation matrix;
将所述优化的视力能力-视力测试需求协同语义表示矩阵通过基于解码器的立体视电子视标参数推荐器以得到推荐结果。The optimized vision ability-vision test requirement collaborative semantic representation matrix is passed through a decoder-based stereoscopic electronic sight mark parameter recommender to obtain a recommendation result.
具体地,考虑到视力能力文本描述和视力测试需求文本描述的源语义差异引起的词嵌入编码语义特征差异,在通过重要内容注意力整合之后,会导致所述语义强化视力能力语义表示向量和所述语义强化视力测试需求语义表示向量的语义特征分布显著不对齐,影响逐位语义关联得到的所述视力能力-视力测试需求协同语义表示矩阵的解码回归约束性。在上述优选示例中,以所述视力能力-视力测试需求协同语义表示矩阵展开后的所述视力能力-视力测试需求协同语义表示向量的结构化范数表示作为针对所述视力能力-视力测试需求协同语义表示矩阵的各个特征值的局部典范化坐标,来确定所述视力能力-视力测试需求协同语义表示矩阵的特征整体分布表示相对于特征值的旋转偏移对于作为中心的所述视力能力-视力测试需求协同语义表示矩阵的各个特征值的偏移预测方向,并以所述视力能力-视力测试需求协同语义表示矩阵的特征值分布的边界框进行特征值约束,来提升所述视力能力-视力测试需求协同语义表示矩阵在整体解码分布回归下的约束性,从而提升模型的训练速度以及所述视力能力-视力测试需求通过基于解码器的立体视电子视标参数推荐器得到的推荐结果的准确性。Specifically, considering the differences in semantic features encoded by word embeddings caused by the source semantic differences between the text description of vision ability and the text description of vision test requirements, after the integration of important content attention, the semantic feature distributions of the semantically enhanced vision ability semantic representation vector and the semantically enhanced vision test requirement semantic representation vector will be significantly misaligned, affecting the decoding regression constraints of the vision ability-vision test requirement collaborative semantic representation matrix obtained by bit-by-bit semantic association. In the above preferred example, the structured norm representation of the vision ability-vision test requirement collaborative semantic representation vector after the vision ability-vision test requirement collaborative semantic representation matrix is expanded is used as the local canonical coordinates for each eigenvalue of the vision ability-vision test requirement collaborative semantic representation matrix to determine the overall distribution of the characteristics of the vision ability-vision test requirement collaborative semantic representation matrix, and the rotation offset of the eigenvalue represents the predicted direction of the offset of each eigenvalue of the vision ability-vision test requirement collaborative semantic representation matrix as the center, and the bounding box of the eigenvalue distribution of the vision ability-vision test requirement collaborative semantic representation matrix is used to perform eigenvalue constraints to improve the constraint of the vision ability-vision test requirement collaborative semantic representation matrix under the overall decoding distribution regression, thereby improving the training speed of the model and the accuracy of the recommendation results obtained by the decoder-based stereoscopic electronic sight mark parameter recommender for the vision ability-vision test requirement.
综上所述,采用上述方案,通过基于自然语言处理技术的文本语义理解和语义分析,从客户的视力能力文本描述和视力测试需求文本描述中分别捕捉客户的视力情况和测试需求信息,随后利用深度学习算法将两者进行关键语义信息强化和融合交互,形成关于客户视力以及视力测试需求的语义协同关联特征表示,并基于此来实现对立体视电子视标的色彩值和亮度值的智能化推荐。这样,通过使用立体视电子视标及建立针对于立体视电子视标的智能化调整控制方案,可以减少纸质材料的消耗,提供更加便捷和个性化的检查体验。In summary, the above scheme is adopted to capture the customer's vision and test requirements from the text description of the customer's vision ability and the text description of the vision test requirements through text semantic understanding and semantic analysis based on natural language processing technology, and then use the deep learning algorithm to enhance and integrate the key semantic information of the two to form a semantic collaborative correlation feature representation of the customer's vision and vision test requirements, and based on this, realize the intelligent recommendation of the color value and brightness value of the stereoscopic electronic sight mark. In this way, by using stereoscopic electronic sight marks and establishing an intelligent adjustment control scheme for stereoscopic electronic sight marks, the consumption of paper materials can be reduced, providing a more convenient and personalized inspection experience.
图2是根据一示例性实施例示出的一种立体视检测控制系统的框图。如图2所示,该系统200包括:Fig. 2 is a block diagram of a stereoscopic vision detection control system according to an exemplary embodiment. As shown in Fig. 2, the system 200 includes:
文本描述获取模块201,用于获取客户对象的视力能力文本描述和视力测试需求文本描述;A text description acquisition module 201 is used to acquire a text description of the vision ability and a text description of the vision test requirement of a customer object;
语义编码模块202,用于分别对所述视力能力文本描述和所述视力测试需求文本描述进行语义编码以得到视力能力词粒度语义编码特征向量的序列和视力测试需求词粒度语义编码特征向量的序列;A semantic encoding module 202, used to perform semantic encoding on the vision ability text description and the vision test requirement text description to obtain a sequence of vision ability word granularity semantic encoding feature vectors and a sequence of vision test requirement word granularity semantic encoding feature vectors;
重要内容注意力整合模块203,用于将所述视力能力词粒度语义编码特征向量的序列和所述视力测试需求词粒度语义编码特征向量的序列通过重要内容注意力整合网络以得到语义强化视力能力语义表示向量和语义强化视力测试需求语义表示向量;An important content attention integration module 203 is used to pass the sequence of the granular semantic encoding feature vectors of the vision ability words and the sequence of the granular semantic encoding feature vectors of the vision test requirement words through an important content attention integration network to obtain a semantically enhanced vision ability semantic representation vector and a semantically enhanced vision test requirement semantic representation vector;
语义融合模块204,用于基于所述语义强化视力能力语义表示向量和所述语义强化视力测试需求语义表示向量之间的语义融合表示,来确定立体视电子视标的推荐结果。The semantic fusion module 204 is used to determine the recommendation result of the stereoscopic electronic sight mark based on the semantic fusion representation between the semantic enhancement vision ability semantic representation vector and the semantic enhancement vision test requirement semantic representation vector.
在本发明的一个实施例中,所述语义编码模块,包括:分词处理单元,用于对所述视力能力文本描述进行分词处理后通过包含词嵌入层的语义编码器以得到所述视力能力词粒度语义编码特征向量的序列;语义编码单元,用于对所述视力测试需求文本描述进行分词处理后通过所述包含词嵌入层的语义编码器以得到所述视力测试需求词粒度语义编码特征向量的序列。In one embodiment of the present invention, the semantic encoding module includes: a word segmentation processing unit, which is used to perform word segmentation processing on the text description of vision ability and then pass it through a semantic encoder including a word embedding layer to obtain a sequence of semantic encoding feature vectors of the vision ability word granularity; a semantic encoding unit, which is used to perform word segmentation processing on the text description of vision test requirements and then pass it through the semantic encoder including a word embedding layer to obtain a sequence of semantic encoding feature vectors of the vision test requirement word granularity.
下面参考图3,其示出了适于用来实现本发明实施例的电子设备600的框图。本发明实施例中的终端设备可以包括但不限于诸如移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图3示出的电子设备仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。Referring to FIG3 below, a block diagram of an electronic device 600 suitable for implementing an embodiment of the present invention is shown. The terminal device in the embodiment of the present invention may include, but is not limited to, mobile terminals such as mobile phones, notebook computers, digital broadcast receivers, PDAs (personal digital assistants), PADs (tablet computers), PMPs (portable multimedia players), vehicle-mounted terminals (such as vehicle-mounted navigation terminals), etc., and fixed terminals such as digital TVs, desktop computers, etc. The electronic device shown in FIG3 is only an example and should not bring any limitation to the functions and scope of use of the embodiments of the present invention.
如图3所示,电子设备600可以包括处理装置(例如中央处理器、图形处理器等)601,其可以根据存储在只读存储器(ROM)602中的程序或者从存储装置608加载到随机访问存储器(RAM)603中的程序而执行各种适当的动作和处理。在RAM603中,还存储有电子设备600操作所需的各种程序和数据。处理装置601、ROM602以及RAM603通过总线604彼此相连。输入/输出(I/O)接口605也连接至总线604。As shown in FIG3 , the electronic device 600 may include a processing device (e.g., a central processing unit, a graphics processing unit, etc.) 601, which can perform various appropriate actions and processes according to a program stored in a read-only memory (ROM) 602 or a program loaded from a storage device 608 into a random access memory (RAM) 603. In the RAM 603, various programs and data required for the operation of the electronic device 600 are also stored. The processing device 601, the ROM 602, and the RAM 603 are connected to each other via a bus 604. An input/output (I/O) interface 605 is also connected to the bus 604.
通常,以下装置可以连接至I/O接口605:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置606;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置607;包括例如磁带、硬盘等的存储装置608;以及通信装置609。通信装置609可以允许电子设备600与其他设备进行无线或有线通信以交换数据。虽然图3示出了具有各种装置的电子设备600,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。Typically, the following devices may be connected to the I/O interface 605: input devices 606 including, for example, a touch screen, a touchpad, a keyboard, a mouse, a camera, a microphone, an accelerometer, a gyroscope, etc.; output devices 607 including, for example, a liquid crystal display (LCD), a speaker, a vibrator, etc.; storage devices 608 including, for example, a magnetic tape, a hard disk, etc.; and communication devices 609. The communication device 609 may allow the electronic device 600 to communicate wirelessly or wired with other devices to exchange data. Although FIG. 3 shows an electronic device 600 with various devices, it should be understood that it is not required to implement or have all the devices shown. More or fewer devices may be implemented or have alternatively.
特别地,根据本发明的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本发明的实施例包括一种计算机程序产品,其包括承载在非暂态计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置609从网络上被下载和安装,或者从存储装置608被安装,或者从ROM602被安装。在该计算机程序被处理装置601执行时,执行本发明实施例的方法中限定的上述功能。In particular, according to an embodiment of the present invention, the process described above with reference to the flowchart can be implemented as a computer software program. For example, an embodiment of the present invention includes a computer program product, which includes a computer program carried on a non-transitory computer-readable medium, and the computer program includes a program code for executing the method shown in the flowchart. In such an embodiment, the computer program can be downloaded and installed from the network through the communication device 609, or installed from the storage device 608, or installed from the ROM 602. When the computer program is executed by the processing device 601, the above-mentioned functions defined in the method of the embodiment of the present invention are executed.
需要说明的是,本发明上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本发明中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本发明中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。It should be noted that the computer-readable medium of the present invention can be a computer-readable signal medium or a computer-readable storage medium or any combination of the above two. The computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination of the above. More specific examples of computer-readable storage media can include, but are not limited to: an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the above. In the present invention, a computer-readable storage medium can be any tangible medium containing or storing a program that can be used by or in combination with an instruction execution system, device or device. In the present invention, a computer-readable signal medium can include a data signal propagated in a baseband or as part of a carrier wave, which carries a computer-readable program code. This propagated data signal can take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above. The computer readable signal medium may also be any computer readable medium other than a computer readable storage medium, which may send, propagate or transmit a program for use by or in conjunction with an instruction execution system, apparatus or device. The program code contained on the computer readable medium may be transmitted using any suitable medium, including but not limited to: wires, optical cables, RF (radio frequency), etc., or any suitable combination of the above.
在一些实施方式中,客户端、服务器可以利用诸如HTTP(HyperTextTransferProtocol,超文本传输协议)之类的任何当前已知或未来研发的网络协议进行通信,并且可以与任意形式或介质的数字数据通信(例如,通信网络)互连。通信网络的示例包括局域网(“LAN”),广域网(“WAN”),网际网(例如,互联网)以及端对端网络(例如,ad hoc端对端网络),以及任何当前已知或未来研发的网络。In some embodiments, the client and the server may communicate using any currently known or future developed network protocol such as HTTP (HyperTextTransferProtocol), and may be interconnected with any form or medium of digital data communication (e.g., a communication network). Examples of communication networks include a local area network ("LAN"), a wide area network ("WAN"), an internet (e.g., the Internet), and a peer-to-peer network (e.g., an ad hoc peer-to-peer network), as well as any currently known or future developed network.
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。The computer-readable medium may be included in the electronic device, or may exist independently without being installed in the electronic device.
可以以一种或多种程序设计语言或其组合来编写用于执行本发明的操作的计算机程序代码,上述程序设计语言包括但不限于面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言——诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)——连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。Computer program code for performing the operations of the present invention may be written in one or more programming languages or a combination thereof, including, but not limited to, object-oriented programming languages, such as Java, Smalltalk, C++, and conventional procedural programming languages, such as "C" or similar programming languages. The program code may be executed entirely on the user's computer, partially on the user's computer, as a separate software package, partially on the user's computer and partially on a remote computer, or entirely on a remote computer or server. In the case of a remote computer, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g., via the Internet using an Internet service provider).
附图中的流程图和框图,图示了按照本发明各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flow chart and block diagram in the accompanying drawings illustrate the possible architecture, function and operation of the system, method and computer program product according to various embodiments of the present invention. In this regard, each square box in the flow chart or block diagram can represent a module, a program segment or a part of a code, and the module, the program segment or a part of the code contains one or more executable instructions for realizing the specified logical function. It should also be noted that in some alternative implementations, the functions marked in the square box can also occur in a sequence different from that marked in the accompanying drawings. For example, two square boxes represented in succession can actually be executed substantially in parallel, and they can sometimes be executed in the opposite order, depending on the functions involved. It should also be noted that each square box in the block diagram and/or flow chart, and the combination of the square boxes in the block diagram and/or flow chart can be implemented with a dedicated hardware-based system that performs the specified function or operation, or can be implemented with a combination of dedicated hardware and computer instructions.
描述于本发明实施例中所涉及到的模块可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,模块的名称在某种情况下并不构成对该模块本身的限定,例如,测试参数获取模块还可以被描述为“获取目标设备对应的设备测试参数的模块”。The modules involved in the embodiments of the present invention may be implemented by software or hardware. The name of a module does not limit the module itself in some cases. For example, a test parameter acquisition module may also be described as a "module for acquiring device test parameters corresponding to a target device".
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。The functions described above herein may be performed at least in part by one or more hardware logic components. For example, without limitation, exemplary types of hardware logic components that may be used include: field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chip (SOCs), complex programmable logic devices (CPLDs), and the like.
在本发明的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。In the context of the present invention, a machine-readable medium may be a tangible medium that may contain or store a program for use by or in conjunction with an instruction execution system, device, or equipment. A machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium. A machine-readable medium may include, but is not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices, or equipment, or any suitable combination of the foregoing. A more specific example of a machine-readable storage medium may include an electrical connection based on one or more lines, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
图4是根据一示例性实施例示出的一种立体视检测控制方法的应用场景图。如图4所示,在该应用场景中,首先,获取客户对象的视力能力文本描述(例如,图4中所示意的C1)和视力测试需求文本描述(例如,图4中所示意的C2);然后,将获取的视力能力文本描述和视力测试需求文本描述输入至部署有立体视检测控制算法的服务器(例如,图4中所示意的S)中,其中所述服务器能够基于立体视检测控制算法对所述视力能力文本描述和所述视力测试需求文本描述进行处理,以确定立体视电子视标的推荐结果。Fig. 4 is an application scenario diagram of a stereoscopic vision detection control method according to an exemplary embodiment. As shown in Fig. 4, in this application scenario, first, a text description of the visual ability of the customer object (for example, C1 shown in Fig. 4) and a text description of the visual test requirements (for example, C2 shown in Fig. 4) are obtained; then, the obtained text description of the visual ability and the text description of the visual test requirements are input into a server (for example, S shown in Fig. 4) deployed with a stereoscopic vision detection control algorithm, wherein the server can process the text description of the visual ability and the text description of the visual test requirements based on the stereoscopic vision detection control algorithm to determine the recommendation result of the stereoscopic electronic sight mark.
以上描述仅为本发明的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本发明中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本发明中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above description is only a preferred embodiment of the present invention and an explanation of the technical principles used. Those skilled in the art should understand that the scope of disclosure involved in the present invention is not limited to the technical solution formed by a specific combination of the above technical features, but should also cover other technical solutions formed by any combination of the above technical features or their equivalent features without departing from the above disclosed concept. For example, the above features are replaced with the technical features with similar functions disclosed in the present invention (but not limited to) by each other.
此外,虽然采用特定次序描绘了各操作,但是这不应当理解为要求这些操作以所示出的特定次序或以顺序次序执行来执行。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本发明的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实施例中。相反地,在单个实施例的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实施例中。In addition, although each operation is described in a specific order, this should not be construed as requiring these operations to be performed in the specific order shown or in a sequential order. Under certain circumstances, multitasking and parallel processing may be advantageous. Similarly, although some specific implementation details are included in the above discussion, these should not be construed as limiting the scope of the present invention. Some features described in the context of a separate embodiment can also be implemented in a single embodiment in combination. On the contrary, the various features described in the context of a single embodiment can also be implemented in multiple embodiments individually or in any suitable sub-combination mode.
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。Although the subject matter has been described in language specific to structural features and/or method logic actions, it should be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or actions described above. On the contrary, the specific features and actions described above are merely example forms of implementing the claims. Regarding the device in the above embodiment, the specific manner in which each module performs the operation has been described in detail in the embodiment related to the method, and will not be elaborated here.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410682979.9A CN118266854B (en) | 2024-05-30 | 2024-05-30 | Stereoscopic vision detection control system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410682979.9A CN118266854B (en) | 2024-05-30 | 2024-05-30 | Stereoscopic vision detection control system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118266854A CN118266854A (en) | 2024-07-02 |
CN118266854B true CN118266854B (en) | 2024-07-23 |
Family
ID=91642444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410682979.9A Active CN118266854B (en) | 2024-05-30 | 2024-05-30 | Stereoscopic vision detection control system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118266854B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110338747A (en) * | 2019-06-13 | 2019-10-18 | 宁波明星科技发展有限公司 | Householder method, storage medium, intelligent terminal and the auxiliary device of eye test |
CN114081436A (en) * | 2021-11-25 | 2022-02-25 | 上海视与力智能科技有限公司 | Human-computer interaction self-service intelligent vision test method based on virtual reality |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3039978A1 (en) * | 2015-08-14 | 2017-02-17 | Essilor Int | METHOD FOR DETERMINING VISUAL AID MEANS IN RELATION TO THE BEHAVIOR OF AN INDIVIDUAL SUBJECT TO A TEST |
ITUB20153680A1 (en) * | 2015-09-16 | 2017-03-16 | Liquidweb Srl | Assistive technology control system and related method |
CN115886719A (en) * | 2023-03-14 | 2023-04-04 | 美视康健(吉林)医疗设备有限公司 | Stereoscopic vision detection control system and detection device |
CN116189865A (en) * | 2023-03-30 | 2023-05-30 | 浙江大学 | Hospital reservation registration management system |
CN117257224A (en) * | 2023-09-21 | 2023-12-22 | 天津医科大学眼科医院 | Cornea topographic map detection method and device |
CN117251699B (en) * | 2023-11-17 | 2024-02-02 | 北京无极慧通科技有限公司 | Medical big data analysis method and system based on artificial intelligence |
CN117952964B (en) * | 2024-03-25 | 2024-06-07 | 重庆医科大学绍兴柯桥医学检验技术研究中心 | Fundus medical image analysis method based on computer vision technology |
-
2024
- 2024-05-30 CN CN202410682979.9A patent/CN118266854B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110338747A (en) * | 2019-06-13 | 2019-10-18 | 宁波明星科技发展有限公司 | Householder method, storage medium, intelligent terminal and the auxiliary device of eye test |
CN114081436A (en) * | 2021-11-25 | 2022-02-25 | 上海视与力智能科技有限公司 | Human-computer interaction self-service intelligent vision test method based on virtual reality |
Also Published As
Publication number | Publication date |
---|---|
CN118266854A (en) | 2024-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112992317B (en) | Medical data processing method, system, equipment and medium | |
JP2023547917A (en) | Image segmentation method, device, equipment and storage medium | |
WO2022253061A1 (en) | Voice processing method and related device | |
US20190147360A1 (en) | Learned model provision method, and learned model provision device | |
CN110852100A (en) | Keyword extraction method, keyword extraction device, electronic equipment and medium | |
CN111767371A (en) | Intelligent question and answer method, device, equipment and medium | |
US20200185073A1 (en) | System and method for providing personalized health data | |
US20210225069A1 (en) | Method and apparatus for generating 3d joint point regression model | |
US20230071661A1 (en) | Method for training image editing model and method for editing image | |
CN113539408B (en) | Medical report generation method, training device and training equipment of model | |
CN113095129B (en) | Gesture estimation model training method, gesture estimation device and electronic equipment | |
WO2023274187A1 (en) | Information processing method and apparatus based on natural language inference, and electronic device | |
CN118247621B (en) | A multimodal image fusion and processing method based on multidimensional attention mechanism | |
CN114281956A (en) | Text processing method and device, computer equipment and storage medium | |
CN116797554A (en) | Image processing method and device | |
WO2023142914A1 (en) | Date recognition method and apparatus, readable medium and electronic device | |
CN117149998A (en) | Intelligent diagnosis recommendation method and system based on multi-objective optimization | |
CN112394924B (en) | Method, device, electronic equipment and medium for generating questioning model | |
CN118266854B (en) | Stereoscopic vision detection control system and method | |
CN112397195A (en) | Method, apparatus, electronic device, and medium for generating physical examination model | |
CN118280606A (en) | Intelligent accompanying equipment control method and system | |
CN112163095A (en) | Data processing method, apparatus, equipment and storage medium | |
Safiya et al. | Computer Vision and voice assisted image captioning framework for visually impaired individuals using deep learning approach | |
CN114328948A (en) | Training method of text standardization model, text standardization method and device | |
CN112035649A (en) | Question-answer model processing method and device, computer equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241122 Address after: 130000 group 93, Yongxing sub District Farm Committee, Nanguan District, Changchun City, Jilin Province Patentee after: Wang Yuexi Country or region after: China Address before: Room 501, Building C1, Phase I, Changchun Beihu Science and Technology Industry, No. 3333 Shengbei Street, Beihu Science and Technology Development Zone, Changchun City, Jilin Province, 130000 Patentee before: Meishi Kangjian (Jilin) medical equipment Co.,Ltd. Country or region before: China |