CN118011453A - CZT detector efficiency calculating method and device based on crystal effective height - Google Patents
CZT detector efficiency calculating method and device based on crystal effective height Download PDFInfo
- Publication number
- CN118011453A CN118011453A CN202410164135.5A CN202410164135A CN118011453A CN 118011453 A CN118011453 A CN 118011453A CN 202410164135 A CN202410164135 A CN 202410164135A CN 118011453 A CN118011453 A CN 118011453A
- Authority
- CN
- China
- Prior art keywords
- czt
- detector
- efficiency
- crystal
- parameters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000004364 calculation method Methods 0.000 claims abstract description 82
- 238000001514 detection method Methods 0.000 claims abstract description 65
- 238000001228 spectrum Methods 0.000 claims abstract description 43
- 238000005259 measurement Methods 0.000 claims abstract description 30
- 230000008569 process Effects 0.000 claims abstract description 14
- 238000004088 simulation Methods 0.000 claims abstract description 8
- 230000007246 mechanism Effects 0.000 claims abstract description 5
- 239000000523 sample Substances 0.000 claims description 34
- 230000005251 gamma ray Effects 0.000 claims description 24
- 230000000694 effects Effects 0.000 claims description 22
- 238000007493 shaping process Methods 0.000 claims description 21
- 238000004590 computer program Methods 0.000 claims description 15
- 239000012088 reference solution Substances 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 9
- 239000012086 standard solution Substances 0.000 claims description 7
- 238000000084 gamma-ray spectrum Methods 0.000 claims description 6
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 6
- 239000004800 polyvinyl chloride Substances 0.000 claims description 6
- 239000013074 reference sample Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 238000000342 Monte Carlo simulation Methods 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 2
- 230000002285 radioactive effect Effects 0.000 abstract description 3
- QWUZMTJBRUASOW-UHFFFAOYSA-N cadmium tellanylidenezinc Chemical compound [Zn].[Cd].[Te] QWUZMTJBRUASOW-UHFFFAOYSA-N 0.000 description 105
- 238000010586 diagram Methods 0.000 description 14
- 238000004891 communication Methods 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 230000003993 interaction Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- -1 HPGe Chemical compound 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 241000721701 Lynx Species 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001730 gamma-ray spectroscopy Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/17—Circuit arrangements not adapted to a particular type of detector
- G01T1/178—Circuit arrangements not adapted to a particular type of detector for measuring specific activity in the presence of other radioactive substances, e.g. natural, in the air or in liquids such as rain water
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/24—Measuring radiation intensity with semiconductor detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/36—Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/36—Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
- G01T1/366—Measuring spectral distribution of X-rays or of nuclear radiation spectrometry with semi-conductor detectors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Measurement Of Radiation (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及放射性核素活度测量技术领域,具体涉及一种基于晶体有效高度的CZT探测器效率计算方法及设备。The invention relates to the technical field of radionuclide activity measurement, and in particular to a CZT detector efficiency calculation method and device based on crystal effective height.
背景技术Background technique
碲锌镉(cadmium zinc telluride,简称CZT)探测器是一种新型半导体γ能谱探测器,具有能量分辨好、可在室温下工作、设备轻巧、价格低廉等优点,逐渐应用于医学、天体物理学、国土安全、环境保护等领域,主要使用CZT探测器测量X射线或γ射线的能谱。Cadmium zinc telluride (CZT) detector is a new type of semiconductor gamma-ray spectrometer detector with the advantages of good energy resolution, operation at room temperature, light weight and low price. It is gradually used in medicine, astrophysics, homeland security, environmental protection and other fields. CZT detector is mainly used to measure the energy spectrum of X-rays or gamma-rays.
探测效率是使用γ能谱法测量核素活度的关键参数,在测量放射性核素的活度前需要对探测器的效率进行刻度。无源效率刻度是基于蒙特卡罗方法建立模型的一种效率计算方法,不需要使用标准源,就可以获得探测器的效率。在很难使用标准源刻度探测系统的效率时,无源效率刻度法具有显著的优势。为了获得准确的探测效率计算结果,需要根据探测器的结构信息建立计算模型,对于HPGe、NaI(Tl)、LaBr3(Ce)等传统γ能谱探测器而言,建立的计算模型越接近于探测器的真实结构,计算结果越接近于测量结果。CZTγ能谱探测器测得能谱中的γ射线全能峰具有低能拖尾,且对低能γ射线和高能γ射线本征探测效率差很大,这是CZT区别于传统γ能谱探测器的显著特点。很多文献已经证实,仅通过建立精确的探测器效率计算模型,也很难得到CZT探测器的准确效率,使用理想模型(仅考虑γ光子与CZT晶体及探测器结构材料发生相互作用)计算的效率结果明显高于实测值。主要是由于CZT晶体的固有性质导致了测量过程中的效率损失,如果要得到准确的CZT探测器效率计算结果,不光要模拟光子与CZT晶体及探测器结构材料作用过程,还要考虑载流子飘移、电子云扩散、电场作用、电荷感应和收集、电子学噪声、信号处理等过程才能获得与实测值符合较好的效率结果,模拟过程十分复杂,在CZT的应用过程中,较难实施。Detection efficiency is a key parameter for measuring the activity of nuclides using the gamma spectroscopy method. Before measuring the activity of radioactive nuclides, the efficiency of the detector needs to be calibrated. Passive efficiency calibration is an efficiency calculation method based on the Monte Carlo method to establish a model. The efficiency of the detector can be obtained without using a standard source. When it is difficult to use a standard source to calibrate the efficiency of the detection system, the passive efficiency calibration method has significant advantages. In order to obtain accurate detection efficiency calculation results, it is necessary to establish a calculation model based on the structural information of the detector. For traditional gamma spectrometer detectors such as HPGe, NaI (Tl), and LaBr 3 (Ce), the closer the established calculation model is to the actual structure of the detector, the closer the calculation result is to the measurement result. The gamma-ray full energy peak in the energy spectrum measured by the CZT gamma spectrum detector has a low-energy tail, and the intrinsic detection efficiency of low-energy gamma rays and high-energy gamma rays is very different. This is a significant feature of CZT that distinguishes it from traditional gamma spectrum detectors. Many documents have confirmed that it is difficult to obtain the accurate efficiency of CZT detectors only by establishing an accurate detector efficiency calculation model. The efficiency results calculated using an ideal model (considering only the interaction between γ photons and CZT crystals and detector structural materials) are significantly higher than the measured values. This is mainly due to the inherent properties of CZT crystals, which lead to efficiency losses during the measurement process. If you want to get accurate CZT detector efficiency calculation results, you must not only simulate the interaction between photons and CZT crystals and detector structural materials, but also consider carrier drift, electron cloud diffusion, electric field action, charge induction and collection, electronic noise, signal processing and other processes to obtain efficiency results that are consistent with the measured values. The simulation process is very complicated and difficult to implement in the application of CZT.
发明内容Summary of the invention
本发明提出的一种基于晶体有效高度的CZT探测器效率计算方法,可至少解决上述技术问题之一。The present invention proposes a method for calculating the efficiency of a CZT detector based on the effective height of the crystal, which can solve at least one of the above-mentioned technical problems.
为实现上述目的,本发明采用了以下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种基于晶体有效高度的CZT探测器效率计算方法,包括以下步骤,A method for calculating the efficiency of a CZT detector based on the effective height of the crystal comprises the following steps:
S1、准备所需的设备;包括准备241Am、152Eu、137Cs和60Co点状标准放射源简称点源以及CZT探测器;S1. Prepare the necessary equipment, including 241 Am, 152 Eu, 137 Cs and 60 Co point-shaped standard radiation sources (referred to as point sources) and CZT detectors;
S2、调节CZT探测器工作参数,使其处于最佳工作状态;S2. Adjust the working parameters of the CZT detector to make it in the best working state;
S3、测量241Am、152Eu、137Cs和60Co点源γ能谱;S3, measure the point source γ-ray spectra of 241 Am, 152 Eu, 137 Cs and 60 Co;
S4、基于步骤S3建立效率计算模型;S4, establishing an efficiency calculation model based on step S3;
S5、将CZT探测器结构标称参数作为效率计算模型的输入参数,计算探测效率;S5, using the nominal parameters of the CZT detector structure as input parameters of the efficiency calculation model to calculate the detection efficiency;
S6、调整CZT体晶体及探测器机构参数,再计算探测效率;S6. Adjust the CZT crystal and detector mechanism parameters, and then calculate the detection efficiency;
S7、最后验证计算模型,模型确定后,用于计算CZT探测器的探测效率。S7. Finally, the calculation model is verified. After the model is determined, it is used to calculate the detection efficiency of the CZT detector.
进一步地,所述步骤S1准备所需的设备,具体还包括:Furthermore, the step S1 of preparing the required equipment specifically includes:
准备活度为A0、体积为m0的标准溶液1瓶152Eu标准溶液,活度的不确定度应不大于3.0%;Prepare a bottle of 152 Eu standard solution with activity A 0 and volume m 0. The uncertainty of activity should not be greater than 3.0%;
准备聚氯乙烯样品盒1个,容量瓶1个,微量进样器液体取样设备若干,设定样品与探测器距离的样品支架2套;Prepare 1 polyvinyl chloride sample box, 1 volumetric flask, several micro-injector liquid sampling devices, and 2 sets of sample holders for setting the distance between the sample and the detector;
准备准半球型CZTγ能谱探测器及其配套电子学信号处理系统,标明CZT晶体尺寸、探测器外壳的尺寸、材料和厚度、CZT晶体表面离探测器外壳内表面的距离这些参数;Prepare a quasi-hemispherical CZT gamma spectrum detector and its supporting electronic signal processing system, and indicate the parameters such as the size of the CZT crystal, the size, material and thickness of the detector housing, and the distance between the CZT crystal surface and the inner surface of the detector housing;
准备专门用于CZTγ能谱测量的数据获取和能谱分析软件;Prepare data acquisition and spectrum analysis software specifically for CZT γ spectrum measurement;
准备蒙特卡罗方法粒子输运模拟平台1套。Prepare a Monte Carlo method particle transport simulation platform.
进一步地,所述S2、调节CZT探测器工作参数,使其处于最佳工作状态,具体包括,Furthermore, the S2, adjusting the working parameters of the CZT detector to make it in the best working state, specifically includes:
将一枚137Cs点源放置在CZT探测器表面,测量137Cs发射的γ射线能谱;A 137 Cs point source is placed on the surface of the CZT detector to measure the γ-ray energy spectrum emitted by 137 Cs;
首先固定一个设定好的较小的信号成形时间,由小增大逐渐调节探测器工作电压,同时观察测得的γ射线能谱,计算662keV处全能峰的半高宽;First, a set smaller signal shaping time is fixed, and the detector working voltage is gradually adjusted from small to large, while observing the measured gamma-ray energy spectrum and calculating the half-height width of the full-energy peak at 662keV;
当半高宽达到最小时,记录工作电压;之后在此工作电压下,调节信号成形时间,观察系统死时间和全能峰半高宽的变化,并最终确定一个最佳工作参数。When the half-width reaches the minimum, record the working voltage; then adjust the signal shaping time under this working voltage, observe the changes in the system dead time and the half-width of the full-energy peak, and finally determine an optimal working parameter.
进一步地,所述S3、测量241Am、152Eu、137Cs和60Co点源γ能谱,具体包括:Further, the S3, measuring the point source γ-ray spectra of 241 Am, 152 Eu, 137 Cs and 60 Co, specifically comprises:
通过样品支架调节点源到CZT探测器表面的距离即distance from Source toDetector,以下简称“SD”,在SD=1.5mm、SD=46.5mm和SD=96.5mm的条件下,使用CZT探测器测量241Am、152Eu、137Cs和60Co点源发射的γ能谱,并使用能谱分析软件分别计算241Am发射的59.5keV、152Eu发射的121.78keV、244.70keV、344.28keV、137Cs发射的661.77keV和60Co发射的1173.24keV、1332.50keVγ射线全能峰计数率;The distance from the point source to the surface of the CZT detector, i.e., distance from Source to Detector (hereinafter referred to as "SD"), was adjusted by the sample holder. Under the conditions of SD = 1.5 mm, SD = 46.5 mm, and SD = 96.5 mm, the CZT detector was used to measure the γ energy spectra emitted by the 241 Am, 152 Eu, 137 Cs, and 60 Co point sources, and the spectrum analysis software was used to calculate the full energy peak count rates of 59.5 keV emitted by 241 Am, 121.78 keV, 244.70 keV, 344.28 keV emitted by 152 Eu, 661.77 keV emitted by 137 Cs, and 1173.24 keV, 1332.50 keV γ rays emitted by 60 Co, respectively.
测量时,确保全能峰的计数大于10000个;根据测量的结果计算CZT对59.5keV、121.78keV、244.70keV、344.28keV、661.77keV、1173.24keV和1332.50keVγ射线的探测效率。During measurement, ensure that the count of the total energy peak is greater than 10,000; calculate the detection efficiency of CZT for 59.5 keV, 121.78 keV, 244.70 keV, 344.28 keV, 661.77 keV, 1173.24 keV and 1332.50 keV gamma rays based on the measurement results.
进一步地,基于步骤S3建立效率计算模型,包括,Further, based on step S3, an efficiency calculation model is established, including:
当样品放置在探测器的中心轴线上时,在理想模型下计算CZT对点源的探测效率;When the sample is placed on the central axis of the detector, the detection efficiency of CZT for point sources is calculated under the ideal model;
即设长方体CZT晶体的宽度为x和z,高度为y,晶体上表面与外壳内表面之间的距离为h,外壳的厚度为a,源与探测器表面之间的距离为SD。That is, let the width of the rectangular CZT crystal be x and z, the height be y, the distance between the upper surface of the crystal and the inner surface of the shell be h, the thickness of the shell be a, and the distance between the source and the detector surface be SD.
进一步地,所述S5、将CZT探测器结构标称参数作为效率计算模型的输入参数,计算探测效率,包括,Furthermore, the S5, using the nominal parameters of the CZT detector structure as input parameters of the efficiency calculation model to calculate the detection efficiency, includes:
将探测器结构标称参数作为效率计算模型的输入参数,在SD=1.5mm、SD=46.5mm和SD=96.5mm的条件下,计算CZT探测器对不同能量γ射线的探测效率,并将计算结果与步骤三测得的探测效率进行对比,指导下一步的参数调整。The nominal parameters of the detector structure are used as the input parameters of the efficiency calculation model. Under the conditions of SD = 1.5 mm, SD = 46.5 mm and SD = 96.5 mm, the detection efficiency of the CZT detector for γ-rays of different energies is calculated. The calculated results are compared with the detection efficiency measured in step three to guide the next parameter adjustment.
进一步地,所述S6、调整CZT体晶体及探测器机构参数,再计算探测效率,具体包括,Furthermore, the S6, adjusting the CZT crystal and the detector mechanism parameters, and then calculating the detection efficiency, specifically includes:
以探测器结构标称参数作为基础,根据步骤S5中的效率对比结果,按照0.1mm为间隔,不断调整a、h、x、z和y的数值作为效率计算模型的输入参数;Based on the nominal parameters of the detector structure, according to the efficiency comparison result in step S5, the values of a, h, x, z and y are continuously adjusted at intervals of 0.1 mm as input parameters of the efficiency calculation model;
在SD=1.5mm、SD=46.5mm和SD=96.5mm的条件下,计算CZT探测器对不同能量γ射线的探测效率,并将计算结果与步骤S3测得的探测效率进行对比;Under the conditions of SD=1.5 mm, SD=46.5 mm and SD=96.5 mm, the detection efficiency of the CZT detector for gamma rays of different energies is calculated, and the calculation result is compared with the detection efficiency measured in step S3;
如果计算的效率结果与测量值之间的偏差大于设定值,再重新调整a、h、x、z和y的数值作为效率计算模型的输入参数;If the deviation between the calculated efficiency result and the measured value is greater than the set value, the values of a, h, x, z and y are readjusted as input parameters of the efficiency calculation model;
如此反复,直至计算的效率结果与测量值之间的偏差不大于设定值,记录a、h、x、z和y的数值;此时的y=y0,y0会比标称的CZT晶体高度小很多,y0即为CZT晶体探测效率计算的有效高度。Repeat this process until the deviation between the calculated efficiency result and the measured value is no greater than the set value, and record the values of a, h, x, z and y; at this time, y= y0 , and y0 will be much smaller than the nominal CZT crystal height. y0 is the effective height for calculating the CZT crystal detection efficiency.
进一步地,所述S7、最后验证计算模型,模型确定后,用于计算CZT探测器的探测效率;其验证模型步骤如下:Furthermore, the S7, finally verifies the calculation model, and after the model is determined, it is used to calculate the detection efficiency of the CZT detector; the steps of verifying the model are as follows:
从152Eu标准溶液中取m1mL、A1Bq标准溶液滴入50mL的容量瓶内,通过加去离子水配制成152Eu参考溶液,取10mL参考溶液装入Φ30mm×15mm的聚氯乙烯样品盒内,密封后制成参考溶液样品;Take 1 mL of m and 1 Bq of the 152 Eu standard solution and drop them into a 50 mL volumetric flask. Add deionized water to prepare a 152 Eu reference solution. Take 10 mL of the reference solution and put it into a Φ30 mm × 15 mm polyvinyl chloride sample box. Seal it and prepare a reference solution sample.
将参考溶液样品放置在CZT探测器表面测量γ能谱,根据测量结果计算CZT探测器对152Eu参考样品发射的不同能量γ射线的探测效率;The reference solution sample is placed on the surface of the CZT detector to measure the gamma energy spectrum, and the detection efficiency of the CZT detector for gamma rays of different energies emitted by the 152 Eu reference sample is calculated based on the measurement results;
将步骤S6得到的a、h、x、z和y的数值作为探测器的输入参数,再根据样品的实际情况输入样品参数,建立参考样品效率计算模型;The values of a, h, x, z and y obtained in step S6 are used as input parameters of the detector, and the sample parameters are input according to the actual situation of the sample to establish a reference sample efficiency calculation model;
将模型计算的效率曲线与测量的效率值进行对比,如果相对偏差不大于5%,则认为效率的计算结果可靠;如果相对偏差大于5%,还需要重复步骤S6。The efficiency curve calculated by the model is compared with the measured efficiency value. If the relative deviation is not greater than 5%, the efficiency calculation result is considered reliable. If the relative deviation is greater than 5%, step S6 needs to be repeated.
又一方面,本发明还公开一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如上述方法的步骤。On the other hand, the present invention further discloses a computer-readable storage medium storing a computer program, wherein when the computer program is executed by a processor, the processor executes the steps of the above method.
再一方面,本发明还公开一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如上方法的步骤。On the other hand, the present invention further discloses a computer device, including a memory and a processor, wherein the memory stores a computer program, and when the computer program is executed by the processor, the processor executes the steps of the above method.
由上述技术方案可知,本发明的基于晶体有效高度的CZT探测器效率计算方法,解决了使用理想模型很难准确计算CZT探测效率的问题;基于理想模型建立CZT探测器效率计算模型,使用3枚点源,通过调整计算模型中的参数与实验数据反复对比的方法计算CZT晶体的有效高度,并将其作为计算模型的输入参数,测量和计算过程较简单,不需要复杂的模拟过程就可以得到准确的计算结果。通过实验验证,使用该方法测量152Eu水溶液体源的活度,结果与标准值的偏差不大于5%,该方法简单、可靠。It can be seen from the above technical scheme that the CZT detector efficiency calculation method based on the effective height of the crystal of the present invention solves the problem that it is difficult to accurately calculate the CZT detection efficiency using an ideal model; a CZT detector efficiency calculation model is established based on the ideal model, and three point sources are used to calculate the effective height of the CZT crystal by adjusting the parameters in the calculation model and repeatedly comparing them with the experimental data, and use it as the input parameter of the calculation model. The measurement and calculation process is relatively simple, and accurate calculation results can be obtained without a complex simulation process. Through experimental verification, the method is used to measure the activity of the 152 Eu aqueous solution source, and the deviation of the result from the standard value is no more than 5%. The method is simple and reliable.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明的CZT探测器效率计算操作流程;FIG1 is a CZT detector efficiency calculation operation flow of the present invention;
图2是CZT效率计算模型示意图;FIG2 is a schematic diagram of a CZT efficiency calculation model;
图3是不同探测器本征探测效率测量结果示意图;FIG3 is a schematic diagram of the measurement results of intrinsic detection efficiency of different detectors;
图4是不同电压下的半高宽示意图;FIG4 is a schematic diagram of the half-height width at different voltages;
图5是成形时间与电子学系统信号处理死时间之间的关系示意图;FIG5 is a schematic diagram showing the relationship between the forming time and the dead time of the signal processing of the electronics system;
图6是成形时间与FWHM的关系示意图;FIG6 is a schematic diagram showing the relationship between forming time and FWHM;
图7是CZT测得的137Csγ射线能谱示意图;FIG7 is a schematic diagram of the 137 Cs γ-ray energy spectrum measured by CZT;
图8是241Am点源的γ能谱示意图;FIG8 is a schematic diagram of the γ energy spectrum of a 241 Am point source;
图9是137Cs点源的γ能谱示意图;FIG9 is a schematic diagram of the γ energy spectrum of a 137 Cs point source;
图10是60Co点源的γ能谱示意图;FIG10 is a schematic diagram of the γ energy spectrum of a 60 Co point source;
图11是152Eu点源的γ能谱示意图;FIG11 is a schematic diagram of the γ energy spectrum of a 152 Eu point source;
图12是SD-1.5mm时标称参数计算得到的效率曲线与实测值对比图;Figure 12 is a comparison of the efficiency curve calculated with nominal parameters and the measured values when SD-1.5mm;
图13是SD-46.5mm时标称参数计算得到的效率曲线与实测值对比图;Figure 13 is a comparison of the efficiency curve calculated with nominal parameters and the measured values at SD-46.5mm;
图14是SD-96.5mm时标称参数计算得到的效率曲线与实测值对比图;Figure 14 is a comparison of the efficiency curve calculated with nominal parameters and the measured values at SD-96.5mm;
图15是利用等效高度计算SD=1.5mm是的效率结果与实测值对比图;FIG15 is a comparison diagram of the efficiency result calculated using equivalent height when SD=1.5 mm and the measured value;
图16是利用等效高度计算SD=46.5mm是的效率结果与实测值对比图;FIG16 is a comparison diagram of the efficiency result calculated using the equivalent height when SD=46.5 mm and the measured value;
图17是利用等效高度计算SD=96.5mm是的效率结果与实测值对比图;FIG. 17 is a comparison diagram of the efficiency result calculated using the equivalent height when SD=96.5 mm and the measured value;
图18是基于等效高度的体源效率计算模型;FIG18 is a calculation model of body source efficiency based on equivalent height;
图19是基于等效高度的体源效率计算结果示意图。FIG19 is a schematic diagram of the calculation results of the volume source efficiency based on the equivalent height.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments.
影响CZT探测器效率损失的因素较多,载流子输运过程中的电荷损失、晶体固定设备产生的“死区”、阳极附近产生的“死区”、不完善的电极沉积工艺和晶体缺陷产生的电场不均匀分布等都会使γ射线产生的电荷不完全收集,从而导致全能峰效率的损失。高能γ射线与低能γ射线相比,它在CZT晶体内的平均作用位置深,产生的电子云宽度大,射线与晶体作用次数多,产生电荷不完全收集的概率更大,因此全能峰效率损失的更多。对于准半球型CZT探测器,不同能量γ射线效率损失的多少与晶体的高度有关。经过分析,可以将上述原因导致的效率损失归结于CZT晶体高度的损失,通过计算晶体的有效高度,就可以采用理想模型计算探测效率,这样就使CZT探测器效率的模拟计算变得简单。There are many factors that affect the efficiency loss of CZT detectors, such as charge loss during carrier transport, "dead zone" generated by crystal fixing equipment, "dead zone" generated near the anode, imperfect electrode deposition process and uneven distribution of electric field caused by crystal defects, which will cause incomplete collection of charges generated by gamma rays, resulting in loss of full-energy peak efficiency. Compared with low-energy gamma rays, high-energy gamma rays have a deeper average action position in the CZT crystal, a larger electron cloud width, more times of interaction between the rays and the crystal, and a greater probability of incomplete charge collection, so the full-energy peak efficiency loss is greater. For quasi-hemispherical CZT detectors, the efficiency loss of gamma rays of different energies is related to the height of the crystal. After analysis, the efficiency loss caused by the above reasons can be attributed to the loss of CZT crystal height. By calculating the effective height of the crystal, the detection efficiency can be calculated using an ideal model, which makes the simulation calculation of CZT detector efficiency simple.
如图1所示,本实施例所述的基于晶体有效高度的CZT探测器效率计算方法,操作流程如图1所示;As shown in FIG. 1 , the CZT detector efficiency calculation method based on the effective height of the crystal described in this embodiment has an operation flow as shown in FIG. 1 ;
步骤一,准备所需的设备。Step 1: Prepare the necessary equipment.
具体的,准备241Am、152Eu、137Cs和60Co点状标准放射源(以下简称“点源”),点源的密封结构需平整光滑,便于控制和测量距离,明确给出核素出厂的放射性活度,活度的不确定度应不大于3.0%。CZT探测器对高能γ射线的探测效率很低,因此在实验中只选择152Eu发射的121.78keV、244.70keV和344.28keV的γ射线全能峰作为分析对象。各标准源发射γ射线能量信息见表1。Specifically, 241Am , 152Eu , 137Cs and 60Co point standard radioactive sources (hereinafter referred to as "point sources") are prepared. The sealing structure of the point source needs to be flat and smooth, which is convenient for controlling and measuring the distance. The radioactivity of the nuclides leaving the factory is clearly given, and the uncertainty of the activity should not exceed 3.0%. The detection efficiency of CZT detectors for high-energy gamma rays is very low, so in the experiment, only the gamma-ray full energy peaks of 121.78keV, 244.70keV and 344.28keV emitted by 152Eu are selected as the analysis objects. The energy information of gamma rays emitted by each standard source is shown in Table 1.
表1标准源发射γ射线能量信息表Table 1 Information on the energy of gamma rays emitted by standard sources
准备活度为A0、体积为m0的标准溶液1瓶152Eu标准溶液,活度的不确定度应不大于3.0%。准备Φ30mm×15mm、壁厚为3mm的聚氯乙烯样品盒1个,容积为50mL的容量瓶1个,微量进样器等液体取样设备若干,可以设定样品与探测器距离的样品支架2套。Prepare a bottle of 152 Eu standard solution with activity A0 and volume m0 . The uncertainty of activity should be no more than 3.0%. Prepare a PVC sample box with a size of Φ30mm×15mm and a wall thickness of 3mm, a volumetric flask with a volume of 50mL, several liquid sampling devices such as micro-injectors, and 2 sets of sample holders that can set the distance between the sample and the detector.
准备10mm×10mm×5mm准半球型CZTγ能谱探测器及其配套电子学信号处理系统,需要详细掌握探测器内部结构参数,标明CZT晶体尺寸、探测器外壳的尺寸、材料和厚度、CZT晶体表面离探测器外壳内表面的距离等参数。准备专门用于CZTγ能谱测量的数据获取和能谱分析软件。蒙特卡罗方法粒子输运模拟平台MCNP5 1套。Prepare a 10mm×10mm×5mm quasi-hemispherical CZTγ spectrum detector and its supporting electronic signal processing system. It is necessary to master the internal structural parameters of the detector in detail, and indicate the CZT crystal size, the size, material and thickness of the detector shell, the distance between the CZT crystal surface and the inner surface of the detector shell, etc. Prepare data acquisition and spectrum analysis software specifically for CZTγ spectrum measurement. 1 set of Monte Carlo method particle transport simulation platform MCNP5.
步骤二,调节CZT探测器工作参数,使其处于最佳工作状态。Step 2: Adjust the working parameters of the CZT detector to make it in the best working state.
具体的,将一枚137Cs点源放置在CZT探测器表面,测量137Cs发射的γ射线能谱。首先固定一个较小的信号成形时间,由小增大逐渐调节探测器工作电压,同时观察测得的γ射线能谱,计算662keV处全能峰的半高宽。当半高宽达到最小时,记录工作电压。之后在此工作电压下,调节信号成形时间,观察系统死时间和全能峰半高宽的变化,并最终确定一个最佳工作参数。一般情况下,信号成形时间越长,系统的死时间越大,对测量高活度样品越不利,但是在一定范围内,较大的成形时间可以改善探测器的能量分辨能力。因此需要选择一个合适的成形时间,并确保后期的能谱测量在这个工作参数下运行。Specifically, a 137 Cs point source is placed on the surface of the CZT detector, and the gamma-ray energy spectrum emitted by 137 Cs is measured. First, a smaller signal shaping time is fixed, and the detector operating voltage is gradually adjusted from a small increase. At the same time, the measured gamma-ray energy spectrum is observed, and the half-width of the full-energy peak at 662keV is calculated. When the half-width reaches the minimum, the operating voltage is recorded. After that, at this operating voltage, the signal shaping time is adjusted, the changes in the system dead time and the half-width of the full-energy peak are observed, and finally an optimal working parameter is determined. In general, the longer the signal shaping time, the greater the system dead time, which is more unfavorable for measuring high-activity samples, but within a certain range, a larger shaping time can improve the energy resolution capability of the detector. Therefore, it is necessary to select a suitable shaping time and ensure that the subsequent energy spectrum measurement is run under this working parameter.
步骤三,测量241Am、152Eu、137Cs和60Co点源γ能谱,计算探测效率。Step three, measure the point source γ-ray spectra of 241 Am, 152 Eu, 137 Cs and 60 Co, and calculate the detection efficiency.
具体的,通过样品支架调节点源到CZT探测器表面的距离(distance from Sourceto Detector,以下简称“SD”),在SD=1.5mm、SD=46.5mm和SD=96.5mm的条件下,使用CZT探测器测量241Am、152Eu、137Cs和60Co点源发射的γ能谱。并使用能谱分析软件分别计算241Am发射的59.5keV、152Eu发射的121.78keV、244.70keV、344.28keV、137Cs发射的661.77keV和60Co发射的1173.24keV、1332.50keVγ射线全能峰计数率。测量时,为了减小计数的统计误差,应确保全能峰的计数大于10000个。根据测量的结果计算CZT对59.5keV、121.78keV、244.70keV、344.28keV、661.77keV、1173.24keV和1332.50keVγ射线的探测效率。Specifically, the distance from the point source to the surface of the CZT detector (distance from Source to Detector, hereinafter referred to as "SD") was adjusted by the sample holder, and the gamma energy spectrum emitted by the 241 Am, 152 Eu, 137 Cs and 60 Co point sources was measured using the CZT detector under the conditions of SD = 1.5 mm, SD = 46.5 mm and SD = 96.5 mm. The energy spectrum analysis software was used to calculate the full energy peak count rate of the 59.5 keV emitted by 241 Am, 121.78 keV, 244.70 keV, 344.28 keV emitted by 152 Eu, 661.77 keV emitted by 137 Cs, and 1173.24 keV, 1332.50 keV gamma rays emitted by 60 Co. During the measurement, in order to reduce the statistical error of the count, it should be ensured that the count of the full energy peak is greater than 10,000. Based on the measured results, the detection efficiency of CZT for 59.5keV, 121.78keV, 244.70keV, 344.28keV, 661.77keV, 1173.24keV and 1332.50keV γ rays was calculated.
步骤四,建立效率计算模型。Step 4: Establish an efficiency calculation model.
具体的,当样品放置在探测器的中心轴线上时,在理想模型下计算CZT对点源的探测效率。设长方体CZT晶体的宽度为x和z,高度为y,晶体上表面与外壳内表面之间的距离为h,外壳(铝壳)的厚度为a,源与探测器表面之间的距离为SD,图示见图2。由于CZT的截面为正方形,即x=z。不同SD的情况下,效率计算值对以上各参数变化的灵敏程度不同。Specifically, when the sample is placed on the central axis of the detector, the detection efficiency of CZT for a point source is calculated under an ideal model. Assume that the width of the rectangular CZT crystal is x and z, the height is y, the distance between the upper surface of the crystal and the inner surface of the shell is h, the thickness of the shell (aluminum shell) is a, and the distance between the source and the detector surface is SD, as shown in Figure 2. Since the cross section of CZT is a square, that is, x=z. Under different SD conditions, the sensitivity of the efficiency calculation value to the changes in the above parameters is different.
步骤五,将探测器结构标称参数作为效率计算模型的输入参数,计算探测效率。Step 5: Use the nominal parameters of the detector structure as input parameters of the efficiency calculation model to calculate the detection efficiency.
具体的,将探测器结构标称参数作为效率计算模型的输入参数,在SD=1.5mm、SD=46.5mm和SD=96.5mm的条件下,计算CZT探测器对不同能量γ射线的探测效率,并将计算结果与步骤三测得的探测效率进行对比,指导步骤六中的参数调整。Specifically, the nominal parameters of the detector structure are used as input parameters of the efficiency calculation model. Under the conditions of SD=1.5mm, SD=46.5mm and SD=96.5mm, the detection efficiency of the CZT detector for γ-rays of different energies is calculated. The calculated results are compared with the detection efficiency measured in step three to guide the parameter adjustment in step six.
步骤六,调整CZT体晶体及探测器机构参数,计算探测效率。Step six, adjust the CZT crystal and detector structure parameters, and calculate the detection efficiency.
具体的,以探测器结构标称参数作为基础,根据步骤五中的效率对比结果,按照0.1mm为间隔,不断调整a、h、x、z和y的数值作为效率计算模型的输入参数。在SD=1.5mm、SD=46.5mm和SD=96.5mm的条件下,计算CZT探测器对不同能量γ射线的探测效率,并将计算结果与步骤三测得的探测效率进行对比。如果计算的效率结果与测量值之间的偏差大于设定值(例如:相对偏差6%),再重新调整a、h、x、z和y的数值作为效率计算模型的输入参数。如此反复,直至计算的效率结果与测量值之间的偏差不大于设定值,记录a、h、x、z和y的数值。此时的y=y0,y0会比标称的CZT晶体高度小很多,y0即为CZT晶体探测效率计算的有效高度。Specifically, based on the nominal parameters of the detector structure, according to the efficiency comparison results in step five, the values of a, h, x, z and y are continuously adjusted at intervals of 0.1 mm as input parameters of the efficiency calculation model. Under the conditions of SD = 1.5 mm, SD = 46.5 mm and SD = 96.5 mm, the detection efficiency of the CZT detector for gamma rays of different energies is calculated, and the calculated results are compared with the detection efficiency measured in step three. If the deviation between the calculated efficiency result and the measured value is greater than the set value (for example: relative deviation 6%), the values of a, h, x, z and y are readjusted as input parameters of the efficiency calculation model. Repeat this process until the deviation between the calculated efficiency result and the measured value is not greater than the set value, and record the values of a, h, x, z and y. At this time, y = y 0 , y 0 will be much smaller than the nominal CZT crystal height, and y 0 is the effective height of the CZT crystal detection efficiency calculation.
步骤七,验证计算模型。Step 7: Verify the calculation model.
具体的,从152Eu标准溶液中取m1mL、A1Bq标准溶液滴入50mL的容量瓶内,通过加去离子水配制成152Eu参考溶液,取10mL参考溶液装入Φ30mm×15mm的聚氯乙烯样品盒内,密封后制成参考溶液样品。将参考溶液样品放置在CZT探测器表面测量γ能谱。根据测量结果计算CZT探测器对152Eu参考样品发射的不同能量γ射线的探测效率。将步骤六得到的a、h、x、z和y的数值作为探测器的输入参数,再根据样品的实际情况输入样品参数,建立参考样品效率计算模型。将模型计算的效率曲线与测量的效率值进行对比,如果相对偏差不大于5%,则认为效率的计算结果可靠。如果相对偏差大于5%,还需要重复步骤六。Specifically, take m 1 mL and A 1 Bq standard solution from the 152 Eu standard solution and drop them into a 50 mL volumetric flask, prepare a 152 Eu reference solution by adding deionized water, take 10 mL of the reference solution and put it into a Φ30 mm × 15 mm polyvinyl chloride sample box, and seal it to make a reference solution sample. Place the reference solution sample on the surface of the CZT detector to measure the γ energy spectrum. Calculate the detection efficiency of the CZT detector for γ rays of different energies emitted by the 152 Eu reference sample based on the measurement results. Use the values of a, h, x, z and y obtained in step six as the input parameters of the detector, and then input the sample parameters according to the actual situation of the sample to establish a reference sample efficiency calculation model. Compare the efficiency curve calculated by the model with the measured efficiency value. If the relative deviation is not greater than 5%, it is considered that the efficiency calculation result is reliable. If the relative deviation is greater than 5%, step six needs to be repeated.
以下举例说明:The following examples illustrate:
1.不同探测器效率的差异1. Differences in efficiency of different detectors
由于CZT晶体的一些特殊性质,导致CZT探测器的探测效率与HPGe、NaI(Tl)、LaBr3(Ce)、CeBr3等常见γ能谱探测器相比差异较大,效率模拟计算的方法差别也很大。为了验证CZT探测器的探测效率与HPGe、NaI(Tl)、LaBr3(Ce)、CeBr3等常见γ能谱探测器的差异,使用CZT、HPGe、NaI(Tl)、LaBr3(Ce)和CeBr3五种γ能谱探测器分别测量241Am、152Eu、137Cs和60Co点源标准源,并计算探测器的本征探测效率。HPGe晶体尺寸为Φ81mm×31mm,CZT的晶体尺寸为10×10×5mm3,NaI(Tl)、LaBr3(Ce)和CeBr3的晶体尺寸均为Φ76mm×76mm。测量时在点源与探测器之间放置一个高度为5cm的不锈钢准直器,准直器孔直径为5mm。图3是各种探测器对点源探测效率的测量结果。Due to some special properties of CZT crystal, the detection efficiency of CZT detector is quite different from that of common γ-spectrum detectors such as HPGe, NaI(Tl), LaBr 3 (Ce), and CeBr 3 , and the efficiency simulation calculation methods are also very different. In order to verify the difference between the detection efficiency of CZT detector and common γ-spectrum detectors such as HPGe, NaI(Tl), LaBr 3 (Ce), and CeBr 3 , five γ-spectrum detectors, CZT, HPGe, NaI(Tl), LaBr 3 (Ce), and CeBr 3 , were used to measure 241 Am, 152 Eu, 137 Cs, and 60 Co point source standard sources, and the intrinsic detection efficiency of the detector was calculated. The size of HPGe crystal is Φ81mm×31mm, the size of CZT crystal is 10×10×5mm 3 , and the size of NaI(Tl), LaBr 3 (Ce), and CeBr 3 crystals are all Φ76mm×76mm. During the measurement, a stainless steel collimator with a height of 5 cm and a hole diameter of 5 mm is placed between the point source and the detector. Figure 3 shows the measurement results of the detection efficiency of various detectors for point sources.
由图3可以看出,CZT探测器的全能峰本征效率曲线与HPGe、NaI(Tl)、LaBr3(Ce)和CeBr3探测器的有明显区别,CZT在低能端的本征探测效率与HPGe相当,但是随着γ射线能量的增加,探测效率快速下降,而HPGe、NaI(Tl)、LaBr3(Ce)和CeBr3相对于CZT探测效率随能量的变化并不大,主要是由于CZT晶体的体积较小,γ射线能量越大、全部能量都沉积在晶体内的可能性越小。As can be seen from Figure 3, the full energy peak intrinsic efficiency curve of the CZT detector is significantly different from that of the HPGe, NaI(Tl), LaBr 3 (Ce) and CeBr 3 detectors. The intrinsic detection efficiency of CZT at the low energy end is comparable to that of HPGe, but with the increase of the γ-ray energy, the detection efficiency decreases rapidly. The detection efficiency of HPGe, NaI(Tl), LaBr 3 (Ce) and CeBr 3 does not change much with energy relative to CZT, mainly because the volume of the CZT crystal is small, and the greater the γ-ray energy, the less likely it is that all the energy is deposited in the crystal.
2.使用的设备和标准源2. Equipment and Standard Sources Used
实验采用迪泰克公司生产的DT-01C11005型准半球CZT探测器,CZT晶体厂家标称尺寸为10×10×5mm3,圆柱形铝壳密封,外壳尺寸为Φ30mm×70mm,壁厚为1mm和0.5mm,晶体表面离探测器外壳内表面的距离为3mm。经测试,对137Cs发射的662keVγ射线的能量分辨率为1.5%,电子学信号处理系统采用Canberra公司的Lynx多道分析器,它可以为探测器提供高压、放大脉冲信号并记录脉冲幅度谱。数据获取软件使用Canberra公司的Genie2000γ能谱数据获取软件,可以在其中设置高压值、成形时间、信号放大倍数等参数。使用自行编制的软件计算峰面积,软件专门针对CZT测得γ能谱的特点设计,使用高斯函数、指数拖尾函数、台阶函数和本底函数的复合函数作为峰形的拟合函数。The experiment uses the DT-01C11005 quasi-hemispherical CZT detector produced by Ditech. The nominal size of the CZT crystal is 10×10×5mm 3 , and the cylindrical aluminum shell is sealed. The shell size is Φ30mm×70mm, the wall thickness is 1mm and 0.5mm, and the distance between the crystal surface and the inner surface of the detector shell is 3mm. After testing, the energy resolution of the 662keV γ-ray emitted by 137 Cs is 1.5%. The electronic signal processing system uses the Lynx multi-channel analyzer of Canberra, which can provide high voltage for the detector, amplify the pulse signal and record the pulse amplitude spectrum. The data acquisition software uses the Genie2000 γ spectrum data acquisition software of Canberra, in which parameters such as high voltage value, forming time, and signal amplification factor can be set. The peak area is calculated using the self-compiled software, which is specially designed for the characteristics of the γ spectrum measured by CZT, and uses the composite function of Gaussian function, exponential tailing function, step function and background function as the fitting function of the peak shape.
为了尽量覆盖不同能量的γ射线,实验中使用了241Am、152Eu、137Cs和60Co四种点源。为了验证探测器的表征效果,配制了Φ30mm×15mm的152Eu水溶液体源,实验中使用的标准源信息见表2。由于CZT探测器对高能γ射线的探测效率很低,因此在实验中只选择152Eu发射的121.78keV、244.70keV和344.28keV的γ射线全能峰作为分析对象。In order to cover gamma rays of different energies as much as possible, four point sources, 241 Am, 152 Eu, 137 Cs and 60 Co, were used in the experiment. In order to verify the characterization effect of the detector, a Φ30mm×15mm 152 Eu aqueous solution source was prepared. The standard source information used in the experiment is shown in Table 2. Since the detection efficiency of the CZT detector for high-energy gamma rays is very low, only the gamma ray full energy peaks of 121.78keV, 244.70keV and 344.28keV emitted by 152 Eu were selected as the analysis objects in the experiment.
表2实验中使用的标准源信息Table 2 Standard source information used in the experiment
3.调节CZT探测器工作参数3. Adjust the CZT detector working parameters
CZT探测器的能量分辨力是γ能谱探测器的主要性能指标,一般使用137Cs发射的661.77keV的γ射线全能峰的半高宽(FWHM)表示。在能谱测量中,希望FWHM越小越好,为了找到探测器最佳工作参数,使FWHM达到最小,分别在不同工作电压下使用迪泰克公司生产的DT-01C11005型10×10×5mm3准半球CZT探测器测量137Cs点源,测量时点源放置在距离探测器表面1.5mm处。图4为不同工作电压下测得的661.77keV的γ射线全能峰FWHM值。The energy resolution of CZT detector is the main performance index of γ spectrum detector, which is generally expressed by the full width at half maximum (FWHM) of the full energy peak of γ rays emitted by 137 Cs at 661.77keV. In the energy spectrum measurement, it is hoped that the FWHM is as small as possible. In order to find the best working parameters of the detector and minimize the FWHM, the DT-01C11005 10×10× 5mm3 quasi-hemispherical CZT detector produced by Ditech was used to measure the 137 Cs point source at different working voltages. During the measurement, the point source was placed 1.5mm away from the detector surface. Figure 4 shows the FWHM value of the full energy peak of γ rays at 661.77keV measured at different working voltages.
由图4可以看出,对于DT-01C11005型CZT探测器,当工作电压小于700V时,能量分辨能力随着电压的升高而逐渐变好,但是当电压超过700V后,再增加电压,661.77keVγ射线全能峰的半高宽(FWHM)基本保持不变。As can be seen from Figure 4, for the DT-01C11005 CZT detector, when the operating voltage is less than 700 V, the energy resolution gradually improves with the increase of voltage, but when the voltage exceeds 700 V, the half-width (FWHM) of the 661.77 keV gamma-ray full-energy peak remains basically unchanged when the voltage is further increased.
CZT探测器的脉冲信号成形时间对能量分辨能力、电子学系统的信号处理的死时间有直接影响。为了寻找最佳脉冲信号成形时间,使用探测器在不同脉冲成形时间参数下测量了137Cs点源的能谱,图5为成形时间与电子学系统信号处理死时间之间的关系图,图6为成形时间与661.77keVγ射线全能峰FWHM之间的关系图。The pulse signal shaping time of the CZT detector has a direct impact on the energy resolution capability and the dead time of the signal processing of the electronic system. In order to find the optimal pulse signal shaping time, the energy spectrum of the 137 Cs point source was measured using the detector under different pulse shaping time parameters. Figure 5 shows the relationship between the shaping time and the dead time of the signal processing of the electronic system, and Figure 6 shows the relationship between the shaping time and the FWHM of the 661.77keV gamma-ray full energy peak.
由图5可以看出,脉冲的成形时间越长、探测系统的死时间越大,死时间大对测量不利,但是成形时间又与探测系统的能量分辨力有关,因此需要选择合适的成形时间。由图6可以看出,CZT探测器脉冲成形时间为2.4μs时,661.77keVγ射线全能峰FWHM最小。根据图3中的结果,成形时间越大电子学系统死时间越大,较大的死时间对测量是不利的。综合上述测试数据,成形时间设置在2.4μs比较合适。图7为CZT最佳工作状态下(工作电压900V,脉冲成形时间2.4μs),测得的137Csγ射线能谱。As can be seen from Figure 5, the longer the pulse shaping time, the greater the dead time of the detection system. A large dead time is not conducive to measurement, but the shaping time is related to the energy resolution of the detection system, so it is necessary to select a suitable shaping time. As can be seen from Figure 6, when the pulse shaping time of the CZT detector is 2.4μs, the FWHM of the 661.77keV γ-ray full energy peak is the smallest. According to the results in Figure 3, the larger the shaping time, the larger the dead time of the electronic system, and a larger dead time is not conducive to measurement. Based on the above test data, it is more appropriate to set the shaping time at 2.4μs. Figure 7 shows the measured 137 Cs γ-ray energy spectrum under the optimal working state of CZT (working voltage 900V, pulse shaping time 2.4μs).
4.测量241Am、152Eu、137Cs和60Co点源γ能谱计算探测效率4. Measure 241 Am, 152 Eu, 137 Cs and 60 Co point source γ-ray spectra and calculate detection efficiency
使用CZT测量的241Am、152Eu、137Cs和60Co点源γ能谱见图8到图11;点源的效率测量结果见图12-图17中的实验测量值。The γ-ray spectra of 241 Am, 152 Eu, 137 Cs and 60 Co point sources measured using CZT are shown in FIGS. 8 to 11 ; the efficiency measurement results of the point sources are shown in the experimental measurement values in FIGS. 12 to 17 .
5.建立效率计算模型5. Establish efficiency calculation model
根据图2利用MCNP5程序建立效率计算模型,其中a=0.5mm,h=3mm,x=10mm,y=5mm、z=10mm,SD=1.5mm、SD=46.5mm和SD=96.5mm。According to FIG. 2 , an efficiency calculation model was established using the MCNP5 program, wherein a=0.5 mm, h=3 mm, x=10 mm, y=5 mm, z=10 mm, SD=1.5 mm, SD=46.5 mm, and SD=96.5 mm.
6.利用标称参数计算探测效率6. Calculate detection efficiency using nominal parameters
采用CZT探测器的标称参数分别在SD为1.5mm、46.5mm、96.5mm的条件下模拟计算的效率曲线和测量结果对比见图12。The efficiency curves simulated and calculated using the nominal parameters of the CZT detector under the conditions of SD of 1.5mm, 46.5mm, and 96.5mm and the comparison with the measured results are shown in Figure 12.
由图12-14可以看出,使用CZT探测器标称参数计算得到的效率值和实验测量值之间存在较大的偏差,在低能段两者的偏差相对较小,随着γ射线能量的增加,偏差呈增大趋势,对于1173.24keV的γ射线,偏差最大达到了58.76%。在SD=1.5mm时,59.54keVγ射线的计算效率值与测量值的偏差为11.54%,在SD=46.5mm和SD=96.5mm时,偏差显著减小了,这说明h、x和z等影响探测器立体角的参数不准确,SD越小对结果的影响越显著,但是更高能量γ射线的相应偏差并没有随着SD的增大而减小。经过分析,效率计算结果和测量结果的偏差并不只是由于h、x和z不准确造成的,CZT晶体的有效厚度y可能是造成γ射线能量越大偏差越大的主要原因。对于低能γ射线在小SD的条件下,h、x和z等影响探测器立体角的参数是影响效率计算结果的主要因素,对于高能γ射线在大SD的条件下,CZT晶体的有效厚度y是影响效率计算结果的主要因素。As can be seen from Figures 12-14, there is a large deviation between the efficiency value calculated using the nominal parameters of the CZT detector and the experimental measurement value. The deviation between the two is relatively small in the low energy range. With the increase of the γ-ray energy, the deviation increases. For the 1173.24keV γ-ray, the maximum deviation reaches 58.76%. When SD = 1.5mm, the deviation between the calculated efficiency value and the measured value of 59.54keV γ-ray is 11.54%. When SD = 46.5mm and SD = 96.5mm, the deviation is significantly reduced, which shows that the parameters affecting the solid angle of the detector such as h, x and z are inaccurate. The smaller the SD, the more significant the impact on the result. However, the corresponding deviation of higher energy γ-rays does not decrease with the increase of SD. After analysis, the deviation between the efficiency calculation result and the measurement result is not only caused by the inaccuracy of h, x and z. The effective thickness y of the CZT crystal may be the main reason for the larger deviation with the larger γ-ray energy. For low-energy γ-rays under small SD conditions, parameters such as h, x and z that affect the detector solid angle are the main factors affecting the efficiency calculation results. For high-energy γ-rays under large SD conditions, the effective thickness y of the CZT crystal is the main factor affecting the efficiency calculation results.
7.调整CZT体晶体及探测器机构参数计算探测效率7. Adjust the CZT crystal and detector structure parameters to calculate the detection efficiency
以探测器结构标称参数作为基础,根据图12-14的对比结果,按照0.1mm为间隔,不断调整a、h、x、z和y的数值作为效率计算模型的输入参数。经过反复计算和对比,最终得到了在a=0.5mm,h=3.5mm,y=3.5mm,x=10.1mm,z=10.1mm条件下的效率计算结果与实验值符合的较好,此时y=3.5mm即为10×10×5mm3准半球型CZT探测器效率计算的等效高度,利用CZT晶体等效高度计算的效率结果和实验对比见图15-17,表3列出了效率计算值与实验值之间的偏差。Based on the nominal parameters of the detector structure, according to the comparison results in Figures 12-14, the values of a, h, x, z and y are continuously adjusted at intervals of 0.1 mm as the input parameters of the efficiency calculation model. After repeated calculations and comparisons, the efficiency calculation results under the conditions of a=0.5mm, h=3.5mm, y=3.5mm, x=10.1mm, and z=10.1mm are finally obtained, which are in good agreement with the experimental values. At this time, y=3.5mm is the equivalent height of the 10×10×5mm3 quasi -hemispherical CZT detector efficiency calculation. The efficiency results calculated using the equivalent height of the CZT crystal and the experimental comparison are shown in Figures 15-17. Table 3 lists the deviations between the efficiency calculation values and the experimental values.
表3利用等效高度计算的效率结果与实验值之间的偏差Table 3 Deviation between the efficiency results calculated using equivalent height and the experimental values
由表3中的数据看出,表征后的CZT探测器,在SD=1.5mm的条件下,121.78keV和244.70keVγ射线的计算效率与实验测量效率之间的偏差较大,分别为24.95%和21.46%。这主要是由于152Eu发射的121.78keV(发射率为35.58%)和244.70keVγ射线(发射率为7.58%)均与40.12keV的X射线(发射率为37.7%)发生了级联符合,使全能峰的计数率减小,从而导致计算效率相对于实验测量效率偏差较大。从图11的能谱中可以明显看出(121+40)keV和(244+40)keV的符合峰。其他能量γ射线的计算效率与实验测量值符合的较好,偏差均不大于6%。因此,输入有效高度和调整后的参数,使用理想模型计算CZT探测器的效率是可行的。From the data in Table 3, it can be seen that the calculated efficiency of 121.78keV and 244.70keV gamma rays of the characterized CZT detector under the condition of SD = 1.5mm has a large deviation from the experimental measured efficiency, which is 24.95% and 21.46% respectively. This is mainly due to the cascade coincidence of 121.78keV (emissivity 35.58%) and 244.70keV gamma rays (emissivity 7.58%) emitted by 152 Eu with 40.12keV X-rays (emissivity 37.7%), which reduces the counting rate of the full energy peak, resulting in a large deviation of the calculated efficiency relative to the experimental measured efficiency. From the energy spectrum of Figure 11, it can be clearly seen that (121+40)keV and (244+40)keV coincident peaks. The calculated efficiency of gamma rays of other energies is in good agreement with the experimental measured values, with deviations of no more than 6%. Therefore, it is feasible to calculate the efficiency of the CZT detector using the ideal model by inputting the effective height and the adjusted parameters.
因此使用无源效率刻度计算实验中使用的这台CZT的探测效率时,输入参数分别取a=0.5mm,h=3.5mm,y=3.5mm,x=10.1mm,z=10.1mm,这样得到的效率曲线比较可靠。这一组参数中,h、x和z与标称参数相比还是有差别的,其中参数y只有标称参数的70%,此时y0=3.5mm,即为10×10×5mm3准半球型CZT探测器的有效高度。Therefore, when using the passive efficiency scale to calculate the detection efficiency of the CZT used in the experiment, the input parameters are a=0.5mm, h=3.5mm, y=3.5mm, x=10.1mm, z=10.1mm, so that the efficiency curve obtained is more reliable. In this set of parameters, h, x and z are still different from the nominal parameters, among which the parameter y is only 70% of the nominal parameter. At this time, y 0 =3.5mm, which is the effective height of the 10×10×5mm 3 quasi-hemispherical CZT detector.
8.验证计算模型8. Validation of the computational model
为了验证使用理想模型计算CZT探测器效率的方法对体源的可行性,配制了Φ30×15mm的152Eu参考溶液样品,总活度68500Bq(不确定度为3%),容器为壁厚3mm的圆柱形有机玻璃杯。首先采用理想模型计算CZT探测器的效率曲线,再利用这个效率曲线分析样品活度,最后将分析结果与标准源活度进行比较,以验证计算效率的准确性。为消除级联符合效应对结果的影响,能谱测量和效率计算在SD=96.5mm的条件下进行。图18是将a=0.5mm、h=3.5mm、y=3.5mm、x=10.1mm,z=10.1mm作为输入参数的效率计算模型,计算CZT探测器对Φ30×15mm水溶液样品的探测效率,图19是计算得到的效率曲线。表4列出了SD=96.5mm测量条件下152Eu水溶液标准源样品的活度计算结果。In order to verify the feasibility of the method of using an ideal model to calculate the efficiency of CZT detectors for body sources, a Φ30×15mm 152 Eu reference solution sample was prepared with a total activity of 68500Bq (uncertainty of 3%), and the container was a cylindrical organic glass cup with a wall thickness of 3mm. First, the efficiency curve of the CZT detector was calculated using the ideal model, and then the sample activity was analyzed using this efficiency curve. Finally, the analysis results were compared with the standard source activity to verify the accuracy of the calculated efficiency. In order to eliminate the influence of the cascade coincidence effect on the results, the energy spectrum measurement and efficiency calculation were carried out under the condition of SD=96.5mm. Figure 18 is an efficiency calculation model with a=0.5mm, h=3.5mm, y=3.5mm, x=10.1mm, z=10.1mm as input parameters, and the detection efficiency of the CZT detector for the Φ30×15mm aqueous solution sample was calculated. Figure 19 is the calculated efficiency curve. Table 4 lists the activity calculation results of the 152 Eu aqueous solution standard source sample under the measurement condition of SD=96.5mm.
由表4的数据可以看出,在SD=95mm时,级联符合效应的影响可以忽略,利用不同能量γ射线得到的152Eu水溶液样品活度相对于标准值的偏差均不大于5%,这充分说明了,基于晶体有效高度的CZTγ能谱探测器效率计算方法是可靠的。It can be seen from the data in Table 4 that when SD = 95 mm, the influence of the cascade coincidence effect can be ignored, and the deviations of the activities of 152 Eu aqueous solution samples obtained using gamma rays of different energies relative to the standard value are all less than 5%, which fully demonstrates that the efficiency calculation method of the CZTγ spectrum detector based on the effective height of the crystal is reliable.
又一方面,本发明还公开一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如上述方法的步骤。In yet another aspect, the present invention further discloses a computer-readable storage medium storing a computer program, wherein when the computer program is executed by a processor, the processor executes the steps of the above method.
再一方面,本发明还公开一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如上方法的步骤。On the other hand, the present invention further discloses a computer device, including a memory and a processor, wherein the memory stores a computer program, and when the computer program is executed by the processor, the processor executes the steps of the above method.
在本申请提供的又一实施例中,还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中任一基于时序特征迁移的移动源排放预测方法。In another embodiment provided in the present application, a computer program product comprising instructions is also provided, which, when executed on a computer, enables the computer to execute any of the mobile source emission prediction methods based on time series feature migration in the above-mentioned embodiments.
可理解的是,本发明实施例提供的系统与本发明实施例提供的方法相对应,相关内容的解释、举例和有益效果可以参考上述方法中的相应部分。It is understandable that the system provided by the embodiment of the present invention corresponds to the method provided by the embodiment of the present invention, and the explanation, examples and beneficial effects of the relevant contents can refer to the corresponding parts in the above method.
本申请实施例还提供了一种电子设备,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信,The embodiment of the present application also provides an electronic device, including a processor, a communication interface, a memory and a communication bus, wherein the processor, the communication interface and the memory communicate with each other through the communication bus.
存储器,用于存放计算机程序;Memory, used to store computer programs;
处理器,用于执行存储器上所存放的程序时,实现上述基于时序特征迁移的移动源排放预测方法。The processor is used to implement the above-mentioned mobile source emission prediction method based on time series feature migration when executing the program stored in the memory.
上述电子设备提到的通信总线可以是外设部件互连标准(英文:PeripheralComponent Interconnect,简称:PCI)总线或扩展工业标准结构(英文:Extended IndustryStandard Architecture,简称:EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。The communication bus mentioned in the above electronic device can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc. The communication bus can be divided into an address bus, a data bus, a control bus, etc.
通信接口用于上述电子设备与其他设备之间的通信。The communication interface is used for communication between the above electronic device and other devices.
存储器可以包括随机存取存储器(英文:Random Access Memory,简称:RAM),也可以包括非易失性存储器(英文:Non-Volatile Memory,简称:NVM),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远离前述处理器的存储装置。The memory may include a random access memory (RAM) or a non-volatile memory (NVM), such as at least one disk memory. Optionally, the memory may also be at least one storage device located away from the aforementioned processor.
上述的处理器可以是通用处理器,包括中央处理器(英文:Central ProcessingUnit,简称:CPU)、网络处理器(英文:Network Processor,简称:NP)等;还可以是数字信号处理器(英文:Digital Signal Processing,简称:DSP)、专用集成电路(英文:ApplicationSpecific Integrated Circuit,简称:ASIC)、现场可编程门阵列(英文:Field-Programmable Gate Array,简称:FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。The above-mentioned processor can be a general-purpose processor, including a central processing unit (CPU), a network processor (NP), etc.; it can also be a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or other programmable logic devices, discrete gates or transistor logic devices, and discrete hardware components.
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。In the above embodiments, it can be implemented in whole or in part by software, hardware, firmware or any combination thereof. When implemented using software, it can be implemented in whole or in part in the form of a computer program product. The computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, the process or function described in the embodiment of the present application is generated in whole or in part. The computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device. The computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center. The computer-readable storage medium may be any available medium that a computer can access or a data storage device such as a server or data center that includes one or more available media integrated. The available medium may be a magnetic medium, (e.g., a floppy disk, a hard disk, a tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a solid-state drive Solid State Disk (SSD)), etc.
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that, in this article, relational terms such as first and second, etc. are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any such actual relationship or order between these entities or operations. Moreover, the terms "include", "comprise" or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements includes not only those elements, but also other elements not explicitly listed, or also includes elements inherent to such process, method, article or device. In the absence of further restrictions, the elements defined by the sentence "comprise a ..." do not exclude the presence of other identical elements in the process, method, article or device including the elements.
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。Each embodiment in this specification is described in a related manner, and the same or similar parts between the embodiments can be referred to each other, and each embodiment focuses on the differences from other embodiments. In particular, for the system embodiment, since it is basically similar to the method embodiment, the description is relatively simple, and the relevant parts can be referred to the partial description of the method embodiment.
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。The above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit the same. Although the present invention has been described in detail with reference to the aforementioned embodiments, those skilled in the art should understand that the technical solutions described in the aforementioned embodiments may still be modified, or some of the technical features may be replaced by equivalents. However, these modifications or replacements do not deviate the essence of the corresponding technical solutions from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410164135.5A CN118011453B (en) | 2024-02-05 | 2024-02-05 | CZT detector efficiency calculating method and device based on crystal effective height |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410164135.5A CN118011453B (en) | 2024-02-05 | 2024-02-05 | CZT detector efficiency calculating method and device based on crystal effective height |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118011453A true CN118011453A (en) | 2024-05-10 |
CN118011453B CN118011453B (en) | 2024-11-05 |
Family
ID=90942446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410164135.5A Active CN118011453B (en) | 2024-02-05 | 2024-02-05 | CZT detector efficiency calculating method and device based on crystal effective height |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118011453B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB590242A (en) * | 1943-03-26 | 1947-07-11 | Standard Telephones Cables Ltd | Electric pulse width measuring system |
US6035951A (en) * | 1997-04-16 | 2000-03-14 | Digital Control Incorporated | System for tracking and/or guiding an underground boring tool |
CN101162269A (en) * | 2006-10-13 | 2008-04-16 | 中国辐射防护研究院 | Germanium crystal dimension automatic regulation method for high-purity germanium detector passive efficiency scale division |
CN101470206A (en) * | 2007-12-29 | 2009-07-01 | 同方威视技术股份有限公司 | Active material detection system and method using multichannel spectrometer |
US20140233694A1 (en) * | 2013-02-19 | 2014-08-21 | Toshiba Medical Systems Corporation | Apparatus and method for angular response calibration of photon-counting detectors in sparse spectral computed tomography imaging |
CN106199676A (en) * | 2015-04-30 | 2016-12-07 | 北京中智核安科技有限公司 | A kind of gamma detector passive efficiency scale new method |
EP3662307A1 (en) * | 2017-08-02 | 2020-06-10 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Method and system for pulse multiplicity counting with dead time correction |
CN113552608A (en) * | 2021-07-22 | 2021-10-26 | 中国核动力研究设计院 | SGS efficiency calibration function model, construction method, calibration method and application |
-
2024
- 2024-02-05 CN CN202410164135.5A patent/CN118011453B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB590242A (en) * | 1943-03-26 | 1947-07-11 | Standard Telephones Cables Ltd | Electric pulse width measuring system |
US6035951A (en) * | 1997-04-16 | 2000-03-14 | Digital Control Incorporated | System for tracking and/or guiding an underground boring tool |
CN101162269A (en) * | 2006-10-13 | 2008-04-16 | 中国辐射防护研究院 | Germanium crystal dimension automatic regulation method for high-purity germanium detector passive efficiency scale division |
CN101470206A (en) * | 2007-12-29 | 2009-07-01 | 同方威视技术股份有限公司 | Active material detection system and method using multichannel spectrometer |
US20140233694A1 (en) * | 2013-02-19 | 2014-08-21 | Toshiba Medical Systems Corporation | Apparatus and method for angular response calibration of photon-counting detectors in sparse spectral computed tomography imaging |
CN106199676A (en) * | 2015-04-30 | 2016-12-07 | 北京中智核安科技有限公司 | A kind of gamma detector passive efficiency scale new method |
EP3662307A1 (en) * | 2017-08-02 | 2020-06-10 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Method and system for pulse multiplicity counting with dead time correction |
CN113552608A (en) * | 2021-07-22 | 2021-10-26 | 中国核动力研究设计院 | SGS efficiency calibration function model, construction method, calibration method and application |
Non-Patent Citations (1)
Title |
---|
宋海声等: "基于蒙特卡罗模拟研究锗死层对高纯锗探测效率的影响", 激光与光电子学进展, vol. 60, no. 23, 31 December 2023 (2023-12-31), pages 1 - 5 * |
Also Published As
Publication number | Publication date |
---|---|
CN118011453B (en) | 2024-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Perez-Andujar et al. | Performance of CdTe, HPGe and NaI (Tl) detectors for radioactivity measurements | |
Szentmiklósi et al. | On the design and installation of a Compton–suppressed HPGe spectrometer at the Budapest neutron-induced prompt gamma spectroscopy (NIPS) facility | |
CN103853929A (en) | Low-resolution gamma energy spectrum inversion analysis process and method based on Monte Carlo response matrix | |
Haj-Heidari et al. | Method for developing HPGe detector model in Monte Carlo simulation codes | |
Britton | Compton suppression systems for environmental radiological analysis | |
Bölükdemir et al. | Investigation of shape effects and dead layer thicknesses of a coaxial HPGe crystal on detector efficiency by using PHITS Monte Carlo simulation | |
Badawi et al. | Calibration of 4π NaI (Tl) detectors with coincidence summing correction using new numerical procedure and ANGLE4 software | |
Zeiser et al. | The γ-ray energy response of the Oslo Scintillator Array OSCAR | |
Blank et al. | High-precision efficiency calibration of a high-purity co-axial germanium detector | |
Mitchell et al. | GADRAS Detector Response Function. | |
Aloraini et al. | Coincidence Summing Factor Calculation for Volumetric γ‐ray Sources Using Geant4 Simulation | |
CN118011453B (en) | CZT detector efficiency calculating method and device based on crystal effective height | |
Hwang et al. | Estimation of ambient dose equivalent rate with a plastic scintillation detector using the least-square and first-order methods-based G (E) function | |
Uyar et al. | Characterisation of two p-type HPGe detectors by measurements and Monte Carlo simulations | |
Krishnan et al. | Assessment of the inactive dead layer thickness of old high-purity germanium detector: A study by Monte Carlo simulations and experimental verification | |
Noureddine et al. | Efficiency calibration and coincidence summing correction for a NaI (Tl) spherical detector | |
Baccarelli et al. | Standardization of $^{18} $ F by Means of $4\pi ({\rm PS})\beta-\gamma $ Plastic Scintillator Coincidence System | |
Badawi et al. | Hybrid analytical method for calibrating a standard NaI (Tl) gamma-ray scintillation detector using a lateral hexagonal radioactive source | |
Lam et al. | Gamma peak search and peak fitting algorithm for a low-resolution detector with applications in gamma spectroscopy | |
Hassan et al. | A practical method for EPR dosimetry using alanine powder | |
Nafee et al. | Calibration of the 4π γ-ray spectrometer using a new numerical simulation approach | |
Qian et al. | Monte Carlo simulation investigation on the minimum dimension of gamma reference radiation regulated by ISO 4037–1 | |
Joseph et al. | Geometry Correction in Efficiency of a Sodium Iodide (Thallium Activated), NaI (Tl) Detector | |
Jeon et al. | Automatic energy calibration of radiation portal monitors using deep learning and spectral remapping | |
Fida et al. | Response Function Simulation of Labr3 (Ce) Scintillation Detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |