CN118076299A - Improving cardiac ultrasound imaging - Google Patents
Improving cardiac ultrasound imaging Download PDFInfo
- Publication number
- CN118076299A CN118076299A CN202280067856.3A CN202280067856A CN118076299A CN 118076299 A CN118076299 A CN 118076299A CN 202280067856 A CN202280067856 A CN 202280067856A CN 118076299 A CN118076299 A CN 118076299A
- Authority
- CN
- China
- Prior art keywords
- echo signal
- parameters
- ultrasound
- image
- transmit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012285 ultrasound imaging Methods 0.000 title claims description 5
- 230000000747 cardiac effect Effects 0.000 title description 9
- 238000002604 ultrasonography Methods 0.000 claims abstract description 126
- 238000012545 processing Methods 0.000 claims abstract description 60
- 210000003484 anatomy Anatomy 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 49
- 230000011218 segmentation Effects 0.000 claims abstract description 32
- 238000003384 imaging method Methods 0.000 claims abstract description 27
- 230000005540 biological transmission Effects 0.000 claims abstract description 23
- 239000000523 sample Substances 0.000 claims abstract description 16
- 238000013329 compounding Methods 0.000 claims description 20
- 238000004590 computer program Methods 0.000 claims description 5
- 238000012935 Averaging Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 230000006872 improvement Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000002592 echocardiography Methods 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- 238000001994 activation Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000017531 blood circulation Effects 0.000 description 4
- 230000009849 deactivation Effects 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Landscapes
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
本发明提供一种对心脏进行成像的方法。控制超声探头以接收使用第一发射参数发射的来自心脏的第一反射超声回波信号,并使用第一回波信号处理参数根据所述第一反射超声回波信号来创建所述心脏的超声图像。对所述超声图像执行基于模型的分割,以识别心脏的解剖结构,并针对具有信息漏失区的至少一个解剖结构,使用所述分割以从所识别的解剖结构进行外推,以识别所述信息漏失区在所述图像内的位置。使用专门针对所述至少一个解剖结构或针对所述至少一个解剖结构的所述信息漏失区的第二不同的回波信号处理参数和/或第二不同的发射参数来获得所述心脏的下一超声图像,由此改善至少针对所述信息漏失区的信噪比。
The present invention provides a method for imaging a heart. An ultrasound probe is controlled to receive a first reflected ultrasound echo signal from the heart transmitted using a first transmission parameter, and an ultrasound image of the heart is created based on the first reflected ultrasound echo signal using a first echo signal processing parameter. Model-based segmentation is performed on the ultrasound image to identify the anatomical structure of the heart, and for at least one anatomical structure having an information loss region, the segmentation is used to extrapolate from the identified anatomical structure to identify the location of the information loss region within the image. A next ultrasound image of the heart is obtained using a second different echo signal processing parameter and/or a second different transmission parameter specifically for the at least one anatomical structure or for the information loss region of the at least one anatomical structure, thereby improving the signal-to-noise ratio at least for the information loss region.
Description
技术领域Technical Field
本发明涉及心脏超声成像领域。尤其地,本发明涉及改善心脏超声图像的信噪比。The present invention relates to the field of cardiac ultrasound imaging, and in particular to improving the signal-to-noise ratio of cardiac ultrasound images.
背景技术Background technique
侧壁在心脏B超图像中的可视性是心脏超声成像中的关键图像质量分量。在许多心脏超声图像中,侧壁由于低的信噪比(SNR)而不可见。在图像形成过程中存在改善SNR的已知技术,它们中的大多数都涉及在某个维度上的平均化,例如使用每条扫描线多个发射脉冲来调节接收波束成形(例如高程平面的数目)以及调节回顾性发射波束成形。The visibility of the side walls in cardiac B-ultrasound images is a key image quality component in cardiac ultrasound imaging. In many cardiac ultrasound images, the side walls are not visible due to low signal-to-noise ratio (SNR). There are known techniques to improve SNR in the image formation process, most of which involve averaging in some dimension, such as using multiple transmit pulses per scan line to adjust the receive beamforming (e.g., the number of elevation planes) and adjusting the retrospective transmit beamforming.
然而,当这些技术应用于超声图像时,存在计算复杂度的显著增加,这有可能会导致帧率降低。这些缺陷可能阻碍了这些技术被包括为默认图像形成模式的部分。因此,存在对一种用于改善心脏超声图像的SNR的改进的方法的需要。However, when these techniques are applied to ultrasound images, there is a significant increase in computational complexity, which may result in a reduction in frame rate. These drawbacks may prevent these techniques from being included as part of the default image formation mode. Therefore, there is a need for an improved method for improving the SNR of cardiac ultrasound images.
US2021/128114 A1公开了一种用于基于超声图像分析自动调节波束成形器参数以增强超声图像采集的方法。US2021/128114 A1 discloses a method for automatically adjusting beamformer parameters based on ultrasound image analysis to enhance ultrasound image acquisition.
发明内容Summary of the invention
本发明由权利要求限定。The invention is defined by the claims.
根据本发明一方面的范例,提供一种对心脏进行成像的方法,包括:According to an example of one aspect of the present invention, there is provided a method for imaging a heart, comprising:
控制超声探头,以接收来自心脏的第一反射超声回波信号,其中,所述第一反射超声回波信号是使用第一发射参数发射的;controlling the ultrasound probe to receive a first reflected ultrasound echo signal from the heart, wherein the first reflected ultrasound echo signal is transmitted using a first transmission parameter;
使用第一回波信号处理参数根据所述第一反射超声回波信号来创建心脏的超声图像;creating an ultrasound image of the heart from the first reflected ultrasound echo signal using first echo signal processing parameters;
对所述超声图像执行基于模型的分割,以识别所述心脏的解剖结构;performing a model-based segmentation on the ultrasound image to identify anatomical structures of the heart;
针对具有信息漏失区的至少一个解剖结构,使用所述分割以从所识别的解剖结构进行外推,以识别所述信息漏失区在所述图像内的位置;以及for at least one anatomical structure having a dropout region, using the segmentation to extrapolate from the identified anatomical structure to identify a location of the dropout region within the image; and
使用专门针对所述至少一个解剖结构或针对所述至少一个解剖结构的所述信息漏失区的第二不同的回波信号处理参数和/或第二不同的发射参数,获得心脏的下一超声图像,由此改善至少针对所述信息漏失区的信噪比。A next ultrasound image of the heart is obtained using second different echo signal processing parameters and/or second different transmission parameters specifically for the at least one anatomical structure or for the information loss area of the at least one anatomical structure, thereby improving the signal-to-noise ratio at least for the information loss area.
信息漏失区可以是解剖结构中针对其所接收到的超声信号相对较弱的区。信息漏失区(即信息漏失区域)可以为超声图像中SNR小于15dB或小于10dB的区域。The information loss area may be an area in the anatomical structure for which the received ultrasound signal is relatively weak. The information loss area (ie, information loss region) may be an area in the ultrasound image where the SNR is less than 15 dB or less than 10 dB.
通常,在其中侧壁不可见(或几乎不可见)的超声图像中,侧壁是图像中需要SNR改善的唯一区域,因为图像的剩余部分具有足够的SNR。如果侧壁的位置是先验已知的,则可以将用于改善SNR的平均化技术(即通过使用不同的信号处理参数)选择性地应用于图像中包含侧壁的区域。这将会限制使用这些技术的缺点(即降低的帧率、增加的计算复杂度)。然而,在执行扫描之前,可能难以确定侧壁会在图像中的哪里,因为这会因对象而异,并且将取决于超声探头相对于对象的心脏的位置和取向。Typically, in ultrasound images where the sidewalls are not visible (or barely visible), the sidewalls are the only areas in the image that require SNR improvement, since the rest of the image has sufficient SNR. If the location of the sidewalls is known a priori, averaging techniques for improving SNR (i.e., by using different signal processing parameters) can be selectively applied to areas of the image that contain the sidewalls. This will limit the disadvantages of using these techniques (i.e., reduced frame rate, increased computational complexity). However, before performing a scan, it may be difficult to determine where the sidewalls will be in the image, since this will vary from subject to subject and will depend on the position and orientation of the ultrasound probe relative to the subject's heart.
因此,基于模型的分割可以被用于在心脏的超声图像中识别解剖结构,例如侧壁。基于模型的分割可以能够对具有低SNR的解剖结构的区(即超声图像中几乎不可见的区)进行分割。换言之,考虑到解剖结构的其他(可见)区,则基于模型的分割可以能够预测解剖结构的区(具有随机失活)的位置。Thus, model-based segmentation can be used to identify anatomical structures, such as the lateral wall, in ultrasound images of the heart. Model-based segmentation can be able to segment regions of anatomical structures with low SNR (i.e., regions that are barely visible in the ultrasound image). In other words, model-based segmentation can be able to predict the location of regions of anatomical structures (with random deactivation) given other (visible) regions of the anatomical structure.
基于模型的分割方法的中心假设在于,感兴趣结构具有朝向特定形状的趋势。换言之,分割偏向于特定形状。这在心脏成像的情况下是尤其感兴趣的,因为无论对象是谁,心脏都预期具有特定形状。因此,可以寻求一种针对基于模型的分割表征心脏的形状(及其变型)的概率模型。在分割图像时,使用该模型作为先验信息来施加约束。这样的任务可以涉及训练范例与共同姿势的配准、配准样本的变型的概率表示,以及模型与图像之间的统计推断。The central assumption of model-based segmentation methods is that the structure of interest has a tendency towards a specific shape. In other words, the segmentation is biased towards a specific shape. This is of particular interest in the case of cardiac imaging, because the heart is expected to have a specific shape regardless of the subject. Therefore, a probabilistic model that characterizes the shape of the heart (and its variations) for model-based segmentation can be sought. This model is used as prior information to impose constraints when segmenting the image. Such a task can involve the registration of training examples with common poses, the probabilistic representation of variations of the registered samples, and statistical inference between the model and the image.
例如,Philips HeartModel(TM)是能够在超声B模式图像中识别并标记心脏的结构的基于模型的分割算法。因此,可以使用默认图像形成方案(即第一回波信号处理参数)执行初始扫描,以创建针对心脏模型的输入。然后,使用心脏模型的基于模型的分割可以监测图像中含有侧壁的区域,或者如果侧壁不可见的话,可以考虑到其他心脏结构来预测侧壁的预期位置。For example, the Philips HeartModel(TM) is a model-based segmentation algorithm that can identify and label structures of the heart in ultrasound B-mode images. Thus, an initial scan can be performed using a default imaging scheme (i.e., first echo signal processing parameters) to create an input for the heart model. Model-based segmentation using the heart model can then monitor the image for areas containing the sidewall, or if the sidewall is not visible, the expected location of the sidewall can be predicted taking into account other heart structures.
随机失活的位置可以基于具有低SNR的基于模型的分割的输出(即解剖结构的位置)来识别。The locations of random deactivations may be identified based on the output of the model-based segmentation (ie, the locations of anatomical structures) having low SNR.
可以选择第二发射参数和/或第二回波信号处理参数,以由此分别相对于第一发射参数和/或第一回波信号处理参数来改善超声图像的SNR。The second transmit parameters and/or the second echo signal processing parameters may be selected to thereby improve the SNR of the ultrasound image relative to the first transmit parameters and/or the first echo signal processing parameters, respectively.
通常,信息漏失区可以覆盖超声图像的约10%-25%的扫描线。因此,针对超声图像中该小区具有不同的发射/接收参数不会像针对哪个超声图像使用不同的发射/接收参数那么多地影响计算资源和/或帧率。Typically, the information dropout area may cover about 10%-25% of the scan lines of the ultrasound image. Therefore, having different transmit/receive parameters for this small area in the ultrasound image does not affect computing resources and/or frame rate as much as using different transmit/receive parameters for which ultrasound image.
使用第二不同的回波信号处理参数和/或第二不同的发射参数获得心脏的下一超声图像可以仅专门针对至少一个解剖结构,或仅针对信息漏失区。Acquiring a next ultrasound image of the heart using second different echo signal processing parameters and/or second different transmit parameters may be specifically targeted only at least one anatomical structure, or only at information dropout areas.
获得心脏的下一超声图像可以包括控制超声探头以接收第二反射超声回波信号,其中,第二反射超声回波信号是使用第二发射参数发射的,以及任选地,对第二反射超声回波信号应用第二不同的回波信号处理参数。Obtaining a next ultrasound image of the heart may include controlling the ultrasound probe to receive a second reflected ultrasound echo signal, wherein the second reflected ultrasound echo signal is transmitted using second transmission parameters, and optionally, applying second different echo signal processing parameters to the second reflected ultrasound echo signal.
第二不同的发射参数可以包括与第一发射参数相比不同的波束成形参数,其中,所述第二发射参数相对于第一发射参数包括以下中的一个或多个:The second different transmit parameters may include different beamforming parameters compared to the first transmit parameters, wherein the second transmit parameters include one or more of the following relative to the first transmit parameters:
每条扫描线增加的发射脉冲数目;The number of transmitted pulses per scan line is increased;
增大的发射孔径;Increased transmit aperture;
增大的扫描线密度;Increased scan line density;
不同的脉冲频率;以及Different pulse frequencies; and
不同的脉冲波形。Different pulse shapes.
获得心脏的下一超声图像可以包括将第二不同的回波信号处理参数应用于第一反射超声回波信号。Obtaining a next ultrasound image of the heart may include applying second, different echo signal processing parameters to the first reflected ultrasound echo signal.
第一回波信号处理参数和第二回波信号处理参数可以包括用于回顾性动态发射聚焦的参数。例如,它们可以包括每条扫描线组合的发射波束的数目。针对第二回波信号处理参数的组合的发射波束的数目可以大于针对第一回波信号处理参数的组合的发射波束的数目。The first echo signal processing parameter and the second echo signal processing parameter may include parameters for retrospective dynamic transmit focusing. For example, they may include the number of transmit beams for each scan line combination. The number of transmit beams for the combination of the second echo signal processing parameter may be greater than the number of transmit beams for the combination of the first echo signal processing parameter.
用于回顾性动态发射聚焦的参数可以包括所谓的每个发射波束中“多线输入”的数目。针对第二回波信号处理参数的多线输入的数目可以大于针对第一回波信号处理参数的多线输入的数目。形成多线可以是回顾性动态发射聚焦的先决条件。需要增加多线的数目,以增加每条扫描线的发射波束的数目。The parameters for retrospective dynamic transmit focusing may include the number of so-called "multiline inputs" in each transmit beam. The number of multiline inputs for the second echo signal processing parameters may be greater than the number of multiline inputs for the first echo signal processing parameters. Forming multilines may be a prerequisite for retrospective dynamic transmit focusing. The number of multilines needs to be increased to increase the number of transmit beams per scan line.
第一回波信号处理参数和第二回波信号处理参数可以包括用于高程空间复合的参数。例如,它们可以包括高程平面的数目。针对第二回波信号处理参数的高程平面的数目可以大于针对第一回波信号处理参数的高程平面的数目。The first echo signal processing parameter and the second echo signal processing parameter may include parameters for elevation spatial compounding. For example, they may include the number of elevation planes. The number of elevation planes for the second echo signal processing parameter may be greater than the number of elevation planes for the first echo signal processing parameter.
第一回波信号处理参数和第二回波信号处理参数可以包括频率复合参数,并且针对第二回波信号处理参数的频率复合参数可以被选择为使得它们改善信息漏失区的对比度-噪声比。The first echo signal processing parameters and the second echo signal processing parameters may include frequency compounding parameters, and the frequency compounding parameters for the second echo signal processing parameters may be selected such that they improve the contrast-to-noise ratio of the information dropout region.
第一回波信号处理参数和第二回波信号处理参数可以包括空间复合参数,并且针对第二回波信号处理参数的空间复合参数可以被选择为使得它们改善信息漏失区的对比度-噪声比。The first echo signal processing parameters and the second echo signal processing parameters may include spatial compounding parameters, and the spatial compounding parameters for the second echo signal processing parameters may be selected such that they improve the contrast-to-noise ratio of the information dropout region.
识别信息漏失区在图像内的位置可以包括使用通过基于模型的分割生成的置信量度。Identifying locations of information dropout regions within the image may include using a confidence metric generated by the model-based segmentation.
至少一个解剖结构可以包括侧心壁。The at least one anatomical structure may include a lateral heart wall.
本发明还提供一种包括计算机程序代码的计算机程序,其适于当所述程序在计算机上运行时,实施前述对心脏进行成像的方法。The present invention also provides a computer program comprising computer program code, which is suitable for implementing the aforementioned method of imaging the heart when the program is run on a computer.
本发明还提供一种用于对心脏进行成像的超声成像系统,包括:The present invention also provides an ultrasonic imaging system for imaging a heart, comprising:
超声探头,其用于使用第一发射参数来发射第一超声信号,并接收来自心脏的第一反射超声回波信号;An ultrasound probe configured to transmit a first ultrasound signal using a first transmission parameter and receive a first reflected ultrasound echo signal from the heart;
图像创建系统,其用于使用第一回波信号处理参数来创建所述心脏的超声图像;an image creation system for creating an ultrasound image of the heart using first echo signal processing parameters;
基于模型的分割单元,其用于根据超声图像来识别所述心脏的解剖结构,其中,所述基于图像的分割单元适于从所识别的解剖结构进行外推,以识别至少一个解剖结构的信息漏失区在图像内的位置;以及a model-based segmentation unit for identifying anatomical structures of the heart based on the ultrasound image, wherein the image-based segmentation unit is adapted to extrapolate from the identified anatomical structures to identify locations of at least one anatomical structure dropout region within the image; and
控制器,其适于选择专门针对所述至少一个解剖结构或针对所述解剖结构的所述信息漏失区的第二不同的回波信号处理参数和/或第二不同的发射参数,由此改善至少针对信息漏失区的信噪比。A controller is adapted to select second different echo signal processing parameters and/or second different transmission parameters specifically for the at least one anatomical structure or for the information dropout region of the anatomical structure, thereby improving the signal-to-noise ratio at least for the information dropout region.
控制器可以适于控制所述超声探头以使用第二不同的发射参数来发射第二超声信号并接收来自心脏的第二反射超声回波信号,以及任选地,将所述第二不同的回波信号处理参数应用于所述第二反射超声回波信号。The controller may be adapted to control the ultrasound probe to transmit a second ultrasound signal using second different transmission parameters and receive a second reflected ultrasound echo signal from the heart, and optionally, to apply the second different echo signal processing parameters to the second reflected ultrasound echo signal.
控制器可以适于将第二不同的回波信号处理参数应用于第一反射超声回波信号。The controller may be adapted to apply second, different echo signal processing parameters to the first reflected ultrasound echo signal.
基于图像的分割单元可以适于根据所识别出的解剖结构进行外推,以通过使用由基于模型的分割生成的置信量来识别信息漏失区在图像内的位置。The image-based segmentation unit may be adapted to perform extrapolation based on the identified anatomical structures to identify locations of information dropout regions within the image by using the confidence volume generated by the model-based segmentation.
根据后文描述的(一个或多个)实施例,本发明的这些及其他方面将是明显的,并将参考这些实施例得以阐明。These and other aspects of the invention will be apparent from and elucidated with reference to the embodiment(s) described hereinafter.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更好地理解本发明,以及为了更清楚地示出如何将本发明付诸实施,现在将仅通过举例的方式参考附图,其中:For a better understanding of the invention, and in order to more clearly show how the invention may be put into effect, reference will now be made, by way of example only, to the accompanying drawings, in which:
图1图示了示范性超声系统的一般操作;FIG1 illustrates the general operation of an exemplary ultrasound system;
图2示出了对心脏的超声图像的图示;以及FIG2 shows a graphical representation of an ultrasound image of a heart; and
图3示出了对心脏的超声图像的基于模型的分割的输出。FIG3 shows the output of a model-based segmentation of an ultrasound image of the heart.
具体实施方式Detailed ways
将参考附图来描述本发明。The present invention will be described with reference to the accompanying drawings.
应理解,详细描述和具体示例尽管指示装置、系统和方法的示范性实施例,但仅意图出于说明的目的,而不意图限制本发明的范围。根据以下描述、所附权利要求和附图,本发明的装置、系统和方法的这些及其他特征、方面和优点将变得更好理解。应理解,附图仅仅为示意性的,并且未按比例绘制。还应理解,在所有附图中使用相同的附图标记来指示相同或相似的部分。It should be understood that the detailed description and specific examples, although indicating exemplary embodiments of the apparatus, system and method, are intended for illustrative purposes only and are not intended to limit the scope of the invention. These and other features, aspects and advantages of the apparatus, system and method of the present invention will become better understood based on the following description, the appended claims and the accompanying drawings. It should be understood that the drawings are only schematic and are not drawn to scale. It should also be understood that the same reference numerals are used throughout the drawings to indicate the same or similar parts.
本发明提供一种对心脏进行成像的方法。控制超声探头以接收使用第一发射参数发射的来自心脏的第一反射超声回波信号,并且使用第一回波信号处理参数根据第一反射超声回波信号来创建所述心脏的超声图像。对超声图像执行基于模型的分割,以识别心脏的解剖结构,以及针对具有信息漏失区的至少一个解剖结构,使用分割以从所识别的解剖结构进行外推,以识别信息漏失区在图像内的位置。使用专门针对至少一个解剖结构或针对至少一个解剖结构的信息漏失区的第二不同的回波信号处理参数和/或第二不同的发射参数,获得心脏的下一超声图像,由此改善至少针对信息漏失区的信噪比。The present invention provides a method for imaging a heart. An ultrasound probe is controlled to receive a first reflected ultrasound echo signal from the heart transmitted using a first transmission parameter, and an ultrasound image of the heart is created based on the first reflected ultrasound echo signal using a first echo signal processing parameter. Model-based segmentation is performed on the ultrasound image to identify the anatomical structure of the heart, and for at least one anatomical structure having an information loss region, the segmentation is used to extrapolate from the identified anatomical structure to identify the location of the information loss region within the image. A next ultrasound image of the heart is obtained using a second different echo signal processing parameter and/or a second different transmission parameter specifically for at least one anatomical structure or for the information loss region of at least one anatomical structure, thereby improving the signal-to-noise ratio at least for the information loss region.
首先参考图1描述示范性超声系统的一般操作,并且重点在于系统的信号处理功能,因为本发明涉及对由换能器阵列测量的信号的处理。The general operation of an exemplary ultrasound system is described first with reference to FIG. 1 , with emphasis placed on the signal processing functions of the system as the present invention relates to the processing of signals measured by a transducer array.
所述系统包括阵列换能器探头4,其具有用于发射超声波并接收回波信息的换能器阵列6。换能器阵列6可以包括CMUT换能器;由诸如PZT或PVDF的材料形成的压电换能器;或者任一其他合适的换能器技术。在该范例中,换能器阵列6为二维阵列的换能器8,其能够扫描2D平面或感兴趣区域的三维体积。在另一范例中,换能器阵列可以为1D阵列。The system includes an array transducer probe 4 having a transducer array 6 for transmitting ultrasound and receiving echo information. The transducer array 6 may include CMUT transducers; piezoelectric transducers formed of materials such as PZT or PVDF; or any other suitable transducer technology. In this example, the transducer array 6 is a two-dimensional array of transducers 8 that can scan a 2D plane or a three-dimensional volume of a region of interest. In another example, the transducer array may be a 1D array.
换能器阵列6被耦合到微束成形器12,其控制由换能器元件对信号的接收。微束成形器至少能够对由换能器的子阵列(一般被称作“组”或“块”)接收到的信号进行波束成形,如在美国专利5,997,479(Savor等人)、6,013,032(Savord)和6,623,432(Powers等人)中描述的。The transducer array 6 is coupled to a microbeamformer 12, which controls the reception of signals by the transducer elements. The microbeamformer is capable of beamforming at least the signals received by a subarray (generally referred to as a "group" or "block") of transducers, as described in U.S. Patents 5,997,479 (Savor et al.), 6,013,032 (Savord), and 6,623,432 (Powers et al.).
应指出,微束成形器整体上是可选的。另外,所述系统包括发射/接收(T/R)开关16,微束成形器12可以被耦合到发射/接收(T/R)开关16并且发射/接收(T/R)开关16将阵列在发射与接收模式之间切换,并且在不使用微束成形器而是由主系统波束成形器直接操作换能器阵列的情况下保护主波束成形器20避免高能发射信号。超声波束从换能器阵列的发射由换能器控制器18导向,换能器控制器18由T/R开关16和主发射波束成形器(未示出)耦合到微束成形器,其能够接收来自用户接口或控制面板38的用户操作的输入。控制器18能够包括发射电路,其被布置为在发射模式期间(直接地或经由微束成形器)驱动阵列6的换能器元件。It should be noted that the microbeamformer is optional overall. In addition, the system includes a transmit/receive (T/R) switch 16 to which the microbeamformer 12 can be coupled and which switches the array between transmit and receive modes and protects the main beamformer 20 from high energy transmit signals in the event that the microbeamformer is not used and the transducer array is operated directly by the main system beamformer. Transmission of ultrasound beams from the transducer array is directed by a transducer controller 18, which is coupled to the microbeamformer by the T/R switch 16 and the main transmit beamformer (not shown), which can receive user-operated input from a user interface or control panel 38. The controller 18 can include transmit circuitry arranged to drive the transducer elements of the array 6 (directly or via the microbeamformer) during the transmit mode.
在典型的逐线成像序列中,探头内的波束成形系统可以如下操作。在发射期间,波束成形器(其取决于实施方式而可以是微束成形器或主系统波束成形器)激活换能器阵列,或换能器阵列的子孔径。所述子孔径可以是一维换能器线或较大阵列内的二维换能器片。在发射模式中,如下描述地控制对由阵列或阵列的子孔径生成的超声波束的聚焦和操纵。In a typical line-by-line imaging sequence, the beamforming system within the probe may operate as follows. During transmit, the beamformer (which may be a microbeamformer or a main system beamformer depending on the implementation) activates the transducer array, or a subaperture of the transducer array. The subaperture may be a one-dimensional transducer line or a two-dimensional transducer sheet within a larger array. In transmit mode, the focusing and steering of the ultrasound beam generated by the array or a subaperture of the array is controlled as described below.
在接收来自对象的反向散射的回波信号时,所接收到的信号经历接收波束成形(如下描述的),以便对齐所接收到的信号,并且在其中使用子孔径的情况下,然后将子孔径位移例如一个换能器元件。然后激活经位移的子孔径并重复该过程,直到换能器阵列的全部换能器元件都已经被激活。When receiving the backscattered echo signal from the object, the received signal undergoes receive beamforming (described below) to align the received signal, and in the case where a subaperture is used, the subaperture is then displaced, for example, by one transducer element. The displaced subaperture is then activated and the process is repeated until all transducer elements of the transducer array have been activated.
针对每一线(或子孔径),用于形成最终超声图像中的关联线的总接收信号将是在接收周期期间由给定子孔径的换能器元件测量的电压信号的和。在以下波束成形过程之后,得到的线信号通常被称作射频(RF)数据。由各个子孔径生成的每线信号(RF数据集)然后经历额外的处理,以生成最终超声图像的线。线信号的幅度随时间的改变将贡献于超声图像的亮度随深度的改变,其中,高幅度峰将对应于最终图像中的亮像素(或像素的集合)。出现在线信号开始附近的峰将表示来自浅结构的回波,而出现在线信号逐渐更晚的峰将表示来自对象体内逐渐增加的深度处的结构的回波。For each line (or sub-aperture), the total received signal used to form the associated line in the final ultrasound image will be the sum of the voltage signals measured by the transducer elements of a given sub-aperture during the receive cycle. After the following beamforming process, the resulting line signal is typically referred to as radio frequency (RF) data. The per-line signal (RF data set) generated by each sub-aperture then undergoes additional processing to generate the lines of the final ultrasound image. The change in the amplitude of the line signal over time will contribute to the change in the brightness of the ultrasound image with depth, where high amplitude peaks will correspond to bright pixels (or sets of pixels) in the final image. Peaks that appear near the beginning of the line signal will represent echoes from shallow structures, while peaks that appear gradually later in the line signal will represent echoes from structures at gradually increasing depths within the object.
由换能器控制器18控制的功能之一是波束被操纵和聚焦的方向。波束可以被操纵为从(正交于)换能器阵列一直向前,或是以不同角度用于更宽的视场。对发射波束的操纵和聚焦可以被控制为换能器元件致动时间的函数。One of the functions controlled by the transducer controller 18 is the direction in which the beam is steered and focused. The beam can be steered straight ahead from (orthogonal to) the transducer array, or at a different angle for a wider field of view. The steering and focusing of the transmit beam can be controlled as a function of the transducer element actuation time.
在一般的超声数据采集中可以区分两种方法:平面波成像和“波束操纵”成像。这两种方法通过波束成形在发射(“波束操纵”成像)和/或接收模式(平面波成像和“波束操纵”成像)中的存在来区分。In general ultrasound data acquisition two methods can be distinguished: plane wave imaging and "beam steering" imaging. The two methods are distinguished by the presence of beamforming in the transmit ("beam steering" imaging) and/or receive mode (plane wave imaging and "beam steering" imaging).
首先来看聚焦功能,通过同时激活全部换能器元件,换能器阵列生成平面波,其随着行进穿过对象而发散。该情况下,超声波的波束保持为未聚焦。通过对换能器的激活引入位置相关的时间延迟,有可能引起波束的波前会聚在期望点(被称作聚焦区)处。聚焦区被定义为横向波束宽度小于发射波束宽度的一半处的点。以此方式,改善了最终超声图像的横向分辨率。First, let's look at the focusing function. By activating all transducer elements at the same time, the transducer array generates a plane wave that diverges as it travels through the object. In this case, the beam of ultrasound waves remains unfocused. By introducing a position-dependent time delay to the activation of the transducer, it is possible to cause the wavefront of the beam to converge at a desired point, called the focal zone. The focal zone is defined as the point where the lateral beam width is less than half the transmit beam width. In this way, the lateral resolution of the final ultrasound image is improved.
例如,如果时间延迟引起换能器元件连续地激活,从换能器阵列最外面的元件开始并且在(一个或多个)中心元件处结束,则聚焦区将形成在距探头给定距离处,与(一个或多个)中心元件成一直线。聚焦区距探头的距离将取决于每一继后轮次的换能器元件激活之间的时间延迟而变化。在波束通过聚焦区之后,其将开始发散,形成远场成像区域。应指出,针对位于换能器阵列附近的聚焦区,超声波束将在远场快速发散,导致最终图像中的波束宽度伪影。通常,由于超声波束中大的重叠,位于换能器阵列与聚焦区之间的近场几乎不显示细节。因此,变化聚焦区的位置可能导致最终图像的质量上的显著改变。For example, if the time delay causes the transducer elements to be activated sequentially, starting with the outermost elements of the transducer array and ending at the center element(s), a focal zone will be formed at a given distance from the probe, in line with the center element(s). The distance of the focal zone from the probe will vary depending on the time delay between each subsequent round of transducer element activations. After the beam passes through the focal zone, it will begin to diverge, forming a far-field imaging region. It should be noted that for a focal zone located near the transducer array, the ultrasound beam will diverge rapidly in the far field, resulting in beam width artifacts in the final image. Typically, the near field located between the transducer array and the focal zone shows little detail due to the large overlap in the ultrasound beam. Therefore, varying the position of the focal zone may result in significant changes in the quality of the final image.
应指出,在发射模式,仅可以定义一个焦点,除非将超声图像划分成多个聚焦区(它们中的每个可以具有不同的发射焦点)。It should be noted that in transmit mode, only one focus may be defined, unless the ultrasound image is divided into multiple focal zones (each of which may have a different transmit focus).
此外,在接收来自对象体内的回波信号的情况下,有可能执行上述过程的逆过程,以执行接收聚焦。换言之,传入信号可以被换能器元件接收并在被传到系统中进行信号处理之前经受电子时间延迟。该情况最简单的范例被称作延迟及求和波束成形。有可能根据时间来动态调节对换能器阵列的接收聚焦。Furthermore, in the case of receiving echo signals from within the subject, it is possible to perform the inverse of the above process to perform receive focusing. In other words, the incoming signal may be received by the transducer elements and subjected to an electronic time delay before being passed to the system for signal processing. The simplest example of this is known as delay and sum beamforming. It is possible to dynamically adjust the receive focus of the transducer array as a function of time.
现在来看波束操纵的功能,通过将时间延迟正确应用于换能器阵列,有可能随着超声波束离开换能器阵列而对超声波束施加期望角度。例如,通过激活换能器阵列第一侧的换能器,随后是序列中的剩余换能器,在阵列相对侧结束,波束的波前朝第二侧成角度。相对于换能器阵列的法线的操纵角度的大小取决于后续换能器元件激活之间的时间延迟的大小。Turning now to the functionality of beam steering, by properly applying time delays to the transducer array, it is possible to impose a desired angle on an ultrasound beam as it leaves the transducer array. For example, by activating a transducer on a first side of the transducer array, followed by the remaining transducers in the sequence, ending on the opposite side of the array, the wavefront of the beam is angled toward a second side. The magnitude of the steering angle relative to the normal to the transducer array depends on the magnitude of the time delay between subsequent transducer element activations.
另外,有可能聚焦操纵波束,其中,应用于每个换能器元件的总时间延迟是聚焦和操纵时间延迟两者的和。该情况下,换能器阵列被称作相控阵列。Additionally, it is possible to focus the steered beam, wherein the total time delay applied to each transducer element is the sum of both the focusing and the steering time delays. In this case, the transducer array is called a phased array.
在CMUT换能器的情况下,其需要DC偏压用于它们的激活,换能器控制器18能够被耦合以控制换能器阵列的DC偏置控制45。DC偏置控制45设置被应用于CMUT换能器元件的(一个或多个)DC偏压。In the case of CMUT transducers, which require a DC bias voltage for their activation, the transducer controller 18 can be coupled to control the transducer array's DC bias control 45. The DC bias control 45 sets the DC bias voltage(s) applied to the CMUT transducer elements.
针对换能器阵列的每个换能器元件,模拟超声信号(通常被称作信道数据)以接收信道的方式进入系统。在接收信道中,由微束成形器12从信道数据产生部分波束成形的信号,其然后被传到主接收波束成形器20,在这里来自换能器个体块的部分波束成形的信号被组合成完全波束成形的信号(被称作射频(RF)数据)。在每个阶段执行的波束成形可以如上描述地来进行,或者可以包括额外的功能。例如,主波束成形器20可以具有128个信道,它们中的每个接收来自几十或数百个换能器元件的部分波束成形的信号。以此方式,由换能器阵列的数千个换能器接收到的信号能够有效地贡献于单个波束成形信号。For each transducer element of the transducer array, an analog ultrasound signal (commonly referred to as channel data) enters the system in the form of a receive channel. In the receive channel, a partially beamformed signal is generated from the channel data by the microbeamformer 12, which is then passed to the main receive beamformer 20, where the partially beamformed signals from the individual blocks of transducers are combined into a fully beamformed signal (referred to as radio frequency (RF) data). The beamforming performed at each stage can be performed as described above, or additional functions can be included. For example, the main beamformer 20 can have 128 channels, each of which receives partially beamformed signals from tens or hundreds of transducer elements. In this way, the signals received by thousands of transducers of the transducer array can effectively contribute to a single beamformed signal.
经波束成形的接收信号被耦合到信号处理器22。信号处理器22能够以各种方式处理所接收到的回波信号,例如:带通滤波;抽取;I和Q分量分离;以及谐波信号分离,其用于分离线性和非线性信号,从而实现对从组织和微泡返回的非线性(基频的高次谐波)回波信号的识别。信号处理器还可以执行额外的信号增强,例如斑点减少、信号复合以及噪声消除。信号处理器中的带通滤波器能够是跟踪滤波器,随着从逐渐增加的深度接收到回波信号,其带通从较高频带滑动到较低频带,由此拒绝来自较大深度的较高频率的噪声,该噪声通常缺乏解剖信息。The beamformed received signals are coupled to a signal processor 22. The signal processor 22 can process the received echo signals in various ways, such as: bandpass filtering; decimation; I and Q component separation; and harmonic signal separation, which is used to separate linear and nonlinear signals, thereby enabling identification of nonlinear (higher harmonics of the fundamental frequency) echo signals returned from tissue and microbubbles. The signal processor can also perform additional signal enhancements, such as speckle reduction, signal compounding, and noise elimination. The bandpass filter in the signal processor can be a tracking filter, whose bandpass slides from a higher frequency band to a lower frequency band as the echo signals are received from increasing depths, thereby rejecting higher frequency noise from greater depths, which is generally lacking anatomical information.
用于发射和用于接收的波束成形器是在不同的硬件中实施的,并且能够具有不同的功能。当然,接收器波束成形器被设计为考虑到发射波束成形器的特性。为了简单起见,图1中仅示出了接收器波束成形器12、20。在完整的系统中,还存在具有发射微束成形器和主发射波束成形器的发射链。The beamformers for transmission and for reception are implemented in different hardware and can have different functions. Of course, the receiver beamformer is designed to take into account the characteristics of the transmit beamformer. For simplicity, only the receiver beamformers 12, 20 are shown in Figure 1. In the complete system, there is also a transmit chain with a transmit microbeamformer and a main transmit beamformer.
微束成形器12的功能是提供信号的初始组合,以减少模拟信号路径的数目。这通常是在模拟域中执行的。The function of the microbeamformer 12 is to provide initial combining of the signals to reduce the number of analog signal paths. This is typically performed in the analog domain.
最终的波束成形是在主波束成形器20中完成的,并且通常在数字化之后。Final beamforming is done in the main beamformer 20, typically after digitization.
发射和接收信道使用具有固定频带的相同换能器阵列6。然而,发射脉冲占据的带宽能够取决于使用的发射波束成形而变化。接收信道可以捕获整个换能器带宽(这是经典方法),或者通过使用带通处理,其能够仅提取含有期望信息的带宽(例如主谐波的谐波)。The transmit and receive channels use the same transducer array 6 with fixed frequency bands. However, the bandwidth occupied by the transmit pulses can vary depending on the transmit beamforming used. The receive channel can capture the entire transducer bandwidth (which is the classical approach), or by using bandpass processing, which can extract only the bandwidth containing the desired information (e.g. harmonics of the main harmonic).
RF信号然后可以被耦合到B模式(即亮度模式,或2D成像模式)处理器26和多普勒处理器28。B模式处理器26对所接收到的超声信号执行幅度检测,用于对身体里的结构(例如器官组织和血管)进行成像。在逐线成像的情况下,每线(波束)由关联的RF信号来表示,其幅度用于生成要被赋予B模式图像中的像素的亮度值。图像内像素的确切位置由与RF信号一起的关联幅度测量的位置以及RF信号的线(波束)数目来确定。这样的结构的B模式图像可以被形成为谐波或基波图像模式,或是二者的组合,如在美国专利6,283,919(Roundhill等人)和美国专利6,458,083(Jago等人)中描述的。多普勒处理器28处理由组织移动和血流产生的时间上不同的信号,用于检测移动的物质,例如图像场中血细胞的流动。多普勒处理器28通常包括壁滤波器,参数被设置为通过或拒绝从身体中的选定类型的材料返回的回波。The RF signal can then be coupled to a B-mode (i.e., brightness mode, or 2D imaging mode) processor 26 and a Doppler processor 28. The B-mode processor 26 performs amplitude detection on the received ultrasound signal for imaging structures in the body (e.g., organ tissue and blood vessels). In the case of line-by-line imaging, each line (beam) is represented by an associated RF signal, the amplitude of which is used to generate a brightness value to be assigned to a pixel in the B-mode image. The exact location of the pixel within the image is determined by the location of the associated amplitude measurement together with the RF signal and the number of lines (beams) of the RF signal. The B-mode image of such a structure can be formed as a harmonic or fundamental image mode, or a combination of the two, as described in U.S. Pat. No. 6,283,919 (Roundhill et al.) and U.S. Pat. No. 6,458,083 (Jago et al.). The Doppler processor 28 processes the temporally different signals generated by tissue movement and blood flow for detecting moving materials, such as the flow of blood cells in the image field. The Doppler processor 28 typically includes a wall filter, the parameters of which are set to pass or reject echoes returned from selected types of materials in the body.
由B模式或多普勒处理器产生的结构和运动信号被耦合到扫描转换器32和多平面重格式化器44。扫描转换器32将回波信号布置在空间关系中,它们被以期望的图像格式从该空间关系接收。换言之,扫描转换器用于将RF数据从圆柱坐标系转换到适合于在图像显示器40上显示超声图像的笛卡尔坐标系。在B模式成像的情况下,给定坐标处的像素的亮度正比于从该位置接收到的RF信号的幅度。例如,扫描转换器可以将回波信号布置成二维(2D)扇形格式,或金字塔型三维(3D)图像。扫描转换器可以将B模式结构图像与对应于图像场中的点处的运动的颜色叠加,其中,多普勒估计的速度用于产生给定颜色。经组合的B模式结构图像和彩色多普勒图像描绘结构图像场内组织和血流的运动。多平面重格式化器将把从身体的体积区域中公共平面中的点接收到的回波转换成该平面的超声图像,如在美国专利6,443,896(Detmer)中描述的。体积绘制器42将3D数据集的回波信号转换成如从给定参考点观看的投影3D图像,如在美国专利6,530,885(Entrekin等人)中描述的。The structure and motion signals generated by the B-mode or Doppler processor are coupled to the scan converter 32 and the multi-plane reformatter 44. The scan converter 32 arranges the echo signals in a spatial relationship from which they are received in a desired image format. In other words, the scan converter is used to convert the RF data from a cylindrical coordinate system to a Cartesian coordinate system suitable for displaying an ultrasound image on the image display 40. In the case of B-mode imaging, the brightness of a pixel at a given coordinate is proportional to the amplitude of the RF signal received from that position. For example, the scan converter can arrange the echo signals into a two-dimensional (2D) sector format, or a pyramid-type three-dimensional (3D) image. The scan converter can overlay the B-mode structural image with a color corresponding to the motion at a point in the image field, where the Doppler estimated velocity is used to generate a given color. The combined B-mode structural image and color Doppler image depict the motion of tissue and blood flow within the structural image field. The multi-plane reformatter will convert the echoes received from points in a common plane in a volumetric region of the body into an ultrasound image of the plane, as described in U.S. Pat. No. 6,443,896 (Detmer). The volume renderer 42 converts the echo signals of the 3D data set into a projected 3D image as viewed from a given reference point, as described in US Pat. No. 6,530,885 (Entrekin et al.).
来自扫描转换器32、多平面重格式化器44和体积绘制器42的2D或3D图像被耦合到图像处理器30,以供进一步增强、缓冲和临时存储,用于在图像显示器40上显示。成像处理器可以适于从最终超声图像移除某些成像伪影,例如:声学阴影,例如由强衰减器或折射引起的;后向增强,例如由弱衰减器引起的;混响伪影,例如其中高反射性组织接口位于邻近;等等。此外,图像处理器可以适于处理某些斑点减少功能,以改善最终超声图像的对比度。The 2D or 3D images from the scan converter 32, the multi-planar reformatter 44, and the volume renderer 42 are coupled to the image processor 30 for further enhancement, buffering, and temporary storage for display on the image display 40. The imaging processor may be adapted to remove certain imaging artifacts from the final ultrasound image, such as: acoustic shadowing, such as caused by a strong attenuator or refraction; back enhancement, such as caused by a weak attenuator; reverberation artifacts, such as where a highly reflective tissue interface is located adjacent; etc. In addition, the image processor may be adapted to process certain speckle reduction functions to improve the contrast of the final ultrasound image.
除了被用于成像以外,由多普勒处理器28产生的血流值以及由B模式处理器26产生的组织结构信息被耦合到量化处理器34。除了结构测量结果(例如器官的大小和胎龄)以外,量化处理器还产生对不同流动条件的测量,例如血流的体积速率。量化处理器可以接收来自用户控制面板38的输入,例如要在其中进行测量的图像的解剖结构中的点。In addition to being used for imaging, the blood flow values produced by the Doppler processor 28 and the tissue structure information produced by the B-mode processor 26 are coupled to a quantification processor 34. In addition to structural measurements (such as organ size and gestational age), the quantification processor also produces measurements of different flow conditions, such as the volumetric rate of blood flow. The quantification processor can receive input from a user control panel 38, such as points in the anatomical structure of the image at which measurements are to be made.
来自量化处理器的输出数据被耦合到图形处理器36,用于在显示器40上与图像一起再现测量图形和值,以及用于从显示设备40输出音频。图形处理器36还能够生成用于与超声图像一起显示图像叠加。这些图形叠加能够包含标准识别信息,如患者姓名、图像的日期和时间、成像参数等等。出于这些目的,图形处理器接收来自用户接口38的输入,例如患者姓名。用户接口还被耦合到发射控制器18,以控制超声信号从换能器阵列6的生成以及因此控制由换能器阵列和超声系统产生的图像。控制器18的发射控制功能仅是所执行的功能之一。控制器18还考虑到(由用户给出的)操作模式以及接收器模数转换器中对应所需的发射器配置和带通配置。控制器18可以为具有固定状态的状态机。The output data from the quantization processor is coupled to the graphics processor 36 for reproducing the measurement graphs and values on the display 40 together with the image, and for outputting audio from the display device 40. The graphics processor 36 can also generate image overlays for display with the ultrasound image. These graphic overlays can contain standard identification information, such as the patient's name, the date and time of the image, imaging parameters, etc. For these purposes, the graphics processor receives input from the user interface 38, such as the patient's name. The user interface is also coupled to the transmit controller 18 to control the generation of ultrasound signals from the transducer array 6 and thus control the images produced by the transducer array and the ultrasound system. The transmit control function of the controller 18 is only one of the functions performed. The controller 18 also takes into account the operating mode (given by the user) and the corresponding required transmitter configuration and bandpass configuration in the receiver analog-to-digital converter. The controller 18 can be a state machine with fixed states.
用户接口还被耦合到多平面重格式化器44,用于对多个多平面重格式化的(MPR)图像的平面的选择和控制,MPR图像可以用于执行在MPR图像的图像场中的量化测量。The user interface is also coupled to a multi-planar reformatter 44 for selection and control of planes of a plurality of multi-planar reformatted (MPR) images that may be used to perform quantitative measurements in the image field of the MPR images.
本发明的目的是提升超声图像中预期侧壁出现在那里的区的信噪比(SNR)。通过使用心脏模型来预测侧壁的预期位置,可以选择性地应用SNR提升技术,以限制这些技术对帧率和计算复杂度的负面影响。The present invention aims to improve the signal-to-noise ratio (SNR) of the region in the ultrasound image where the side wall is expected to appear. By using a heart model to predict the expected position of the side wall, SNR improvement techniques can be applied selectively to limit their negative impact on frame rate and computational complexity.
图2示出了对心脏的超声图像的图示,并且用于解释用于改善信噪比的处理步骤。第一B模式超声图像202是使用默认图像形成技术和参数采集的。这些是第一发射参数和第一回波信号处理参数。Figure 2 shows an illustration of an ultrasound image of a heart and is used to explain the processing steps for improving the signal-to-noise ratio. A first B-mode ultrasound image 202 is acquired using default imaging techniques and parameters. These are first transmit parameters and first echo signal processing parameters.
通常,第一图像202是使用第一发射参数和第一接收参数(即第一回波信号处理参数)获得的。发射参数是影响超声探头/换能器的发射脉冲的参数。接收参数是影响对所接收到的回波信号的处理的参数。Typically, the first image 202 is obtained using first transmit parameters and first receive parameters (ie, first echo signal processing parameters). The transmit parameters are parameters that affect the transmit pulses of the ultrasound probe/transducer. The receive parameters are parameters that affect the processing of the received echo signals.
基于模型的分割(MBS)应用于第一图像202(例如使用快速心脏模型),以识别心脏的解剖结构。所识别的解剖结构可见于经分割的超声图像204中。如在经分割的图像204中可见,MBS能够识别解剖区应当在哪些区域,即使由于超声信号太弱而引起的随机失活导致特定区不可见。Model-based segmentation (MBS) is applied to the first image 202 (e.g., using a fast heart model) to identify the anatomical structures of the heart. The identified anatomical structures are visible in the segmented ultrasound image 204. As can be seen in the segmented image 204, MBS is able to identify where the anatomical regions should be, even if a particular region is not visible due to random inactivation caused by too weak ultrasound signals.
因此,解剖结构的图像具有如由图像部分206表示的信息漏失区,并且分割用于从图像204中所识别的解剖结构进行外推,以识别随时失活区在图像中的位置。Thus, the image of the anatomical structure has regions of information loss as represented by image portion 206, and the segmentation is used to extrapolate from the anatomical structure identified in image 204 to identify the location of the regions of deactivation in the image at any given time.
例如,第一图像202中或是含有侧壁(如果侧壁可见的话)或是预期含有侧壁(如果侧壁不可见的话)的区域是基于分割来识别的。这可见于经分割的图像204的左上区域,其中MBS已识别出侧壁,即使在其未在第一图像202中示出时。For example, areas in the first image 202 that either contain sidewalls (if the sidewalls are visible) or are expected to contain sidewalls (if the sidewalls are not visible) are identified based on the segmentation. This can be seen in the upper left area of the segmented image 204, where the MBS has identified the sidewalls even though they are not shown in the first image 202.
MBS已知为即使在有丢失或噪声数据时也应用于超声图像的稳健技术。因此能够基于经训练的星座模型,预测诸如侧壁的解剖区域。应用具有小量网格点和迭代的MBS允许以足够的准确度对图像的快速适配。MBS is known to be a robust technique applied to ultrasound images even in the presence of missing or noisy data. It is thus possible to predict anatomical regions such as the sidewall based on a trained constellation model. Applying MBS with a small number of grid points and iterations allows for a fast adaptation of the image with sufficient accuracy.
这允许例如识别一个帧中的侧壁区域,并针对超声序列的下一帧动态调整成像参数(即发射和/或接收参数)。快速模型可以用于识别经常经受差的可见性或随机失活的区域。This allows, for example, identifying sidewall regions in one frame and dynamically adjusting imaging parameters (ie, transmit and/or receive parameters) for the next frame of the ultrasound sequence.The fast model can be used to identify regions that frequently experience poor visibility or random deactivations.
下一步骤涉及获得第二超声图像208,其具有与第一图像202针对信息漏失区域206相比,针对侧壁更优的SNR。The next step involves obtaining a second ultrasound image 208 having a better SNR for the sidewalls than the first image 202 for the information dropout region 206 .
该第二超声图像可以使用专门针对至少一个解剖结构或针对至少一个解剖结构的信息漏失区206的第二不同的回波信号处理参数和/或通过使用第二不同的发射参数来获得。The second ultrasound image may be obtained using second different echo signal processing parameters specifically for the at least one anatomical structure or for the information dropout region 206 of the at least one anatomical structure and/or by using second different transmission parameters.
用于获得第二图像208的第一实施例涉及对针对信息漏失区域206的新扫描线脉冲序列的重新发射。实践中,在执行心脏超声成像时,信息漏失区域206将可能是侧壁。A first embodiment for obtaining the second image 208 involves retransmission of a new scan line pulse sequence for the information dropout region 206. In practice, when performing cardiac ultrasound imaging, the information dropout region 206 will likely be the side walls.
针对含有侧壁(即对应于信息漏失区域206)的图像线,代替在该位置处发射一个脉冲并在这些位置处采集一组信道数据,而是提出发射N个脉冲并获得N组信道数据。例如,每线的脉冲数目可以从一增加到二或三。For image lines containing sidewalls (i.e. corresponding to information dropout regions 206), instead of transmitting one pulse at the position and acquiring a set of channel data at these positions, it is proposed to transmit N pulses and obtain N sets of channel data. For example, the number of pulses per line can be increased from one to two or three.
发射脉冲也可以以不同的频率和/或利用不同的波形来发送。这些改变可以帮助对声学多路径噪声进行去相关,并因此改善第二图像208的SNR。The transmit pulses may also be sent at different frequencies and/or with different waveforms. These changes may help decorrelate the acoustic multipath noise and thus improve the SNR of the second image 208.
额外地,如果默认图像设置(即第一发射参数)不使用最大发射孔径(对应于最细、最聚焦的发射波束),则可以针对在信息漏失区域206周围的扫描线增大发射孔径。例如,线密度可以从1度增大到0.25度。Additionally, if the default image settings (i.e., the first transmit parameters) do not use the largest transmit aperture (corresponding to the thinnest, most focused transmit beam), the transmit aperture may be increased for scan lines around the information dropout region 206. For example, the line density may be increased from 1 degree to 0.25 degrees.
针对在其中采集多个数据集(例如N个发射脉冲)的扫描线位置中的每个,可以平均化针对相同位置采集的数据集。如果接收波束成形基于回顾性发射波束成形,则可能需要在回顾性发射波束成形之前执行平均化。For each of the scan line positions where multiple data sets (eg, N transmit pulses) are acquired, the data sets acquired for the same position may be averaged. If the receive beamforming is based on retrospective transmit beamforming, the averaging may need to be performed prior to the retrospective transmit beamforming.
回顾性发射波束成形可以用于使用标准(扫描和聚焦的)超声发射形成合成聚焦超声图像。通常,回顾性发射波束成形为合成聚焦技术,其使用标准、扫描波束发射数据、动态接收聚焦,以及来自多个发射波束的时间对齐的数据的组合,以形成图像。Retrospective transmit beamforming can be used to form synthetic focused ultrasound images using standard (scanned and focused) ultrasound transmissions. In general, retrospective transmit beamforming is a synthetic focusing technique that uses a combination of standard, scanned beam transmit data, dynamic receive focusing, and time-aligned data from multiple transmit beams to form an image.
波束成形也可以基于多线波束成形。多线波束成形基于针对单个发射波束获得多于一条扫描线(即多线)以增大帧率。每个发射波束中的多线的数目基于发射波束的宽度(即发射波束越宽,可以获得越多的线)。多线波束成形可以是用于回顾性发射波束成形的先决条件。回顾性发射波束成形是用于增大超声图像的SNR的已知方法。多线的数目可以是回顾性发射波束成形的参数。因此,第一和第二回波信号处理参数可以包括用于回顾性发射波束成形的参数,其中,所述参数可以包括获得的多线的数目和/或被组合的发射波束的数目。Beamforming may also be based on multi-line beamforming. Multi-line beamforming is based on obtaining more than one scan line (i.e., multi-lines) for a single transmit beam to increase the frame rate. The number of multi-lines in each transmit beam is based on the width of the transmit beam (i.e., the wider the transmit beam, the more lines can be obtained). Multi-line beamforming may be a prerequisite for retrospective transmit beamforming. Retrospective transmit beamforming is a known method for increasing the SNR of ultrasound images. The number of multi-lines may be a parameter for retrospective transmit beamforming. Therefore, the first and second echo signal processing parameters may include parameters for retrospective transmit beamforming, wherein the parameters may include the number of multi-lines obtained and/or the number of transmit beams combined.
例如,在调整回顾性发射波束成形中组合的发射波束的数目之前,调整多线的数目。For example, the number of multilines is adjusted before adjusting the number of transmit beams combined in retrospective transmit beamforming.
然而,对发射脉冲的平均化可以在接收多线形成之前或之后来完成。通常,在沿其获得若干采集的维度中的一个或多个上执行某种形式的平均化。平均化可以是相干的和/或非相干的。However, averaging of the transmit pulses can be done before or after the receive multiline is formed. Typically, some form of averaging is performed on one or more of the dimensions along which the several acquisitions are obtained. The averaging can be coherent and/or incoherent.
可以基于常规过程(例如,与第一图像202的图像形成过程相同)完成针对第二图像208的图像形成过程(如上文讨论的)的剩余部分。这是可能的,因为针对信息漏失区域206的发射参数上的改变应当具有与第一图像202相比针对侧壁区域改善的SNR。The remainder of the image formation process for the second image 208 (as discussed above) may be completed based on a conventional process (e.g., the same as the image formation process for the first image 202). This is possible because the change in emission parameters for the information dropout region 206 should have an improved SNR for the sidewall region compared to the first image 202.
通常,第一实施例能够被总结为:从第一图像202识别信息漏失区域206,通过例如使用已知的SNR改善技术来调整发射参数(例如经由优化),以及获得后续第二图像208,在第二图像208中利用经调整的(第二)发射参数获得信息漏失区域206。通过持续对每个超声帧应用MBS,有可能细化感兴趣区域或在对象或换能器移动时跟踪它。In general, the first embodiment can be summarized as: identifying an information missing region 206 from a first image 202, adjusting transmit parameters (e.g., via optimization) by, for example, using known SNR improvement techniques, and obtaining a subsequent second image 208 in which the information missing region 206 is obtained using the adjusted (second) transmit parameters. By continuously applying MBS to each ultrasound frame, it is possible to refine the region of interest or track it as the object or transducer moves.
上文描述的第一实施例涉及在对第一超声图像202运行MBS(例如飞利浦心脏模型)之后重新发射定制脉冲序列。尽管该方法在理论上是可能的,但实施该方案可能需要大量的软件和/或现场可编程门阵列(FPGA)代码改变和返工。因此,在一些情况下,可能优选不调整发射参数。The first embodiment described above involves re-transmitting a custom pulse sequence after running MBS (e.g., a Philips heart model) on the first ultrasound image 202. Although this approach is theoretically possible, implementing the solution may require extensive software and/or field programmable gate array (FPGA) code changes and rework. Therefore, in some cases, it may be preferred not to adjust the transmit parameters.
提出不涉及重发射的第二实施例。代替采集新的回波信号数据,在MBS识别了信息漏失区域206之后,以不同的方式(即以不同的接收参数)重新处理被用于创建第一图像202的信道数据。下文提出各种SNR提升技术。A second embodiment is proposed that does not involve retransmission. Instead of acquiring new echo signal data, after the MBS identifies the information dropout region 206, the channel data used to create the first image 202 is reprocessed in a different manner (ie, with different reception parameters). Various SNR enhancement techniques are proposed below.
针对接收参数的示范性SNR提升技术涉及,在信息漏失区域206中,当使用回顾性动态发射聚焦方法(即回顾性发射波束成形的版本)时,增大每个所形成的发射波束的同时接收的波束(也被称作多线)的数目(直到取决于发射波束的宽度的某个点),其然后允许增大每条扫描线组合的发射波束的数目。回顾性动态发射聚焦对针对单个位置的多个发射波束进行平均化,以增大信噪比。当多个发射波束被组合以生成每条扫描线,并且每个发射波束具有不同的噪声模式时,噪声非相干地加和而信号相干地加和,因此改善信噪比。An exemplary SNR improvement technique for receive parameters involves, in the information dropout region 206, increasing the number of simultaneously received beams (also referred to as multilines) for each formed transmit beam (up to a certain point depending on the width of the transmit beam) when using a retrospective dynamic transmit focusing method (i.e., a version of retrospective transmit beamforming), which then allows for an increase in the number of transmit beams combined per scan line. Retrospective dynamic transmit focusing averages multiple transmit beams for a single location to increase the signal-to-noise ratio. When multiple transmit beams are combined to generate each scan line, and each transmit beam has a different noise pattern, the noise sums incoherently while the signal sums coherently, thus improving the signal-to-noise ratio.
通常,回顾性动态发射聚焦的参数能够适于增大信息漏失区域206的SNR。回顾性动态发射聚焦的参数可以包括被组合(例如被平均)的发射波束中多线的数目和/或被组合的发射波束的数目。In general, the parameters of the retrospective dynamic transmit focusing can be adapted to increase the SNR of the information dropout region 206. The parameters of the retrospective dynamic transmit focusing may include the number of multilines in the transmit beams that are combined (eg, averaged) and/or the number of transmit beams that are combined.
针对接收参数的另一示范性SNR提升技术涉及,在信息漏失区域206,形成并平均化许多在高程空间复合方法中使用的紧密间隔的高程平面。平均化可以在波束求和的RF域中以相干的方式完成,或是在对数压缩之后以非相干的方式完成,该情况下其通常被称作“高程复合”。高程平面的数目仅可以在减小的返回得以实现之前被增加到某个点,因为高程平面必须全部适配在发射高程波束内。Another exemplary SNR improvement technique for receive parameters involves forming and averaging a number of closely spaced elevation planes used in an elevation spatial compounding method in the information dropout region 206. The averaging can be done coherently in the RF domain in beam summing, or incoherently after log compression, in which case it is generally referred to as "elevation compounding." The number of elevation planes can only be increased to a certain point before reduced return is achieved because the elevation planes must all fit within the transmit elevation beam.
一般地,高程空间复合的参数能够适于增大信息漏失区域206的SNR。Generally, the parameters of the elevation spatial compounding can be adapted to increase the SNR of the information dropout region 206 .
调整频率复合的量和/或执行额外的空间复合也可以用于改善信息漏失区域206的对比度噪声比。然而,通过改变频率复合和/或执行额外的空间复合来改善对比度噪声比可能是以分辨率为代价的。Adjusting the amount of frequency compounding and/or performing additional spatial compounding may also be used to improve the contrast-to-noise ratio of the information dropout region 206. However, improving the contrast-to-noise ratio by changing the frequency compounding and/or performing additional spatial compounding may come at the expense of resolution.
频率复合通常用于减少超声图像中的斑点变化,以通过平均化两个或多个非相关的子带图像(在接收波束成形之后)来增强对比度分辨率。换言之,两个或多个不同的带通滤波器被应用于所接收到的回波,并且结果得以被平均。Frequency compounding is commonly used to reduce speckle variations in ultrasound images to enhance contrast resolution by averaging two or more uncorrelated sub-band images (after receive beamforming). In other words, two or more different bandpass filters are applied to the received echoes and the results are averaged.
类似地,空间复合涉及获得来自几个不同角度的回波数据并将它们组合(例如通过平均化),以产生单个超声图像。Similarly, spatial compounding involves obtaining echo data from several different angles and combining them (eg, by averaging) to produce a single ultrasound image.
可以一起或单独使用增加回顾性动态发射聚焦中组合的发射波束的数目,以及形成紧密间隔的高程平面。Can be used together or separately to increase the number of transmit beams combined in retrospective dynamic transmit focusing, as well as to form closely spaced elevation planes.
可以将第一实施例(改变发射参数)与第二实施例(改变接收参数)组合,使得以不同的接收和发射参数获得新的第二图像208,其中接收和发射参数两者上的改变是用于相对于第一图像204提高信息漏失区域206的SNR。The first embodiment (changing the transmission parameters) can be combined with the second embodiment (changing the reception parameters) so that a new second image 208 is obtained with different reception and transmission parameters, wherein the changes in both reception and transmission parameters are used to improve the SNR of the information loss area 206 relative to the first image 204.
关于信息漏失区域的定位,提出了包括MBS的内置置信量度以识别区域。图3示出了基于模型的分割对心脏302的超声图像的输出。MBS已被应用于超声图像302,并且结果已被叠加到超声图像302上。出于说明的目的,已在超声图像302以下图示了MBS输出的部分304。With regard to the location of information loss regions, a built-in confidence measure including MBS is proposed to identify the regions. FIG3 shows the output of the model-based segmentation on an ultrasound image of a heart 302. MBS has been applied to the ultrasound image 302 and the results have been superimposed on the ultrasound image 302. For illustrative purposes, a portion 304 of the MBS output has been illustrated below the ultrasound image 302.
针对具有高置信的区域306(粗黑线),可能不需要修改波束成形参数,而在低置信的区域308中(虚线),波束成形可能需要适于达到针对信息漏失区域的更高SNR。For regions 306 with high confidence (thick black line), the beamforming parameters may not need to be modified, whereas in regions 308 of low confidence (dashed line), the beamforming may need to be adapted to achieve a higher SNR for the information dropout regions.
逐渐操纵放到重新发射/重新计算中的(计算)努力可以是有利的。这理想地平衡了帧率的下降与在SNR改善上的有用投资。例如,脉冲的数目N可以通过图像特征的“弱”和/或对信息漏失区的SNR的确定来确定。It may be advantageous to gradually steer the (computational) effort put into retransmission/recomputation. This ideally balances the drop in frame rate with a useful investment in SNR improvement. For example, the number of pulses N may be determined by the "weakness" of image features and/or the determination of the SNR for areas of information loss.
本领域技术人预案将容易地能够开发用于执行任意本文中描述的方法的控制器。因此,流程图中的每个步骤都可以表示由控制器执行的不同动作,并且可以由处理控制器的相应模块来执行。A person skilled in the art will readily be able to develop a controller for executing any of the methods described herein. Therefore, each step in the flow chart may represent a different action performed by the controller and may be executed by a corresponding module of the processing controller.
控制器可以利用软件和/或硬件以多种方式来实施,以执行所需要的各种功能。处理器是控制器的一个范例,其采用可以使用软件(例如微代码)被编程为执行所需功能的一个或多个微处理器。然而,控制器可以采用或不采用处理器来实施,并且也可以被实施为执行某些功能的专用硬件与执行其他功能的处理器(例如一个或多个被编成的微处理器与关联电路)的组合。A controller can be implemented in a variety of ways using software and/or hardware to perform the various functions required. A processor is an example of a controller that employs one or more microprocessors that can be programmed using software (e.g., microcode) to perform the required functions. However, a controller may be implemented with or without a processor, and may also be implemented as a combination of dedicated hardware that performs certain functions and a processor (e.g., one or more programmed microprocessors and associated circuits) that performs other functions.
在本公开的各个实施例中可以采用的控制器部件的范例包含,但不限于常规的微处理器、专用集成电路(ASICs)以及现场可编程门阵列(FPGAs)。Examples of controller components that may be employed in various embodiments of the present disclosure include, but are not limited to, conventional microprocessors, application specific integrated circuits (ASICs), and field programmable gate arrays (FPGAs).
在各种实施方式中,处理器或控制器可以与一个或多个存储介质相关联,例如易失性和非易失性计算机存储器,如RAM、PROM、EPROM和EEPROM。存储介质可以被编码有一个或多个程序,这些程序当在一个或多个处理器和/或控制器上运行时,执行所需要的功能。各种存储介质可以被固定在处理器或控制器内,或者可以是可移动的,使得被存储于其上的一个或多个程序可以被加载到处理器或控制器中。In various embodiments, a processor or controller may be associated with one or more storage media, such as volatile and non-volatile computer memory, such as RAM, PROM, EPROM, and EEPROM. The storage media may be encoded with one or more programs that, when run on one or more processors and/or controllers, perform the desired functions. The various storage media may be fixed within the processor or controller, or may be removable so that one or more programs stored thereon may be loaded into the processor or controller.
本领域技术人预案在实践要求保护的发明时,根据对附图、公开内容和所附权利要求的研究,能够理解并实现所公开实施例的变型。在权利要求中,词语“包括”不排除其他元件或步骤,并且不定冠词“一”或“一个”不排除多个。Those skilled in the art anticipate that variations of the disclosed embodiments will be understood and implemented in practicing the claimed invention based on a study of the drawings, the disclosure and the appended claims. In the claims, the word "comprising" does not exclude other elements or steps, and the indefinite article "a" or "an" does not exclude a plurality.
互不相同的从属权利要求中记载了特定措施这一仅有事实并不指示不能利用这些措施的组合。The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
计算机程序可以被存储/分布在合适的介质上,例如与其他硬件一起提供或作为其他硬件的部分提供的光学存储介质或固态介质,但也可以被分布为其他形式,例如经由因特网或者其他有线或无线电信系统。The computer program may be stored/distributed on suitable media, such as optical storage media or solid-state media provided together with or as part of other hardware, but may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems.
如果在权利要求或说明书中使用了术语“适于”,则应指出术语“适于”意图等同于术语“被配置为”。If the term "suitable for" is used in the claims or the specification, it should be noted that the term "suitable for" is intended to be equivalent to the term "configured to".
权利要求中的任意附图标记都不应当被解读为对范围的限制。Any reference signs in the claims should not be construed as limiting the scope.
Claims (15)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163253569P | 2021-10-08 | 2021-10-08 | |
US63/253,569 | 2021-10-08 | ||
EP21202674.4 | 2021-10-14 | ||
PCT/EP2022/077143 WO2023057304A1 (en) | 2021-10-08 | 2022-09-29 | Improving cardiac ultrasound imaging |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118076299A true CN118076299A (en) | 2024-05-24 |
Family
ID=91097612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202280067856.3A Pending CN118076299A (en) | 2021-10-08 | 2022-09-29 | Improving cardiac ultrasound imaging |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118076299A (en) |
-
2022
- 2022-09-29 CN CN202280067856.3A patent/CN118076299A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3826543B1 (en) | Ultrasound controller unit and method | |
JP7454583B2 (en) | Methods and systems for valve regurgitation assessment | |
EP4166089A1 (en) | Improving cardiac ultrasound imaging | |
US11793492B2 (en) | Methods and systems for performing color doppler ultrasound imaging | |
EP4098205A1 (en) | Power reduction in ultrasound systems | |
EP4008269A1 (en) | Analysing ultrasound image data of the rectus abdominis muscles | |
EP4412532B1 (en) | Improving cardiac ultrasound imaging | |
CN118076299A (en) | Improving cardiac ultrasound imaging | |
US11224410B2 (en) | Methods and systems for filtering ultrasound image clutter | |
EP4139058B1 (en) | Acoustic imaging probe with a transducer element | |
EP4262564B1 (en) | Boundary detection in ultrasound data | |
US20240000430A1 (en) | Processing ultrasound scan data | |
US20240029245A1 (en) | Analysing ultrasound image data of the rectus abdominis muscles | |
EP4014883A1 (en) | Boundary detection in ultrasound data | |
EP4159139A1 (en) | System and method for segmenting an anatomical structure | |
US20240404066A1 (en) | System and method for segmenting an anatomical structure | |
EP4132364A1 (en) | Methods and systems for obtaining a 3d vector flow field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |