CN118021474B - Dental implant model forming method based on image processing - Google Patents
Dental implant model forming method based on image processing Download PDFInfo
- Publication number
- CN118021474B CN118021474B CN202410436561.XA CN202410436561A CN118021474B CN 118021474 B CN118021474 B CN 118021474B CN 202410436561 A CN202410436561 A CN 202410436561A CN 118021474 B CN118021474 B CN 118021474B
- Authority
- CN
- China
- Prior art keywords
- dental implant
- data
- oral
- implant model
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004053 dental implant Substances 0.000 title claims abstract description 213
- 238000012545 processing Methods 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 42
- 230000000877 morphologic effect Effects 0.000 claims abstract description 90
- 238000004458 analytical method Methods 0.000 claims abstract description 78
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 66
- 210000000214 mouth Anatomy 0.000 claims abstract description 58
- 230000011218 segmentation Effects 0.000 claims abstract description 47
- 206010044048 Tooth missing Diseases 0.000 claims abstract description 33
- 238000009826 distribution Methods 0.000 claims abstract description 31
- 238000000547 structure data Methods 0.000 claims abstract description 27
- 238000010276 construction Methods 0.000 claims abstract description 10
- 238000004364 calculation method Methods 0.000 claims abstract description 6
- 238000010586 diagram Methods 0.000 claims abstract description 5
- 210000003781 tooth socket Anatomy 0.000 claims abstract 10
- 239000000872 buffer Substances 0.000 claims description 68
- 239000007943 implant Substances 0.000 claims description 53
- 210000001519 tissue Anatomy 0.000 claims description 38
- 230000008859 change Effects 0.000 claims description 36
- 210000004872 soft tissue Anatomy 0.000 claims description 22
- 238000013461 design Methods 0.000 claims description 20
- 230000004660 morphological change Effects 0.000 claims description 19
- 238000005457 optimization Methods 0.000 claims description 19
- 238000004088 simulation Methods 0.000 claims description 18
- 230000005489 elastic deformation Effects 0.000 claims description 14
- 230000001055 chewing effect Effects 0.000 claims description 13
- 238000002513 implantation Methods 0.000 claims description 9
- 238000005070 sampling Methods 0.000 claims description 9
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 238000011002 quantification Methods 0.000 claims description 6
- 238000000465 moulding Methods 0.000 abstract description 6
- 230000008569 process Effects 0.000 description 11
- 238000004422 calculation algorithm Methods 0.000 description 6
- 238000013527 convolutional neural network Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000000284 extract Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 208000008312 Tooth Loss Diseases 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000003708 edge detection Methods 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 238000012731 temporal analysis Methods 0.000 description 3
- 238000000700 time series analysis Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000011176 pooling Methods 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000037182 bone density Effects 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000011960 computer-aided design Methods 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006740 morphological transformation Effects 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 238000012567 pattern recognition method Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/34—Making or working of models, e.g. preliminary castings, trial dentures; Dowel pins [4]
Landscapes
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及图像处理领域,尤其涉及一种基于图像处理的牙种植体模型成型方法。The invention relates to the field of image processing, and in particular to a dental implant model forming method based on image processing.
背景技术Background technique
牙种植体模型成型是一种常见的牙科手术过程,用于恢复缺失的牙齿。传统的牙种植体模型成型方法通常依赖于摄影、印模和手工制作,这些方法存在一些局限性,往往存在着效率较低,时间消耗长以及引入人为误差等,为了满足现代牙科诊疗的需求,需要一种智能化、快速高效的牙种植体模型成型方法。基于图像处理的牙种植体模型成型方法应运而生。Dental implant modeling is a common dental procedure used to restore missing teeth. Traditional dental implant modeling methods usually rely on photography, impressions, and manual production. These methods have some limitations, such as low efficiency, long time consumption, and introduction of human errors. In order to meet the needs of modern dental diagnosis and treatment, an intelligent, fast, and efficient dental implant modeling method is needed. A dental implant modeling method based on image processing came into being.
发明内容Summary of the invention
本发明提供一种基于图像处理的牙种植体模型成型方法,以解决至少一个上述技术问题。The present invention provides a dental implant model forming method based on image processing to solve at least one of the above technical problems.
为实现上述目的,本发明提供一种基于图像处理的牙种植体模型成型方法,包括以下步骤:To achieve the above object, the present invention provides a dental implant model forming method based on image processing, comprising the following steps:
步骤S1:获取患者口腔CT图像;对患者口腔CT图像进行多通道卷积处理,构建口腔卷积特征图;对口腔卷积特征图进行像素级语义分割,以口腔区域分割图;Step S1: obtaining an oral CT image of a patient; performing multi-channel convolution processing on the oral CT image of the patient to construct an oral convolution feature map; performing pixel-level semantic segmentation on the oral convolution feature map to obtain an oral region segmentation map;
步骤S2:基于口腔区域分割图生成牙齿缺失区域图;对牙齿缺失区域图进行形态结构分析,以得到牙槽形态结构数据;对牙槽形态结构数据进行三维构建,以生成三维牙槽骨模型;Step S2: generating a tooth missing region map based on the oral region segmentation map; performing morphological structure analysis on the tooth missing region map to obtain alveolar morphological structure data; performing three-dimensional construction on the alveolar morphological structure data to generate a three-dimensional alveolar bone model;
步骤S3:基于三维牙槽骨模型进行拓扑形态拟合,以构建第一牙种植体模型;对第一牙种植体模型进行牙种植体周围压力分布计算,以生成牙种植体结构压力数据;Step S3: performing topological morphology fitting based on the three-dimensional alveolar bone model to construct a first dental implant model; calculating the pressure distribution around the dental implant on the first dental implant model to generate dental implant structure pressure data;
步骤S4:基于牙种植体结构压力数据进行口腔多时序节点预测,以得到口腔多时点预测结果;对口腔多时点预测结果进行组织形态结构演变分析,以得到口腔形态演变预测数据;Step S4: performing oral multi-time series node prediction based on the dental implant structure pressure data to obtain oral multi-time point prediction results; performing tissue morphological structure evolution analysis on the oral multi-time point prediction results to obtain oral morphological evolution prediction data;
步骤S5:对口腔形态演变预测数据进行时序趋势曲线拟合,以得到形态演变时序趋势曲线;基于形态演变时序趋势曲线对第一牙种植体模型进行边界缓冲区域分析,以得到形变智能缓冲区;Step S5: performing time series trend curve fitting on the oral morphology evolution prediction data to obtain the morphology evolution time series trend curve; performing boundary buffer area analysis on the first dental implant model based on the morphology evolution time series trend curve to obtain a deformation intelligent buffer zone;
步骤S6:基于形变智能缓冲区对第一牙种植体模型进行仿真植入,以得到全息牙槽-牙种植体模型;基于全息牙槽-牙种植体模型进行应力区域优化设计,以构建优化牙种植体模型。Step S6: Simulate implantation of the first dental implant model based on the deformation intelligent buffer zone to obtain a holographic alveolus-dental implant model; optimize the stress area design based on the holographic alveolus-dental implant model to construct an optimized dental implant model.
本发明通过将患者口腔CT图像进行处理和分割,得到口腔区域的准确分割图,通过多通道卷积处理,提取口腔图像中的关键特征,帮助后续的分析和处理,而像素级语义分割则进一步将口腔卷积特征图中的每个像素进行分类,使得每个像素都能被准确地归属到口腔区域或其他区域,从而得到口腔区域分割图,根据口腔区域分割图,进一步分析和处理,得到牙齿缺失区域图,通过对牙齿缺失区域图进行形态结构分析,获取牙槽的形态结构数据,包括形状、大小、位置等信息,然后,通过三维构建技术,将得到的牙槽形态结构数据转化为三维牙槽骨模型,以便后续的处理和分析,利用三维牙槽骨模型进行拓扑形态拟合,根据牙槽的形态结构数据构建第一牙种植体模型,对第一牙种植体模型进行牙种植体周围压力分布计算,得到牙种植体结构压力数据,用于评估牙种植体在口腔环境中的稳定性和适应性,为后续的优化设计提供依据,利用牙种植体结构压力数据,进行口腔多时序节点预测,即对口腔在不同时间点的变化进行预测,得到口腔在未来时刻的状态,对口腔多时点预测结果进行组织形态结构演变分析,观察口腔形态的变化趋势,得到口腔形态演变预测数据,为后续的设计和优化提供指导,根据形态演变的趋势,对牙种植体模型的边界进行调整,以创建一个智能缓冲区,考虑到口腔形态的变化,并提供一定的容错空间,以适应未来的变化,提高牙种植体的稳定性和适应性,利用形变智能缓冲区,将第一牙种植体模型进行仿真植入口腔模型中,得到完整的全息牙槽-牙种植体模型,考虑口腔形态演变的趋势,并提供适应未来变化的缓冲区,基于全息牙槽-牙种植体模型,进行应力区域优化设计,通过分析口腔内的应力分布,确定牙种植体模型中的应力区域,并进行优化设计,提高牙种植体的稳定性和适应性,确保其在口腔环境中的长期成功。The present invention processes and segments the patient's oral CT image to obtain an accurate segmentation map of the oral region, extracts key features in the oral image through multi-channel convolution processing, and helps subsequent analysis and processing, while pixel-level semantic segmentation further classifies each pixel in the oral convolution feature map so that each pixel can be accurately attributed to the oral region or other regions, thereby obtaining an oral region segmentation map, and further analyzes and processes the oral region segmentation map to obtain a tooth loss region map, and performs morphological structure analysis on the tooth loss region map to obtain morphological structure data of the alveolar, including shape, size, position and other information, and then, through three-dimensional construction technology, the obtained alveolar morphological structure data is converted into a three-dimensional alveolar bone model for subsequent processing and analysis, and the three-dimensional alveolar bone model is used for topological morphological fitting, and a first dental implant model is constructed according to the morphological structure data of the alveolar, and the pressure distribution around the dental implant is calculated for the first dental implant model to obtain dental implant structure pressure data, which is used to evaluate the stability and adaptability of the dental implant in the oral environment, and provide for subsequent optimization design. Based on the data of dental implant structure pressure, oral multi-time node prediction is performed, that is, the changes of the oral cavity at different time points are predicted to obtain the state of the oral cavity in the future. The tissue morphological structure evolution analysis is performed on the oral multi-time point prediction results, the changing trend of oral morphology is observed, and the oral morphology evolution prediction data is obtained to provide guidance for subsequent design and optimization. According to the trend of morphological evolution, the boundary of the dental implant model is adjusted to create an intelligent buffer zone, taking into account the changes in oral morphology and providing a certain fault tolerance space to adapt to future changes and improve the stability and adaptability of dental implants. The first dental implant model is simulated and implanted into the oral model using the deformation intelligent buffer zone to obtain a complete holographic alveolar-dental implant model, taking into account the trend of oral morphological evolution and providing a buffer zone to adapt to future changes. Based on the holographic alveolar-dental implant model, stress area optimization design is performed. By analyzing the stress distribution in the oral cavity, the stress area in the dental implant model is determined, and the optimization design is performed to improve the stability and adaptability of the dental implant and ensure its long-term success in the oral environment.
优选地,步骤S1包括以下步骤:Preferably, step S1 comprises the following steps:
步骤S11:获取患者口腔CT图像;Step S11: Acquire a CT image of the patient's oral cavity;
步骤S12:对患者口腔CT图像进行多通道卷积处理,以提取跨波段特征数据;Step S12: performing multi-channel convolution processing on the patient's oral CT image to extract cross-band feature data;
步骤S13:基于跨波段特征数据构建口腔卷积特征图;Step S13: constructing an oral cavity convolution feature map based on the cross-band feature data;
步骤S14:对口腔卷积特征图进行分支采样处理,以得到空间细节卷积图;Step S14: performing branch sampling processing on the oral cavity convolution feature map to obtain a spatial detail convolution map;
步骤S15:对空间细节卷积图进行像素级语义分割,以口腔区域分割图。Step S15: Perform pixel-level semantic segmentation on the spatial detail convolution map to obtain an oral region segmentation map.
本发明通过获取患者口腔的CT图像,CT图像提供了口腔结构的详细信息,包括牙齿、牙槽骨和周围组织的形态和位置,通过获取口腔CT图像,为后续的处理和分析提供基础数据,利用多通道卷积处理技术,从口腔CT图像中提取跨波段特征数据,多通道卷积处理捕捉不同波段之间的相关性和特征表示,有助于提取口腔图像的更丰富、更准确的特征信息,口腔卷积特征图是通过对跨波段特征数据进行卷积操作而得到的,它更好地表示口腔图像中的结构、纹理和形态等特征信息,分支采样处理进一步突出口腔图像中的空间细节信息,例如牙齿的边缘、形态和微观结构等特征,有助于后续的语义分割和形态分析,像素级语义分割将口腔卷积特征图中的每个像素进行分类,将其准确地归属到口腔区域或其他区域,从而得到口腔区域分割图,口腔区域分割图提供了口腔内各个结构的准确边界和分割结果,为后续的牙种植体模型成型提供基础。The present invention obtains a CT image of the patient's oral cavity, which provides detailed information on the oral structure, including the morphology and position of teeth, alveolar bones and surrounding tissues. By obtaining the oral CT image, basic data is provided for subsequent processing and analysis. Multi-channel convolution processing technology is used to extract cross-band feature data from the oral CT image. The multi-channel convolution processing captures the correlation and feature representation between different bands, which helps to extract richer and more accurate feature information of the oral image. The oral convolution feature map is obtained by performing a convolution operation on the cross-band feature data, which better represents the feature information such as structure, texture and morphology in the oral image. The branch sampling processing further highlights the spatial detail information in the oral image, such as the edge, morphology and microstructure of the teeth, which helps the subsequent semantic segmentation and morphological analysis. The pixel-level semantic segmentation classifies each pixel in the oral convolution feature map and accurately attributes it to the oral region or other regions, thereby obtaining an oral region segmentation map. The oral region segmentation map provides accurate boundaries and segmentation results of various structures in the oral cavity, providing a basis for subsequent dental implant modeling.
优选地,步骤S14的具体步骤为:Preferably, the specific steps of step S14 are:
步骤S141:对口腔卷积特征图进行多层下采样,以得到全局大粒度特征数据;Step S141: performing multi-layer downsampling on the oral cavity convolution feature map to obtain global large-granularity feature data;
步骤S142:对口腔卷积特征图进行多尺度上采样,从而得到局部细节特征数据;Step S142: performing multi-scale upsampling on the oral cavity convolution feature map to obtain local detail feature data;
步骤S143:对全局大粒度特征数据及局部细节特征数据进行残差连接处理,以生成缺失细节特征数据;Step S143: performing residual connection processing on the global large-grained feature data and the local detail feature data to generate missing detail feature data;
步骤S144:基于缺失细节特征数据以得到空间细节卷积图。Step S144: Obtain a spatial detail convolution map based on the missing detail feature data.
本发明通过多层下采样操作,对口腔卷积特征图进行降维处理,从而获取全局大粒度特征数据,多层下采样逐渐减小特征图的空间尺寸,同时增加通道数,使得模型能够更好地捕捉整体口腔结构的特征信息,并且减少计算复杂度,通过多尺度上采样操作,对口腔卷积特征图进行放大处理,从而获取局部细节特征数据,多尺度上采样恢复特征图的空间细节信息,使得模型能够更好地捕捉口腔图像中的局部细微结构和纹理等特征,有助于提高模型的精细度和准确性,通过残差连接处理,将全局大粒度特征数据和局部细节特征数据进行融合,以生成缺失的细节特征数据,残差连接有效地传递和融合不同尺度的特征信息,从而填补全局和局部层次之间的信息缺失,提高模型对细节信息的感知能力,利用生成的缺失细节特征数据,获取最终的空间细节卷积图,通过整合全局大粒度特征数据、局部细节特征数据和缺失的细节特征数据,得到具备更全面信息的空间细节卷积图,其中包含了丰富的口腔结构、纹理和形态等细节特征信息,这样的空间细节卷积图为后续牙种植体模型的成型提供了更准确和全面的输入。The present invention performs dimensionality reduction processing on the oral convolution feature map through multi-layer downsampling operations, thereby obtaining global large-grained feature data. Multi-layer downsampling gradually reduces the spatial size of the feature map and increases the number of channels at the same time, so that the model can better capture the feature information of the overall oral structure and reduce the computational complexity. The oral convolution feature map is enlarged through multi-scale upsampling operations to obtain local detail feature data. Multi-scale upsampling restores the spatial detail information of the feature map, so that the model can better capture the local fine structure and texture features in the oral image, which helps to improve the precision and accuracy of the model. The global large-grained feature data is processed through residual connection processing. The missing detail feature data is fused with the local detail feature data to generate the missing detail feature data. The residual connection effectively transmits and fuses feature information of different scales, thereby filling the information missing between the global and local levels and improving the model's perception of detail information. The generated missing detail feature data is used to obtain the final spatial detail convolution map. By integrating the global large-grained feature data, the local detail feature data and the missing detail feature data, a spatial detail convolution map with more comprehensive information is obtained, which contains rich detail feature information such as oral structure, texture and morphology. Such a spatial detail convolution map provides a more accurate and comprehensive input for the subsequent molding of the dental implant model.
优选地,步骤S2的具体步骤为:Preferably, the specific steps of step S2 are:
步骤S21:对口腔区域分割图进行细粒度结构识别,以得到牙齿缺失区域图;Step S21: performing fine-grained structure recognition on the oral region segmentation map to obtain a tooth missing region map;
步骤S22:对牙齿缺失区域图进行牙槽轮廓提取,以得到牙槽区域轮廓数据;Step S22: extracting the alveolar contour from the tooth missing area map to obtain alveolar area contour data;
步骤S23:对牙槽区域轮廓数据进行形态结构分析,以得到牙槽形态结构数据;Step S23: performing morphological structure analysis on the alveolar area contour data to obtain alveolar morphological structure data;
步骤S24:对牙齿缺失区域图进行牙齿拓扑间隙计算,以得到周边牙体间隙范围数据;Step S24: performing tooth topological gap calculation on the tooth missing area map to obtain peripheral tooth gap range data;
步骤S25:基于周边牙体间隙范围数据对牙槽形态结构数据进行三维构建,以生成三维牙槽骨模型。Step S25: constructing the alveolar morphological structure data in three dimensions based on the peripheral tooth space range data to generate a three-dimensional alveolar bone model.
本发明通过对口腔区域分割图进行细粒度结构识别,以准确定位和标识出牙齿缺失区域,通过对口腔区域分割图进行分析和识别,判断出哪些区域对应于牙齿缺失部位,从而生成牙齿缺失区域图,对牙齿缺失区域图进行处理,提取出牙槽的轮廓信息,通过对牙齿缺失区域图进行边缘检测和轮廓提取,得到牙槽的形状和边界信息,从而获得牙槽区域轮廓数据,对牙槽区域轮廓数据进行形态学分析,以获取牙槽的形态结构信息,通过应用形态学操作,例如膨胀、腐蚀、开运算或闭运算等,对牙槽区域轮廓进行形态学变换,进而分析牙槽的形状、大小和结构特征,得到牙槽的形态结构数据,对牙齿缺失区域图进行处理,计算牙齿的拓扑间隙,即缺失牙齿周围的牙体间隙范围,通过分析牙齿缺失区域图中牙齿的位置和周围牙体的分布情况,确定缺失牙齿周围的牙体间隙范围,提供种植体模型的定位和设计依据,基于周边牙体间隙范围数据,利用牙槽形态结构数据进行三维构建,生成三维牙槽骨模型,通过将牙槽形态结构数据与周边牙体间隙范围数据相结合,确定种植体在牙槽骨中的位置、角度和尺寸等关键参数,进而生成准确的三维牙槽骨模型,为后续牙种植体模型的成型提供基础。The present invention performs fine-grained structural recognition on an oral region segmentation map to accurately locate and identify tooth-missing regions, analyzes and identifies the oral region segmentation map to determine which regions correspond to tooth-missing locations, thereby generating a tooth-missing region map, processes the tooth-missing region map to extract contour information of the alveolar, performs edge detection and contour extraction on the tooth-missing region map to obtain shape and boundary information of the alveolar, thereby obtaining contour data of the alveolar region, performs morphological analysis on the alveolar region contour data to obtain morphological structural information of the alveolar, performs morphological transformation on the alveolar region contour by applying morphological operations, such as expansion, corrosion, opening or closing operations, and the like, thereby analyzing the shape, The size and structural characteristics of the alveolar shape and structure data are obtained, the tooth missing area map is processed, and the topological gap of the tooth, that is, the range of the tooth gap around the missing tooth, is calculated. By analyzing the position of the teeth in the tooth missing area map and the distribution of the surrounding teeth, the range of the tooth gap around the missing tooth is determined, providing a basis for the positioning and design of the implant model. Based on the surrounding tooth gap range data, the alveolar morphological structure data is used for three-dimensional construction to generate a three-dimensional alveolar bone model. By combining the alveolar morphological structure data with the surrounding tooth gap range data, the key parameters such as the position, angle and size of the implant in the alveolar bone are determined, and then an accurate three-dimensional alveolar bone model is generated, providing a basis for the subsequent molding of the dental implant model.
优选地,步骤S3的具体步骤为:Preferably, the specific steps of step S3 are:
步骤S31:基于三维牙槽骨模型进行拓扑形态拟合,以构建第一牙种植体模型;Step S31: performing topological morphology fitting based on the three-dimensional alveolar bone model to construct a first dental implant model;
步骤S32:对第一牙种植体模型进行弹性变形动力学约束分析,以得到弹性变形动力学约束数据;Step S32: performing elastic deformation dynamic constraint analysis on the first dental implant model to obtain elastic deformation dynamic constraint data;
步骤S33:对弹性变形动力学约束数据进行咀嚼磨损模拟,以得到磨损模拟数据;Step S33: performing chewing wear simulation on the elastic deformation dynamics constraint data to obtain wear simulation data;
步骤S34:基于磨损模拟数据进行牙种植体周围压力分布计算,以生成牙种植体结构压力数据。Step S34: Calculate the pressure distribution around the dental implant based on the wear simulation data to generate dental implant structure pressure data.
本发明通过将种植体的形状、尺寸和位置等参数与牙槽骨模型进行匹配和拟合,生成第一牙种植体模型,确保种植体与牙槽骨的良好适配和稳定性,对第一牙种植体模型进行弹性变形动力学约束分析,以获得相关的约束数据,通过分析种植体在咀嚼和咬合过程中的弹性变形和力学行为,确定种植体的受力约束情况,包括承载力、应力分布等参数,从而获得弹性变形动力学约束数据,通过模拟咀嚼运动和力学作用,评估种植体与周围组织之间的接触和磨损情况,获得磨损模拟数据,有助于了解种植体的耐久性和使用寿命,通过分析咀嚼过程中的力学作用和接触情况,计算出种植体周围的压力分布情况,包括接触力、应力分布等参数,提供了牙种植体结构压力数据,有助于评估种植体与周围组织之间的力学相互作用和稳定性。The present invention generates a first dental implant model by matching and fitting parameters such as the shape, size and position of the implant with the alveolar bone model to ensure good fit and stability between the implant and the alveolar bone, performs elastic deformation dynamic constraint analysis on the first dental implant model to obtain relevant constraint data, determines the force constraint of the implant including parameters such as bearing capacity and stress distribution by analyzing the elastic deformation and mechanical behavior of the implant during chewing and biting, thereby obtaining elastic deformation dynamic constraint data, evaluates the contact and wear between the implant and surrounding tissues by simulating chewing motion and mechanical action, obtains wear simulation data, and helps to understand the durability and service life of the implant, calculates the pressure distribution around the implant including parameters such as contact force and stress distribution by analyzing the mechanical action and contact during chewing, provides dental implant structure pressure data, and helps to evaluate the mechanical interaction and stability between the implant and surrounding tissues.
优选地,步骤S4的具体步骤为:Preferably, the specific steps of step S4 are:
步骤S41:基于牙种植体结构压力数据进行口腔多时序节点预测,以得到口腔多时点预测结果;Step S41: performing oral multi-time series node prediction based on the dental implant structure pressure data to obtain oral multi-time point prediction results;
步骤S42:对口腔多时点预测结果进行骨组织形态变化分析,以得到骨组织形态变化数据;Step S42: performing bone tissue morphology change analysis on the oral multi-time point prediction results to obtain bone tissue morphology change data;
步骤S43:对口腔多时点预测结果进行软组织变化分析,以得到口腔软组织变化数据;Step S43: performing soft tissue change analysis on the oral multi-time point prediction results to obtain oral soft tissue change data;
步骤S44:基于骨组织形态变化数据及口腔软组织变化数据进行结构特征点变化识别,以得到变化结构特征点;Step S44: performing structural feature point change identification based on the bone tissue morphology change data and the oral soft tissue change data to obtain changed structural feature points;
步骤S45:对变化结构特征点进行部位演变速率分析,以得到结构演变规律;Step S45: performing position evolution rate analysis on the changed structural feature points to obtain the structural evolution law;
步骤S46:通过结构演变规律对口腔多时点预测结果进行组织形态结构演变分析,以得到口腔形态演变预测数据。Step S46: Performing tissue morphological structure evolution analysis on the oral multi-time point prediction results according to the structure evolution law to obtain oral morphological evolution prediction data.
本发明通过分析牙种植体结构压力数据中的力学特征和变化情况,预测口腔在不同时间点的口腔状态,包括种植体的稳定性、周围骨组织的变化等,从而得到口腔多时点预测结果,通过对口腔多时点预测结果进行比较和分析,确定口腔骨组织在不同时间点的形态变化情况,包括骨吸收、骨生成等过程,从而提供口腔骨组织形态变化数据,有助于了解种植体与周围骨组织的相互作用和变化情况,通过分析口腔多时点预测结果中软组织的位置和形态变化,确定口腔软组织在不同时间点的变化情况,包括牙龈的形态、软组织厚度等,从而提供口腔软组织变化数据,有助于了解种植体与周围软组织的相互作用和变化情况,通过分析骨组织和软组织的变化情况,确定口腔中关键结构特征点的位置和形态变化,例如种植体周围骨组织的变化、牙龈线的位置变化等,从而得到变化的结构特征点,提供口腔结构演变的定量数据,通过分析变化结构特征点的位置和变化幅度,计算口腔结构演变的速率和趋势,了解口腔结构在不同时间点的演变情况,包括骨组织的吸收、软组织的变化等,从而得到口腔结构的演变规律,通过结合口腔结构演变规律和口腔多时点预测结果,推断口腔在未来时间点的形态变化,包括种植体的稳定性、周围骨组织和软组织的变化等,从而提供口腔形态演变的预测数据,有助于临床决策和治疗规划。The present invention predicts the oral state of the oral cavity at different time points, including the stability of the implant, the changes in the surrounding bone tissue, etc., by analyzing the mechanical characteristics and changes in the pressure data of the dental implant structure, so as to obtain the oral multi-time point prediction results. By comparing and analyzing the oral multi-time point prediction results, the morphological changes of the oral bone tissue at different time points are determined, including processes such as bone absorption and bone formation, so as to provide the oral bone tissue morphological change data, which is helpful to understand the interaction and changes between the implant and the surrounding bone tissue. By analyzing the position and morphological changes of the soft tissue in the oral multi-time point prediction results, the changes of the oral soft tissue at different time points are determined, including the morphology of the gums, the thickness of the soft tissue, etc., so as to provide the oral soft tissue change data, which is helpful to understand the interaction and changes between the implant and the surrounding soft tissue. By analyzing the changes in bone tissue and soft tissue, the position and morphological changes of key structural feature points in the oral cavity are determined, such as changes in bone tissue around implants, changes in the position of the gum line, etc., so as to obtain the changed structural feature points and provide quantitative data on the evolution of oral structure. By analyzing the position and change amplitude of the changed structural feature points, the rate and trend of oral structure evolution are calculated, and the evolution of oral structure at different time points is understood, including the absorption of bone tissue, changes in soft tissue, etc., so as to obtain the evolution law of oral structure. By combining the evolution law of oral structure with the results of oral multi-time point prediction, the morphological changes of the oral cavity at future time points are inferred, including the stability of implants, changes in surrounding bone tissue and soft tissue, etc., so as to provide predictive data on oral morphological evolution, which is helpful for clinical decision-making and treatment planning.
优选地,步骤S5的具体步骤为:Preferably, the specific steps of step S5 are:
步骤S51:对口腔形态演变预测数据进行最大形变区域计算,以得到口腔形态最大形变区域;Step S51: calculating the maximum deformation area of the oral morphology evolution prediction data to obtain the maximum deformation area of the oral morphology;
步骤S52:对口腔形态最大形变区域进行时序趋势曲线拟合,以得到形态演变时序趋势曲线;Step S52: fitting a time series trend curve for the maximum deformation area of the oral morphology to obtain a morphology evolution time series trend curve;
步骤S53:基于形态演变时序趋势曲线对第一牙种植体模型进行边界缓冲区域分析,以生成种植体形变缓冲区;Step S53: performing boundary buffer area analysis on the first dental implant model based on the morphological evolution time series trend curve to generate an implant deformation buffer zone;
步骤S54:对种植体形变缓冲区进行应力拓扑优化,以得到形变智能缓冲区。Step S54: performing stress topology optimization on the implant deformation buffer zone to obtain a deformation intelligent buffer zone.
本发明通过对口腔形态演变预测数据的比较和分析,确定口腔中形态变化最为剧烈的区域,即最大形变区域,这个区域涉及种植体周围的骨组织、软组织等,通过计算最大形变区域,定位口腔中需要重点关注和处理的部位,通过对口腔形态最大形变区域的变化情况进行分析,拟合出形态演变的时序趋势曲线,反映口腔形态随时间变化的趋势,这样更好地了解口腔形态的演变速度和趋势,为进一步的分析和决策提供依据,通过分析口腔形态演变时序趋势与第一牙种植体模型的关系,确定种植体周围的边界缓冲区域,即种植体受到形变影响的区域,提高种植体的稳定性和成功率,通过对种植体形变缓冲区的分析和优化,确定最佳的形变缓冲区域,以提供更好的支持和保护种植体,应力拓扑优化帮助确定在形变缓冲区内的材料分布和结构设计,以最大限度地减少应力集中和形变对种植体的不利影响,这样的形变智能缓冲区提高种植体的稳定性、减少不良应力和损伤,从而促进牙种植体模型的成型。The present invention determines the area with the most dramatic morphological changes in the oral cavity, that is, the maximum deformation area, by comparing and analyzing the oral morphological evolution prediction data. This area involves bone tissue, soft tissue, etc. around the implant. By calculating the maximum deformation area, the part of the oral cavity that needs to be focused on and treated is located. By analyzing the changes in the maximum deformation area of the oral morphology, a temporal trend curve of morphological evolution is fitted to reflect the trend of oral morphology changes over time, so as to better understand the evolution speed and trend of oral morphology and provide a basis for further analysis and decision-making. By analyzing the relationship between the temporal trend of oral morphological evolution and the first dental implant model, the boundary buffer area around the implant, that is, the area where the implant is affected by deformation, is determined to improve the stability and success rate of the implant. By analyzing and optimizing the implant deformation buffer area, the optimal deformation buffer area is determined to provide better support and protection for the implant. Stress topology optimization helps determine the material distribution and structural design in the deformation buffer area to minimize the adverse effects of stress concentration and deformation on the implant. Such a deformation intelligent buffer area improves the stability of the implant, reduces adverse stress and damage, and promotes the molding of the dental implant model.
优选地,步骤S53的具体步骤为:Preferably, the specific steps of step S53 are:
步骤S531:基于形态演变时序趋势曲线对第一牙种植体模型进行变形率匹配分析,以生成牙种植体模型变形率数据;Step S531: performing deformation rate matching analysis on the first dental implant model based on the morphological evolution time series trend curve to generate deformation rate data of the dental implant model;
步骤S532:对牙种植体模型变形率数据进行区域受力变化规律分析,以得到区域受力变化规律;Step S532: analyzing the regional force variation law of the dental implant model deformation rate data to obtain the regional force variation law;
步骤S533:基于区域受力变化规律进行边界缓冲区域分析,以生成种植体形变缓冲区。Step S533: performing boundary buffer region analysis based on the regional force variation law to generate an implant deformation buffer region.
本发明通过对时序趋势曲线与牙种植体模型的匹配分析,确定在不同时间点上种植体模型的形变程度,了解种植体在不同时间点上的形态变化情况,为后续步骤提供依据,通过对牙种植体模型不同区域的变形率数据进行分析,确定不同区域在形变过程中所受到的力的变化规律,了解种植体模型中各个区域的形变情况,识别出受力较大或不均匀的区域,以确定需要进行边界缓冲区域分析的区域,通过对区域受力变化规律的分析,确定在种植体模型中需要特别关注和处理的区域,即受到较大力或不均匀力的区域,这些区域被认为是形变的潜在风险区域,通过进行边界缓冲区域分析,确定种植体模型中需要设置缓冲的边界区域,以提供更好的支持和保护,减少形变对种植体的不利影响,生成的形变缓冲区将有助于牙种植体模型的成型和临床治疗的成功。The present invention determines the deformation degree of the implant model at different time points through matching analysis between the time trend curve and the dental implant model, understands the morphological changes of the implant at different time points, and provides a basis for subsequent steps. By analyzing the deformation rate data of different areas of the dental implant model, the change law of the force exerted on different areas during the deformation process is determined, the deformation of each area in the implant model is understood, and the areas with large or uneven forces are identified to determine the areas that need to be analyzed for boundary buffer areas. By analyzing the change law of regional force, the areas that need special attention and treatment in the implant model, that is, the areas that are subjected to large or uneven forces, are determined. These areas are considered to be potential risk areas for deformation. By performing boundary buffer area analysis, the boundary areas in the implant model that need to be set with buffers are determined to provide better support and protection and reduce the adverse effects of deformation on the implant. The generated deformation buffer zone will contribute to the molding of the dental implant model and the success of clinical treatment.
优选地,步骤S6的具体步骤为:Preferably, the specific steps of step S6 are:
步骤S61:基于形变智能缓冲区对第一牙种植体模型进行拓扑形体重构,以构建第二牙种植体模型;Step S61: reconstructing the topological shape of the first dental implant model based on the deformation intelligent buffer zone to construct a second dental implant model;
步骤S62:通过第二牙种植体模型对三维牙槽骨模型进行仿真植入以得到全息牙槽-牙种植体模型;Step S62: performing simulated implantation on the three-dimensional alveolar bone model through the second dental implant model to obtain a holographic alveolar-dental implant model;
步骤S63:对全息牙槽-牙种植体模型进行牙种植体位置识别,以得到嵌入位置数据;Step S63: performing dental implant position recognition on the holographic alveolus-dental implant model to obtain embedding position data;
步骤S64:基于嵌入位置数据对全息牙槽-牙种植体模型进行临边组织压力分布量化,得到组织压力量化数据;Step S64: quantifying the distribution of tissue pressure at the edge of the holographic alveolus-dental implant model based on the embedding position data to obtain quantitative tissue pressure data;
步骤S65:基于组织压力量化数据对第二牙种植体模型进行应力区域优化设计,以构建优化牙种植体模型。Step S65: performing stress area optimization design on the second dental implant model based on the tissue pressure quantification data to construct an optimized dental implant model.
本发明通过利用形变智能缓冲区的数据,对第一牙种植体模型进行形体重构,使其形态更适应口腔形态的变化,这样得到第二牙种植体模型,其形态更符合实际情况,提高了模型在口腔内的适配性和稳定性,通过将第二牙种植体模型与三维牙槽骨模型进行组合,模拟牙种植体在牙槽骨中的位置和相互作用,得到的全息牙槽-牙种植体模型更准确地反映牙种植体的嵌入情况,提供更真实的口腔结构模型,通过对全息牙槽-牙种植体模型的分析,确定牙种植体在口腔中的具体位置,这样获得的嵌入位置数据提供给临床医生参考,帮助他们在实际操作中准确定位牙种植体,确保种植的精度和准确性,通过对全息牙槽-牙种植体模型的分析,确定牙种植体周围临近组织所受到的压力分布情况,获得的组织压力量化数据用于评估种植体周围组织的应力情况,提供给临床医生参考,以确定种植体的稳定性和对周围组织的影响程度,通过分析组织压力量化数据,确定牙种植体模型中应力较大或不均匀的区域,基于这些数据,对第二牙种植体模型进行优化设计,调整其形态和结构,以减轻应力集中的区域,提高牙种植体的稳定性和牙槽骨的适应性,优化后的牙种植体模型更好地分担咀嚼力,减少对周围组织的不良影响,提高种植体的长期成功率,有助于牙种植体模型的成型和临床治疗的成功。The present invention reconstructs the shape of the first dental implant model by utilizing the data of the deformation intelligent buffer zone, so that its shape is more adapted to the changes in the oral shape, so as to obtain a second dental implant model, whose shape is more in line with the actual situation, and improves the adaptability and stability of the model in the oral cavity. By combining the second dental implant model with the three-dimensional alveolar bone model, the position and interaction of the dental implant in the alveolar bone are simulated, and the obtained holographic alveolar-dental implant model more accurately reflects the embedding situation of the dental implant, and provides a more realistic oral structure model. By analyzing the holographic alveolar-dental implant model, the specific position of the dental implant in the oral cavity is determined, and the embedding position data obtained in this way are provided to clinicians for reference, helping them to accurately locate the dental implant in actual operation and ensure the precision and accuracy of the implantation. By analyzing the holographic alveolar-dental implant model, the pressure distribution of the adjacent tissues around the dental implant is determined. The obtained tissue pressure quantitative data is used to evaluate the stress of the tissue around the implant and is provided to clinicians for reference to determine the stability of the implant and the degree of impact on the surrounding tissues. By analyzing the tissue pressure quantitative data, the areas with high or uneven stress in the dental implant model are determined. Based on these data, the second dental implant model is optimized and designed, and its morphology and structure are adjusted to reduce the stress concentration areas, improve the stability of the dental implant and the adaptability of the alveolar bone, and the optimized dental implant model better shares the chewing force, reduces the adverse effects on the surrounding tissues, improves the long-term success rate of the implant, and contributes to the molding of the dental implant model and the success of clinical treatment.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明一种基于图像处理的牙种植体模型成型方法的步骤流程示意图;FIG1 is a schematic diagram of the steps of a dental implant model forming method based on image processing according to the present invention;
图2为步骤S1的详细实施步骤流程示意图;FIG2 is a schematic diagram of a detailed implementation process of step S1;
图3为步骤S2的详细实施步骤流程示意图;FIG3 is a schematic diagram of a detailed implementation process of step S2;
图4为步骤S3的详细实施步骤流程示意图。FIG. 4 is a schematic flow chart of the detailed implementation steps of step S3.
具体实施方式Detailed ways
应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。It should be understood that the specific embodiments described herein are only used to explain the present invention, and are not used to limit the present invention.
本申请实例提供一种基于图像处理的牙种植体模型成型方法。所述基于图像处理的牙种植体模型成型方法的执行主体包括但不限于搭载该系统的:机械设备、数据处理平台、云服务器节点、网络上传设备等可看作本申请的通用计算节点,所述数据处理平台包括但不限于:音频图像管理系统、信息管理系统、云端数据管理系统至少一种。The present application example provides a dental implant model forming method based on image processing. The execution subject of the dental implant model forming method based on image processing includes but is not limited to the following: mechanical equipment, data processing platform, cloud server node, network upload device, etc. equipped with the system can be regarded as the general computing node of the present application, and the data processing platform includes but is not limited to: at least one of an audio image management system, an information management system, and a cloud data management system.
请参阅图1至图4,本发明提供了基于图像处理的牙种植体模型成型方法,包括以下步骤:Referring to FIGS. 1 to 4 , the present invention provides a dental implant model forming method based on image processing, comprising the following steps:
步骤S1:获取患者口腔CT图像;对患者口腔CT图像进行多通道卷积处理,构建口腔卷积特征图;对口腔卷积特征图进行像素级语义分割,以口腔区域分割图;Step S1: obtaining an oral CT image of a patient; performing multi-channel convolution processing on the oral CT image of the patient to construct an oral convolution feature map; performing pixel-level semantic segmentation on the oral convolution feature map to obtain an oral region segmentation map;
步骤S2:基于口腔区域分割图生成牙齿缺失区域图;对牙齿缺失区域图进行形态结构分析,以得到牙槽形态结构数据;对牙槽形态结构数据进行三维构建,以生成三维牙槽骨模型;Step S2: generating a tooth missing region map based on the oral region segmentation map; performing morphological structure analysis on the tooth missing region map to obtain alveolar morphological structure data; performing three-dimensional construction on the alveolar morphological structure data to generate a three-dimensional alveolar bone model;
步骤S3:基于三维牙槽骨模型进行拓扑形态拟合,以构建第一牙种植体模型;对第一牙种植体模型进行牙种植体周围压力分布计算,以生成牙种植体结构压力数据;Step S3: performing topological morphology fitting based on the three-dimensional alveolar bone model to construct a first dental implant model; calculating the pressure distribution around the dental implant on the first dental implant model to generate dental implant structure pressure data;
步骤S4:基于牙种植体结构压力数据进行口腔多时序节点预测,以得到口腔多时点预测结果;对口腔多时点预测结果进行组织形态结构演变分析,以得到口腔形态演变预测数据;Step S4: performing oral multi-time series node prediction based on the dental implant structure pressure data to obtain oral multi-time point prediction results; performing tissue morphological structure evolution analysis on the oral multi-time point prediction results to obtain oral morphological evolution prediction data;
步骤S5:对口腔形态演变预测数据进行时序趋势曲线拟合,以得到形态演变时序趋势曲线;基于形态演变时序趋势曲线对第一牙种植体模型进行边界缓冲区域分析,以得到形变智能缓冲区;Step S5: performing time series trend curve fitting on the oral morphology evolution prediction data to obtain the morphology evolution time series trend curve; performing boundary buffer area analysis on the first dental implant model based on the morphology evolution time series trend curve to obtain a deformation intelligent buffer zone;
步骤S6:基于形变智能缓冲区对第一牙种植体模型进行仿真植入,以得到全息牙槽-牙种植体模型;基于全息牙槽-牙种植体模型进行应力区域优化设计,以构建优化牙种植体模型。Step S6: Simulate implantation of the first dental implant model based on the deformation intelligent buffer zone to obtain a holographic alveolus-dental implant model; optimize the stress area design based on the holographic alveolus-dental implant model to construct an optimized dental implant model.
本发明通过将患者口腔CT图像进行处理和分割,得到口腔区域的准确分割图,通过多通道卷积处理,提取口腔图像中的关键特征,帮助后续的分析和处理,而像素级语义分割则进一步将口腔卷积特征图中的每个像素进行分类,使得每个像素都能被准确地归属到口腔区域或其他区域,从而得到口腔区域分割图,根据口腔区域分割图,进一步分析和处理,得到牙齿缺失区域图,通过对牙齿缺失区域图进行形态结构分析,获取牙槽的形态结构数据,包括形状、大小、位置等信息,然后,通过三维构建技术,将得到的牙槽形态结构数据转化为三维牙槽骨模型,以便后续的处理和分析,利用三维牙槽骨模型进行拓扑形态拟合,根据牙槽的形态结构数据构建第一牙种植体模型,对第一牙种植体模型进行牙种植体周围压力分布计算,得到牙种植体结构压力数据,用于评估牙种植体在口腔环境中的稳定性和适应性,为后续的优化设计提供依据,利用牙种植体结构压力数据,进行口腔多时序节点预测,即对口腔在不同时间点的变化进行预测,得到口腔在未来时刻的状态,对口腔多时点预测结果进行组织形态结构演变分析,观察口腔形态的变化趋势,得到口腔形态演变预测数据,为后续的设计和优化提供指导,根据形态演变的趋势,对牙种植体模型的边界进行调整,以创建一个智能缓冲区,考虑到口腔形态的变化,并提供一定的容错空间,以适应未来的变化,提高牙种植体的稳定性和适应性,利用形变智能缓冲区,将第一牙种植体模型进行仿真植入口腔模型中,得到完整的全息牙槽-牙种植体模型,考虑口腔形态演变的趋势,并提供适应未来变化的缓冲区,基于全息牙槽-牙种植体模型,进行应力区域优化设计,通过分析口腔内的应力分布,确定牙种植体模型中的应力区域,并进行优化设计,提高牙种植体的稳定性和适应性,确保其在口腔环境中的长期成功。The present invention processes and segments the patient's oral CT image to obtain an accurate segmentation map of the oral region, extracts key features in the oral image through multi-channel convolution processing, and helps subsequent analysis and processing, while pixel-level semantic segmentation further classifies each pixel in the oral convolution feature map so that each pixel can be accurately attributed to the oral region or other regions, thereby obtaining an oral region segmentation map, and further analyzes and processes the oral region segmentation map to obtain a tooth loss region map, and performs morphological structure analysis on the tooth loss region map to obtain morphological structure data of the alveolar, including shape, size, position and other information, and then, through three-dimensional construction technology, the obtained alveolar morphological structure data is converted into a three-dimensional alveolar bone model for subsequent processing and analysis, and the three-dimensional alveolar bone model is used for topological morphological fitting, and a first dental implant model is constructed according to the morphological structure data of the alveolar, and the pressure distribution around the dental implant is calculated for the first dental implant model to obtain dental implant structure pressure data, which is used to evaluate the stability and adaptability of the dental implant in the oral environment, and provide for subsequent optimization design. Based on the data of dental implant structure pressure, oral multi-time node prediction is performed, that is, the changes of the oral cavity at different time points are predicted to obtain the state of the oral cavity in the future. The tissue morphological structure evolution analysis is performed on the oral multi-time point prediction results, the changing trend of oral morphology is observed, and the oral morphology evolution prediction data is obtained to provide guidance for subsequent design and optimization. According to the trend of morphological evolution, the boundary of the dental implant model is adjusted to create an intelligent buffer zone, taking into account the changes in oral morphology and providing a certain fault tolerance space to adapt to future changes and improve the stability and adaptability of dental implants. The first dental implant model is simulated and implanted into the oral model using the deformation intelligent buffer zone to obtain a complete holographic alveolar-dental implant model, taking into account the trend of oral morphological evolution and providing a buffer zone to adapt to future changes. Based on the holographic alveolar-dental implant model, stress area optimization design is performed. By analyzing the stress distribution in the oral cavity, the stress area in the dental implant model is determined, and the optimization design is performed to improve the stability and adaptability of the dental implant and ensure its long-term success in the oral environment.
本发明实施例中,参阅图1,为本发明一种基于图像处理的牙种植体模型成型方法的步骤流程示意图,在本实例中,所述基于图像处理的牙种植体模型成型方法的步骤包括:In an embodiment of the present invention, referring to FIG. 1 , which is a schematic flow chart of a dental implant model forming method based on image processing of the present invention, in this example, the steps of the dental implant model forming method based on image processing include:
步骤S1:获取患者口腔CT图像;对患者口腔CT图像进行多通道卷积处理,构建口腔卷积特征图;对口腔卷积特征图进行像素级语义分割,以口腔区域分割图;Step S1: obtaining an oral CT image of a patient; performing multi-channel convolution processing on the oral CT image of the patient to construct an oral convolution feature map; performing pixel-level semantic segmentation on the oral convolution feature map to obtain an oral region segmentation map;
本实施例中,使用适当的医学影像设备,如CT扫描仪,对患者口腔进行扫描,获取口腔的三维CT图像数据,将口腔CT图像作为输入,应用多通道卷积神经网络(CNN)进行处理,将图像进行预处理,如调整大小、裁剪或填充,以适应网络的输入要求,将预处理后的图像输入到卷积网络中,卷积网络会通过一系列卷积层、激活函数和池化层来提取图像的特征信息,从卷积网络的最后一层或中间层获取口腔卷积特征图,这些特征图是高维的数据表示,其中每个通道对应着不同的特征,为每个像素预测一个标签,将口腔区域与其他区域进行分割,生成口腔区域分割图。In this embodiment, an appropriate medical imaging device, such as a CT scanner, is used to scan the patient's oral cavity to obtain three-dimensional CT image data of the oral cavity. The oral CT image is used as input and processed by a multi-channel convolutional neural network (CNN). The image is preprocessed, such as resizing, cropping, or padding, to meet the input requirements of the network. The preprocessed image is input into the convolutional network. The convolutional network extracts feature information of the image through a series of convolutional layers, activation functions, and pooling layers. Oral convolution feature maps are obtained from the last layer or middle layer of the convolutional network. These feature maps are high-dimensional data representations, in which each channel corresponds to different features, and a label is predicted for each pixel. The oral region is segmented from other regions to generate an oral region segmentation map.
步骤S2:基于口腔区域分割图生成牙齿缺失区域图;对牙齿缺失区域图进行形态结构分析,以得到牙槽形态结构数据;对牙槽形态结构数据进行三维构建,以生成三维牙槽骨模型;Step S2: generating a tooth missing region map based on the oral region segmentation map; performing morphological structure analysis on the tooth missing region map to obtain alveolar morphological structure data; performing three-dimensional construction on the alveolar morphological structure data to generate a three-dimensional alveolar bone model;
本实施例中,通过像素级操作,生成牙齿缺失区域图,在口腔区域分割图中,牙齿缺失区域被标记为正样本,其他区域被标记为负样本,利用形态学操作,如腐蚀、膨胀、开运算或闭运算等,对牙齿缺失区域图进行处理,用于去除噪声、填充空洞、平滑边界等,形态结构分析进一步优化牙齿缺失区域的形状和边缘,通过将二维形态结构数据转换为三维坐标点或体素表示来实现,常用的方法包括曲面重建、体绘制或体素化等,通过三维构建技术,生成具有几何形状和拓扑结构的牙槽骨模型。In this embodiment, a tooth missing area map is generated through pixel-level operations. In the oral region segmentation map, the tooth missing area is marked as a positive sample, and other areas are marked as negative samples. The tooth missing area map is processed using morphological operations such as corrosion, dilation, opening or closing operations to remove noise, fill cavities, smooth boundaries, etc. The morphological structure analysis further optimizes the shape and edges of the tooth missing area. This is achieved by converting two-dimensional morphological structure data into three-dimensional coordinate points or voxel representations. Commonly used methods include surface reconstruction, volume rendering or voxelization, etc. Through three-dimensional construction technology, an alveolar bone model with a geometric shape and topological structure is generated.
步骤S3:基于三维牙槽骨模型进行拓扑形态拟合,以构建第一牙种植体模型;对第一牙种植体模型进行牙种植体周围压力分布计算,以生成牙种植体结构压力数据;Step S3: performing topological morphology fitting based on the three-dimensional alveolar bone model to construct a first dental implant model; calculating the pressure distribution around the dental implant on the first dental implant model to generate dental implant structure pressure data;
本实施例中,将第一牙种植体的设计参数(如直径、长度、角度等)与三维牙槽骨模型进行拟合,拓扑形态拟合的目标是在牙槽骨模型中找到适合种植体的位置和方向,以实现牙种植体的稳固植入,根据拓扑形态拟合的结果,生成第一牙种植体的三维模型,通过在牙槽骨模型中放置一个适当形状和尺寸的模型来实现,代表第一牙种植体的位置和几何形态,对第一牙种植体模型进行压力分析,模拟种植体周围组织在咀嚼或咬合过程中的受力情况,根据模拟结果,计算并生成牙种植体结构的压力数据。In this embodiment, the design parameters of the first dental implant (such as diameter, length, angle, etc.) are fitted with the three-dimensional alveolar bone model. The goal of topological fitting is to find a suitable position and direction for the implant in the alveolar bone model to achieve stable implantation of the dental implant. According to the result of topological fitting, a three-dimensional model of the first dental implant is generated, which is achieved by placing a model of appropriate shape and size in the alveolar bone model to represent the position and geometric shape of the first dental implant. A pressure analysis is performed on the first dental implant model to simulate the stress conditions of the tissue around the implant during chewing or biting. According to the simulation results, the pressure data of the dental implant structure is calculated and generated.
步骤S4:基于牙种植体结构压力数据进行口腔多时序节点预测,以得到口腔多时点预测结果;对口腔多时点预测结果进行组织形态结构演变分析,以得到口腔形态演变预测数据;Step S4: performing oral multi-time series node prediction based on the dental implant structure pressure data to obtain oral multi-time point prediction results; performing tissue morphological structure evolution analysis on the oral multi-time point prediction results to obtain oral morphological evolution prediction data;
本实施例中,使用口腔多时序的牙种植体结构压力数据作为输入,应用时间序列预测方法进行口腔多时点的节点预测,通过统计模型、机器学习或深度学习等方法来实现,预测的结果是在未来多个时点上口腔中各个节点(如牙齿、牙槽骨等)的状态或特征,根据预测结果,生成口腔在不同时点上的预测模型或形态特征,包括牙齿位置、牙槽骨密度、组织压力分布等信息,对于每个时点,生成相应的口腔模型或形态参数,通过比较口腔不同时点的预测模型或形态参数,进行形态结构演变分析,包括计算形态变化量、形态变化速率等指标,以了解口腔形态的动态变化情况。In this embodiment, oral multi-time series dental implant structure pressure data is used as input, and a time series prediction method is applied to perform node prediction at multiple time points in the oral cavity, which is achieved through statistical models, machine learning, or deep learning. The prediction result is the state or characteristics of each node (such as teeth, alveolar bones, etc.) in the oral cavity at multiple time points in the future. According to the prediction result, a prediction model or morphological feature of the oral cavity at different time points is generated, including information such as tooth position, alveolar bone density, and tissue pressure distribution. For each time point, a corresponding oral model or morphological parameter is generated. By comparing the prediction models or morphological parameters of the oral cavity at different time points, a morphological structure evolution analysis is performed, including calculating indicators such as the morphological change amount and the morphological change rate, so as to understand the dynamic changes in the oral morphology.
步骤S5:对口腔形态演变预测数据进行时序趋势曲线拟合,以得到形态演变时序趋势曲线;基于形态演变时序趋势曲线对第一牙种植体模型进行边界缓冲区域分析,以得到形变智能缓冲区;Step S5: fitting the oral morphology evolution prediction data with a time series trend curve to obtain a morphology evolution time series trend curve; performing boundary buffer area analysis on the first dental implant model based on the morphology evolution time series trend curve to obtain a deformation intelligent buffer zone;
本实施例中,将口腔形态演变预测数据拟合成时序趋势曲线,通过在已知时间点上对预测数据进行拟合来实现,根据拟合得到的时序趋势曲线,分析口腔形态的演变趋势,包括计算曲线的斜率、变化速率等指标,以了解口腔形态的变化情况,根据形态演变时序趋势曲线,定义第一牙种植体模型的边界缓冲区域,该缓冲区域根据时序趋势曲线的变化来调整其形状和大小,定义一个动态的边界缓冲区域,它根据时序趋势曲线的斜率或变化速率来动态调整。In this embodiment, the oral morphology evolution prediction data is fitted into a time-series trend curve by fitting the prediction data at known time points. The evolution trend of the oral morphology is analyzed based on the fitted time-series trend curve, including calculating indicators such as the slope and change rate of the curve to understand the changes in the oral morphology. Based on the morphology evolution time-series trend curve, a boundary buffer area of the first dental implant model is defined, and the buffer area adjusts its shape and size according to changes in the time-series trend curve. A dynamic boundary buffer area is defined, which is dynamically adjusted according to the slope or change rate of the time-series trend curve.
步骤S6:基于形变智能缓冲区对第一牙种植体模型进行仿真植入,以得到全息牙槽-牙种植体模型;基于全息牙槽-牙种植体模型进行应力区域优化设计,以构建优化牙种植体模型。Step S6: Simulate implantation of the first dental implant model based on the deformation intelligent buffer zone to obtain a holographic alveolus-dental implant model; optimize the stress area design based on the holographic alveolus-dental implant model to construct an optimized dental implant model.
本实施例中,将第一牙种植体模型与口腔模型进行配准,将牙种植体模型放置到口腔模型中的相应位置,进行数值仿真,考虑牙齿、牙槽骨和周围组织的材料特性、几何形状和边界条件,仿真过程中,形变智能缓冲区的边界信息将被用于限制牙种植体的形变范围,通过仿真结果,计算全息牙槽-牙种植体模型中的应力分布情况,通过有限元分析等方法来实现,应力分析揭示牙种植体及周围组织的应力集中区域和受力情况,根据应力分析结果,进行应力区域的优化设计,通过调整牙种植体的形状、结构或材料分布,减少应力集中并提高牙种植体的稳定性。In this embodiment, the first dental implant model is aligned with the oral model, and the dental implant model is placed at the corresponding position in the oral model for numerical simulation. The material properties, geometric shapes and boundary conditions of the teeth, alveolar bones and surrounding tissues are considered. During the simulation, the boundary information of the deformation intelligent buffer zone will be used to limit the deformation range of the dental implant. The stress distribution in the holographic alveolar-dental implant model is calculated through the simulation results. This is achieved through finite element analysis and other methods. The stress analysis reveals the stress concentration areas and stress conditions of the dental implant and surrounding tissues. According to the stress analysis results, the stress area is optimized. By adjusting the shape, structure or material distribution of the dental implant, the stress concentration is reduced and the stability of the dental implant is improved.
本实施例中,参阅图2,为步骤S1的详细实施步骤流程示意图,本实施例中,所述步骤S1的详细实施步骤包括:In this embodiment, referring to FIG. 2 , it is a schematic flow chart of detailed implementation steps of step S1. In this embodiment, the detailed implementation steps of step S1 include:
步骤S11:获取患者口腔CT图像;Step S11: Acquire a CT image of the patient's oral cavity;
步骤S12:对患者口腔CT图像进行多通道卷积处理,以提取跨波段特征数据;Step S12: performing multi-channel convolution processing on the patient's oral CT image to extract cross-band feature data;
步骤S13:基于跨波段特征数据构建口腔卷积特征图;Step S13: constructing an oral cavity convolution feature map based on the cross-band feature data;
步骤S14:对口腔卷积特征图进行分支采样处理,以得到空间细节卷积图;Step S14: performing branch sampling processing on the oral cavity convolution feature map to obtain a spatial detail convolution map;
步骤S15:对空间细节卷积图进行像素级语义分割,以口腔区域分割图。Step S15: Perform pixel-level semantic segmentation on the spatial detail convolution map to obtain an oral region segmentation map.
本实施例中,通过CT扫描,获取患者口腔的三维图像数据,使用卷积神经网络(CNN),在口腔CT图像上应用多个卷积核进行卷积操作,每个卷积核提取特定的跨波段特征,通过多次卷积操作,得到多个通道的特征图,将通过多通道卷积处理得到的特征数据进行整合,构建口腔卷积特征图,通过对每个通道的特征图进行组合、叠加或其他操作来实现,对口腔卷积特征图进行分支采样操作,以提取空间细节信息,通过使用滤波器、池化操作或其他采样技术来实现,采样操作帮助聚焦于口腔图像的局部区域,并提取更具细节的信息,通过分支采样处理,得到空间细节卷积图,其中包含了口腔图像的局部细节信息,使用像素级语义分割算法,在空间细节卷积图上进行像素级别的分类,将口腔图像的每个像素分配到特定的类别,例如牙齿、牙龈、骨骼等,通过像素级语义分割,得到口腔区域分割图,其中每个像素都被标记为相应的类别。In this embodiment, CT scanning is used to obtain three-dimensional image data of the patient's oral cavity. A convolutional neural network (CNN) is used to apply multiple convolution kernels to the oral CT image for convolution operations. Each convolution kernel extracts specific cross-band features. Multiple convolution operations are performed to obtain feature maps of multiple channels. The feature data obtained through multi-channel convolution processing are integrated to construct an oral convolution feature map. This is achieved by combining, superimposing or other operations on the feature maps of each channel. A branch sampling operation is performed on the oral convolution feature map to extract spatial detail information. This is achieved by using filters, pooling operations or other sampling techniques. The sampling operation helps focus on local areas of the oral image and extract more detailed information. A spatial detail convolution map is obtained through branch sampling processing, which contains local detail information of the oral image. A pixel-level semantic segmentation algorithm is used to perform pixel-level classification on the spatial detail convolution map, and each pixel of the oral image is assigned to a specific category, such as teeth, gums, bones, etc. Through pixel-level semantic segmentation, an oral region segmentation map is obtained, in which each pixel is labeled with a corresponding category.
本实施例中,步骤S14的具体步骤为:In this embodiment, the specific steps of step S14 are:
步骤S141:对口腔卷积特征图进行多层下采样,以得到全局大粒度特征数据;Step S141: performing multi-layer downsampling on the oral cavity convolution feature map to obtain global large-granularity feature data;
步骤S142:对口腔卷积特征图进行多尺度上采样,从而得到局部细节特征数据;Step S142: performing multi-scale upsampling on the oral cavity convolution feature map to obtain local detail feature data;
步骤S143:对全局大粒度特征数据及局部细节特征数据进行残差连接处理,以生成缺失细节特征数据;Step S143: performing residual connection processing on the global large-grained feature data and the local detail feature data to generate missing detail feature data;
步骤S144:基于缺失细节特征数据以得到空间细节卷积图。Step S144: Obtain a spatial detail convolution map based on the missing detail feature data.
本实施例中,在进行下采样时,将特征图划分为不重叠的区域,每个区域中的像素值通过池化操作得到一个单一的值,这样将特征图的尺寸缩小,并提取全局大粒度特征数据,在进行上采样时,根据需要放大的尺寸,将特征图中的每个像素值复制到目标位置,并通过插值或卷积等方法填充其他像素值,增加特征图的尺寸,并提取局部细节特征数据,将全局大粒度特征数据和局部细节特征数据进行残差连接操作,通过将两个特征图的对应像素值相加来实现,残差连接帮助传递缺失的细节信息,并提高特征的表达能力,利用生成的缺失细节特征数据,进一步卷积操作、滤波操作等,通过基于缺失细节特征数据的处理,得到空间细节卷积图,其中包含了口腔图像的更丰富的细节信息。In this embodiment, when downsampling is performed, the feature map is divided into non-overlapping areas, and the pixel values in each area are pooled to obtain a single value, thereby reducing the size of the feature map and extracting global large-grained feature data. When upsampling is performed, each pixel value in the feature map is copied to the target position according to the size that needs to be enlarged, and other pixel values are filled by interpolation or convolution, etc., to increase the size of the feature map, and extract local detail feature data. The global large-grained feature data and the local detail feature data are residually connected by adding the corresponding pixel values of the two feature maps. The residual connection helps to transmit the missing detail information and improve the expressiveness of the features. The generated missing detail feature data is further used for convolution operations, filtering operations, etc., and a spatial detail convolution map is obtained through processing based on the missing detail feature data, which contains richer detail information of the oral image.
本实施例中,参阅图3,为步骤S2的详细实施步骤流程示意图,本实施例中,所述步骤S2的详细实施步骤包括:In this embodiment, referring to FIG. 3 , which is a schematic flow chart of detailed implementation steps of step S2, in this embodiment, the detailed implementation steps of step S2 include:
步骤S21:对口腔区域分割图进行细粒度结构识别,以得到牙齿缺失区域图;Step S21: performing fine-grained structure recognition on the oral region segmentation map to obtain a tooth missing region map;
步骤S22:对牙齿缺失区域图进行牙槽轮廓提取,以得到牙槽区域轮廓数据;Step S22: extracting the alveolar contour from the tooth missing area map to obtain alveolar area contour data;
步骤S23:对牙槽区域轮廓数据进行形态结构分析,以得到牙槽形态结构数据;Step S23: performing morphological structure analysis on the alveolar area contour data to obtain alveolar morphological structure data;
步骤S24:对牙齿缺失区域图进行牙齿拓扑间隙计算,以得到周边牙体间隙范围数据;Step S24: performing tooth topological gap calculation on the tooth missing area map to obtain peripheral tooth gap range data;
步骤S25:基于周边牙体间隙范围数据对牙槽形态结构数据进行三维构建,以生成三维牙槽骨模型。Step S25: constructing the alveolar morphological structure data in three dimensions based on the peripheral tooth space range data to generate a three-dimensional alveolar bone model.
本实施例中,在口腔区域分割图的基础上,进行细粒度结构识别,以识别牙齿缺失区域,使用深度学习方法,如卷积神经网络(CNN),对分割图进行分类或像素级预测,将缺失的牙齿区域标记出来,对牙齿缺失区域图进行边缘检测或轮廓提取算法,提取牙槽区域的轮廓,使用基于梯度的算法(如Sobel算子或Canny边缘检测)或基于区域边界的算法(如边界跟踪算法),对牙槽区域轮廓数据进行形态学分析,包括计算轮廓的长度、面积、周长等形态特征,应用形态学操作(如腐蚀、膨胀、开运算、闭运算)来进一步改善轮廓形状,去除噪声或填补空洞,对牙齿缺失区域图进行分析,计算牙齿之间的拓扑间隙,通过测量缺失区域与周围牙体的距离或边界之间的距离来实现,使用距离变换、边界检测等技术来计算间隙的范围和分布,利用周边牙体间隙范围数据和牙槽形态结构数据,进行三维重建算法,生成三维牙槽骨模型,使用计算机图形学和计算机辅助设计/制造(CAD/CAM)技术,将牙槽形态结构数据转化为三维坐标点或网格模型,并根据周边牙体间隙范围数据进行插值或修正,生成精确的三维牙槽骨模型。In this embodiment, fine-grained structure recognition is performed on the basis of the oral region segmentation map to identify the tooth missing region, and a deep learning method, such as a convolutional neural network (CNN), is used to classify or pixel-level predict the segmentation map to mark the missing tooth region, and an edge detection or contour extraction algorithm is performed on the tooth missing region map to extract the contour of the alveolar region. A gradient-based algorithm (such as a Sobel operator or a Canny edge detection) or an algorithm based on a region boundary (such as a boundary tracking algorithm) is used to perform a morphological analysis on the alveolar region contour data, including calculating the morphological features of the contour, such as the length, area, and perimeter, and applying morphological operations (such as corrosion, expansion, opening, and closing operations). ) to further improve the contour shape, remove noise or fill holes, analyze the tooth missing area map, calculate the topological gaps between teeth, and achieve this by measuring the distance between the missing area and the surrounding teeth or the distance between the boundaries. Use distance transformation, boundary detection and other technologies to calculate the range and distribution of the gaps. Use the surrounding tooth gap range data and alveolar morphological structure data to perform a three-dimensional reconstruction algorithm to generate a three-dimensional alveolar bone model. Use computer graphics and computer-aided design/manufacturing (CAD/CAM) technology to convert the alveolar morphological structure data into three-dimensional coordinate points or grid models, and interpolate or correct them according to the surrounding tooth gap range data to generate an accurate three-dimensional alveolar bone model.
本实施例中,参考图4所述,为步骤S3的详细实施步骤流程示意图,本实施例中,所述步骤S3的详细实施步骤包括:In this embodiment, referring to FIG. 4 , which is a flowchart of detailed implementation steps of step S3, in this embodiment, the detailed implementation steps of step S3 include:
步骤S31:基于三维牙槽骨模型进行拓扑形态拟合,以构建第一牙种植体模型;Step S31: performing topological morphology fitting based on the three-dimensional alveolar bone model to construct a first dental implant model;
步骤S32:对第一牙种植体模型进行弹性变形动力学约束分析,以得到弹性变形动力学约束数据;Step S32: performing elastic deformation dynamic constraint analysis on the first dental implant model to obtain elastic deformation dynamic constraint data;
步骤S33:对弹性变形动力学约束数据进行咀嚼磨损模拟,以得到磨损模拟数据;Step S33: performing chewing wear simulation on the elastic deformation dynamics constraint data to obtain wear simulation data;
步骤S34:基于磨损模拟数据进行牙种植体周围压力分布计算,以生成牙种植体结构压力数据。Step S34: Calculate the pressure distribution around the dental implant based on the wear simulation data to generate dental implant structure pressure data.
本实施例中,将第一牙种植体的形状与三维牙槽骨模型进行拟合,以获得第一牙种植体的位置和姿态,对第一牙种植体模型进行弹性变形动力学约束分析,以模拟在咀嚼过程中施加在种植体上的力和压力,使用有限元分析(FEA)或其他仿真方法来实现,将种植体模型与材料特性相结合,考虑到组织的弹性行为和咀嚼力的作用,基于弹性变形动力学约束数据,模拟咀嚼过程中牙齿之间的接触和磨损,使用仿真方法,如接触力分析和摩擦模型,结合咀嚼运动数据和牙齿表面特性,模拟牙齿之间的接触、滑动和磨损过程,根据磨损模拟数据,计算牙种植体周围的压力分布,通过将磨损模拟数据与压力传递模型相结合,考虑咀嚼力的传导、分布和影响,来计算牙种植体周围的压力分布情况。In this embodiment, the shape of the first dental implant is fitted to the three-dimensional alveolar bone model to obtain the position and posture of the first dental implant, and an elastic deformation dynamic constraint analysis is performed on the first dental implant model to simulate the force and pressure applied to the implant during chewing. This is achieved using finite element analysis (FEA) or other simulation methods. The implant model is combined with material properties, and the elastic behavior of the tissue and the effect of chewing force are taken into account. Based on the elastic deformation dynamic constraint data, the contact and wear between the teeth during chewing are simulated. Simulation methods such as contact force analysis and friction models are used to combine chewing motion data and tooth surface characteristics to simulate the contact, sliding and wear processes between the teeth. The pressure distribution around the dental implant is calculated based on the wear simulation data. The pressure distribution around the dental implant is calculated by combining the wear simulation data with the pressure transfer model and taking into account the conduction, distribution and influence of the chewing force.
本实施例中,步骤S4包括以下步骤:In this embodiment, step S4 includes the following steps:
步骤S41:基于牙种植体结构压力数据进行口腔多时序节点预测,以得到口腔多时点预测结果;Step S41: performing oral multi-time series node prediction based on the dental implant structure pressure data to obtain oral multi-time point prediction results;
步骤S42:对口腔多时点预测结果进行骨组织形态变化分析,以得到骨组织形态变化数据;Step S42: performing bone tissue morphology change analysis on the oral multi-time point prediction results to obtain bone tissue morphology change data;
步骤S43:对口腔多时点预测结果进行软组织变化分析,以得到口腔软组织变化数据;Step S43: performing soft tissue change analysis on the oral multi-time point prediction results to obtain oral soft tissue change data;
步骤S44:基于骨组织形态变化数据及口腔软组织变化数据进行结构特征点变化识别,以得到变化结构特征点;Step S44: performing structural feature point change identification based on the bone tissue morphology change data and the oral soft tissue change data to obtain changed structural feature points;
步骤S45:对变化结构特征点进行部位演变速率分析,以得到结构演变规律;Step S45: performing position evolution rate analysis on the changed structural feature points to obtain the structural evolution law;
步骤S46:通过结构演变规律对口腔多时点预测结果进行组织形态结构演变分析,以得到口腔形态演变预测数据。Step S46: Performing tissue morphological structure evolution analysis on the oral multi-time point prediction results according to the structure evolution law to obtain oral morphological evolution prediction data.
本实施例中,利用口腔模型和牙种植体结构压力数据,进行口腔多时序节点预测,采用时间序列分析方法,如回归分析、机器学习或深度学习模型,来建立牙种植体结构压力数据与时间节点之间的关联关系,从而预测口腔在不同时点上的状态和变化,对口腔多时点预测结果进行骨组织形态变化分析,以识别和量化骨组织的形态变化,使用图像处理和分析方法,如图像配准、分割和形态学分析,来比较不同时点上的口腔模型,检测和测量骨组织的形态变化,对口腔多时点预测结果进行软组织变化分析,以识别和量化口腔软组织的变化,使用图像处理和分析方法,如图像配准、分割和形态学分析,来比较不同时点上的口腔模型,检测和测量软组织的形态变化,结合骨组织形态变化数据和口腔软组织变化数据,识别口腔模型中的结构特征点的变化,通过比较不同时点上的口腔模型,检测和量化结构特征点的位置、形状或其他属性的变化,对变化结构特征点进行部位演变速率分析,以确定口腔结构的演变规律,使用统计分析和模式识别方法,比较不同时点上的特征点位置和属性的变化,并计算它们之间的速率和趋势,以揭示口腔结构演变的规律,基于结构演变规律,对口腔多时点预测结果进行组织形态结构演变分析,使用插值、变形模型或其他方法,根据口腔的初始状态和结构演变规律,预测口腔在未来时点上的形态演变情况。In this embodiment, oral models and dental implant structure pressure data are used to perform oral multi-time series node prediction, and time series analysis methods, such as regression analysis, machine learning or deep learning models, are used to establish the correlation between the dental implant structure pressure data and the time nodes, so as to predict the state and changes of the oral cavity at different time points. The bone tissue morphological change analysis is performed on the oral multi-time point prediction results to identify and quantify the morphological changes of the bone tissue. Image processing and analysis methods, such as image registration, segmentation and morphological analysis, are used to compare the oral models at different time points to detect and measure the morphological changes of the bone tissue. The soft tissue change analysis is performed on the oral multi-time point prediction results to identify and quantify the changes of the oral soft tissue. Image processing and analysis methods, such as image registration, segmentation and morphological analysis, are used to compare the oral models at different time points. Oral model, detect and measure the morphological changes of soft tissues, combine bone tissue morphological change data and oral soft tissue change data to identify the changes of structural feature points in the oral model, detect and quantify the changes in the position, shape or other attributes of the structural feature points by comparing the oral models at different time points, and perform position evolution rate analysis on the changed structural feature points to determine the evolution law of the oral structure. Use statistical analysis and pattern recognition methods to compare the changes in the position and attributes of the feature points at different time points, and calculate the rates and trends between them to reveal the law of oral structure evolution. Based on the law of structural evolution, perform tissue morphological structure evolution analysis on the oral multi-time point prediction results, and use interpolation, deformation models or other methods to predict the morphological evolution of the oral cavity at future time points based on the initial state of the oral cavity and the law of structural evolution.
本实施例中,步骤S5的具体步骤为:In this embodiment, the specific steps of step S5 are:
步骤S51:对口腔形态演变预测数据进行最大形变区域计算,以得到口腔形态最大形变区域;Step S51: calculating the maximum deformation area of the oral morphology evolution prediction data to obtain the maximum deformation area of the oral morphology;
步骤S52:对口腔形态最大形变区域进行时序趋势曲线拟合,以得到形态演变时序趋势曲线;Step S52: fitting a time series trend curve for the maximum deformation area of the oral morphology to obtain a morphology evolution time series trend curve;
步骤S53:基于形态演变时序趋势曲线对第一牙种植体模型进行边界缓冲区域分析,以生成种植体形变缓冲区;Step S53: performing boundary buffer area analysis on the first dental implant model based on the morphological evolution time series trend curve to generate an implant deformation buffer zone;
步骤S54:对种植体形变缓冲区进行应力拓扑优化,以得到形变智能缓冲区。Step S54: performing stress topology optimization on the implant deformation buffer zone to obtain a deformation intelligent buffer zone.
本实施例中,对口腔形态演变预测数据进行分析,找到在形态演变过程中发生最大变化的区域,使用形态学分析、点云比对或其他图像处理方法,比较不同时点上的口腔模型,计算形态变化的程度,并确定最大形变区域,对口腔形态最大形变区域的形态演变进行时序分析,拟合时序趋势曲线,使用回归分析、曲线拟合或其他时间序列分析方法,对最大形变区域在不同时间点上的形态变化进行建模,并生成形态演变的时序趋势曲线,利用形态演变时序趋势曲线,对第一牙种植体模型进行边界缓冲区域分析,通过定义一个缓冲区域,根据形态演变的时序趋势曲线来确定植体模型的边界位置,以生成种植体形变缓冲区,对种植体形变缓冲区进行应力拓扑优化,使用有限元分析或其他结构优化方法,将植体形变缓冲区内的结构进行优化,以提高其抗应力能力和稳定性,从而得到形变智能缓冲区。In this embodiment, the oral morphological evolution prediction data is analyzed to find the area where the greatest change occurs during the morphological evolution process. Morphological analysis, point cloud comparison or other image processing methods are used to compare oral models at different time points, calculate the degree of morphological change, and determine the maximum deformation area. A time series analysis is performed on the morphological evolution of the maximum deformation area of the oral morphology, and a time series trend curve is fitted. Regression analysis, curve fitting or other time series analysis methods are used to model the morphological changes of the maximum deformation area at different time points, and a time series trend curve of morphological evolution is generated. The morphological evolution time series trend curve is used to perform a boundary buffer area analysis on the first dental implant model. A buffer area is defined and the boundary position of the implant model is determined according to the time series trend curve of morphological evolution to generate an implant deformation buffer zone. The implant deformation buffer zone is stress topologically optimized. Finite element analysis or other structural optimization methods are used to optimize the structure within the implant deformation buffer zone to improve its stress resistance and stability, thereby obtaining a deformation intelligent buffer zone.
本实施例中,步骤S53的具体步骤为:In this embodiment, the specific steps of step S53 are:
步骤S531:基于形态演变时序趋势曲线对第一牙种植体模型进行变形率匹配分析,以生成牙种植体模型变形率数据;Step S531: performing deformation rate matching analysis on the first dental implant model based on the morphological evolution time series trend curve to generate deformation rate data of the dental implant model;
步骤S532:对牙种植体模型变形率数据进行区域受力变化规律分析,以得到区域受力变化规律;Step S532: analyzing the regional force variation law of the dental implant model deformation rate data to obtain the regional force variation law;
步骤S533:基于区域受力变化规律进行边界缓冲区域分析,以生成种植体形变缓冲区;Step S533: performing boundary buffer area analysis based on the regional force variation law to generate an implant deformation buffer area;
步骤S54:对种植体形变缓冲区进行应力拓扑优化,以得到形变智能缓冲区。Step S54: performing stress topology optimization on the implant deformation buffer zone to obtain a deformation intelligent buffer zone.
本实施例中,利用形态演变时序趋势曲线,对第一牙种植体模型进行变形率匹配分析,通过比较模型在不同时点上的形态差异,计算出每个点的变形率(即形态变化的程度),以生成牙种植体模型的变形率数据,对牙种植体模型的变形率数据进行分析,找到不同区域受力发生变化的规律,通过比较不同时点上的变形率数据,检测出受力发生显著变化的区域,并确定其变化规律,利用区域受力变化规律,对第一牙种植体模型进行边界缓冲区域分析,根据受力变化的规律,确定植体模型的边界位置,以生成种植体形变缓冲区,对种植体形变缓冲区进行应力拓扑优化,使用有限元分析或其他结构优化方法,对缓冲区内的结构进行优化,以提高其抗应力能力和稳定性,从而得到形变智能缓冲区。In this embodiment, a deformation rate matching analysis is performed on the first dental implant model using a morphological evolution time series trend curve. By comparing the morphological differences of the models at different time points, the deformation rate of each point (i.e., the degree of morphological change) is calculated to generate deformation rate data of the dental implant model. The deformation rate data of the dental implant model is analyzed to find the law of force changes in different regions. By comparing the deformation rate data at different time points, the regions where the force changes significantly are detected and their change laws are determined. Using the regional force change law, a boundary buffer area analysis is performed on the first dental implant model. According to the law of force change, the boundary position of the implant model is determined to generate an implant deformation buffer zone. The implant deformation buffer zone is stress topologically optimized. Finite element analysis or other structural optimization methods are used to optimize the structure in the buffer zone to improve its stress resistance and stability, thereby obtaining a deformation intelligent buffer zone.
本实施例中,步骤S6的具体步骤为:In this embodiment, the specific steps of step S6 are:
步骤S61:基于形变智能缓冲区对第一牙种植体模型进行拓扑形体重构,以构建第二牙种植体模型;Step S61: reconstructing the topological shape of the first dental implant model based on the deformation intelligent buffer zone to construct a second dental implant model;
步骤S62:通过第二牙种植体模型对三维牙槽骨模型进行仿真植入以得到全息牙槽-牙种植体模型;Step S62: performing simulated implantation on the three-dimensional alveolar bone model through the second dental implant model to obtain a holographic alveolar-dental implant model;
步骤S63:对全息牙槽-牙种植体模型进行牙种植体位置识别,以得到嵌入位置数据;Step S63: performing dental implant position recognition on the holographic alveolus-dental implant model to obtain embedding position data;
步骤S64:基于嵌入位置数据对全息牙槽-牙种植体模型进行临边组织压力分布量化,得到组织压力量化数据;Step S64: quantifying the distribution of tissue pressure at the edge of the holographic alveolus-dental implant model based on the embedding position data to obtain quantitative tissue pressure data;
步骤S65:基于组织压力量化数据对第二牙种植体模型进行应力区域优化设计,以构建优化牙种植体模型。Step S65: performing stress area optimization design on the second dental implant model based on the tissue pressure quantification data to construct an optimized dental implant model.
本实施例中,利用形变智能缓冲区的信息,对第一牙种植体模型进行拓扑形体重构,通过改变模型的形状、结构或拓扑连接来实现,通过将形变智能缓冲区的形状和结构特征引入到第一牙种植体模型中,生成第二牙种植体模型,具有更好的抗应力能力和稳定性,将第二牙种植体模型与三维牙槽骨模型进行仿真植入,通过将第二牙种植体模型放置到牙槽骨模型中的适当位置,生成全息牙槽-牙种植体模型,这个模型表示牙种植体与牙槽骨之间的关系,并包含了嵌入的位置信息,通过对全息牙槽-牙种植体模型进行分析和处理,识别牙种植体的位置,通过计算牙种植体与牙槽骨的相对位置和几何特征来实现,通过识别嵌入位置,获取关于牙种植体在口腔中的准确位置的数据,利用嵌入位置数据,对全息牙槽-牙种植体模型进行临边组织压力分布的量化,通过计算牙种植体周围组织的压力分布情况来实现,通过量化组织压力,获得关于牙种植体周围组织受力情况的详细数据,利用组织压力量化数据,对第二牙种植体模型进行应力区域的优化设计,通过调整牙种植体的形状、尺寸或材料来实现,通过优化设计,使牙种植体在口腔中的应力分布更加均匀,减少潜在的应力集中区域,提高其稳定性和长期成功率。In this embodiment, the information of the deformation intelligent buffer zone is used to perform topological reconstruction on the first dental implant model by changing the shape, structure or topological connection of the model. The shape and structural characteristics of the deformation intelligent buffer zone are introduced into the first dental implant model to generate a second dental implant model with better stress resistance and stability. The second dental implant model is simulated and implanted with the three-dimensional alveolar bone model. The second dental implant model is placed at an appropriate position in the alveolar bone model to generate a holographic alveolar-dental implant model, which represents the relationship between the dental implant and the alveolar bone and includes embedded position information. The position of the dental implant is identified by analyzing and processing the holographic alveolar-dental implant model. This is achieved by calculating the relative position and geometric features of the dental implant and the alveolar bone, by identifying the embedding position, obtaining data on the exact position of the dental implant in the oral cavity, using the embedding position data to quantify the pressure distribution of the adjacent tissues of the holographic alveolar-dental implant model, and by calculating the pressure distribution of the tissues around the dental implant, by quantifying the tissue pressure, obtaining detailed data on the stress conditions of the tissues around the dental implant, and using the tissue pressure quantification data to optimize the design of the stress area of the second dental implant model, and by adjusting the shape, size or material of the dental implant, this is achieved, and through optimized design, the stress distribution of the dental implant in the oral cavity is made more uniform, reducing potential stress concentration areas, and improving its stability and long-term success rate.
因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在申请文件的等同要件的含义和范围内的所有变化涵括在本发明内。Therefore, the embodiments should be regarded as illustrative and non-restrictive from all points, and the scope of the present invention is limited by the appended claims rather than the above description, and it is therefore intended that all changes falling within the meaning and range of equivalent elements of the application documents are included in the present invention.
如上所述仅是本发明的具体实施方式,使本领域技术人员能够理解或实现本发明。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所发明的原理和新颖特点相一致的最宽的范围。The above is only a specific embodiment of the present invention, so that those skilled in the art can understand or implement the present invention. Various modifications to these embodiments will be apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the present invention. Therefore, the present invention will not be limited to the embodiments shown herein, but should conform to the widest scope consistent with the principles and novel features invented herein.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410436561.XA CN118021474B (en) | 2024-04-11 | 2024-04-11 | Dental implant model forming method based on image processing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410436561.XA CN118021474B (en) | 2024-04-11 | 2024-04-11 | Dental implant model forming method based on image processing |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118021474A CN118021474A (en) | 2024-05-14 |
CN118021474B true CN118021474B (en) | 2024-07-05 |
Family
ID=91000783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410436561.XA Active CN118021474B (en) | 2024-04-11 | 2024-04-11 | Dental implant model forming method based on image processing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118021474B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111358585A (en) * | 2020-03-18 | 2020-07-03 | 山东大学 | CT image-based porous implant manufacturing method and system |
CN115954088A (en) * | 2022-10-19 | 2023-04-11 | 浙江大学 | Method for obtaining root shield dental implant optimal model based on reverse three-dimensional finite element analysis |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8083522B2 (en) * | 2008-10-29 | 2011-12-27 | Inpronto Inc. | Method for tooth implants |
WO2013106463A2 (en) * | 2012-01-09 | 2013-07-18 | Old Dominion University Research Foundation | Method and device for natural root form dental implants |
CN107184285A (en) * | 2017-06-15 | 2017-09-22 | 上海贝齿信息科技有限公司 | The dentistry implant implantation of design by chair can be positioned, guiding device step by step for hole |
KR102145615B1 (en) * | 2018-06-15 | 2020-08-19 | 오스템임플란트 주식회사 | Dental implant planning method, apparatus, and recording medium thereof |
CN109446738B (en) * | 2018-12-20 | 2023-06-30 | 浙江工业大学 | Design method and implant of bone-surface-anchored dental implant with topology optimization structure |
CN209182826U (en) * | 2018-12-20 | 2019-07-30 | 浙江工业大学 | Bone-anchored dental implant with topology-optimized structure |
CN113711271A (en) * | 2019-03-15 | 2021-11-26 | 豪夫迈·罗氏有限公司 | Deep convolutional neural network for tumor segmentation by positron emission tomography |
CN111388125B (en) * | 2020-03-05 | 2022-03-08 | 深圳先进技术研究院 | Method and device for calculating tooth movement amount before and after orthodontic treatment |
CN112120810A (en) * | 2020-09-29 | 2020-12-25 | 深圳市深图医学影像设备有限公司 | Three-dimensional data generation method of tooth orthodontic concealed appliance |
CN116052890B (en) * | 2022-11-18 | 2023-09-26 | 江苏创英医疗器械有限公司 | Tooth implant three-dimensional scanning modeling system and method based on Internet of things |
CN116663086B (en) * | 2023-07-28 | 2024-05-28 | 南昌东森牙科器材有限公司 | Method for reversely constructing implant based on biomechanical analysis grid cell mapping |
-
2024
- 2024-04-11 CN CN202410436561.XA patent/CN118021474B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111358585A (en) * | 2020-03-18 | 2020-07-03 | 山东大学 | CT image-based porous implant manufacturing method and system |
CN115954088A (en) * | 2022-10-19 | 2023-04-11 | 浙江大学 | Method for obtaining root shield dental implant optimal model based on reverse three-dimensional finite element analysis |
Also Published As
Publication number | Publication date |
---|---|
CN118021474A (en) | 2024-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hwang et al. | Learning beyond human expertise with generative models for dental restorations | |
Tian et al. | Efficient computer-aided design of dental inlay restoration: a deep adversarial framework | |
KR20200108851A (en) | Automated 3D root shape prediction system and method using deep learning method | |
KR20190028422A (en) | Systems and methods for automatic detection, localization, and semantic segmentation of anatomical objects | |
JP2010515557A (en) | Image processing system and method. | |
Yuan et al. | Personalized design technique for the dental occlusal surface based on conditional generative adversarial networks | |
CN114998301A (en) | Vertebral body sub-region segmentation method and device and storage medium | |
CN112085740A (en) | Tooth fast segmentation method based on three-dimensional tooth jaw model | |
CN114638852B (en) | Method, device and medium for identifying and reconstructing jaw and soft tissue based on CBCT images | |
CN115661149B (en) | A lung image processing system based on lung tissue data | |
CN110717905A (en) | Brain image detection method, computer device, and storage medium | |
CN117636116A (en) | Method for intelligently fusing CT image data with MRI data | |
Broll et al. | Generative deep learning approaches for the design of dental restorations: A narrative review | |
Mangado et al. | Automatic model generation framework for computational simulation of cochlear implantation | |
CN118021474B (en) | Dental implant model forming method based on image processing | |
CN118873161A (en) | A dual determination method and system for intracranial arterial stenosis | |
KR102505614B1 (en) | Method and apparatus of providing osteoarthritis prediction information | |
CN118334043A (en) | Intraoral scanning image segmentation method based on deep learning | |
CN118397219A (en) | Orthodontic planning method, system and computer equipment | |
CN118252637A (en) | Planning method for assisting instant tooth planting | |
CN116071386B (en) | Dynamic segmentation method for medical image of joint disease | |
KR20240107030A (en) | Dental X-ray image multi-class segmentation method and device | |
Dhar et al. | Automatic tracing of mandibular canal pathways using deep learning | |
CN115761226A (en) | Oral cavity image segmentation identification method and device, electronic equipment and storage medium | |
Wei et al. | Autologous transplantation tooth guide design based on deep learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241224 Address after: 344000 No. 9, Donglin Road, Fuzhou City, Jiangxi Province Patentee after: FUZHOU MEDICAL COLLEGE OF NANCHANG University Country or region after: China Address before: Room 101, Building 135, No. 131-137, 188-1 to 188-10, Nanchang Jiahai Industrial Park, No. 2799 Tianxiang Avenue, Nanchang High tech Industrial Development Zone, Nanchang City, Jiangxi Province, China 330000 Patentee before: Nanchang Dongsen Dental Equipment Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |