CN117919504A - A ROS-responsive micro-nanostructured titanium implant nanocoating and its preparation method and application - Google Patents
A ROS-responsive micro-nanostructured titanium implant nanocoating and its preparation method and application Download PDFInfo
- Publication number
- CN117919504A CN117919504A CN202410118173.7A CN202410118173A CN117919504A CN 117919504 A CN117919504 A CN 117919504A CN 202410118173 A CN202410118173 A CN 202410118173A CN 117919504 A CN117919504 A CN 117919504A
- Authority
- CN
- China
- Prior art keywords
- ros
- implant
- nanocoating
- micro
- nanostructure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007943 implant Substances 0.000 title claims abstract description 100
- 239000010936 titanium Substances 0.000 title claims abstract description 84
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 61
- 239000002103 nanocoating Substances 0.000 title claims abstract description 56
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 claims abstract description 60
- 239000002135 nanosheet Substances 0.000 claims abstract description 53
- 229960003638 dopamine Drugs 0.000 claims abstract description 30
- 239000002086 nanomaterial Substances 0.000 claims abstract description 29
- 150000002576 ketones Chemical class 0.000 claims abstract description 19
- 150000003568 thioethers Chemical class 0.000 claims abstract description 19
- 238000005406 washing Methods 0.000 claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 238000003756 stirring Methods 0.000 claims abstract description 7
- 238000001338 self-assembly Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 19
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 17
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 claims description 15
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 claims description 15
- 229920002873 Polyethylenimine Polymers 0.000 claims description 15
- 208000003076 Osteolysis Diseases 0.000 claims description 14
- 208000029791 lytic metastatic bone lesion Diseases 0.000 claims description 14
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 claims description 12
- -1 thioether ketone Chemical class 0.000 claims description 10
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 8
- 238000004140 cleaning Methods 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 7
- 238000005516 engineering process Methods 0.000 claims description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 4
- 238000009833 condensation Methods 0.000 claims description 4
- 230000005494 condensation Effects 0.000 claims description 4
- 230000018044 dehydration Effects 0.000 claims description 4
- 238000006297 dehydration reaction Methods 0.000 claims description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 4
- 238000001179 sorption measurement Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 3
- 238000007654 immersion Methods 0.000 claims description 2
- 210000000988 bone and bone Anatomy 0.000 abstract description 24
- 238000004090 dissolution Methods 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 4
- 238000002791 soaking Methods 0.000 abstract description 4
- 230000000399 orthopedic effect Effects 0.000 abstract description 3
- 238000001035 drying Methods 0.000 abstract description 2
- 239000003642 reactive oxygen metabolite Substances 0.000 description 52
- 239000006185 dispersion Substances 0.000 description 18
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 16
- 210000002997 osteoclast Anatomy 0.000 description 16
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 15
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 15
- 238000002474 experimental method Methods 0.000 description 13
- 210000004979 bone marrow derived macrophage Anatomy 0.000 description 12
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 10
- 102000014128 RANK Ligand Human genes 0.000 description 9
- 108010025832 RANK Ligand Proteins 0.000 description 9
- 102000007591 Tartrate-Resistant Acid Phosphatase Human genes 0.000 description 9
- 108010032050 Tartrate-Resistant Acid Phosphatase Proteins 0.000 description 9
- 230000006698 induction Effects 0.000 description 9
- 230000010354 integration Effects 0.000 description 9
- 241000699670 Mus sp. Species 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 230000009286 beneficial effect Effects 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 238000010186 staining Methods 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 6
- 230000002401 inhibitory effect Effects 0.000 description 6
- 230000009818 osteogenic differentiation Effects 0.000 description 6
- 238000001356 surgical procedure Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 210000000689 upper leg Anatomy 0.000 description 5
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 4
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 238000003760 magnetic stirring Methods 0.000 description 3
- 230000002188 osteogenic effect Effects 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 229910019637 Nb2AlC Inorganic materials 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 238000011529 RT qPCR Methods 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000021164 cell adhesion Effects 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 238000010603 microCT Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 230000011164 ossification Effects 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000003762 quantitative reverse transcription PCR Methods 0.000 description 2
- 238000003757 reverse transcription PCR Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000002000 scavenging effect Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- VQVUBYASAICPFU-UHFFFAOYSA-N (6'-acetyloxy-2',7'-dichloro-3-oxospiro[2-benzofuran-1,9'-xanthene]-3'-yl) acetate Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(Cl)=C(OC(C)=O)C=C1OC1=C2C=C(Cl)C(OC(=O)C)=C1 VQVUBYASAICPFU-UHFFFAOYSA-N 0.000 description 1
- 208000020084 Bone disease Diseases 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 102100024230 Dendritic cell-specific transmembrane protein Human genes 0.000 description 1
- 101710190014 Dendritic cell-specific transmembrane protein Proteins 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000990902 Homo sapiens Matrix metalloproteinase-9 Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 1
- 208000012659 Joint disease Diseases 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100028123 Macrophage colony-stimulating factor 1 Human genes 0.000 description 1
- 102100030412 Matrix metalloproteinase-9 Human genes 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 206010052306 Periprosthetic osteolysis Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 238000010802 RNA extraction kit Methods 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 229920010741 Ultra High Molecular Weight Polyethylene (UHMWPE) Polymers 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013228 adult male C57BL/6J mice Methods 0.000 description 1
- RGCKGOZRHPZPFP-UHFFFAOYSA-N alizarin Chemical compound C1=CC=C2C(=O)C3=C(O)C(O)=CC=C3C(=O)C2=C1 RGCKGOZRHPZPFP-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 210000002449 bone cell Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 229960002725 isoflurane Drugs 0.000 description 1
- 210000000629 knee joint Anatomy 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 230000020395 negative regulation of osteoclast differentiation Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000011506 response to oxidative stress Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- AVPCPPOOQICIRJ-UHFFFAOYSA-L sodium glycerol 2-phosphate Chemical compound [Na+].[Na+].OCC(CO)OP([O-])([O-])=O AVPCPPOOQICIRJ-UHFFFAOYSA-L 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/30—Inorganic materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
- A61L27/06—Titanium or titanium alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/34—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/12—Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2420/00—Materials or methods for coatings medical devices
- A61L2420/06—Coatings containing a mixture of two or more compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/24—Materials or treatment for tissue regeneration for joint reconstruction
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dermatology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
本发明公开了一种ROS响应微纳结构钛植入物纳米涂层及其制备方法与应用,属于医用器械技术领域。所述ROS响应微纳结构钛植入物纳米涂层由微纳结构植入物表面的硫醚酮多巴胺分子涂层与巨噬细胞靶向功能化Nb2C MXene纳米片自组装得到。其制备方法包括以下步骤:将微纳结构植入物浸泡在硫醚酮多巴胺溶液中,洗涤后于搅拌条件下加入巨噬细胞靶向功能化Nb2C MXene纳米片溶液进行反应,反应结束后清洗、干燥,即得所述ROS响应微纳结构钛植入物纳米涂层。本发明同时公开上述ROS响应微纳结构钛植入物纳米涂层在制备人工植入物中的应用。本发明解决了骨科假体植入体内面临的假体周围骨溶解问题,且制备方法简单,材料易得。
The present invention discloses a ROS-responsive micro-nanostructure titanium implant nanocoating and a preparation method and application thereof, and belongs to the technical field of medical devices. The ROS-responsive micro-nanostructure titanium implant nanocoating is obtained by self-assembly of a thioether ketone dopamine molecular coating on the surface of a micro-nanostructure implant and a macrophage-targeted functionalized Nb 2 C MXene nanosheet. The preparation method comprises the following steps: soaking the micro-nanostructure implant in a thioether ketone dopamine solution, adding a macrophage-targeted functionalized Nb 2 C MXene nanosheet solution under stirring conditions after washing to react, and washing and drying after the reaction to obtain the ROS-responsive micro-nanostructure titanium implant nanocoating. The present invention also discloses the application of the above-mentioned ROS-responsive micro-nanostructure titanium implant nanocoating in the preparation of artificial implants. The present invention solves the problem of periprosthetic bone dissolution faced by orthopedic prosthesis implants, and the preparation method is simple and the materials are easily available.
Description
技术领域Technical Field
本发明属于医用器械技术领域,尤其涉及一种ROS响应微纳结构钛植入物纳米涂层及其制备方法与应用。The present invention belongs to the technical field of medical devices, and in particular relates to a ROS-responsive micro-nanostructured titanium implant nanocoating and a preparation method and application thereof.
背景技术Background technique
全关节置换术被认为是治疗严重关节疾病最成功的手术之一,然而,对于关节置换术后患者,人工关节假体的长期运动和磨损可能会产生大量磨损颗粒,如钛及超高分子量聚乙烯(UHMWPE)颗粒等等。同时,由于材料科学的发展,聚乙烯内衬在膝关节假体中的应用目前在临床实践中不可避免。因此,UHMWPE颗粒不可避免地在骨-种植体界面周围聚集,严重影响人工关节的使用寿命,最终导致假体无菌性松动,需要进行翻修手术。Total joint replacement is considered one of the most successful surgeries for treating severe joint diseases. However, for patients after joint replacement, long-term movement and wear of artificial joint prostheses may generate a large number of wear particles, such as titanium and ultra-high molecular weight polyethylene (UHMWPE) particles. At the same time, due to the development of material science, the application of polyethylene liners in knee joint prostheses is currently inevitable in clinical practice. Therefore, UHMWPE particles inevitably gather around the bone-implant interface, seriously affecting the service life of artificial joints, and ultimately leading to aseptic loosening of the prosthesis, requiring revision surgery.
由于周围细胞对累积的UHMWPE颗粒的氧化应激反应,假体周围微环境中活性氧(ROS)水平显著升高,这不仅促进破骨细胞的形成,还会阻碍骨髓间充质干细胞(BMSCs)向成骨细胞的分化,加速假体周围骨溶解的发生。新型二维纳米Nb2C MXene纳米片通过其表面丰富的氧化空位及还原特性,表现出自发吸收ROS的能力,将为骨溶解的预防与治疗提供新的策略。Due to the oxidative stress response of surrounding cells to the accumulated UHMWPE particles, the level of reactive oxygen species (ROS) in the microenvironment around the prosthesis increases significantly, which not only promotes the formation of osteoclasts, but also hinders the differentiation of bone marrow mesenchymal stem cells (BMSCs) into osteoblasts, accelerating the occurrence of periprosthetic bone dissolution. The new two-dimensional nano- Nb2C MXene nanosheets exhibit the ability to spontaneously absorb ROS through their abundant surface oxidation vacancies and reduction properties, which will provide a new strategy for the prevention and treatment of osteolysis.
钛及钛合金通常用作植入物材料,但其缺乏促进假体-骨界面骨整合的生物学功能。现有技术中利用表面的物理学改性逐渐成为研究热点,而对其表面微纳结构形貌及表面修饰的协同开发,达到抑制骨溶解和促进骨整合的钛植入物还未见报道。Titanium and titanium alloys are usually used as implant materials, but they lack the biological function of promoting bone integration at the prosthesis-bone interface. In the existing technology, physical modification of the surface has gradually become a research hotspot, but the coordinated development of its surface micro-nanostructure morphology and surface modification to achieve titanium implants that inhibit osteolysis and promote bone integration has not been reported.
因此,如何提供一种抑制骨溶解和促进骨整合的钛植入物是本领域技术人员亟需解决的技术问题。Therefore, how to provide a titanium implant that inhibits osteolysis and promotes bone integration is a technical problem that those skilled in the art need to solve urgently.
发明内容Summary of the invention
为解决上述技术问题,本发明提出了一种ROS响应微纳结构钛植入物纳米涂层及其制备方法与应用。In order to solve the above technical problems, the present invention proposes a ROS-responsive micro-nanostructured titanium implant nanocoating and a preparation method and application thereof.
为实现上述目的,本发明提供了以下技术方案:To achieve the above object, the present invention provides the following technical solutions:
一种ROS响应微纳结构钛植入物纳米涂层,由微纳结构植入物表面的硫醚酮多巴胺分子涂层与巨噬细胞靶向功能化Nb2C MXene纳米片自组装得到。A ROS-responsive micro-nanostructured titanium implant nanocoating is obtained by self-assembly of a thioetherketone dopamine molecular coating on the surface of the micro-nanostructured implant and macrophage-targeted functionalized Nb2C MXene nanosheets.
有益效果:本发明中的纳米涂层在制备过程中的自组装过程为利用硫醚酮多巴胺分子涂层中的邻苯二酚基团的粘附作用将巨噬细胞靶向功能化Nb2CMXene纳米片固定在微纳结构钛植入物表面。所得ROS响应微纳结构钛植入物纳米涂层可响应裂解于假体周围骨溶解衍生的高ROS环境,实现同时预防假体周围骨溶解和促进骨整合。Beneficial effects: The self-assembly process of the nanocoating in the present invention during the preparation process is to use the adhesion effect of the catechol group in the thioether ketone dopamine molecular coating to fix the macrophage-targeted functionalized Nb2CMXene nanosheets on the surface of the micro-nanostructured titanium implant. The obtained ROS-responsive micro-nanostructured titanium implant nanocoating can respond to the high ROS environment derived from periprosthetic bone dissolution, thereby preventing periprosthetic bone dissolution and promoting bone integration.
优选的,所述巨噬细胞靶向功能化Nb2C MXene纳米片由磷脂酰丝氨酸与聚乙烯亚胺通过静电吸附包裹Nb2C MXene获得。Preferably, the macrophage-targeted functionalized Nb 2 C MXene nanosheets are obtained by encapsulating Nb 2 C MXene with phosphatidylserine and polyethyleneimine through electrostatic adsorption.
更为优选的,所述巨噬细胞靶向功能化Nb2C MXene纳米片的制备方法包括以下步骤:More preferably, the method for preparing the macrophage-targeted functionalized Nb 2 C MXene nanosheets comprises the following steps:
将Nb2AlC在氢氟酸溶液中刻蚀48h,然后在四甲基氢氧化铵溶液中剥离分层,经100W超声后,离心并用去离子水洗涤后得到单层Nb2C纳米片分散液,随后在磁力搅拌下加入聚乙烯亚胺(PEI)溶液进行反应,反应结束后离心,将所得沉淀分散于乙醇溶液中,再加入磷脂酰丝氨酸(PS)氯仿溶液混合均匀,最后经真空干燥挥发溶剂,得到沉淀物后洗涤、干燥,即所述巨噬细胞靶向功能化Nb2C MXene纳米片。 Nb2AlC was etched in a hydrofluoric acid solution for 48 hours, and then exfoliated and layered in a tetramethylammonium hydroxide solution. After 100W ultrasound, the dispersion was centrifuged and washed with deionized water to obtain a single-layer Nb2C nanosheet dispersion. Subsequently, a polyethyleneimine (PEI) solution was added under magnetic stirring to react. After the reaction was completed, the dispersion was centrifuged, and the obtained precipitate was dispersed in an ethanol solution. A phosphatidylserine (PS) chloroform solution was added and mixed evenly. Finally, the solvent was evaporated by vacuum drying to obtain a precipitate, which was then washed and dried to obtain the macrophage-targeted functionalized Nb2C MXene nanosheet.
更为优选的,所述氢氟酸溶液的浓度为9mol/L;More preferably, the concentration of the hydrofluoric acid solution is 9 mol/L;
所述Nb2C纳米片分散液、聚乙烯亚胺溶液、磷脂酰丝氨酸氯仿溶液的添加量之比为1:1:10。The ratio of the added amounts of the Nb 2 C nanosheet dispersion, the polyethyleneimine solution and the phosphatidylserine chloroform solution is 1:1:10.
所述Nb2C纳米片分散液的浓度为2mg/ml;The concentration of the Nb 2 C nanosheet dispersion is 2 mg/ml;
所述聚乙烯亚胺溶液的浓度为5mg/ml;The concentration of the polyethyleneimine solution is 5 mg/ml;
所述磷脂酰丝氨酸氯仿溶液的浓度为10mg/ml。The concentration of the phosphatidylserine chloroform solution is 10 mg/ml.
更为优选的,所述搅拌的时间为15-45min,优选为30min。More preferably, the stirring time is 15-45 min, preferably 30 min.
所述离心转速为8000-12000rpm,离心时间为5-10min。The centrifugal speed is 8000-12000 rpm, and the centrifugal time is 5-10 min.
所述洗涤为利用无水乙醇冲洗,所述洗涤的次数为2-5次。The washing is performed by rinsing with anhydrous ethanol, and the number of times of washing is 2-5 times.
有益效果:本发明中的巨噬细胞靶向功能化Nb2C MXene纳米片的制备以实现更优的巨噬细胞靶向作用,从而减轻Nb2C MXene纳米片对骨组织中其他细胞的副作用并增强抑制破骨细胞生成的能力。采用静电吸附自组装策略,并调整Nb2C纳米片分散液、聚乙烯亚胺溶液、磷脂酰丝氨酸氯仿溶液的添加量之比为1:1:10,以实现最优的巨噬细胞靶向功能化Nb2C MXene纳米片产率。Beneficial effects: The preparation of macrophage-targeted functionalized Nb 2 C MXene nanosheets in the present invention achieves better macrophage targeting, thereby reducing the side effects of Nb 2 C MXene nanosheets on other cells in bone tissue and enhancing the ability to inhibit osteoclastogenesis. The electrostatic adsorption self-assembly strategy is adopted, and the ratio of the addition amount of Nb 2 C nanosheet dispersion, polyethyleneimine solution, and phosphatidylserine chloroform solution is adjusted to 1:1:10 to achieve the optimal yield of macrophage-targeted functionalized Nb 2 C MXene nanosheets.
优选的,所述微纳结构植入物包括钛或钛合金,且在1064nm激光表面直写技术(LSDW)下进行处理获得。Preferably, the micro-nanostructure implant comprises titanium or titanium alloy and is obtained by processing under 1064nm laser surface direct writing technology (LSDW).
有益效果:本发明采用钛或钛合金微纳结构植入物,充分利用钛或钛合金在体内的生物惰性和生物相容性,同时具备出色的机械强度。这种植入物在骨科领域表现出色,已被广泛应用于临床实践。经1064nm激光表面直写技术后产生的微纳结构不仅增强了植入物的表面生物相容性,促进了细胞黏附和增生,还提高了植入物与周围骨组织的结合力,加速骨愈合过程。Beneficial effects: The present invention uses titanium or titanium alloy micro-nano structure implants, making full use of the biological inertness and biocompatibility of titanium or titanium alloy in the body, while having excellent mechanical strength. This implant has performed well in the field of orthopedics and has been widely used in clinical practice. The micro-nano structure produced by 1064nm laser surface direct writing technology not only enhances the surface biocompatibility of the implant, promotes cell adhesion and proliferation, but also improves the bonding force between the implant and the surrounding bone tissue, accelerating the bone healing process.
一种ROS响应微纳结构钛植入物纳米涂层的制备方法,包括以下步骤:A method for preparing a ROS-responsive micro-nanostructured titanium implant nanocoating comprises the following steps:
将微纳结构植入物浸泡在硫醚酮多巴胺溶液中,洗涤后再于搅拌条件下加入巨噬细胞靶向功能化Nb2C MXene纳米片溶液进行反应,反应结束后清洗、干燥,即得所述ROS响应微纳结构钛植入物纳米涂层。The micro-nanostructure implant is immersed in a thioether ketone dopamine solution, washed, and then added with a macrophage-targeted functionalized Nb 2 C MXene nanosheet solution under stirring to react. After the reaction, the implant is washed and dried to obtain the ROS-responsive micro-nanostructure titanium implant nanocoating.
有益效果:本发明制备的ROS响应微纳结构钛植入物纳米涂层具有优异的生物相容性和生物活性。其硫醚酮多巴胺分子涂层能够响应ROS的变化,实现智能释放Nb2C MXene纳米片的过程。同时,通过靶向功能化Nb2C MXene纳米片的引入,使植入物具备优越的巨噬细胞靶向性,有助于改善组织相容性,减轻炎症反应。这一创新性方法为提高植入物的生物适应性和治疗效果提供了新的途径。Beneficial effects: The ROS-responsive micro-nanostructured titanium implant nanocoating prepared by the present invention has excellent biocompatibility and bioactivity. Its thioetherketone dopamine molecular coating can respond to changes in ROS and realize the process of intelligent release of Nb2C MXene nanosheets. At the same time, through the introduction of targeted functionalized Nb2C MXene nanosheets, the implant has excellent macrophage targeting, which helps to improve tissue compatibility and reduce inflammatory response. This innovative method provides a new way to improve the biocompatibility and therapeutic effect of implants.
优选的,所述硫醚酮多巴胺分子由ROS敏感硫醚酮的羟基与具有邻苯二酚粘附作用的多巴胺的羧基通过脱水缩合而得;Preferably, the thioether ketone dopamine molecule is obtained by dehydration condensation of the hydroxyl group of the ROS-sensitive thioether ketone and the carboxyl group of dopamine having catechol adhesion;
所述ROS敏感硫醚酮与多巴胺的摩尔质量比为1:2;The molar mass ratio of the ROS-sensitive thioether ketone to dopamine is 1:2;
优选的,所述硫醚酮多巴胺溶液的浓度为1-5mg/ml,更优选为2mg/ml;Preferably, the concentration of the thioether ketone dopamine solution is 1-5 mg/ml, more preferably 2 mg/ml;
所述巨噬细胞靶向功能化Nb2C MXene纳米片溶液的浓度为1-3mg/ml,更优选为2mg/ml。The concentration of the macrophage-targeted functionalized Nb 2 C MXene nanosheet solution is 1-3 mg/ml, more preferably 2 mg/ml.
有益效果:本发明中优选的硫醚酮多巴胺分子展现出优异的ROS响应性与邻苯二酚粘附作用,硫醚酮多巴胺溶液和Nb2C MXene溶液的浓度选择,使得植入物表面均匀覆盖、相互配合。通过合理的配比和浓度选择,这不仅提高了涂层的附着性和稳定性,还优化了反应条件,确保了制备过程的高效性和可重复性,为制备高性能ROS响应微纳结构钛植入物纳米涂层奠定了坚实基础。Beneficial effects: The preferred thioether ketone dopamine molecules in the present invention exhibit excellent ROS responsiveness and catechol adhesion, and the concentrations of the thioether ketone dopamine solution and the Nb2C MXene solution are selected so that the implant surface is evenly covered and cooperates with each other. Through reasonable ratio and concentration selection, this not only improves the adhesion and stability of the coating, but also optimizes the reaction conditions, ensures the efficiency and repeatability of the preparation process, and lays a solid foundation for the preparation of high-performance ROS-responsive micro-nanostructured titanium implant nanocoatings.
优选的,所述浸泡的时间为18-30h,优选为24h;Preferably, the soaking time is 18-30 hours, preferably 24 hours;
优选的,所述反应的时间为18-30h,优选为24h;Preferably, the reaction time is 18-30h, preferably 24h;
优选的,所述清洗为利用无水乙醇进行洗涤;Preferably, the cleaning is performed by washing with anhydrous ethanol;
所述清洗的次数为2-5次。The cleaning is performed 2-5 times.
有益效果:本发明中优选的浸泡和反应时间确保了硫醚酮多巴胺分子与Nb2CMXene纳米片充分反应,实现了涂层的均匀、稳定的形成。通过选择优化的清洗剂为无水乙醇,并控制清洗的次数在2-5次之间,有效去除了潜在的残留物,保障了植入物表面的洁净度。这一系列的优化措施不仅提高了制备效率,同时确保了所得ROS响应微纳结构钛植入物纳米涂层的质量和可控性。Beneficial effects: The preferred immersion and reaction time in the present invention ensures that the thioether ketone dopamine molecules fully react with the Nb2CMXene nanosheets, achieving uniform and stable formation of the coating. By selecting an optimized cleaning agent as anhydrous ethanol and controlling the number of cleanings between 2-5 times, potential residues are effectively removed and the cleanliness of the implant surface is guaranteed. This series of optimization measures not only improves the preparation efficiency, but also ensures the quality and controllability of the resulting ROS-responsive micro-nanostructured titanium implant nanocoating.
一种ROS响应微纳结构钛植入物纳米涂层在制备人工植入物中的应用。Application of a ROS-responsive micro-nanostructured titanium implant nanocoating in the preparation of artificial implants.
优选的,所述人工植入物为抑制骨溶解、促骨整合的人工植入物。Preferably, the artificial implant is an artificial implant that inhibits osteolysis and promotes osteointegration.
有益效果:本发明的ROS响应微纳结构钛植入物纳米涂层在制备抑制骨溶解、促进骨整合的人工植入物方面具有显著的优势。通过智能响应ROS的特性,该涂层在植入体内能够实现精准的纳米片释放,有效抑制骨溶解过程,提高植入物对骨组织的稳固性。同时,植入物表面的微纳结构设计促进骨细胞黏附和增生,有助于加速骨整合过程。这一创新的应用方向为人工植入物的设计和制备提供了新的思路,有望在临床上为骨疾病治疗和植入物修复领域带来更为可靠和持久的治疗效果。Beneficial effects: The ROS-responsive micro-nanostructured titanium implant nanocoating of the present invention has significant advantages in the preparation of artificial implants that inhibit osteolysis and promote bone integration. Through the characteristics of intelligent response to ROS, the coating can achieve precise release of nanosheets in the implant, effectively inhibit the osteolysis process, and improve the stability of the implant to the bone tissue. At the same time, the micro-nanostructure design on the surface of the implant promotes bone cell adhesion and proliferation, which helps to accelerate the bone integration process. This innovative application direction provides new ideas for the design and preparation of artificial implants, and is expected to bring more reliable and lasting therapeutic effects in the field of bone disease treatment and implant repair in clinical practice.
与现有技术相比,本发明具有如下优点和技术效果:Compared with the prior art, the present invention has the following advantages and technical effects:
本发明通过ROS响应性硫醚酮多巴胺分子介导的邻苯二酚基团的粘附作用来指导功能化的Nb2C纳米片(PPN)在微纳结构植入物表面形成纳米涂层(PPN@MNTi),制备方法简单易行,材料安全易得。本发明提供的纳米涂层响应裂解于假体周围骨溶解衍生的高ROS环境,局部递送巨噬细胞靶向性PPN纳米片至骨溶解微环境。此外,破骨细胞相关实验、促成骨分化实验结果表明该纳米涂层不仅能够有效地清除活性氧,抑制破骨细胞生成,还能促进成骨分化,为构建兼具抑制骨溶解及促进骨整合功能的假体提供了新的方法,解决目前骨科假体植入体内面临的假体周围骨溶解问题,在医学生物技术领域有广阔的应用价值。The present invention guides the functionalized Nb2C nanosheets (PPN) to form a nanocoating (PPN@MNTi) on the surface of a micro-nanostructure implant through the adhesion of catechol groups mediated by ROS-responsive thioether ketone dopamine molecules. The preparation method is simple and easy, and the materials are safe and readily available. The nanocoating provided by the present invention responds to the high ROS environment derived from periprosthetic bone dissolution and locally delivers macrophage-targeted PPN nanosheets to the bone dissolution microenvironment. In addition, the results of osteoclast-related experiments and osteogenic differentiation experiments show that the nanocoating can not only effectively remove reactive oxygen species and inhibit osteoclast formation, but also promote osteogenic differentiation, providing a new method for constructing a prosthesis with both the function of inhibiting osteolysis and promoting bone integration, solving the problem of periprosthetic bone dissolution currently faced by orthopedic prosthesis implants, and having broad application value in the field of medical biotechnology.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
构成本申请的一部分的附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:The drawings constituting a part of the present application are used to provide a further understanding of the present application. The illustrative embodiments and descriptions of the present application are used to explain the present application and do not constitute an improper limitation on the present application. In the drawings:
图1为本发明中ROS响应微纳结构钛植入物纳米涂层的制备流程及该植入物在骨溶解小鼠模型中抑制骨溶解和促进骨整合的协同作用原理示意图;FIG1 is a schematic diagram of the preparation process of the ROS-responsive micro-nanostructured titanium implant nanocoating of the present invention and the synergistic effect principle of the implant in inhibiting osteolysis and promoting bone integration in an osteolysis mouse model;
图2为实施例1制备的Nb2C纳米片及巨噬细胞靶向功能化Nb2C MXene纳米片(PPN)的TEM图像;FIG2 is a TEM image of the Nb 2 C nanosheets and macrophage-targeted functionalized Nb 2 C MXene nanosheets (PPN) prepared in Example 1;
其中(a)为Nb2C纳米片,(b)为巨噬细胞靶向功能化Nb2C MXene纳米片;Among them, (a) is Nb 2 C nanosheet, (b) is macrophage-targeted functionalized Nb 2 C MXene nanosheet;
图3为实施例2所得ROS响应微纳结构钛植入物纳米涂层(PPN@MNTi)的SEM图像和主要元素定位图;FIG3 is a SEM image and main element localization diagram of the ROS-responsive micro-nanostructured titanium implant nanocoating (PPN@MNTi) obtained in Example 2;
图4为实施例2所得ROS响应微纳结构钛植入物纳米涂层(PPN@MNTi)的Raman和XPS图谱;FIG4 is the Raman and XPS spectra of the ROS-responsive micro-nanostructured titanium implant nanocoating (PPN@MNTi) obtained in Example 2;
图5为实施例2所得ROS响应微纳结构钛植入物纳米涂层(PPN@MNTi)的体外清除ROS性能DCFH-DA染色检测;FIG5 is a DCFH-DA staining test of the in vitro ROS scavenging performance of the ROS-responsive micro-nanostructured titanium implant nanocoating (PPN@MNTi) obtained in Example 2;
图6为实施例2所得ROS响应微纳结构钛植入物纳米涂层(PPN@MNTi)抑制破骨细胞生成体外TRAP染色实验及BMDMs细胞基因表达的RT-qPCR分析示意图;6 is a schematic diagram of the in vitro TRAP staining experiment of the ROS-responsive micro-nanostructured titanium implant nanocoating (PPN@MNTi) obtained in Example 2 to inhibit osteoclastogenesis and the RT-qPCR analysis of BMDMs cell gene expression;
其中,(a)为BMDMs细胞基因表达的RT-qPCR分析示意图,(b)为抑制破骨细胞生成体外TRAP染色实验;Among them, (a) is a schematic diagram of RT-qPCR analysis of BMDMs cell gene expression, and (b) is an in vitro TRAP staining experiment for inhibiting osteoclastogenesis;
图7为实施例2所得ROS响应微纳结构钛植入物纳米涂层(PPN@MNTi)的体外促成骨分化实验,BMSCs细胞成骨ALP及ARS染色实验;FIG7 is an in vitro osteogenic differentiation experiment of the ROS-responsive micro-nanostructured titanium implant nanocoating (PPN@MNTi) obtained in Example 2, and an ALP and ARS staining experiment of BMSCs cells in osteogenic differentiation;
图8为实施例2所得ROS响应微纳结构钛植入物纳米涂层(PPN@MNTi)的体内抑制骨溶解的骨组织学分析;FIG8 is a bone histological analysis of the ROS-responsive micro-nanostructured titanium implant nanocoating (PPN@MNTi) obtained in Example 2 for inhibiting osteolysis in vivo;
图9为实施例2所得ROS响应微纳结构钛植入物纳米涂层(PPN@MNTi)的体内成骨实验Micro-CT结果。FIG. 9 is the Micro-CT result of the in vivo osteogenesis experiment of the ROS-responsive micro-nanostructured titanium implant nanocoating (PPN@MNTi) obtained in Example 2.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above-mentioned objects, features and advantages of the present invention more obvious and easy to understand, the present invention is further described in detail below with reference to the accompanying drawings and specific embodiments.
本发明实施例公开了一种ROS响应微纳结构钛植入物纳米涂层,由微纳结构植入物表面的硫醚酮多巴胺分子涂层与巨噬细胞靶向功能化Nb2C MXene纳米片自组装得到。The embodiment of the present invention discloses a ROS-responsive micro-nanostructure titanium implant nanocoating, which is obtained by self-assembly of a thioetherketone dopamine molecular coating on the surface of the micro-nanostructure implant and a macrophage-targeted functionalized Nb 2 C MXene nanosheet.
在优选的实施例中,所述巨噬细胞靶向功能化Nb2C MXene纳米片由磷脂酰丝氨酸与聚乙烯亚胺通过静电吸附包裹Nb2C MXene获得。In a preferred embodiment, the macrophage-targeted functionalized Nb 2 C MXene nanosheets are obtained by encapsulating Nb 2 C MXene with phosphatidylserine and polyethyleneimine through electrostatic adsorption.
在更为优选的实施例中,所述巨噬细胞靶向功能化Nb2C MXene纳米片的制备方法包括以下步骤:In a more preferred embodiment, the method for preparing the macrophage-targeted functionalized Nb 2 C MXene nanosheets comprises the following steps:
将Nb2AlC在氢氟酸溶液中刻蚀48h,然后在四甲基氢氧化铵溶液中剥离分层,经100W超声后,离心并用去离子水洗涤后得到单层Nb2C纳米片分散液,随后在磁力搅拌下加入聚乙烯亚胺(PEI)溶液进行反应,反应结束后离心,将所得沉淀分散于乙醇溶液中,再加入磷脂酰丝氨酸(PS)氯仿溶液混合均匀,最后经真空干燥挥发溶剂,得到沉淀物后洗涤、干燥,即所述巨噬细胞靶向功能化Nb2C MXene纳米片。 Nb2AlC was etched in a hydrofluoric acid solution for 48 hours, and then exfoliated and layered in a tetramethylammonium hydroxide solution. After 100W ultrasound, the dispersion was centrifuged and washed with deionized water to obtain a single-layer Nb2C nanosheet dispersion. Subsequently, a polyethyleneimine (PEI) solution was added under magnetic stirring to react. After the reaction was completed, the dispersion was centrifuged, and the obtained precipitate was dispersed in an ethanol solution. A phosphatidylserine (PS) chloroform solution was added and mixed evenly. Finally, the solvent was evaporated by vacuum drying to obtain a precipitate, which was then washed and dried to obtain the macrophage-targeted functionalized Nb2C MXene nanosheet.
更为优选的,所述氢氟酸溶液的浓度为9mol/L;More preferably, the concentration of the hydrofluoric acid solution is 9 mol/L;
所述Nb2C纳米片分散液、聚乙烯亚胺溶液、磷脂酰丝氨酸氯仿溶液的添加量之比为1:1:10。The ratio of the added amounts of the Nb 2 C nanosheet dispersion, the polyethyleneimine solution and the phosphatidylserine chloroform solution is 1:1:10.
所述Nb2C纳米片分散液的浓度为2mg/ml;The concentration of the Nb 2 C nanosheet dispersion is 2 mg/ml;
所述聚乙烯亚胺溶液的浓度为5mg/ml;The concentration of the polyethyleneimine solution is 5 mg/ml;
所述磷脂酰丝氨酸氯仿溶液的浓度为10mg/ml。在更为优选的实施例中,所述搅拌的时间为15-45min,优选为30min。The concentration of the phosphatidylserine chloroform solution is 10 mg/ml. In a more preferred embodiment, the stirring time is 15-45 min, preferably 30 min.
所述离心转速为8000-12000rpm,离心时间为5-10min。The centrifugal speed is 8000-12000 rpm, and the centrifugal time is 5-10 min.
所述洗涤为利用无水乙醇冲洗,所述洗涤的次数为2-5次。The washing is performed by rinsing with anhydrous ethanol, and the number of times of washing is 2-5 times.
在优选的实施例中,所述微纳结构植入物包括钛或钛合金,且在1064nm激光表面直写技术下进行处理获得。In a preferred embodiment, the micro-nanostructure implant comprises titanium or titanium alloy and is obtained by processing under 1064nm laser surface direct writing technology.
本发明实施例还提供了一种ROS响应微纳结构钛植入物纳米涂层的制备方法,包括以下步骤:The embodiment of the present invention also provides a method for preparing a ROS-responsive micro-nanostructured titanium implant nanocoating, comprising the following steps:
将微纳结构植入物浸泡在硫醚酮多巴胺溶液中,再于搅拌条件下加入巨噬细胞靶向功能化Nb2C MXene纳米片溶液进行反应,反应结束后清洗、干燥,即得所述ROS响应微纳结构钛植入物纳米涂层。The micro-nanostructure implant is immersed in a thioether ketone dopamine solution, and then a macrophage-targeted functionalized Nb 2 C MXene nanosheet solution is added under stirring to react. After the reaction is completed, the implant is cleaned and dried to obtain the ROS-responsive micro-nanostructure titanium implant nanocoating.
在优选的实施例中,所述硫醚酮多巴胺分子由ROS敏感硫醚酮的羟基与具有邻苯二酚粘附作用的多巴胺的羧基通过脱水缩合而得;In a preferred embodiment, the thioether ketone dopamine molecule is obtained by dehydration condensation of the hydroxyl group of the ROS-sensitive thioether ketone and the carboxyl group of dopamine having catechol adhesion;
所述硫醚酮与多巴胺的摩尔质量比为1:2。The molar mass ratio of the thioether ketone to dopamine is 1:2.
在优选的实施例中,所述硫醚酮多巴胺溶液的浓度为1-5mg/ml,更优选为2mg/ml;In a preferred embodiment, the concentration of the thioether ketone dopamine solution is 1-5 mg/ml, more preferably 2 mg/ml;
所述巨噬细胞靶向功能化Nb2C MXene纳米片溶液的浓度为1-3mg/ml,更优选为2mg/ml。The concentration of the macrophage-targeted functionalized Nb 2 C MXene nanosheet solution is 1-3 mg/ml, more preferably 2 mg/ml.
在优选的实施例中,所述浸泡的时间为18-30h,优选为24h;In a preferred embodiment, the soaking time is 18-30 hours, preferably 24 hours;
在优选的实施例中,所述反应的时间为18-30h,优选为24h;In a preferred embodiment, the reaction time is 18-30h, preferably 24h;
在优选的实施例中,所述清洗为利用无水乙醇进行洗涤;In a preferred embodiment, the cleaning is performed by washing with anhydrous ethanol;
所述清洗的次数为2-5次。The cleaning is performed 2-5 times.
本发明实施例还提供了一种ROS响应微纳结构钛植入物纳米涂层在制备人工植入物中的应用。The embodiment of the present invention also provides an application of a ROS-responsive micro-nanostructured titanium implant nanocoating in the preparation of an artificial implant.
在优选的实施例中,所述人工植入物为抑制骨溶解、促骨整合的人工植入物。In a preferred embodiment, the artificial implant is an artificial implant that inhibits osteolysis and promotes osteointegration.
本发明实施例中的原料均通过市售途径购买获得。The raw materials in the examples of the present invention are all purchased from commercial sources.
实施例1Example 1
巨噬细胞靶向功能化Nb2C MXene纳米片的制备,包括以下步骤:The preparation of macrophage-targeted functionalized Nb2C MXene nanosheets includes the following steps:
(1)将Nb2AlC(1g)和氢氟酸(6ml)通过磁力搅拌于42℃水浴加热中反应48h后,将所得产物分散于水中,得到浓度为2mg/ml的Nb2C纳米片分散液。(1) Nb 2 AlC (1 g) and hydrofluoric acid (6 ml) were reacted in a 42° C. water bath with magnetic stirring for 48 h, and the resulting product was dispersed in water to obtain a Nb 2 C nanosheet dispersion with a concentration of 2 mg/ml.
(2)向5ml步骤(1)所得Nb2C纳米片分散液中加入5ml聚乙烯亚胺(PEI)溶液(浓度为2mg/ml),搅拌30min,离心后超声分散在乙醇溶液中,随后,将10ml磷脂酰丝氨酸(PS)氯仿溶液(10mg/ml)加入到上述分散体系中。通过真空干燥挥发有机溶剂后利用去离子水洗涤三次,然后将其超声分散于5ml去离子水之中,形成浓度为2mg/ml的PPN分散液,即得到巨噬细胞靶向功能化Nb2C MXene纳米片(PS/PEI/Nb2C;PPN),并将其置于4℃下保存备用。(2) Add 5 ml of polyethyleneimine (PEI) solution (concentration of 2 mg/ml) to 5 ml of the Nb 2 C nanosheet dispersion obtained in step (1), stir for 30 min, centrifuge and ultrasonically disperse in an ethanol solution, then add 10 ml of phosphatidylserine (PS) chloroform solution (10 mg/ml) to the above dispersion system. After the organic solvent is evaporated by vacuum drying, it is washed three times with deionized water, and then ultrasonically dispersed in 5 ml of deionized water to form a PPN dispersion with a concentration of 2 mg/ml, thus obtaining macrophage-targeted functionalized Nb 2 C MXene nanosheets (PS/PEI/Nb 2 C; PPN), which are stored at 4°C for future use.
通过TEM检测Nb2C纳米片及巨噬细胞靶向功能化Nb2C MXene纳米片的形态(图2),其中(a)为Nb2C纳米片,(b)为巨噬细胞靶向功能化Nb2C MXene纳米片。The morphology of Nb 2 C nanosheets and macrophage-targeted functionalized Nb 2 C MXene nanosheets was detected by TEM ( FIG. 2 ), where (a) is Nb 2 C nanosheets and (b) is macrophage-targeted functionalized Nb 2 C MXene nanosheets.
实施例2Example 2
一种ROS响应微纳结构钛植入物纳米涂层的制备,包括以下步骤:A preparation method of a ROS-responsive micro-nanostructured titanium implant nanocoating comprises the following steps:
(1)首先将购自江苏拜尔斯公司的钛片(Ti,长×宽×高:10×10×2mm)和钛棒(Ti,Φ10×1mm)依次经丙酮(≥99.5%)、乙二醇(≥99.5%)、超纯水在超声作用下清洗15min,得到清洁Ti片与清洁Ti棒。然后,采用1064nm激光表面直写技术将清洁Ti片与清洁Ti棒按照20μm线间距进行处理,形成表面微纳结构,无水乙醇洗涤3次后,得到微纳结构植入物(MNTi)。(1) First, titanium sheets (Ti, length × width × height: 10 × 10 × 2 mm) and titanium rods (Ti, Φ10 × 1 mm) purchased from Jiangsu Byers Company were cleaned in acetone (≥99.5%), ethylene glycol (≥99.5%), and ultrapure water under ultrasonic action for 15 min to obtain clean Ti sheets and clean Ti rods. Then, the clean Ti sheets and clean Ti rods were processed with a line spacing of 20 μm using 1064 nm laser surface direct writing technology to form surface micro-nano structures. After washing with anhydrous ethanol for 3 times, micro-nano structure implants (MNTi) were obtained.
(2)将上述微纳结构植入物置于由ROS敏感硫醚酮的羟基与具有邻苯二酚粘附作用的多巴胺的羧基通过脱水缩合而得硫醚酮多巴胺分子(TK-DA)溶液中,浓度为2mg/ml,浸泡24h后,洗涤植入物并加入实施例1所得PPN纳米片分散液搅拌反应24h,其中,硫醚酮多巴胺分子中硫醚酮与多巴胺的摩尔质量比为1:2。应结束后收集固体产物,并将其用乙醇洗涤3次后,放入烘箱烘干,即得到ROS响应微纳结构钛植入物纳米涂层(PPN@MNTi),并将其置于惰性气体氛围的-20℃条件下保存备用。(2) The above-mentioned micro-nanostructure implant is placed in a solution of thioether ketone dopamine molecules (TK-DA) obtained by dehydration condensation of the hydroxyl groups of ROS-sensitive thioether ketone and the carboxyl groups of dopamine with catechol adhesion, with a concentration of 2 mg/ml. After soaking for 24 hours, the implant is washed and the PPN nanosheet dispersion obtained in Example 1 is added and stirred for 24 hours, wherein the molar mass ratio of thioether ketone to dopamine in the thioether ketone dopamine molecule is 1:2. After the reaction is completed, the solid product is collected, washed with ethanol for 3 times, and then placed in an oven for drying to obtain a ROS-responsive micro-nanostructure titanium implant nanocoating (PPN@MNTi), which is then stored at -20°C in an inert gas atmosphere for later use.
通过SEM获得PPN@MNTi的表面形貌和表面元素分布(图3),通过Raman光谱可以看出,TK-DA@MNTi在676cm-1处有特征峰,同时在MNTi衬底上沉积Nb2C和PPN后,仍然保留了Nb2C典型的ω4振动模式,证实了Nb2C和PPN经TK-DA在MNTi表面成功接枝。XPS分析PPN@MNTi与Ti的吸收峰与元素变化情况(图4),可以看出,PPN@MNTi与Nb2C@MNTi组相较于Ti及MNTi组展现出典型的Nb 3d峰,同样证明Nb2C和PPN在MNTi表面的成功接枝,而PPN@MNTi相较于Nb2C@MNTi组出现PPN纳米片典型的P 2d峰,表明巨噬细胞靶向功能化Nb2C MXene纳米片在MNTi上的成功构建。The surface morphology and surface element distribution of PPN@MNTi were obtained by SEM (Figure 3). Raman spectroscopy showed that TK-DA@MNTi had a characteristic peak at 676cm -1 . After depositing Nb2C and PPN on the MNTi substrate, the typical ω4 vibration mode of Nb2C was still retained, confirming that Nb2C and PPN were successfully grafted on the MNTi surface by TK-DA. XPS analysis of the absorption peaks and element changes of PPN@MNTi and Ti (Figure 4) showed that the PPN@MNTi and Nb2C @MNTi groups showed typical Nb3d peaks compared with Ti and MNTi groups, which also proved the successful grafting of Nb2C and PPN on the MNTi surface. Compared with the Nb2C @MNTi group, the PPN@MNTi group showed the typical P2d peak of PPN nanosheets, indicating the successful construction of macrophage-targeted functionalized Nb2C MXene nanosheets on MNTi.
实施例3Example 3
一种ROS响应微纳结构钛植入物纳米涂层的制备方法,与实施例2的不同之处在于,将步骤(1)中使用的钛片和钛棒替换为钛合金(江苏拜尔斯公司)。其余步骤及参数均与实施例2相同。A method for preparing a ROS-responsive micro-nanostructured titanium implant nanocoating is different from Example 2 in that the titanium sheet and titanium rod used in step (1) are replaced with titanium alloy (Jiangsu Baiers Company). The remaining steps and parameters are the same as those in Example 2.
对比例1Comparative Example 1
一种Nb2C@MNTi的制备方法,包括以下步骤:与实施例2的不同之处在于,将步骤(1)中使用的PPN纳米片分散液换为Nb2C纳米片分散液,其余步骤及参数均与实施例2相同。A method for preparing Nb 2 C@MNTi comprises the following steps: The difference from Example 2 is that the PPN nanosheet dispersion used in step (1) is replaced with Nb 2 C nanosheet dispersion, and the remaining steps and parameters are the same as those in Example 2.
技术效果:Technical effect:
本发明利用骨髓来源巨噬细胞(BMDMs)作为实验细胞,但不仅限于BMDMs,其他种属的各类细胞均适用于本发明。The present invention utilizes bone marrow-derived macrophages (BMDMs) as experimental cells, but is not limited to BMDMs, and various cells of other species are also applicable to the present invention.
1.ROS响应微纳结构钛植入物纳米涂层(PPN@MNTi)的体外清除ROS实验1. In vitro ROS removal experiment of ROS-responsive micro-nanostructured titanium implant nanocoating (PPN@MNTi)
将骨髓来源巨噬细胞(BMDMs)利用含有10%胎牛血清、1%青霉素/链霉素、破骨细胞诱导因子M-CSF(30ng/ml)和RANKL(50ng/ml)的α-MEM破骨诱导培养基于37℃、5%CO2条件下诱导破骨细胞分化,随后将Ti、MNTi、对比例1所得Nb2C@MNTi、实施例2所得PPN@MNTi组样品分别加入于24孔板中,每孔分别加入0.5mL BMDMs的α-MEM破骨诱导培养基的细胞悬液(2×105cells/ml)培养2天,利用RANKL刺激BMDMs产生ROS,然后用ROS敏感探针2’,7’-二氯荧光素二乙酸酯(DCFH-DA,10μM)对4个样品进行染色30min,通过倒置荧光显微镜观察各组ROS生成情况,如图5所示,PPN@MNTi组ROS绿色荧光强度明显低于其他组,说明PPN@MNTi组具有较好的ROS清除能力。Bone marrow derived macrophages (BMDMs) were induced to differentiate into osteoclasts using α-MEM osteoclast induction medium containing 10% fetal bovine serum, 1% penicillin/streptomycin, osteoclast induction factor M-CSF (30 ng/ml) and RANKL (50 ng/ml) at 37°C and 5% CO 2. Subsequently, Ti, MNTi, Nb 2 C@MNTi obtained in Comparative Example 1, and PPN@MNTi obtained in Example 2 were added to 24-well plates, and 0.5 mL of BMDMs α-MEM osteoclast induction medium (2×10 5 cells/ml) for 2 days, RANKL was used to stimulate BMDMs to produce ROS, and then the four samples were stained with the ROS sensitive probe 2',7'-dichlorofluorescein diacetate (DCFH-DA, 10μM) for 30min. The ROS generation in each group was observed by inverted fluorescence microscopy. As shown in Figure 5, the ROS green fluorescence intensity in the PPN@MNTi group was significantly lower than that in the other groups, indicating that the PPN@MNTi group had better ROS scavenging ability.
2.ROS响应微纳结构钛植入物纳米涂层(PPN@MNTi)的体外抑制破骨分化实验2. In vitro inhibition of osteoclast differentiation by ROS-responsive micro-nanostructured titanium implant nanocoating (PPN@MNTi)
将实施例2步骤(1)中所得清洁Ti片(长×宽×高:10×10×2mm)、对比例1所得Nb2C@MNTi、实施例1所得PPN@MNTi各1个样品分别加入含有50ng/ml的RANKL破骨诱导培养基进行诱导破骨细胞分化,并分别命名为Ti+RANKL、Nb2C@MNTi+RANKL和PPN@MNTi+RANKL。将清洁Ti片、Ti+RANKL、Nb2C@MNTi+RANKL和PPN@MNTi+RANKL四组样品分别加入至培养BMDMs的6孔Transwell小室孔板中,每孔板底分别加入2mL BMDMs的α-MEM破骨诱导培养基的细胞悬液(2×105cells/ml),每2天进行破骨诱导培养基换液,共培养5天。其中,Ti为清洗洁净的钛片,每组样品采用同样处理方式分别进行3次重复实验。随后,用抗酒石酸酸性磷酸酶(TRAP)染色试剂盒染色,如图6中a部分所示,PPN@MNTi组TRAP阳性细胞面积最小,说明PPN@MNTi抑制破骨细细胞生成效果最好。用RNA提取试剂盒提取总RNA,用PrimeScriptRTMasterMix反转录至互补DNA。利用RT-PCR检测采用Bio-Rad RT-PCR系统。检测BMDMs中DC-STAMP、MMP9、Cathepins K、TRAP破骨相关基因表达水平。引物序列见表1,以GADPH作为内部参考系。结果如图6中b部分所示,PPN@MNTi组各项破骨基因均低表达于其他组,说明PPN@MNTi具有较好的抑制破骨分化能力。The clean Ti sheet (length×width×height: 10×10×2 mm) obtained in step (1) of Example 2, the Nb 2 C@MNTi obtained in Comparative Example 1, and the PPN@MNTi obtained in Example 1 were added with 50 ng/ml of RANKL osteoclast induction medium to induce osteoclast differentiation, and were named Ti+RANKL, Nb 2 C@MNTi+RANKL, and PPN@MNTi+RANKL, respectively. The four groups of samples, namely, the clean Ti sheet, Ti+RANKL, Nb 2 C@MNTi+RANKL, and PPN@MNTi+RANKL, were added to a 6-well Transwell plate for culturing BMDMs, and 2 mL of α-MEM osteoclast induction medium for BMDMs (2×10 5 cells/ml) was added to the bottom of each well. The osteoclast induction medium was replaced every 2 days, and the culture was carried out for 5 days. Among them, Ti is a clean titanium sheet, and each group of samples was treated in the same way for 3 repeated experiments. Subsequently, the cells were stained with a tartrate-resistant acid phosphatase (TRAP) staining kit. As shown in part a of Figure 6, the area of TRAP-positive cells in the PPN@MNTi group was the smallest, indicating that PPN@MNTi had the best effect in inhibiting osteoclastogenesis. Total RNA was extracted using an RNA extraction kit and reverse transcribed to complementary DNA using PrimeScript RT Master Mix. RT-PCR was performed using the Bio-Rad RT-PCR system. The expression levels of DC-STAMP, MMP9, Cathepins K, and TRAP osteoclast-related genes in BMDMs were detected. The primer sequences are shown in Table 1, with GADPH as the internal reference system. The results are shown in part b of Figure 6. The expression of various osteoclast genes in the PPN@MNTi group was lower than that in other groups, indicating that PPN@MNTi has a good ability to inhibit osteoclast differentiation.
表1Table 1
3.实施例2所得ROS响应微纳结构钛植入物纳米涂层(PPN@MNTi)的体外促成骨分化实验3. In vitro osteogenic differentiation experiment of the ROS-responsive micro-nanostructured titanium implant nanocoating (PPN@MNTi) obtained in Example 2
将实施例2步骤(1)中所得清洁Ti片(长×宽×高:10×10×2mm)、实施例2所得清洁MNTi、对比例1所得Nb2C@MNTi、实施例1所得PPN@MNTi各1个样品分别置于24孔板中,并分别命名为Ti、MNTi、Nb2C@MNTi和PPN@MNTi组。采用含有10%胎牛血清、1%青霉素/链霉素、β-甘油磷酸钠(10mmol/L)、地塞米松(1×10-8mol/L)的DMEM成骨诱导培养基,每孔分别加入0.5mL BMSCsDMEM成骨诱导培养基的细胞悬液(5×104cells/ml),每2天进行成骨诱导培养基换液,共培养7天。其中,每组样品采用同样处理方式分别进行3次重复实验。随后,用碱性磷酸酶(ALP)及茜素红溶液(ARS)如图7所示,PPN@MNTi组ALP活性及矿化结节均高表达于其他组,说明PPN@MNTi具有较好的促成骨分化能力。The clean Ti sheet (length×width×height: 10×10×2 mm) obtained in step (1) of Example 2, the clean MNTi obtained in Example 2, the Nb 2 C@MNTi obtained in Comparative Example 1, and the PPN@MNTi obtained in Example 1 were placed in 24-well plates and named Ti, MNTi, Nb 2 C@MNTi, and PPN@MNTi groups, respectively. DMEM osteogenic induction medium containing 10% fetal bovine serum, 1% penicillin/streptomycin, sodium β-glycerophosphate (10 mmol/L), and dexamethasone (1×10 -8 mol/L) was used, and 0.5 mL of BMSCsDMEM osteogenic induction medium cell suspension (5×10 4 cells/ml) was added to each well. The osteogenic induction medium was replaced every 2 days, and the culture was cultured for 7 days. Each group of samples was treated in the same way and repeated 3 times. Subsequently, alkaline phosphatase (ALP) and alizarin red solution (ARS) were used. As shown in Figure 7 , the ALP activity and mineralized nodules in the PPN@MNTi group were highly expressed compared with those in the other groups, indicating that PPN@MNTi has a good ability to promote osteogenic differentiation.
4.实施例2所得ROS响应微纳结构钛植入物纳米涂层(PPN@MNTi)的体内抑制骨溶解实验4. In vivo osteolysis inhibition experiment of ROS-responsive micro-nanostructured titanium implant nanocoating (PPN@MNTi) obtained in Example 2
将实施例2步骤(1)中所得清洁Ti棒(Φ10×1mm)、对比例1所得Nb2C@MNTi钛棒、实施例1所得PPN@MNTi钛棒各1个样品分别植入小鼠股骨内,同时注射10μl的UHMWPE(1.5×107/μL;三井石油化工公司)溶液进行诱导假体周围骨溶解,并分别命名为Ti+UHMWPE、Nb2C@MNTi+UHMWPE和PPN@MNTi+UHMWPE。同理,将实施例2所得清洁Ti棒(Φ10×1mm)植入小鼠股骨内,同时注射10μl生理盐水作为对照组。选取6-8周的成年雄性C57BL/6J小鼠,手术期间用2%异氟醚麻醉小鼠,并将小鼠随机分为清洁Ti棒、Ti+UHMWPE、Nb2C@MNTi+UHMWPE、PPN@MNTi+UHMWPE组。其中,每组钛棒采用相同处理方式分别在3只小鼠体内进行重复实验。通过内侧髌旁关节切开术暴露股骨远端髁间切迹,在髁间切迹上钻一个直径1mm、深0.5mm的孔,进入髓腔,随后,将10μlUHMWPE(1.5×107/μL)溶液缓慢注入髓腔,防止悬浮液泄漏,同时各组分别植入Ti、Nb2C@MNTi和PPN@MNTi,利用流体力学原理,悬浮液中的磨损颗粒可以逐渐扩散到植入体表面,最后尽快逐层缝合组织。同理,Ti组与上述的不同之处在于,将使用的10μl UHMWPE替换为10μl生理盐水,其余步骤及参数均与上述相同。One sample each of the clean Ti rod (Φ10×1 mm) obtained in step (1) of Example 2, the Nb 2 C@MNTi titanium rod obtained in Comparative Example 1, and the PPN@MNTi titanium rod obtained in Example 1 were implanted into the femur of mice, and 10 μl of UHMWPE (1.5×10 7 /μL; Mitsui Petrochemicals) solution was injected to induce periprosthetic osteolysis, and they were named Ti+UHMWPE, Nb 2 C@MNTi+UHMWPE, and PPN@MNTi+UHMWPE, respectively. Similarly, the clean Ti rod (Φ10×1 mm) obtained in Example 2 was implanted into the femur of mice, and 10 μl of saline was injected as a control group. Adult male C57BL/6J mice aged 6-8 weeks were selected, and the mice were anesthetized with 2% isoflurane during surgery, and the mice were randomly divided into clean Ti rod, Ti+UHMWPE, Nb 2 C@MNTi+UHMWPE, and PPN@MNTi+UHMWPE groups. Each group of titanium rods was treated in the same way and repeated in 3 mice. The distal femoral intercondylar notch was exposed through medial parapatellar arthrotomy, and a hole with a diameter of 1 mm and a depth of 0.5 mm was drilled on the intercondylar notch to enter the medullary cavity. Subsequently, 10 μl UHMWPE (1.5×10 7 /μL) solution was slowly injected into the medullary cavity to prevent leakage of the suspension. At the same time, Ti, Nb 2 C@MNTi and PPN@MNTi were implanted in each group. Using the principle of fluid mechanics, the wear particles in the suspension can gradually diffuse to the surface of the implant, and finally the tissue is sutured layer by layer as quickly as possible. Similarly, the difference between the Ti group and the above is that the 10 μl UHMWPE used was replaced with 10 μl saline, and the rest of the steps and parameters were the same as above.
术后6周对小鼠实施安乐死,剥离小鼠皮肤与肌肉,取出含有植入物的股骨进行4%多聚甲醛固定2天,随后将股骨标本浸泡在脱钙液中脱钙处理4周,随后进行石蜡固定并进行切片,将切片在梯度乙醇中脱水,使用TRAP染色试剂盒进行TRAP染色,如图8所示,TRAP染色显示PPN@MNTi+UHMWPE组破骨细胞浸润较其他组明显减少,说明PPN@MNTi具有良好的抑制破骨细胞生成功能,显著抑制UHMWPE诱导的骨溶解。Six weeks after surgery, the mice were euthanized, their skin and muscles were peeled off, and the femur containing the implant was removed and fixed with 4% paraformaldehyde for 2 days. The femur specimens were then immersed in a decalcification solution for decalcification for 4 weeks, then paraffin-fixed and sectioned. The sections were dehydrated in gradient ethanol and TRAP stained using a TRAP staining kit. As shown in Figure 8, TRAP staining showed that the osteoclast infiltration in the PPN@MNTi+UHMWPE group was significantly reduced compared with the other groups, indicating that PPN@MNTi has a good function of inhibiting osteoclast formation and significantly inhibits UHMWPE-induced bone dissolution.
5.实施例2所得ROS响应微纳结构钛植入物纳米涂层(PPN@MNTi)的体内成骨实验5. In vivo osteogenesis experiment of ROS-responsive micro-nanostructured titanium implant nanocoating (PPN@MNTi) obtained in Example 2
动物手术过程同体内抑制骨溶解实验,术后6周对小鼠实施安乐死,剥离小鼠皮肤与肌肉,取出含有植入物的股骨进行4%多聚甲醛固定2天,随后使用Skyscan 1172Micro-CT系统,旋转0.15°/180°,以36μm分辨率扫描种植体周围骨组织,采用SkyscanNRecon软件进行重建,并使用CTAN软件生成三维图像。如图9所示,PPN@MNTi+UHMWPE组钛棒周围新生骨组织明显多于其他组,说明PPN@MNTi+UHMWPE组具有较好的体内促骨整合能力。The animal surgery process was the same as the in vivo osteolysis inhibition experiment. The mice were euthanized 6 weeks after surgery, the skin and muscles of the mice were stripped, and the femur containing the implant was removed and fixed with 4% paraformaldehyde for 2 days. Then, the Skyscan 1172 Micro-CT system was used to rotate 0.15°/180° to scan the bone tissue around the implant at a resolution of 36μm, reconstructed using SkyscanNRecon software, and generated three-dimensional images using CTAN software. As shown in Figure 9, the new bone tissue around the titanium rod in the PPN@MNTi+UHMWPE group was significantly more than that in other groups, indicating that the PPN@MNTi+UHMWPE group has a better ability to promote bone integration in vivo.
以上,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。The above are only preferred specific implementations of the present application, but the protection scope of the present application is not limited thereto. Any changes or substitutions that can be easily thought of by any technician familiar with the technical field within the technical scope disclosed in the present application should be included in the protection scope of the present application. Therefore, the protection scope of the present application should be based on the protection scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410118173.7A CN117919504B (en) | 2024-01-29 | 2024-01-29 | ROS (reactive oxygen species) responsive micro-nano structured titanium implant nano coating and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410118173.7A CN117919504B (en) | 2024-01-29 | 2024-01-29 | ROS (reactive oxygen species) responsive micro-nano structured titanium implant nano coating and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117919504A true CN117919504A (en) | 2024-04-26 |
CN117919504B CN117919504B (en) | 2024-12-20 |
Family
ID=90752088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410118173.7A Active CN117919504B (en) | 2024-01-29 | 2024-01-29 | ROS (reactive oxygen species) responsive micro-nano structured titanium implant nano coating and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117919504B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118247465A (en) * | 2024-05-27 | 2024-06-25 | 南昌大学第一附属医院 | Bone tissue implant design optimization method and system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030033620A1 (en) * | 2001-08-10 | 2003-02-13 | Stachowiak Michal K. | Animal model for parkinson's disease and method of making same |
WO2017062573A1 (en) * | 2015-10-06 | 2017-04-13 | University Of Central Florida Research Foundation, Inc. | Implant and coating to reduce osteolysis |
US20210292715A1 (en) * | 2018-07-17 | 2021-09-23 | The Regents Of The University Of California | Cells differentiated from immunoengineered pluripotent cells |
CN115029310A (en) * | 2022-04-28 | 2022-09-09 | 浙江大学医学院附属邵逸夫医院 | Osteoclast precursor cell membrane bionic nanoparticle and preparation method and application thereof |
CN116064406A (en) * | 2022-10-17 | 2023-05-05 | 山东第一医科大学附属省立医院(山东省立医院) | Exosome coating modified implant and preparation method and application thereof |
CN116270525A (en) * | 2023-02-22 | 2023-06-23 | 南京华盖制药有限公司 | Inhalable bionic nano material for treating pulmonary bacterial infectious pneumonia and preparation method and application thereof |
CN116617187A (en) * | 2023-05-22 | 2023-08-22 | 中国医学科学院生物医学工程研究所 | Magnetized platelet drug delivery system and preparation method and application thereof |
CN116637236A (en) * | 2023-05-25 | 2023-08-25 | 重庆大学 | A titanium-based material with ROS-responsive polydopamine/naringenin coating and its preparation method and application |
-
2024
- 2024-01-29 CN CN202410118173.7A patent/CN117919504B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030033620A1 (en) * | 2001-08-10 | 2003-02-13 | Stachowiak Michal K. | Animal model for parkinson's disease and method of making same |
WO2017062573A1 (en) * | 2015-10-06 | 2017-04-13 | University Of Central Florida Research Foundation, Inc. | Implant and coating to reduce osteolysis |
US20190060519A1 (en) * | 2015-10-06 | 2019-02-28 | University Of Central Florida Research Foundation, Inc. | Implant and coating to reduce osteolysis |
US20210292715A1 (en) * | 2018-07-17 | 2021-09-23 | The Regents Of The University Of California | Cells differentiated from immunoengineered pluripotent cells |
CN115029310A (en) * | 2022-04-28 | 2022-09-09 | 浙江大学医学院附属邵逸夫医院 | Osteoclast precursor cell membrane bionic nanoparticle and preparation method and application thereof |
CN116064406A (en) * | 2022-10-17 | 2023-05-05 | 山东第一医科大学附属省立医院(山东省立医院) | Exosome coating modified implant and preparation method and application thereof |
CN116270525A (en) * | 2023-02-22 | 2023-06-23 | 南京华盖制药有限公司 | Inhalable bionic nano material for treating pulmonary bacterial infectious pneumonia and preparation method and application thereof |
CN116617187A (en) * | 2023-05-22 | 2023-08-22 | 中国医学科学院生物医学工程研究所 | Magnetized platelet drug delivery system and preparation method and application thereof |
CN116637236A (en) * | 2023-05-25 | 2023-08-25 | 重庆大学 | A titanium-based material with ROS-responsive polydopamine/naringenin coating and its preparation method and application |
Non-Patent Citations (3)
Title |
---|
KUO-YANG SUN等: "《Niobium carbide (MXene) reduces UHMWPE particle-induced osteolysis》", 《BIOACTIVE MATERIALS》, 28 February 2022 (2022-02-28), pages 435 - 448 * |
SHISHUO LI等: "《Engineered Niobium Carbide MXenzyme-Integrated Self-Adaptive Coatings Inhibiting Periprosthetic Osteolysis by Orchestrating Osteogenesis-Osteoclastogenesis Balance》", 《APPLIED MATERIALS》, vol. 16, no. 23, 3 June 2024 (2024-06-03), pages 29805 - 29822 * |
宋鹏宇;邓永岩;韩海杰;金桥;: "活性氧可激活的聚合物纳米载体用于光动力-化疗联合治疗的研究", 材料导报, no. 10, 30 April 2020 (2020-04-30), pages 170 - 179 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118247465A (en) * | 2024-05-27 | 2024-06-25 | 南昌大学第一附属医院 | Bone tissue implant design optimization method and system |
Also Published As
Publication number | Publication date |
---|---|
CN117919504B (en) | 2024-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application | |
KR101880576B1 (en) | Biocompatible implant | |
Li et al. | Improved osteoblast adhesion and osseointegration on TiO2 nanotubes surface with hydroxyapatite coating | |
CN113750290A (en) | Polyether-ether-ketone composite implant and preparation method and application thereof | |
Ji et al. | Creating micro-submicro structure and grafting hydroxyl group on PEEK by femtosecond laser and hydroxylation to synergistically activate cellular response | |
Wang et al. | Enhancing the osteogenic differentiation and rapid osseointegration of 3D printed Ti6Al4V implants via nano-topographic modification | |
CN117919504A (en) | A ROS-responsive micro-nanostructured titanium implant nanocoating and its preparation method and application | |
Feng et al. | Stem-cell-derived ECM sheet–implant complexes for enhancing osseointegration | |
Zhao et al. | 3D-printed titanium implant combined with interleukin 4 regulates ordered macrophage polarization to promote bone regeneration and angiogenesis | |
Dong et al. | Multifunctional 3D sponge-like macroporous cryogel-modified long carbon fiber reinforced polyetheretherketone implants with enhanced vascularization and osseointegration | |
Li et al. | Adipose stem cells-derived exosomes modified gelatin sponge promotes bone regeneration | |
Zhang et al. | In vitro and in vivo evaluation of SLA titanium surfaces with further alkali or hydrogen peroxide and heat treatment | |
CN101564555A (en) | Tissue engineering bone implant and method for constructing the same | |
Higuchi et al. | Biocompatibility of Lotus‐type stainless steel and titanium in alveolar bone | |
CN113174592B (en) | Preparation and application of coating for improving biocompatibility of medical zinc/zinc alloy surface | |
CN114848895A (en) | 3D printing titanium alloy porous support loaded double-factor shell-core microsphere slow release system | |
Yang et al. | Coating of manganese functional polyetheretherketone implants for osseous interface integration | |
Mu et al. | Construction of chemokine substance P-embedded biomimetic multilayer onto bioactive magnesium silicate-titanium implant for bone regeneration | |
Ono et al. | Generation of biohybrid implants using a multipotent human periodontal ligament cell line and bioactive core materials | |
CN114921831B (en) | Method for preparing micro-arc oxidation coating | |
Huang et al. | Antifouling poly (PEGMA) grafting modified titanium surface reduces osseointegration through resisting adhesion of bone marrow mesenchymal stem cells | |
CN116064406A (en) | Exosome coating modified implant and preparation method and application thereof | |
CN110624129B (en) | Corrosion-resistant osteoinductive silk fibroin/hydroxyapatite/magnesium oxide gel sponge and preparation method thereof | |
EP3027234B1 (en) | Osteoinductive materials | |
CN114099775A (en) | HAp-SF artificial periosteum loading SDF-1 alpha/CGRP and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |