[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN118218014A - 一种以表面活性剂为碳源的碳基催化剂及其应用 - Google Patents

一种以表面活性剂为碳源的碳基催化剂及其应用 Download PDF

Info

Publication number
CN118218014A
CN118218014A CN202410227419.4A CN202410227419A CN118218014A CN 118218014 A CN118218014 A CN 118218014A CN 202410227419 A CN202410227419 A CN 202410227419A CN 118218014 A CN118218014 A CN 118218014A
Authority
CN
China
Prior art keywords
carbon
based catalyst
graphite
temperature annealing
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410227419.4A
Other languages
English (en)
Inventor
张银巧
何轩雨
左四进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Pharmaceutical University
Original Assignee
China Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Pharmaceutical University filed Critical China Pharmaceutical University
Priority to CN202410227419.4A priority Critical patent/CN118218014A/zh
Publication of CN118218014A publication Critical patent/CN118218014A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种以表面活性剂为碳源的碳基催化剂及其应用,所述碳基催化剂是先以尿素和双氰胺为碳和氮源前驱体制得石墨相氮化碳(g‑C3N4),再与表面活性剂混合后通过高温退火聚合制得。本发明以尿素和双氰胺为碳和氮源前驱体,先合成石墨相氮化碳(g‑C3N4)再与表面活性剂聚醚F127混合通过搅拌、超声、高温退火聚合的方式合成非金属碳基催化剂,该催化剂可以活化氧化剂实现快速去除水体中有机污染物。

Description

一种以表面活性剂为碳源的碳基催化剂及其应用
技术领域
本发明属于材料化学技术领域,具体涉及一种以表面活性剂为碳源的碳基催化剂及其应用。
背景技术
近年来,由于种植、制药和市政等来源的废水排放,包括磺胺甲噁唑(Sulfamethoxazole)在内的磺胺类药物在各种地表水体中频频被检测到。抗生素及其转化产物严重破坏生态系统,最终威胁人类。基于过硫酸盐的高级氧化工艺在去除难降解有机污染物方面显示出优异的氧化效率。与大多数金属氧化物催化的过硫酸盐活化产生自由基不同,碳催化剂触发过硫酸盐的非自由基活化,它不太容易受到复杂水基质中非目标化合物的干扰(如自由基清除),并且不会释放有毒金属。
碳基催化剂的出现一定程度上弥补了金属类催化剂的短板。一系列碳基催化剂譬如还原氧化石墨烯、碳纳米管、纳米金刚石等被开发用于活化过硫酸盐去除水体中的新兴污染物,如内分泌干扰物、抗生素类药物、染料类废水等的降解,展示了其不同于金属催化剂的良好的pH稳定性和靶标污染物降解的选择性。但目前已有的非金属碳基催化剂相比较金属催化剂来说,还存在催化活性相对较低、催化位点易失活等问题。
发明内容
本发明的目的是提供了一种以表面活性剂为碳源的碳基催化剂,先以尿素和双氰胺为碳和氮源前驱体制得石墨相氮化碳(g-C3N4),再与表面活性剂混合后通过高温退火聚合制得。
进一步地,所述表面活性剂为聚醚F127。
进一步地,所述碳基催化剂采用以下步骤制备:
步骤1,将尿素和双氰胺混合均匀放置管式炉中,在惰性气体氛围下高温退火聚合得到石墨相氮化碳g-C3N4
步骤2,将石墨相氮化碳g-C3N4与聚醚F127混合,加入去离子水搅拌,得到粘稠状混合物;
步骤3,将步骤2的混合物超声,干燥使水分完全挥发后将所得固体研磨,之后在惰性气体氛围下高温退火聚合,得到所述碳基催化剂。
进一步地,步骤1中,尿素和双氰胺按5:1的比例进行混合,高温退火的条件为300℃-600℃、2-4h。优选地,高温退火的条件为550℃、2h。
进一步地,步骤2中,石墨相氮化碳g-C3N4、聚醚F127、去离子水的用量比为1g:0.1g-3g:5mL。
进一步地,步骤3中,干燥的条件为60℃-90℃、8-12h,高温退火的条件为600℃-900℃、3h。优选地,干燥的条件为80℃、12h,高温退火的条件为800℃、2h。
本发明的目的之二是提供上述碳基催化剂在催化降解水体污染物中的应用。
进一步地,所述碳基催化剂用于催化氧化剂降解水体污染物。
进一步地,所述氧化剂为过氧单磺酸盐或过二硫酸盐。
更进一步地,所述污染物为磺胺甲噁唑。
本发明以尿素和双氰胺为碳和氮源前驱体,先合成石墨相氮化碳(g-C3N4)再与表面活性剂聚醚F127混合通过搅拌、超声、高温退火聚合的方式合成非金属碳基催化剂。实验结果表明,F127不仅可以作为碳源,而且可以有效地调节孔径分布,使形貌变为表面不平整和多层折叠结构,晶格条纹更加扭曲无序,表面的凹凸折叠结构可以有效地增加比表面积,在碳网的表面上出现了大量的缺陷,并且有大孔和介孔结构形成。通过活化过氧单磺酸盐(PMS=0.1mM)来去除磺胺甲噁唑抗生素的性能明显增强,伪一级反应动力学常数最大达到0.21min-1,是不掺杂F127的碳基材料的24.47倍。该催化剂去除有机污染物的性能在已报道的含其他的碳基催化剂活化过硫酸盐去除有机污染物体系中也占有相当优势。
本发明具有以下的有益效果:
(1)不同比例聚醚F127掺杂而成的不含金属的碳基催化剂活化过硫酸盐体系具有不一样的性能。当其比例越多时,其活性位点增加,磺酸甲噁唑抗生素的去除效果越好。当其碳掺杂过多时,其活性位点堵塞,其降解效果又呈现下降趋势,通过表征手段证实,掺杂的F127的NC-X,形貌变为表面不平整和多层折叠结构,晶格条纹更加扭曲无序,表面的凹凸折叠结构可以有效地增加比表面积,产生更多的缺陷及其活性位点,有利于有机污染物的吸附和去除。
(2)该方法合成的以非离子表面活性剂作为碳基的催化剂材通过活化过氧单磺酸盐能够快速去除磺胺甲噁唑抗生素污染的水体,最快反应速率是10min之内实现2.5mg/L的磺胺甲噁唑溶液90%的去除,其伪一级反应动力学常数为0.21min-1,相比原g-C3N4制备的NC(1:0),是其反应速率的24.47倍,可知用F127作为碳源进行改性氮化碳有相当优势。
(3)较少的氧化剂投加量,本实验中氧化剂的投加量为0.1mM过氧单磺酸钾(PMS)。少量的氧化剂的投加,不仅节约了反应成本,而且减少了对催化剂的损耗,有利于催化剂的重复运行。
(4)比较相似条件下合成的以葡萄糖为碳源掺杂g-C3N4的L-NC-V与NC-X和原始不掺杂的NC相比,其性能远优越于其余碳掺杂的材料。
(5)该催化剂NC-1在较宽的pH范围内(3-9)均能很好的降解磺胺甲噁唑,表明其F127做碳源的催化剂有很好的应用范围。
附图说明
图1为掺杂F127为1g合成的碳基催化剂的形貌图和X-射线衍射图。
图2为掺杂不同比例F127合成的碳基催化剂的拉曼图谱以及NC与NC-1的C1s图谱。
图3为使用不同比例的F127合成的碳基催化剂对磺胺甲噁唑抗生素在不同pH条件下的去除情况。同时,还展示了与掺杂葡萄糖合成的碳基催化剂(L-NC-V)以及未掺杂F127合成的碳基催化剂(NC)在去除磺胺甲噁唑抗生素方面的性能比较。
具体实施方式
下面将结合实施例对本发明的优选实施方式进行详细说明。需要理解的是以下实施例的给出仅是为了起到说明的目的,并不是用于对本发明的范围进行限制。本领域的技术人员在不背离本发明的宗旨和精神的情况下,可以对本发明进行各种修改和替换。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
非金属碳基催化剂的制备方法,包括以下步骤:
(1)将5g尿素和1g双氰胺混合均匀放置管式炉中,在惰性气体氮气保护的氛围下550℃高温退火2h聚合得到黄色g-C3N4
(2)将1g黄色g-C3N4与(0g、0.7g、1g、2g、3g)聚醚F127混合,再加5mL去离子水搅拌,使其变成黄色粘稠状混合物。
(3)将混合物进行超声,再放烘箱80℃干燥12h,使水分完全挥发,将所得固体充分研磨,在惰性气体氮气保护的氛围下800℃高温退火3小时聚合,所得固体冷却后得到碳基催化剂。
在不同的F127比例下(0g、0.7g、1g、2g、3g)掺杂合成的混合物在高温退火聚合3小时,分别得到非金属碳基催化剂,在只有g-C3N4的催化剂退火聚合3小时得到的非金属碳基催化剂简称NC,在F127为0.7g制备的催化剂退火聚合3小时得到的非金属碳基催化剂简称NC-0.7,在在F127为1g制备的催化剂退火聚合3小时得到的非金属碳基催化剂简称NC-1,在在F127为2g制备的催化剂退火聚合3小时得到的非金属碳基催化剂简称NC-2,在F127为3g制备的催化剂退火聚合3小时得到的非金属碳基催化剂简称NC-3。
下文中,NC-X表示掺杂不同比例F127合而成的催化剂。
图1中a是NC-1的透射电镜图(TEM),碳源被F127取代,形貌变为表面不平整和多层折叠结构,晶格条纹更加扭曲无序。F127不仅可以作为碳源,而且可以有效地调节孔径分布。表面的凹凸折叠结构可以有效地增加比表面积,产生更多的活性位点,气体的释放持续产生缺陷。F127被热解以形成高导电性的碳网络。同时,气体在碳基体中产生大量纳米气泡,促使周围原子拉伸,表面曲率增加。碳网表面出现大量缺陷,这些缺陷的附近可以在碳网表面上提供额外的边缘,并且总体上增加暴露边缘的数量。图1中b是掺杂不同比例的F127合成的碳基催化剂的拉曼图谱,材料NC-X拉曼光谱显示了两个典型的D和G波段,D带(≈1350cm-1)和G带(约≈1580cm-1)分别对应于sp2键合碳原子的缺陷和振动。它们的强度比用于评估碳材料中缺陷和无序结构的比例。原始g-C3N4下制备的NC(1:0)其强度比最低,为0.94,随F127比例增加,其强度比增加,但是当g-C3N4与F127的比例超过1g时,其强度比开始降低,这表明F127在碳化过程中产生了更有效的缺陷。更多的活性位点暴露出来,但是当加入过量就会使活性位点降低。
图2中a是不同比例的F127合成的催化剂的X-射线衍射图,从图上可以看出,该材料在2θ约为13°25°和44°表现出石墨烯的(110)(002)和(100)面,且不含有金属的衍射峰,证实该系列材料不含有金属颗粒成分。其中(110)面在其F127比例为1g时,其衍射角逐渐向高度数偏移,表明了碳含量的升高可能会使其层间距减小。图2中b和c是未掺杂F127的材料NC和掺杂1g F127的材料NC-1的C1s谱图,其中sp3水平反映了石墨烯的缺陷程度,可以看出掺杂F127的NC-1比未掺杂F127的NC的sp3的含量从20.63%增加到26.68%,说明掺杂F127使碳基材料缺陷增加,暴露了更多的活性位点。
取合成好的碳基催化剂0.1g/L加入总体积为50mL、浓度为2.5mg/L的磺胺甲噁唑抗生素污水中;搅拌30min,以取得催化剂对污染物的吸附脱附平衡;平衡之后,加入0.1mM的过氧单磺酸钾,反应开始计时;在预设的时间点取样0.8mL加入0.8mL的硫代硫酸钠溶液中(浓度为1.6g/L),以终止反应;将样品进入高效液相色谱检测残留的磺胺甲噁唑抗生素浓度,以确定去除效率。
图3中a是五种不同比例F127合成碳基催化剂去除磺胺甲噁唑抗生素的性能曲线图。由图可知,NC-0表现出非常惰性的催化活性,对有机污染物基本没有去除性能,随着F127比例的升高,NC-X去除磺胺甲噁唑抗生素的性能增加,NC-1达到最佳值。当其比例超过限额后又呈现下降趋势,NC-X五种催化剂对四环素抗生素去除伪一级动力学常数依次为0.008、0.018、0.808、0.086、0.086min-1。该反应速率常数在已有文献报道的关于碳基材料活化过硫酸盐对有机污染物去除体系当中表现出一定的优势。
图3中c是F127比例为1的NC-1在不同pH条件下去除磺胺甲噁唑抗生素的性能图。取合成好的碳基催化剂0.1g/L加入总体积为50mL、浓度为2.5mg/L的磺胺甲噁唑抗生素污水中,其中各个污水的pH呈现等梯度(pH=3、5、7、9、11);然后搅拌30min,以取得催化剂对污染物的吸附脱附平衡;平衡之后,加入0.1mM的过氧单磺酸钾,反应开始计时;在预设的时间点取样0.8mL加入0.8mL的硫代硫酸钠溶液中(浓度为1.6g/L),以终止反应,可知其NC-1可以在宽范围下也可以有很好的降解性能。
在相同条件下合成的以葡萄糖为碳源掺杂g-C3N4的L-NC-V,合成过程为:尿素和双氰胺(比例为1:5)为碳和氮源前驱体,先合成石墨相氮化碳(g-C3N4)再与葡萄糖(比例为1:1)混合通过搅拌、超声、高温(800℃,2h)退火聚合的方式合成非金属碳基催化剂L-NC-V。取L-NC-V与NC-1,还有不掺杂F127的NC进行对比实验,实验过程为:取合成好的碳基催化剂(L-NC-V、NC-1、NC)0.1g/L加入总体积为50mL、浓度为2.5mg/L的磺胺甲噁唑抗生素污水中;搅拌30min,以取得催化剂对污染物的吸附脱附平衡;平衡之后,加入0.1mM的过氧单磺酸钾,反应开始计时;在预设的时间点取样0.8mL加入0.8mL的硫代硫酸钠溶液中(浓度为1.6g/L),以终止反应;将样品进入高效液相色谱检测残留的磺胺甲噁唑抗生素浓度,以确定去除效率。如图3中d所示,加F127的催化剂性能远优越于其余碳掺杂的材料,可知其优越性。

Claims (10)

1.一种碳基催化剂,其特征在于,先以尿素和双氰胺为碳和氮源前驱体制得石墨相氮化碳,再与表面活性剂混合后通过高温退火聚合制得。
2.根据权利要求1所述的碳基催化剂,其特征在于,所述表面活性剂为聚醚F127。
3.根据权利要求2所述的碳基催化剂,其特征在于,所述碳基催化剂采用以下步骤制备:
步骤1,将尿素和双氰胺混合均匀放置管式炉中,在惰性气体氛围下高温退火聚合得到石墨相氮化碳g-C3N4
步骤2,将石墨相氮化碳g-C3N4与聚醚F127混合,加入去离子水搅拌,得到粘稠状混合物;
步骤3,将步骤2的混合物超声,干燥使水分完全挥发后将所得固体研磨,之后在惰性气体氛围下高温退火聚合,得到所述碳基催化剂。
4. 根据权利要求3述的碳基催化剂,其特征在于,步骤1中,尿素和双氰胺按5:1的比例进行混合,高温退火的条件为300℃-600℃、2-4 h。
5. 根据权利要求3所述的碳基催化剂,其特征在于,步骤2中,石墨相氮化碳g-C3N4、聚醚F127、去离子水的用量比为1g:0.1g-3g:5 mL。
6. 根据权利要求3所述的碳基催化剂,其特征在于,步骤3中,干燥的条件为60℃-90℃、8-12 h,高温退火的条件为600℃-900℃、3h。
7.权利要求1至6任一项所述的碳基催化剂在催化降解水体污染物中的应用。
8.根据权利要求7所述的应用,其特征在于,所述碳基催化剂用于催化氧化剂降解水体污染物。
9.根据权利要求8所述的应用,其特征在于,所述氧化剂为过氧单磺酸盐或过二硫酸盐。
10.根据权利要求9所述的应用,其特征在于,所述污染物为磺胺甲噁唑。
CN202410227419.4A 2024-02-29 2024-02-29 一种以表面活性剂为碳源的碳基催化剂及其应用 Pending CN118218014A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410227419.4A CN118218014A (zh) 2024-02-29 2024-02-29 一种以表面活性剂为碳源的碳基催化剂及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410227419.4A CN118218014A (zh) 2024-02-29 2024-02-29 一种以表面活性剂为碳源的碳基催化剂及其应用

Publications (1)

Publication Number Publication Date
CN118218014A true CN118218014A (zh) 2024-06-21

Family

ID=91512117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410227419.4A Pending CN118218014A (zh) 2024-02-29 2024-02-29 一种以表面活性剂为碳源的碳基催化剂及其应用

Country Status (1)

Country Link
CN (1) CN118218014A (zh)

Similar Documents

Publication Publication Date Title
Tian et al. Enhanced adsorption and photocatalytic activities of ultrathin graphitic carbon nitride nanosheets: Kinetics and mechanism
Kang et al. Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants
Yue et al. Constructing photocatalysis-self-Fenton system over a defective twin C3N4: In-situ producing H2O2 and mineralizing organic pollutants
Zhang et al. Three-dimensional MoS2/reduced graphene oxide aerogel as a macroscopic visible-light photocatalyst
CN109731605B (zh) 一种金属复合原位氮掺杂碳微球催化剂及其应用
CN108355702B (zh) 一种大比表面积碳缺陷石墨相氮化碳光催化剂及其制备方法和应用
CN109772402B (zh) 类芬顿反应催化剂、制备方法、降解有机污水的方法及其应用
CN112536054B (zh) 一种碳基非均相催化剂及制备方法、污染物降解方法
CN111790386A (zh) 一种利用自来水厂混凝污泥制备催化剂的方法及应用
CN111437859B (zh) 一种高效的非金属碳基催化剂及其制备方法和应用
CN113546626B (zh) 一种纳米零价铁铜碳微球材料及其制备方法
Kang et al. Polymeric structure optimization of g-C3N4 by using confined argon-assisted highly-ionized ammonia plasma for improved photocatalytic activity
Yu et al. Preparation of BiPO4-polyaniline hybrid and its enhanced photocatalytic performance
CN110947418B (zh) 一种吸附和光催化位点分离的CTFs/GO复合材料及其制备方法和应用
CN112517042B (zh) 一种氮掺杂类芬顿催化剂及其制备方法与应用
CN113617366A (zh) 一种用于降解废水有机污染物的材料
CN113000062A (zh) 氮掺杂碳材料及其制备方法和应用
Ao et al. Sheet-like graphitized glucose-based mesoporous carbon for aqueous adsorption of tetracycline antibiotic
CN118218014A (zh) 一种以表面活性剂为碳源的碳基催化剂及其应用
Li et al. Enhanced ozonation of pollutants by MgO nanoclusters/sewage sludge-derived hierarchical porous carbon: experimental and theoretical study
CN116060005B (zh) 一种催化氧化催化材料及其制备方法和应用
CN116174009A (zh) 一种氮硫掺杂多孔碳催化剂及其应用
CN113336310B (zh) 一种以含钴的氮掺杂有序介孔碳为催化剂的催化臭氧水处理方法
Jin et al. The construction of a palladium–hydrogen accelerated catalytic Fenton system enhanced by UiO-66 (Zr)
Feng et al. Improved photodegradation efficiency of 2, 4-DCP through a combined Q 3 Fe (III)-decorated porous gC 3 N 4/H 2 O 2 system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination