CN117821463A - A nucleic acid specifically resisting viral proliferation and its application - Google Patents
A nucleic acid specifically resisting viral proliferation and its application Download PDFInfo
- Publication number
- CN117821463A CN117821463A CN202211184480.2A CN202211184480A CN117821463A CN 117821463 A CN117821463 A CN 117821463A CN 202211184480 A CN202211184480 A CN 202211184480A CN 117821463 A CN117821463 A CN 117821463A
- Authority
- CN
- China
- Prior art keywords
- nucleic acid
- cov
- sars
- virus
- protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 47
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 46
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 46
- 230000005727 virus proliferation Effects 0.000 title description 4
- 241001678559 COVID-19 virus Species 0.000 claims abstract description 73
- 239000000074 antisense oligonucleotide Substances 0.000 claims abstract description 42
- 238000012230 antisense oligonucleotides Methods 0.000 claims abstract description 42
- 108091008104 nucleic acid aptamers Proteins 0.000 claims abstract description 33
- 108010052285 Membrane Proteins Proteins 0.000 claims abstract description 29
- 102000018697 Membrane Proteins Human genes 0.000 claims abstract description 29
- 108091034117 Oligonucleotide Proteins 0.000 claims abstract description 29
- 241000700605 Viruses Species 0.000 claims abstract description 26
- 230000000840 anti-viral effect Effects 0.000 claims abstract description 26
- 230000003612 virological effect Effects 0.000 claims abstract description 24
- 230000035755 proliferation Effects 0.000 claims abstract description 21
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims abstract description 15
- 206010061218 Inflammation Diseases 0.000 claims abstract description 15
- 230000004054 inflammatory process Effects 0.000 claims abstract description 15
- 230000008685 targeting Effects 0.000 claims abstract description 14
- 108020000948 Antisense Oligonucleotides Proteins 0.000 claims abstract description 13
- 101000629318 Severe acute respiratory syndrome coronavirus 2 Spike glycoprotein Proteins 0.000 claims abstract description 8
- 108020000999 Viral RNA Proteins 0.000 claims abstract description 6
- 238000011282 treatment Methods 0.000 claims abstract description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 claims abstract description 5
- 238000003745 diagnosis Methods 0.000 claims abstract description 5
- 230000030279 gene silencing Effects 0.000 claims abstract description 5
- 108090000623 proteins and genes Proteins 0.000 claims description 52
- 210000004027 cell Anatomy 0.000 claims description 51
- 230000014509 gene expression Effects 0.000 claims description 28
- 230000027455 binding Effects 0.000 claims description 16
- 238000009739 binding Methods 0.000 claims description 16
- 230000002757 inflammatory effect Effects 0.000 claims description 14
- 102000004169 proteins and genes Human genes 0.000 claims description 13
- 239000003814 drug Substances 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 10
- 229940079593 drug Drugs 0.000 claims description 9
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 claims description 8
- 239000003550 marker Substances 0.000 claims description 8
- 108020004414 DNA Proteins 0.000 claims description 6
- 239000003153 chemical reaction reagent Substances 0.000 claims description 6
- 239000003112 inhibitor Substances 0.000 claims description 6
- 230000001404 mediated effect Effects 0.000 claims description 6
- 238000003384 imaging method Methods 0.000 claims description 5
- 208000015181 infectious disease Diseases 0.000 claims description 5
- 230000004048 modification Effects 0.000 claims description 5
- 125000003729 nucleotide group Chemical group 0.000 claims description 5
- 101000669447 Homo sapiens Toll-like receptor 4 Proteins 0.000 claims description 4
- 108091093037 Peptide nucleic acid Proteins 0.000 claims description 4
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 claims description 4
- 102100039360 Toll-like receptor 4 Human genes 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical class [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229960002685 biotin Drugs 0.000 claims description 4
- 235000020958 biotin Nutrition 0.000 claims description 4
- 239000011616 biotin Substances 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 4
- 230000001419 dependent effect Effects 0.000 claims description 4
- 201000010099 disease Diseases 0.000 claims description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 4
- 239000012528 membrane Substances 0.000 claims description 4
- 238000012986 modification Methods 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 101710172711 Structural protein Proteins 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 3
- 210000001808 exosome Anatomy 0.000 claims description 3
- 239000002502 liposome Substances 0.000 claims description 3
- 239000002105 nanoparticle Substances 0.000 claims description 3
- 239000002773 nucleotide Substances 0.000 claims description 3
- 230000026731 phosphorylation Effects 0.000 claims description 3
- 238000006366 phosphorylation reaction Methods 0.000 claims description 3
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 3
- 150000003384 small molecules Chemical class 0.000 claims description 3
- LTMHDMANZUZIPE-AMTYYWEZSA-N Digoxin Natural products O([C@H]1[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@](C)([C@H](O)C4)[C@H](C4=CC(=O)OC4)CC5)CC3)CC2)C[C@@H]1O)[C@H]1O[C@H](C)[C@@H](O[C@H]2O[C@@H](C)[C@H](O)[C@@H](O)C2)[C@@H](O)C1 LTMHDMANZUZIPE-AMTYYWEZSA-N 0.000 claims description 2
- 102000004190 Enzymes Human genes 0.000 claims description 2
- 108090000790 Enzymes Proteins 0.000 claims description 2
- 108700005075 Regulator Genes Proteins 0.000 claims description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 2
- 108020004459 Small interfering RNA Proteins 0.000 claims description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- 238000005576 amination reaction Methods 0.000 claims description 2
- 230000001851 biosynthetic effect Effects 0.000 claims description 2
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 claims description 2
- 229960005156 digoxin Drugs 0.000 claims description 2
- LTMHDMANZUZIPE-UHFFFAOYSA-N digoxine Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CCC(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O LTMHDMANZUZIPE-UHFFFAOYSA-N 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 230000011987 methylation Effects 0.000 claims description 2
- 238000007069 methylation reaction Methods 0.000 claims description 2
- 239000000941 radioactive substance Substances 0.000 claims description 2
- 229910052711 selenium Inorganic materials 0.000 claims description 2
- 239000011669 selenium Substances 0.000 claims description 2
- 108010026668 snake venom protein C activator Proteins 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- 230000001225 therapeutic effect Effects 0.000 claims description 2
- 230000002062 proliferating effect Effects 0.000 claims 12
- 238000006467 substitution reaction Methods 0.000 claims 2
- 230000000903 blocking effect Effects 0.000 claims 1
- 238000002372 labelling Methods 0.000 claims 1
- 239000002924 silencing RNA Substances 0.000 claims 1
- 239000003981 vehicle Substances 0.000 claims 1
- 108091023037 Aptamer Proteins 0.000 abstract description 6
- 230000008901 benefit Effects 0.000 abstract description 6
- 230000005847 immunogenicity Effects 0.000 abstract description 5
- 230000002401 inhibitory effect Effects 0.000 abstract description 4
- 238000012984 biological imaging Methods 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 230000002265 prevention Effects 0.000 abstract description 2
- 229940096437 Protein S Drugs 0.000 description 25
- 101710198474 Spike protein Proteins 0.000 description 25
- 230000000694 effects Effects 0.000 description 17
- 108020004999 messenger RNA Proteins 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 11
- 238000003197 gene knockdown Methods 0.000 description 11
- 101100494724 Candida tropicalis SAPT1 gene Proteins 0.000 description 8
- 239000005090 green fluorescent protein Substances 0.000 description 8
- 238000007363 ring formation reaction Methods 0.000 description 8
- 102100031673 Corneodesmosin Human genes 0.000 description 7
- 101710139375 Corneodesmosin Proteins 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 241000711573 Coronaviridae Species 0.000 description 6
- 102000004889 Interleukin-6 Human genes 0.000 description 6
- 108090001005 Interleukin-6 Proteins 0.000 description 6
- 230000010076 replication Effects 0.000 description 6
- 230000009385 viral infection Effects 0.000 description 6
- 102000012410 DNA Ligases Human genes 0.000 description 5
- 108010061982 DNA Ligases Proteins 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 230000028709 inflammatory response Effects 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 4
- 101710141454 Nucleoprotein Proteins 0.000 description 4
- 238000011529 RT qPCR Methods 0.000 description 4
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 4
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 4
- 208000036142 Viral infection Diseases 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000003762 quantitative reverse transcription PCR Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 108010007577 Exodeoxyribonuclease I Proteins 0.000 description 3
- 102100029075 Exonuclease 1 Human genes 0.000 description 3
- 108090001007 Interleukin-8 Proteins 0.000 description 3
- 102000004890 Interleukin-8 Human genes 0.000 description 3
- 241001112090 Pseudovirus Species 0.000 description 3
- 238000005206 flow analysis Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000012096 transfection reagent Substances 0.000 description 3
- 210000003501 vero cell Anatomy 0.000 description 3
- 102100035765 Angiotensin-converting enzyme 2 Human genes 0.000 description 2
- 108090000975 Angiotensin-converting enzyme 2 Proteins 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 208000025721 COVID-19 Diseases 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 102000003945 NF-kappa B Human genes 0.000 description 2
- 108010057466 NF-kappa B Proteins 0.000 description 2
- 241001274216 Naso Species 0.000 description 2
- 108090001074 Nucleocapsid Proteins Proteins 0.000 description 2
- 206010035664 Pneumonia Diseases 0.000 description 2
- 102100025290 Ribonuclease H1 Human genes 0.000 description 2
- 208000037847 SARS-CoV-2-infection Diseases 0.000 description 2
- 201000003176 Severe Acute Respiratory Syndrome Diseases 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000012491 analyte Substances 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 238000000799 fluorescence microscopy Methods 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 108010052833 ribonuclease HI Proteins 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- 208000010507 Adenocarcinoma of Lung Diseases 0.000 description 1
- 101000898783 Candida tropicalis Candidapepsin Proteins 0.000 description 1
- 241000282552 Chlorocebus aethiops Species 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 101710114810 Glycoprotein Proteins 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 101000929928 Homo sapiens Angiotensin-converting enzyme 2 Proteins 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100034349 Integrase Human genes 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 206010024305 Leukaemia monocytic Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 208000002151 Pleural effusion Diseases 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 241000315672 SARS coronavirus Species 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 101710167605 Spike glycoprotein Proteins 0.000 description 1
- 108010060804 Toll-Like Receptor 4 Proteins 0.000 description 1
- 102000008233 Toll-Like Receptor 4 Human genes 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 108010058865 angiotensinase Proteins 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- -1 cells Chemical class 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000010226 confocal imaging Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 208000017574 dry cough Diseases 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 102000048657 human ACE2 Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 201000005249 lung adenocarcinoma Diseases 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 201000006894 monocytic leukemia Diseases 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 102000007863 pattern recognition receptors Human genes 0.000 description 1
- 108010089193 pattern recognition receptors Proteins 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 208000013220 shortness of breath Diseases 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 238000013177 single antiplatelet therapy Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/115—Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/549—Sugars, nucleosides, nucleotides or nucleic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1131—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56983—Viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/11—Antisense
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/16—Aptamers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/005—Assays involving biological materials from specific organisms or of a specific nature from viruses
- G01N2333/08—RNA viruses
- G01N2333/165—Coronaviridae, e.g. avian infectious bronchitis virus
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- General Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Hematology (AREA)
- Plant Pathology (AREA)
- Urology & Nephrology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Tropical Medicine & Parasitology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Analytical Chemistry (AREA)
- Food Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及生物技术及医药学领域,涉及一种特异性抗病毒增殖的核酸及其应用,尤其是涉及一种与新型冠状病毒(SARS-CoV-2)的棘突蛋白(Spike protein)结合的核酸适配体-寡核苷酸嵌合体及其应用。The present invention relates to the fields of biotechnology and medicine, and to a nucleic acid that specifically resists viral proliferation and its application, and in particular to a nucleic acid aptamer-oligonucleotide chimera that binds to the spike protein of the new coronavirus (SARS-CoV-2) and its application.
背景技术Background technique
新型冠状肺炎是一种由严重急性呼吸综合征冠状病毒2(Severe acuterespiratory syndrome coronavirus 2,SARS-CoV-2)所引起的呼吸性疾病,被世界卫生组织(World Health Organization,WHO)定义为大流行病(Pandemic)。此病患者通常表现出发热和干咳的典型症状,此外还会伴随疲劳、头痛等现象,严重时会出现呼吸急促或困难,甚至死亡。新型冠状病毒是一种RNA病毒,因其与SARS-CoV病毒具有着较高的保守性,遂命名为SARS-CoV-2。The novel coronavirus pneumonia is a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is defined as a pandemic by the World Health Organization (WHO). Patients with this disease usually show typical symptoms of fever and dry cough, in addition to fatigue, headache and other phenomena. In severe cases, they may experience shortness of breath or difficulty, or even death. The new coronavirus is an RNA virus, and because it is highly conservative with the SARS-CoV virus, it is named SARS-CoV-2.
新型冠状病毒蛋白结构中主要含有刺突糖蛋白(Spike Glycoprotein,S),包膜蛋白(Envelope,E)和膜蛋白(Membrane,M),核衣壳蛋白(Nucleocapsid,N)。其中,S蛋白是SARS-CoV-2病毒进入细胞的关键蛋白,它位于病毒表面,属于病毒表面蛋白,能与人血管紧张素转换酶2(ACE2)受体结合,介导其感染宿主细胞。此外,S蛋白还能结合人细胞膜上的模式识别受体(Toll-like Receptor,TLR4),激活免疫反应。N蛋白是存在于核衣壳中的唯一蛋白质,它通过与基因组RNA结合来形成复杂结构,该结构对于病毒后续复制有重要作用。其次,N蛋白还能激活细胞内NF-κB信号通路,引起细胞内的炎症反应。The protein structure of the new coronavirus mainly contains spike glycoprotein (S), envelope protein (E), membrane protein (M), and nucleocapsid protein (N). Among them, the S protein is the key protein for SARS-CoV-2 virus to enter cells. It is located on the surface of the virus and belongs to the surface protein of the virus. It can bind to the human angiotensin-converting enzyme 2 (ACE2) receptor and mediate its infection of host cells. In addition, the S protein can also bind to the pattern recognition receptor (TLR4) on the human cell membrane to activate the immune response. The N protein is the only protein present in the nucleocapsid. It forms a complex structure by binding to the genomic RNA, which plays an important role in the subsequent replication of the virus. Secondly, the N protein can also activate the intracellular NF-κB signaling pathway and cause an inflammatory response in the cell.
核酸适配体(Aptamers)是利用体外筛选技术获得的一类单链DNA或RNA分子,它们是具有高亲和力和高特异性的配体,能结合的靶标有碳水化合物、细胞、核酸、肽、蛋白质小分子与病毒。与生物体内的天然抗体相比,核酸适配体的获得是通过化学方法合成及修饰,无需动物免疫,还可通过筛选过程控制其与靶标的亲和力和特异性,因此,核酸适配体又被称为“化学抗体”,具有分子量小,免疫原性低的优点。反义寡核苷酸(Antisenseoligonucleotides,ASO)是一种单链寡核苷酸分子,通常包含15-25个核苷酸,其进入细胞后在核糖核酸酶H1(RNase H1)的作用下通过碱基互补配对原则与其互补的靶mRNA结合,抑制靶基因的表达。但目前的ASO药物的递送一般仅采用依赖化学和生物技术构建的递送,如采用脂质体纳米颗粒、糖-核酸缀合物、脂-核酸缀合物或外泌体膜等,靶向递送能力有限,高效递送系统依然是核酸药物领域的重大需求,另外,核酸在体内的稳定性也是一个难题。Aptamers are a type of single-stranded DNA or RNA molecules obtained by in vitro screening technology. They are ligands with high affinity and specificity. The targets that can bind include carbohydrates, cells, nucleic acids, peptides, protein small molecules and viruses. Compared with natural antibodies in organisms, aptamers are obtained by chemical synthesis and modification, without the need for animal immunization, and their affinity and specificity with the target can be controlled through the screening process. Therefore, aptamers are also called "chemical antibodies" and have the advantages of small molecular weight and low immunogenicity. Antisense oligonucleotides (ASOs) are single-stranded oligonucleotide molecules, usually containing 15-25 nucleotides. After entering the cell, they bind to their complementary target mRNA through the principle of base complementary pairing under the action of ribonuclease H1 (RNase H1), inhibiting the expression of the target gene. However, the current delivery of ASO drugs generally only relies on chemical and biotechnological construction, such as liposome nanoparticles, sugar-nucleic acid conjugates, lipid-nucleic acid conjugates or exosome membranes, etc., and the targeted delivery capability is limited. Efficient delivery systems are still a major demand in the field of nucleic acid drugs. In addition, the stability of nucleic acids in the body is also a problem.
在SARS-CoV-2或其他病毒患者治疗中,为了克服这些难题,需构建了一种能解决ASO靶向递送及稳定性的核酸药物结构。目前未见将核酸适配体与反义寡核苷酸的嵌合体用于抗病毒增殖,尤其是抗SARS-CoV-2炎症及抑制其复制的报道,也未见Aptamer和ASO的嵌合体进行环化的报道。In order to overcome these difficulties in the treatment of SARS-CoV-2 or other viral patients, a nucleic acid drug structure that can solve the targeted delivery and stability of ASO needs to be constructed. At present, there are no reports on the use of chimeras of nucleic acid aptamers and antisense oligonucleotides for antiviral proliferation, especially anti-SARS-CoV-2 inflammation and inhibition of its replication, nor are there any reports on the cyclization of chimeras of Aptamer and ASO.
发明内容Summary of the invention
本发明要解决的技术问题是提供一种特异性抗病毒增殖的核酸及其应用,使该核酸能实现ASO核酸药物的靶向递送,具有稳定性强、免疫原性低等优点,同时可实现抗病毒增增殖的作用。The technical problem to be solved by the present invention is to provide a specific anti-viral proliferation nucleic acid and its application, so that the nucleic acid can achieve targeted delivery of ASO nucleic acid drugs, has the advantages of strong stability and low immunogenicity, and can also achieve the effect of anti-viral proliferation.
本发明以SARS-CoV-2病毒为研究基础,利用靶向结合SARS-CoV-2的S蛋白的核酸适配体和靶向沉默SARS-CoV-2的N基因的反义寡核苷酸为例,将S蛋白的核酸适配体(SApt1)与针对N基因的ASO(NASO2)嵌合在一起,构建线性SApt1-NASO2,及环状SApt1-NASO2(circ SApt1-NASO2),该嵌合体通过依赖SApt1和SARS-CoV-2病毒感染被递送进细胞,发挥了特异性抑制炎症和抗病毒增制的能力。The present invention takes the SARS-CoV-2 virus as the research basis, and uses the nucleic acid aptamer targeting the S protein of SARS-CoV-2 and the antisense oligonucleotide targeting the N gene of SARS-CoV-2 as examples, and combines the nucleic acid aptamer (SApt1) of the S protein with the ASO (NASO2) targeting the N gene to construct linear SApt1-NASO2 and circular SApt1-NASO2 (circ SApt1-NASO2). The chimera is delivered into cells by relying on SApt1 and SARS-CoV-2 virus infection, and exerts the ability to specifically inhibit inflammation and resist viral proliferation.
基于上述研究,本发明开发了特异性抗病毒增殖的核酸及其应用,具体如下:Based on the above research, the present invention has developed nucleic acids that specifically resist viral proliferation and their applications, as follows:
本发明提供了一种特异性抗病毒增殖的核酸,具有游离末端或环状结构,依赖核酸适配体和病毒感染细胞介导靶向递送进细胞,由以下3部分构成嵌合体:The present invention provides a specific antiviral proliferation nucleic acid having a free end or a ring structure, which relies on nucleic acid aptamers and virus-infected cells to mediate targeted delivery into cells, and is composed of the following three parts:
(1)靶向结合病毒表面蛋白的核酸适配体作为元件;(1) nucleic acid aptamers that target and bind to viral surface proteins as components;
(2)靶向沉默病毒RNA的反义寡核苷酸作为元件;(2) antisense oligonucleotides targeting silencing viral RNA as elements;
(3)连接(1)和(2)中元件的核酸序列Linker。(3) Linker, a nucleic acid sequence that connects the elements in (1) and (2).
本发明的主要设计构思之一是利用核酸适配体与病毒表面蛋白结合,从而在病毒感染细胞时同时实现反义寡核苷酸的递送,再通过反义寡核苷酸的作用实现抗病毒的增殖作用。One of the main design concepts of the present invention is to utilize nucleic acid aptamers to bind to viral surface proteins, thereby simultaneously delivering antisense oligonucleotides when the virus infects cells, and then achieving an antiviral proliferation effect through the action of antisense oligonucleotides.
作为本发明的进一步改进,所述病毒为新型冠状病毒SARS-CoV-2,所述核酸为特异性抗SARS-CoV-2炎症及抗SARS-CoV-2增殖的核酸;所述核酸适配体为靶向结合SARS-CoV-2Spike蛋白的核酸适配体;所述反义寡核苷酸为靶向沉默SARS-CoV-2RNA的反义寡核苷酸;所述(1)、(2)中的元件及(3)中的Linker为DNA或RNA。As a further improvement of the present invention, the virus is the novel coronavirus SARS-CoV-2, the nucleic acid is a nucleic acid that specifically resists SARS-CoV-2 inflammation and SARS-CoV-2 proliferation; the nucleic acid aptamer is a nucleic acid aptamer that targets and binds to the SARS-CoV-2 Spike protein; the antisense oligonucleotide is an antisense oligonucleotide that targets and silences SARS-CoV-2 RNA; the elements in (1) and (2) and the linker in (3) are DNA or RNA.
其中,Spike蛋白为SARS-CoV-2病毒的表面蛋白,将核酸适配体与其结合,可以实现靶向沉默SARS-CoV-2RNA的反义寡核苷酸的递送,同时具有抑制SARS-CoV-2病毒诱导炎症反应及抗SARS-CoV-2病毒复制的能力。Among them, the Spike protein is the surface protein of the SARS-CoV-2 virus. Binding the nucleic acid aptamer to it can achieve the delivery of antisense oligonucleotides that target silencing SARS-CoV-2 RNA. It also has the ability to inhibit the inflammatory response induced by the SARS-CoV-2 virus and resist the replication of the SARS-CoV-2 virus.
作为进一步地改进,所述环状结构,是将核苷酸序列的5'端和3'端连接成环;连接方式采用以下任意一种:T4 DNA ligase连接、生物合成连接、化学方式连接;连接所用核酸序列Linker采用以下任意一种:带或不带标记物的DNA、RNA;所述标记物为荧光标记物、生物素、Protac、地高辛、小肽、纳米发光材料、生物小分子、治疗性物质、放射性物质、siRNA或酶标记;所述环状结构的嵌合体中包含茎环结构。As a further improvement, the ring structure is to connect the 5' end and the 3' end of the nucleotide sequence into a ring; the connection method is any one of the following: T4 DNA ligase connection, biosynthetic connection, chemical connection; the nucleic acid sequence Linker used for connection is any one of the following: DNA, RNA with or without a marker; the marker is a fluorescent marker, biotin, Protac, digoxin, a small peptide, a nanoluminescent material, a biological small molecule, a therapeutic substance, a radioactive substance, siRNA or an enzyme marker; the chimera of the ring structure contains a stem-loop structure.
虽然本发明实施例中采用了其中一种T4 DNA ligase连接的连接方式,但可以理解的是,本领域技术人员在本发明的设计构思的基础上,还可以采用如上所述的其他现有技术中的常规连接方式,也能达到和本发明类似的技术效果。Although one of the T4 DNA ligase connection methods is used in the embodiments of the present invention, it is understandable that those skilled in the art can also adopt other conventional connection methods in the prior art as described above based on the design concept of the present invention, and can also achieve similar technical effects as the present invention.
作为进一步地改进,所述核酸适配体包括衍生物,所述衍生物为改造的能特异性结合病毒表面蛋白的硫代磷酸脂类衍生物,或特异性结合病毒表面蛋白的肽核酸;当所述病毒为新型冠状病毒SARS-CoV-2时,所述衍生物为改造的能特异性结合SARS-CoV-2Spike蛋白的硫代磷酸脂类衍生物,或特异性结合SARS-CoV-2的Spike-Tri蛋白的肽核酸。As a further improvement, the nucleic acid aptamer includes a derivative, which is a modified thiophosphate derivative that can specifically bind to a viral surface protein, or a peptide nucleic acid that specifically binds to a viral surface protein; when the virus is the new coronavirus SARS-CoV-2, the derivative is a modified thiophosphate derivative that can specifically bind to the SARS-CoV-2 Spike protein, or a peptide nucleic acid that specifically binds to the Spike-Tri protein of SARS-CoV-2.
即在本发明中,除了常规的核酸适配体,在不影响其功能的情况下,本领域技术人员还可以采用其衍生物的形式,也能达到类似或增强的效果。That is, in the present invention, in addition to conventional nucleic acid aptamers, those skilled in the art may also adopt derivatives thereof without affecting their functions, which can also achieve similar or enhanced effects.
进一步地,所述反义寡核苷酸为靶向敲低病毒的RNA,如靶向敲低SARS-CoV-2的RNA的反义寡核苷酸,包括靶向敲低表达非结构蛋白的基因、表达结构蛋白的基因和表达辅助蛋白的基因及调控基因。通过敲低上述病毒的RNA,均可实现抑制该基因的增殖。Furthermore, the antisense oligonucleotide is a targeted knockdown of viral RNA, such as an antisense oligonucleotide targeted to knockdown SARS-CoV-2 RNA, including targeted knockdown of genes expressing non-structural proteins, genes expressing structural proteins, genes expressing auxiliary proteins, and regulatory genes. By knocking down the RNA of the above-mentioned virus, the proliferation of the gene can be inhibited.
进一步地,所述反义寡核苷酸为靶向敲低SARS-CoV-2的N基因的反义寡核苷酸。Furthermore, the antisense oligonucleotide is an antisense oligonucleotide that targets and knocks down the N gene of SARS-CoV-2.
进一步地,所述特异性抗病毒增殖的核酸为修饰的核苷酸序列,修饰方法采用以下任意一种或多种:磷酸化、氨基化、甲基化、巯基化、同位素化、将氧替代为硫、将氧替代为硒。Furthermore, the specific antiviral proliferation nucleic acid is a modified nucleotide sequence, and the modification method adopts any one or more of the following: phosphorylation, amination, methylation, sulfhydrylation, isotopization, replacement of oxygen with sulfur, and replacement of oxygen with selenium.
即在本发明中,在不影响其功能的情况下,本领域技术人员还可以将核酸进行上述常规的修饰,以达到类似或增强的效果。That is, in the present invention, without affecting its function, those skilled in the art can also perform the above-mentioned conventional modifications on the nucleic acid to achieve similar or enhanced effects.
进一步地,所述递送,还包括与所述特异性抗病毒增殖的核酸配合的其它增强递送载体,包括依赖化学和生物技术构建的递送;所述依赖化学和生物技术构建的递送采用脂质体纳米颗粒、糖-核酸缀合物、脂-核酸缀合物或外泌体膜中的任一种。Furthermore, the delivery also includes other enhanced delivery carriers coordinated with the specific anti-viral proliferation nucleic acid, including delivery relying on chemical and biotechnology construction; the delivery relying on chemical and biotechnology construction adopts any one of liposome nanoparticles, sugar-nucleic acid conjugates, lipid-nucleic acid conjugates or exosome membranes.
本发明利用核酸适配体与病毒表面蛋白结合,从而在病毒感染细胞时同时实现反义寡核苷酸的递送,可以理解的是,在该设计构思下,在影响正常功能的基础上,为了进一步增强其递送效果,本领域技术人员还可以将上述常规的递送方式结合进来。The present invention utilizes nucleic acid aptamers to bind to viral surface proteins, thereby achieving the delivery of antisense oligonucleotides simultaneously when the virus infects cells. It is understandable that under this design concept, on the basis of affecting normal functions, in order to further enhance its delivery effect, technical personnel in this field can also combine the above-mentioned conventional delivery methods.
进一步地,所述SARS-CoV-2为野生型SARS-CoV-2或其突变株,如Delta、Lambda、Omicron突变株等。Furthermore, the SARS-CoV-2 is a wild-type SARS-CoV-2 or a mutant thereof, such as a Delta, Lambda, Omicron mutant, etc.
基于上述研究,本发明还进一步提供了上述特异性抗病毒增殖的核酸的应用,所述核酸应用于以下所列各项组成的组中的任意一项或多项:Based on the above research, the present invention further provides the use of the above-mentioned specific antiviral proliferation nucleic acid, wherein the nucleic acid is used for any one or more of the following groups:
(1)分离纯化病毒的表面蛋白,如分离纯化SARS-CoV-2的Spike蛋白;(1) Isolating and purifying virus surface proteins, such as isolating and purifying the Spike protein of SARS-CoV-2;
(2)标记病毒的表面蛋白/基因,如标记SARS-CoV-2的Spike蛋白/基因;(2) Marking the surface protein/gene of the virus, such as marking the Spike protein/gene of SARS-CoV-2;
(3)病毒的表面蛋白/基因的成像,如SARS-CoV-2的Spike蛋白/基因的成像;(3) Imaging of viral surface proteins/genes, such as the Spike protein/gene of SARS-CoV-2;
(4)富集病毒的表面蛋白/基因,如富集SARS-CoV-2的Spike蛋白/基因;(4) Enrichment of viral surface proteins/genes, such as enrichment of SARS-CoV-2 Spike protein/gene;
(5)定量或定性检测病毒的表面蛋白/基因,如定量或定性检测SARS-CoV-2的Spike蛋白/基因;(5) Quantitative or qualitative detection of viral surface proteins/genes, such as quantitative or qualitative detection of the Spike protein/gene of SARS-CoV-2;
(6)制备病毒的表面蛋白/基因的核酸抑制剂,如制备SARS-CoV-2的Spike蛋白/基因的核酸抑制剂;(6) Preparation of nucleic acid inhibitors of viral surface proteins/genes, such as preparation of nucleic acid inhibitors of SARS-CoV-2 Spike protein/gene;
(7)制备靶向病毒的表面蛋白/基因的试剂或药物,如制备靶向SARS-CoV-2的Spike蛋白/基因的试剂或药物;(7) Preparing reagents or drugs targeting viral surface proteins/genes, such as preparing reagents or drugs targeting the Spike protein/gene of SARS-CoV-2;
(8)制备阻断病毒的表面蛋白与TLR4蛋白之间结合的抑制剂,如制备阻断SARS-CoV-2的Spike蛋白与TLR4蛋白之间结合的抑制剂;(8) preparing inhibitors that block the binding between viral surface proteins and TLR4 proteins, such as preparing inhibitors that block the binding between SARS-CoV-2 Spike proteins and TLR4 proteins;
(9)制备用于诊断和治疗病毒引发的感染或炎症相关疾病的试剂或药物;如制备用于诊断和治疗SARS-CoV-2引发的肺炎感染或炎症相关疾病的试剂或药物;(9) Preparation of reagents or drugs for the diagnosis and treatment of viral infections or inflammation-related diseases; such as the preparation of reagents or drugs for the diagnosis and treatment of pneumonia infections or inflammation-related diseases caused by SARS-CoV-2;
(10)制备用于检测、成像、诊断和治疗病毒的试剂盒,如制备用于检测、成像、诊断和治疗SARS-CoV-2的试剂盒。(10) Preparing kits for detecting, imaging, diagnosing and treating viruses, such as preparing kits for detecting, imaging, diagnosing and treating SARS-CoV-2.
通过采用上述技术方案,本发明至少具有以下优点:By adopting the above technical solution, the present invention has at least the following advantages:
1.本发明的一种特异性抗病毒增殖核酸,利用核酸适配体与病毒表面蛋白结合,从而在病毒感染细胞时能同时实现反义寡核苷酸的递送,具有稳定性强,免疫原性低的优点,另外,配合靶向沉默病毒RNA的反义寡核苷酸,可以实现抗病毒增殖,尤其是当核酸适配体与反义寡核苷酸嵌合体形成环状时,稳定性显著增强,抗病毒增殖效果大大提高。1. A specific antiviral proliferation nucleic acid of the present invention utilizes a nucleic acid aptamer to bind to a viral surface protein, thereby being able to simultaneously deliver an antisense oligonucleotide when the virus infects cells, and has the advantages of strong stability and low immunogenicity. In addition, in combination with an antisense oligonucleotide that targets silencing viral RNA, antiviral proliferation can be achieved, especially when the nucleic acid aptamer and the antisense oligonucleotide chimera form a ring, the stability is significantly enhanced, and the antiviral proliferation effect is greatly improved.
2.本发明将靶向结合新冠病毒(SARS-CoV-2)Spike蛋白的核酸适配体(Aptamer)和靶向沉默SARS-CoV-2RNA的反义寡核苷酸(ASO)进行联合应用,构建的核酸适配体-反义寡核苷酸嵌合体,及环化的环状嵌合体,嵌合体及其环状嵌合体通过依赖核酸适配体和病毒感染介导的方式实现核酸药物的靶向递送,该嵌合体及其环状结构具有显著抑制SARS-CoV-2病毒诱导炎症反应及抗SARS-CoV-2病毒复制的能力,同时具有稳定性强,免疫原性低等优点,可应用在新冠病毒的防治、诊断、生物成像等领域。2. The present invention combines a nucleic acid aptamer (Aptamer) that targets and binds to the Spike protein of the new coronavirus (SARS-CoV-2) and an antisense oligonucleotide (ASO) that targets and silences SARS-CoV-2 RNA to construct a nucleic acid aptamer-antisense oligonucleotide chimera and a cyclized circular chimera. The chimera and its circular chimera achieve targeted delivery of nucleic acid drugs by relying on nucleic acid aptamers and viral infection-mediated methods. The chimera and its cyclic structure have the ability to significantly inhibit SARS-CoV-2 virus-induced inflammatory response and resist SARS-CoV-2 virus replication, and at the same time have the advantages of strong stability and low immunogenicity, and can be used in the fields of prevention, diagnosis, and biological imaging of the new coronavirus.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
上述仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,以下结合附图与具体实施方式对本发明作进一步的详细说明。The above is only an overview of the technical solution of the present invention. In order to more clearly understand the technical means of the present invention, the present invention is further described in detail below in conjunction with the accompanying drawings and specific implementation methods.
图1是SApt-NASO及其环化形式cirSApt-NASO结构对比示意图;FIG1 is a schematic diagram showing the structural comparison of SAPT-NASO and its cyclized form cirSApt-NASO;
图2是在HEK-293T细胞中验证4种NASO敲低N-GFP基因表达情况的荧光图;FIG2 is a fluorescence image verifying the expression of N-GFP gene knocked down by 4 NASO in HEK-293T cells;
图3嵌合体结构对环化效率的影响图;其中,(a)为SApt2-NASO2环化示意图与证明图;(b)为SApt1-NASO2环化示意图与证明图;Figure 3 shows the effect of chimera structure on cyclization efficiency; wherein (a) is a schematic diagram and a proof diagram of SAPT2-NASO2 cyclization; (b) is a schematic diagram and a proof diagram of SAPT1-NASO2 cyclization;
图4是评估不同长度的linker对于嵌合体环化的影响图;FIG4 is a diagram evaluating the effect of linkers of different lengths on chimera circularization;
图5是评估环化嵌合体、线性嵌合体的稳定性图;其中(a)为SApt1-NASO2及其环化形式和随机序列的电泳分析及其定量数据;(b)为Linker-13和Linker-18及其环化形式的电泳分析及其定量数据;Figure 5 is a diagram for evaluating the stability of circularized chimeras and linear chimeras; wherein (a) is the electrophoresis analysis of SAPT1-NASO2 and its circularized form and random sequence and its quantitative data; (b) is the electrophoresis analysis of Linker-13 and Linker-18 and their circularized form and its quantitative data;
图6是嵌合体SApt1-NASO2及其环化形式与SARS-CoV-2病毒Spike蛋白的结合能力和抑制S-TLR4结合的能力分析图;其中,(a)为嵌合体SApt1-NASO2及其环化形式抑制S-TLR4结合的能力分析图;(b)为嵌合体SApt1-NASO2及其环化形式与SARS-CoV-2病毒Spike蛋白的结合能力图;Figure 6 is an analysis diagram of the ability of the chimera SAPt1-NASO2 and its cyclized form to bind to the Spike protein of the SARS-CoV-2 virus and to inhibit the binding of S-TLR4; wherein, (a) is an analysis diagram of the ability of the chimera SAPt1-NASO2 and its cyclized form to inhibit the binding of S-TLR4; (b) is a diagram of the ability of the chimera SAPt1-NASO2 and its cyclized form to bind to the Spike protein of the SARS-CoV-2 virus;
图7是测量嵌合体SApt1-NASO2及其环化形式与SARS-CoV-2病毒Spike蛋白KD值图;其中,(a)为SApt1的KD值;(b)为线性SApt1-NASO2的KD值;(c)为环化SApt1-NASO2的KD值;Figure 7 is a graph showing the KD values of the chimera SAPt1-NASO2 and its cyclized form and the SARS-CoV-2 virus Spike protein; wherein (a) is the KD value of SAPt1; (b) is the KD value of the linear SAPt1-NASO2; (c) is the KD value of the cyclized SAPt1-NASO2;
图8是不同浓度嵌合体SApt1-NASO2及其环化形式在HEK293T细胞中抑制N-GFP基因表达情况的荧光图;FIG8 is a fluorescence graph showing that different concentrations of chimera SAPt1-NASO2 and its cyclized form inhibit N-GFP gene expression in HEK293T cells;
图9是嵌合体SApt1-NASO2及其环化形式在THP-1细胞上抑制Spike蛋白引发炎症因子的表达情况图,其中,(a)为IL-1βmRNA表达情况;(b)为IL-6mRNA表达情况;(c)为TNF-αmRNA表达情况;Figure 9 is a diagram showing the expression of inflammatory factors induced by Spike protein in THP-1 cells by the chimera SAPt1-NASO2 and its cyclized form, wherein (a) is the expression of IL-1β mRNA; (b) is the expression of IL-6 mRNA; (c) is the expression of TNF-α mRNA;
图10是嵌合体SApt1-NASO2及其环化形式在Calu-3细胞上抑制引发炎症表达的能力图;其中,(a)为IL-6mRNA表达情况;(b)为IL-8mRNA表达情况;(c)为TNF-αmRNA表达情况;FIG10 is a graph showing the ability of the chimera SAPt1-NASO2 and its cyclized form to inhibit inflammation-induced expression in Calu-3 cells; wherein (a) is the expression of IL-6 mRNA; (b) is the expression of IL-8 mRNA; (c) is the expression of TNF-α mRNA;
图11评估依赖核酸适配体和病毒感染介导的靶向递送核酸的能力;其中,(a)荧光共聚焦和流式分析验证嵌合体的递送依赖核酸适配体;(b)为不同浓度假病毒与转染试剂递送效率比较及流式分析图;FIG11 evaluates the ability of targeted delivery of nucleic acids mediated by nucleic acid aptamers and viral infection; wherein (a) fluorescence confocal and flow cytometry analysis verify that the delivery of the chimera depends on nucleic acid aptamers; (b) is a comparison of the delivery efficiency of pseudoviruses and transfection reagents at different concentrations and a flow cytometry analysis diagram;
图12是环化SApt1-NASO2在病毒水平上抑制SARS-CoV-2引发炎症的能力图;其中,(a)为环化SApt1-NASO2抑制WT型SARS-CoV-2病毒引发THP-1细胞中IL-1βmRNA表达情况;(b)为环化SApt1-NASO2抑制Omicron型SARS-CoV-2病毒引发THP-1细胞中IL-1βmRNA表达情况;(c)为环化SApt1-NASO2抑制WT型SARS-CoV-2病毒引发Calu-3细胞中IL-6mRNA表达情况;(d)为环化SApt1-NASO2抑制WT型SARS-CoV-2病毒引发Calu-3细胞中IL-6mRNA表达情况;Figure 12 is a graph showing the ability of cyclized SAPT1-NASO2 to inhibit SARS-CoV-2-induced inflammation at the viral level; wherein (a) shows the inhibition of IL-1β mRNA expression in THP-1 cells induced by WT SARS-CoV-2 virus by cyclized SAPT1-NASO2; (b) shows the inhibition of IL-1β mRNA expression in THP-1 cells induced by Omicron SARS-CoV-2 virus by cyclized SAPT1-NASO2; (c) shows the inhibition of IL-6 mRNA expression in Calu-3 cells induced by WT SARS-CoV-2 virus by cyclized SAPT1-NASO2; (d) shows the inhibition of IL-6 mRNA expression in Calu-3 cells induced by WT SARS-CoV-2 virus by cyclized SAPT1-NASO2;
图13是环化SApt1-NASO2在病毒水平上抑制SARS-CoV-2的增殖能力图,其中,(a)为不同浓度环化SApt1-NASO2抑制SARS-CoV-2病毒在Vero E6细胞中的增殖荧光图;(b)为不同浓度环化SApt1-NASO2抑制SARS-CoV-2病毒在Vero E6细胞中的增殖定量图。Figure 13 is a graph showing the ability of cyclized SAPt1-NASO2 to inhibit the proliferation of SARS-CoV-2 at the viral level, wherein (a) is a fluorescence graph showing that different concentrations of cyclized SAPt1-NASO2 inhibit the proliferation of SARS-CoV-2 virus in Vero E6 cells; (b) is a quantitative graph showing that different concentrations of cyclized SAPt1-NASO2 inhibit the proliferation of SARS-CoV-2 virus in Vero E6 cells.
具体实施方式Detailed ways
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域技术人员。The exemplary embodiments of the present invention will be described in more detail below with reference to the accompanying drawings. Although the exemplary embodiments of the present invention are shown in the accompanying drawings, it should be understood that the present invention can be implemented in various forms and should not be limited by the embodiments set forth herein. On the contrary, these embodiments are provided in order to enable a more thorough understanding of the present invention and to enable the scope of the present invention to be fully communicated to those skilled in the art.
本实施例以SARS-CoV-2病毒为研究基础,利用靶向结合SARS-CoV-2的S蛋白的核酸适配体和靶向沉默SARS-CoV-2的N基因的反义寡核苷酸为例,将S蛋白的核酸适配体(SApt)与针对N基因的ASO(NASO)嵌合在一起,构建线性SApt-NASO,及环状SApt-NASO(circSApt-NASO)(如图1所示),该嵌合体通过依赖SApt和SARS-CoV-2病毒感染被递送进细胞,发挥了特异性抑制炎症和抗病毒增制的能力。This example uses the SARS-CoV-2 virus as the research basis, and uses the nucleic acid aptamer targeting the S protein of SARS-CoV-2 and the antisense oligonucleotide targeting the N gene of SARS-CoV-2 as examples. The nucleic acid aptamer (SApt) of the S protein is chimerized with the ASO (NASO) targeting the N gene to construct linear SAPT-NASO and circular SAPT-NASO (circSApt-NASO) (as shown in Figure 1). The chimera is delivered into cells by relying on SAPT and SARS-CoV-2 virus infection, and exerts the ability to specifically inhibit inflammation and antiviral proliferation.
实施例1:评估反义寡核苷酸(ASO)对SARS-CoV-2的N基因敲低能力Example 1: Evaluation of the ability of antisense oligonucleotides (ASOs) to knock down the N gene of SARS-CoV-2
本实施例使用4种针对N基因的反义寡核苷酸(命名为NASO1、NASO2、NASO3、NASO4)和pCMV-N-GFP质粒同时转染至293T细胞的情况下,48小时后检测其对于N基因表达的敲低效果。如图2所示,通过荧光成像观察N-GFP蛋白的表达情况,结果显示转染NASO2的细胞荧光强度最弱,说明NASO2敲低能力最佳。于是,选取了NASO2进行接下来的实验。In this example, 4 antisense oligonucleotides targeting the N gene (named NASO1, NASO2, NASO3, and NASO4) and pCMV-N-GFP plasmid were simultaneously transfected into 293T cells, and the knockdown effect on N gene expression was detected 48 hours later. As shown in Figure 2, the expression of N-GFP protein was observed by fluorescence imaging, and the results showed that the fluorescence intensity of cells transfected with NASO2 was the weakest, indicating that NASO2 had the best knockdown ability. Therefore, NASO2 was selected for the next experiment.
序列信息如下:The sequence information is as follows:
NASO1:CCAATGTGATCTTTTGGTGTNASO1:CCAATGTGATCTTTTGGTGT
NASO2:ATTGTTAGCAGGATTGCGGGNASO2:ATTGTTAGCAGGATTGCGGG
NASO3:ATTTCCTTGGGTTTGTTCTGNASO3:ATTTCCTTGGGTTTGTTCTG
NASO4:GGCCAATGTTTGTAATCAGTNASO4:GGCCAATGTTTGTAATCAGT
实施例2:嵌合体结构对环化效率的影响Example 2: Effect of chimera structure on cyclization efficiency
本实施例将核酸适配体SApt2与反义寡核苷酸NASO2使用连续的三个碱基TTT(即linker)将其嵌合在一起,得到了线性核酸适配体-反义寡核苷酸嵌合体——SApt2-NASO2。本实施例想要通过将该嵌合体环化后,提高其稳定性以增强其敲低能力。通过实验发现在SApt2-NASO2嵌合体中,并不能形成茎环结构,在使用T4 DNA连接酶处理后,发现SApt2-NASO2嵌合体并不能成功被环化,即易被核酸外切酶I(Exo I)降解(如图3(a)所示)。接着,考虑使用SApt1来与NASO2进行嵌合,该嵌合体有明显的茎环结构,在5端使用磷酸化后使用T4 DNA连接酶进行连接,发现环化后的SApt1-NASO2几乎不被核酸外切酶I(Exo I)降解,证明其成功形成了环化结果,说明在嵌合体内设计stem结构有利于嵌合体的环化。In this embodiment, the nucleic acid aptamer SAPt2 and the antisense oligonucleotide NASO2 are chimerized together using three consecutive bases TTT (i.e., linker) to obtain a linear nucleic acid aptamer-antisense oligonucleotide chimera-SApt2-NASO2. This embodiment intends to improve the stability of the chimera after cyclization to enhance its knockdown ability. It was found through experiments that a stem-loop structure could not be formed in the SAPT2-NASO2 chimera. After treatment with T4 DNA ligase, it was found that the SAPT2-NASO2 chimera could not be successfully cyclized, that is, it was easily degraded by exonuclease I (Exo I) (as shown in Figure 3 (a)). Next, consider using SAPT1 to chimerize with NASO2. The chimera has a clear stem-loop structure. After phosphorylation at the 5 end, T4 DNA ligase is used for connection. It is found that the cyclized SAPT1-NASO2 is hardly degraded by exonuclease I (Exo I), proving that it has successfully formed a cyclization result, indicating that designing a stem structure in the chimera is conducive to the cyclization of the chimera.
序列信息如下:The sequence information is as follows:
ST-6-2(SApt2):GGGGAGGGCGGGTGGATTGGATGCCGAST-6-2 (SApt2): GGGGAGGGCGGGTGGATTGGATGCCGA
SApt2-NASO2:GGGGAGGGCGGGTGGATTGGATGCCGATTTATTGTTAGCAGGATTGCGGGSApt2-NASO2:GGGGAGGGCGGGTGGATTGGATGCCGATTTATTGTTAGCAGGATTGCGGG
ST-6-1(SApt1):AGGGCATCAAAGGGGGGAGGGCGGGTGGATTGGATGCCGAST-6-1(SApt1):AGGGCATCAAAGGGGGGAGGGCGGGTGGATTGGATGCCGA
SApt1-NASO2:SApt1-NASO2:
AGGGCATCAAAGGGGGGAGGGCGGGTGGATTGGATGCCGATTTATTGTTAGCAGGATTGCGGGAGGGCATCAAAGGGGGGAGGGCGGGTGGATTGGATGCCGATTTATTGTTAGCAGGATTGCGGG
circSApt1-NASO2:circSApt1-NASO2:
AGGGCATCAAAGGGGGGAGGGCGGGTGGATTGGATGCCGATTTATTGTTAGCAGGATTGCGGGTTTAGGGCATCAAAGGGGGGAGGGCGGGTGGATTGGATGCCGATTTATTGTTAGCAGGATTGCGGGTTT
实施例3:评估不同长度的linker对于嵌合体环化的影响Example 3: Evaluation of the effect of linker lengths on chimera circularization
本实例想要观察不同长度的linker对于嵌合体环化的影响,将Linker增加到13和18,设计出两个嵌合体(Linker-13和Linker-18),同样在5端磷酸化的情况下,使用T4 DNA连接酶进行连接,发现Linker-13或者Linker-18都能被成功环化,即几乎不被核酸外切酶I(Exo I)降解(如图4所示),说明linker长度对环化效率影响不大。In this example, we want to observe the effect of linker lengths on the circularization of the chimera. We increase the linker length to 13 and 18, and design two chimeras (Linker-13 and Linker-18). Also when the 5-end is phosphorylated, we use T4 DNA ligase to connect them. We find that Linker-13 or Linker-18 can be successfully circularized, that is, they are hardly degraded by exonuclease I (Exo I) (as shown in Figure 4), indicating that the linker length has little effect on the circularization efficiency.
序列信息如下:The sequence information is as follows:
Linker-13:Linker-13:
AGATGAGGGCATCAAAGGGGGGAGGGCGGGTGGATTGGATGCCGATTTATTGTTAGCAGGATTGCGGGAGATGAGGGCATCAAAGGGGGGAGGGCGGGTGGATTGGATGCCGATTTATTGTTAGCAGGATTGCGGG
circLinker-13:circLinker-13:
AGATGAGGGCATCAAAGGGGGGAGGGCGGGTGGATTGGATGCCGATTTATTGTTAGCAGGATTGCGGGTTTAGATGAGGGCATCAAAGGGGGGAGGGCGGGTGGATTGGATGCCGATTTATTGTTAGCAGGATTGCGGGTTT
Linker-18:Linker-18:
ATCGAAGGGCATCAAAGGGGGGAGGGCGGGTGGATTGGATGCCGAGGTATTTTATTGTTAGCAGGATTGCGGGATCGAAGGGCATCAAAGGGGGGAGGGCGGGTGGATTGGATGCCGAGGTATTTTATTGTTAGCAGGATTGCGGG
circLinker-18:circLinker-18:
ATCGAAGGGCATCAAAGGGGGGAGGGCGGGTGGATTGGATGCCGAGGTATTTTATTGTTAGCAGGATTGCGGGTTTATCGAAGGGCATCAAAGGGGGGAGGGCGGGTGGATTGGATGCCGAGGTATTTTATTGTTAGCAGGATTGCGGGTTT
实施例4:评估环化嵌合体、线性嵌合体的稳定性Example 4: Evaluation of the stability of circularized chimeras and linear chimeras
本实施例将环化成功的SApt1-NASO2、Linker-13和Linker-18在10%胎牛血清(FBS)孵育,观察其在血清中的稳定性。如图5所示,与线性SApt1-NASO2、Linker-13和Linker-18相比,环化后的SApt1-NASO2、Linker-13和Linker-18在血清中的稳定性显著提高。In this example, the successfully cyclized SAPT1-NASO2, Linker-13 and Linker-18 were incubated in 10% fetal bovine serum (FBS) to observe their stability in serum. As shown in Figure 5, compared with the linear SAPT1-NASO2, Linker-13 and Linker-18, the stability of the cyclized SAPT1-NASO2, Linker-13 and Linker-18 in serum was significantly improved.
实施例5:评估嵌合体SApt1-NASO2及其环化形式与SARS-CoV-2病毒Spike蛋白的结合能力和抑制S-TLR4结合能力Example 5: Evaluation of the binding ability of the chimera SAPt1-NASO2 and its cyclized form to the SARS-CoV-2 virus Spike protein and the ability to inhibit S-TLR4 binding
本实施例通过ELISA实验来验证嵌合体SApt1-NASO2及其环化形式与Spike蛋白结合能力。将Spike蛋白包被在96孔板上,再将带生物素标记的嵌合与这些蛋白结合30min后,洗杂3次。加入HRP-链霉亲和素孵育30min后,洗杂3次,再加入TMB反应,终止后在OD 450nm处进行测量吸光值。如图6(b)结果显示,嵌合体SApt1-NASO2及其环化形式与Spike蛋白有较高的结合力。同时,通过流式分析也发现其与S蛋白的结合能力较高。接着,如图6(a)结果显示竞争性ELISA实验也显示嵌合体SApt1-NASO2及其环化形式与SApt1一致,对于S-TLR4相互作用有显著的抑制效果。This example verifies the ability of the chimera SAPT1-NASO2 and its cyclized form to bind to the Spike protein by ELISA experiments. The Spike protein was coated on a 96-well plate, and the biotin-labeled chimera was bound to these proteins for 30 minutes and then washed 3 times. After adding HRP-streptavidin and incubating for 30 minutes, the mixture was washed 3 times, and then TMB reaction was added. After termination, the absorbance was measured at OD 450nm. As shown in Figure 6 (b), the chimera SAPT1-NASO2 and its cyclized form have a high binding force with the Spike protein. At the same time, flow analysis also found that it has a high binding ability with the S protein. Next, as shown in Figure 6 (a), the competitive ELISA experiment also shows that the chimera SAPT1-NASO2 and its cyclized form are consistent with SAPT1, and have a significant inhibitory effect on the S-TLR4 interaction.
实施例6:评估嵌合体SApt1-NASO2及其环化形式与SARS-CoV-2病毒Spike蛋白结合能力Example 6: Evaluation of the ability of the chimera SAPt1-NASO2 and its cyclized form to bind to the SARS-CoV-2 virus Spike protein
在确定了嵌合体SApt1-NASO2及其环化形式与Spike蛋白结合后,本实施例使用分子相互作用系统Pall forteBio Octet K2进行嵌合体SApt1-NASO2及其环化形式的KD值测定,KD值越低说明分子间的亲和力越强。将生物素标记的SApt1、嵌合体SApt1-NASO2及其环化形式固定在生物传感器上,使用Spike蛋白作为分析物,经过固化,结合,解离等步骤,传感器所接收的光吸收值变化换算出相应的速率,经过计算得出核酸适配体与分析物Spike蛋白之间的亲和力常数KD值,如图7所示。最终得出SApt1的KD值为76.86nM,SApt1-NASO2的KD值为82.35nM,环化SApt1-NASO2的KD值为87.55nM。其中SApt1的Ka为1.44×104(1/Ms),Kd为1.11×10-4(1/s),KD为76.86±1.21(nM);其中SApt1-NASO2的Ka为1.34×105(1/Ms),Kd为1.10×10-3(1/s),KD为82.35±1.19(nM);其中环化SApt1-NASO2的Ka为7.64×104(1/Ms),Kd为6.89×10-4(1/s),KD为87.55±2.46(nM);说明嵌合体SApt1-NASO2及其环化形式与Spike蛋白也有着较高的亲和力。After determining that the chimera SAPT1-NASO2 and its cyclized form bind to the Spike protein, the present embodiment uses the molecular interaction system Pall forteBio Octet K2 to measure the KD value of the chimera SAPT1-NASO2 and its cyclized form. The lower the KD value, the stronger the affinity between the molecules. Biotin-labeled SAPT1, the chimera SAPT1-NASO2 and its cyclized form are fixed on the biosensor, and the Spike protein is used as the analyte. After the steps of solidification, binding, dissociation, etc., the light absorption value received by the sensor changes and the corresponding rate is converted. The affinity constant KD value between the nucleic acid aptamer and the analyte Spike protein is calculated, as shown in Figure 7. Finally, the KD value of SAPT1 is 76.86nM, the KD value of SAPT1-NASO2 is 82.35nM, and the KD value of cyclized SAPT1-NASO2 is 87.55nM. The Ka of SAPT1 was 1.44×10 4 (1/Ms), Kd was 1.11×10-4 (1/s), and KD was 76.86±1.21 (nM); the Ka of SAPT1-NASO2 was 1.34×105 (1/Ms), Kd was 1.10×10-3 (1/s), and KD was 82.35±1.19 (nM); the Ka of cyclized SAPT1-NASO2 was 7.64×104 (1/Ms), Kd was 6.89×10-4 (1/s), and KD was 87.55±2.46 (nM); this indicated that the chimera SAPT1-NASO2 and its cyclized form also had a high affinity with the Spike protein.
实施例7:评估嵌合体SApt1-NASO2及其环化形式在HEK293T细胞中抑制N基因表达能力Example 7: Evaluation of the ability of the chimera SAPt1-NASO2 and its cyclized form to inhibit N gene expression in HEK293T cells
本实施例将不同浓度(25nM、50nM、75nM、100nM)的嵌合体SApt1-NASO2及其硫代和环化形式和pCMV-N-GFP质粒同时转染至293T细胞的情况下,48小时后检测其对于N基因表达的敲低效果。如图8所示,通过荧光成像观察N-GFP蛋白的表达情况,发现嵌合体SApt1-NASO2及其硫代修饰形式的敲低效果约为40%-50%左右,其中,环化SApt1-NASO2的的荧光最低,敲低效果达到了80%-85%左右,说明嵌合体可以显著敲低N基因。In this example, different concentrations (25nM, 50nM, 75nM, 100nM) of chimera SAPT1-NASO2 and its thio- and cyclized forms and pCMV-N-GFP plasmid were transfected into 293T cells at the same time, and the knockdown effect on N gene expression was detected after 48 hours. As shown in Figure 8, the expression of N-GFP protein was observed by fluorescence imaging, and it was found that the knockdown effect of chimera SAPT1-NASO2 and its thio-modified form was about 40%-50%, among which the fluorescence of cyclized SAPT1-NASO2 was the lowest, and the knockdown effect reached about 80%-85%, indicating that the chimera can significantly knock down the N gene.
实施例8:评估嵌合体SApt1-NASO2及其环化形式在THP-1细胞上抑制Spike蛋白引发炎症的能力Example 8: Evaluation of the ability of the chimera SAPt1-NASO2 and its cyclized form to inhibit inflammation induced by Spike protein in THP-1 cells
本实施例使用人单核细胞白血病细胞(THP-1细胞)来进行验证嵌合体SApt1-NASO2及其环化形式在细胞水平上抑制Spike蛋白引发炎症的能力。根据文献报道SARS-CoV-2的Spike-Tri蛋白能通过与细胞膜上的TLR4受体相互作用,引发细胞内炎症因子风暴,即炎症因子IL-1β,IL-6,IL-8,TNF-α等炎症因子的表达水平增加。本实施例将RS、SApt1、嵌合体SApt1-NASO2及其环化形式与Spike蛋白在体外孵育0.5h,再一起加入到THP-1细胞中,刺激约2h后,收集THP-1细胞进行总RNA提取,检测其炎症因子mRNA的水平。如图9的RT-qPCR定量结果所示,与随机序列RS相比,SApt1、嵌合体SApt1-NASO2及其环化形式对于炎症因子mRNA的变化约有60%-70%的抑制效果,说明嵌合体SApt1-NASO2及其环化形式能一定程度上抑制Spike蛋白在细胞水平上引发炎症因子表达量增加的能力。This example uses human monocytic leukemia cells (THP-1 cells) to verify the ability of the chimera SAPT1-NASO2 and its cyclized form to inhibit the inflammation caused by Spike protein at the cellular level. According to literature reports, the Spike-Tri protein of SARS-CoV-2 can trigger an intracellular inflammatory factor storm by interacting with the TLR4 receptor on the cell membrane, that is, the expression levels of inflammatory factors such as inflammatory factors IL-1β, IL-6, IL-8, TNF-α, etc. increase. In this example, RS, SAPT1, chimera SAPT1-NASO2 and its cyclized form were incubated with Spike protein in vitro for 0.5h, and then added to THP-1 cells together. After stimulation for about 2h, THP-1 cells were collected for total RNA extraction and the level of inflammatory factor mRNA was detected. As shown in the RT-qPCR quantitative results in Figure 9, compared with the random sequence RS, SAPt1, chimera SAPt1-NASO2 and its cyclized form have an inhibitory effect of about 60%-70% on the changes in inflammatory factor mRNA, indicating that the chimera SAPt1-NASO2 and its cyclized form can inhibit the ability of Spike protein to induce increased expression of inflammatory factors at the cellular level to a certain extent.
实施例9:评估嵌合体SApt1-NASO2及其环化形式在Calu-3细胞上抑制引发炎症表达的能力Example 9: Evaluation of the ability of the chimera SAPt1-NASO2 and its cyclized form to inhibit inflammatory expression in Calu-3 cells
本实施例使用人肺腺癌细胞(胸水)Calu-3进行验证嵌合体SApt1-NASO2及其环化形式抑制N基因及引发炎症表达的能力。在Calu-3细胞中,N基因表达的N蛋白会通过激活NF-κB通路引发细胞内炎症反应(如IL-6、IL-8、TNF-α)增强,将嵌合体SApt1-NASO2及其环化形式和pCMV-N基因共同转染至Calu-3细胞中,48h后收取细胞。如图10的RT-qPCR定量结果所示,线性SApt1-NASO2能抑制约40-50%相关炎症因子的产生,而环化SApt1-NASO2能抑制约80%相关炎症因子的产生This example uses human lung adenocarcinoma cells (pleural effusion) Calu-3 to verify the ability of the chimera SAPt1-NASO2 and its cyclized form to inhibit the expression of the N gene and induce inflammation. In Calu-3 cells, the N protein expressed by the N gene will activate the NF-κB pathway to induce an increase in intracellular inflammatory responses (such as IL-6, IL-8, TNF-α). The chimera SAPt1-NASO2 and its cyclized form and the pCMV-N gene were co-transfected into Calu-3 cells, and the cells were collected after 48 hours. As shown in the RT-qPCR quantitative results of Figure 10, linear SAPt1-NASO2 can inhibit the production of about 40-50% of related inflammatory factors, while cyclized SAPt1-NASO2 can inhibit the production of about 80% of related inflammatory factors.
实施例10:评估依赖核酸适配体和病毒感染介导的靶向递送核酸的能力Example 10: Evaluation of the ability of targeted delivery of nucleic acids mediated by nucleic acid aptamers and viral infection
本实施例使用HEK293T-ACE2细胞和S假病毒(S-Pseudovirus)来评估环化SApt1-NASO2依赖核酸适配体和SARS-CoV-2感染介导的递送该细胞中过表达人血管紧张素酶2(ACE2),能被SARS-CoV-2S假病毒所感染,感染后会表达GFP绿色荧光蛋白,据此可以观察其感染情况。使用带Cy3标记的RS、SApt1、环化SApt1-NASO2与S-Pseudovirus在体外孵育0.5h,在将其加入到HEK293T-ACE2细胞中感染48h后,在共聚焦荧光显微镜下观察荧光情况。为了定量递送效率,将Cy3标记的环化SApt1-NASO2使用脂质体转染试剂转染至细胞。同时,将细胞进行流式分析并定量。如图10的共聚焦成像和流式分析的结果显示,Cy3标记的环化SApt1-NASO2与SApt1一致(图11a),说明嵌合体的递送是依赖核酸适配体。并且,嵌合体与S-Pseudovirus共定位,且红色荧光与病毒浓度呈正比(图11b)。另外,与转染相比,递送能力稍微略低于转染试剂,说明依赖核酸适配体和SARS-CoV-2感染介导的靶向递送SApt1-NASO2的能力是十分高效的。The present embodiment uses HEK293T-ACE2 cells and S pseudovirus (S-Pseudovirus) to evaluate the delivery mediated by nucleic acid aptamers and SARS-CoV-2 infection. Human angiotensinase 2 (ACE2) is overexpressed in the cell, which can be infected by SARS-CoV-2S pseudovirus, and GFP green fluorescent protein can be expressed after infection, so that its infection can be observed. RS, SAPT1, cyclized SAPT1-NASO2 and S-Pseudovirus labeled with Cy3 are incubated in vitro for 0.5h, and after being added to HEK293T-ACE2 cells and infected for 48h, fluorescence is observed under a confocal fluorescence microscope. In order to quantify the delivery efficiency, the cyclized SAPT1-NASO2 labeled with Cy3 is transfected to cells using a liposome transfection reagent. Meanwhile, cells are subjected to flow analysis and quantified. As shown in the results of confocal imaging and flow analysis in Figure 10, the Cy3-labeled cyclized SAPT1-NASO2 is consistent with SAPT1 (Figure 11a), indicating that the delivery of the chimera is dependent on nucleic acid aptamers. In addition, the chimera co-localizes with S-Pseudovirus, and the red fluorescence is proportional to the virus concentration (Figure 11b). In addition, compared with transfection, the delivery capacity is slightly lower than that of the transfection reagent, indicating that the ability of targeted delivery of SAPT1-NASO2 mediated by nucleic acid aptamers and SARS-CoV-2 infection is very efficient.
实施例11:评估环化SApt1-NASO2在病毒水平上抑制SARS-CoV-2引发炎症的能力Example 11: Evaluation of the ability of cyclized SAPt1-NASO2 to inhibit SARS-CoV-2-induced inflammation at the viral level
本实施例选择了在THP-1和Calu-3细胞中炎症其抑制炎症反应的能力。将环化SApt1-mutNASO2或环化SApt1-NASO2和WT或Omicron株SARS-CoV-2病毒在体外孵育1h,将其加入到THP-1和Calu-3细胞中。首先,2h后收取THP-1细胞,提取总RNA进行逆转录,RT-qPCR实验检测相关炎症因子的表达情况。接着,48h后收取Calu-3细胞同样提取总RNA,RT-qPRC检测相关炎症因子的表达情况。如图12的RT-qPCR定量结果所示,,无论在THP-1细胞或者Calu-3细胞中,环化SApt1-NASO2都能显著降低其炎症因子的产生。This example selects the ability to inhibit inflammatory responses in THP-1 and Calu-3 cells. Cyclized SAPT1-mutNASO2 or cyclized SAPT1-NASO2 and WT or Omicron strain SARS-CoV-2 virus were incubated in vitro for 1 hour and added to THP-1 and Calu-3 cells. First, THP-1 cells were collected after 2 hours, total RNA was extracted for reverse transcription, and RT-qPCR experiments were performed to detect the expression of related inflammatory factors. Then, Calu-3 cells were collected 48 hours later and total RNA was also extracted, and RT-qPRC was used to detect the expression of related inflammatory factors. As shown in the RT-qPCR quantitative results of Figure 12, cyclized SAPT1-NASO2 can significantly reduce the production of inflammatory factors in THP-1 cells or Calu-3 cells.
实施例12:评估环化SApt1-NASO2在病毒水平上抑制SARS-CoV-2的增殖能力Example 12: Evaluation of the ability of cyclized SAPt1-NASO2 to inhibit the proliferation of SARS-CoV-2 at the viral level
本实施例选择了非洲绿猴肾细胞(Vero细胞)评估环化SApt1-NASO2抑制SARS-CoV-2的复制能力。将不同浓度的RS、SApt-1、环化SApt1-mutNASO2或环化SApt1-NASO2和WT型SARS-CoV-2病毒在体外孵育1h,将其加入到Vero细胞中。在48h后进行荧光免疫实验(Immunofluorescence assay,IFA),将细胞固定后,使用DAPI染色细胞核,N蛋白荧光抗体观察细胞中SARS-CoV-2病毒复制情况。如图13所示,根据IFA实验结果,环化SApt1-NASO2能显著性地抑制SARS-CoV-2在Vero细胞中的复制。This embodiment selects African green monkey kidney cells (Vero cells) to evaluate the ability of cyclized SAPT1-NASO2 to inhibit the replication of SARS-CoV-2. Different concentrations of RS, SAPT-1, cyclized SAPT1-mutNASO2 or cyclized SAPT1-NASO2 and WT SARS-CoV-2 viruses were incubated in vitro for 1 hour and added to Vero cells. After 48 hours, a fluorescent immunoassay (Immunofluorescence assay, IFA) was performed, and after the cells were fixed, DAPI was used to stain the nuclei, and the N protein fluorescent antibody was used to observe the replication of SARS-CoV-2 viruses in the cells. As shown in Figure 13, according to the IFA experimental results, cyclized SAPT1-NASO2 can significantly inhibit the replication of SARS-CoV-2 in Vero cells.
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,本领域技术人员利用上述揭示的技术内容做出些许简单修改、等同变化或修饰,均落在本发明的保护范围内。The above description is only a preferred embodiment of the present invention and does not limit the present invention in any form. Those skilled in the art may make some simple modifications, equivalent changes or modifications using the technical contents disclosed above, which are all within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211184480.2A CN117821463A (en) | 2022-09-27 | 2022-09-27 | A nucleic acid specifically resisting viral proliferation and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211184480.2A CN117821463A (en) | 2022-09-27 | 2022-09-27 | A nucleic acid specifically resisting viral proliferation and its application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117821463A true CN117821463A (en) | 2024-04-05 |
Family
ID=90510132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211184480.2A Pending CN117821463A (en) | 2022-09-27 | 2022-09-27 | A nucleic acid specifically resisting viral proliferation and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117821463A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118497207A (en) * | 2024-05-09 | 2024-08-16 | 广东省第二人民医院(广东省卫生应急医院) | Nucleic acid aptamers targeting Epstein-Barr virus and their applications |
-
2022
- 2022-09-27 CN CN202211184480.2A patent/CN117821463A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118497207A (en) * | 2024-05-09 | 2024-08-16 | 广东省第二人民医院(广东省卫生应急医院) | Nucleic acid aptamers targeting Epstein-Barr virus and their applications |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2003298724B2 (en) | Delivery of siRNAs | |
CN118256490A (en) | A circular RNA, composition and method for treating diseases | |
WO2015002956A1 (en) | Exosome delivery system | |
WO2020065404A9 (en) | Methods and compositions for selection of functional aptamers | |
CN114835803A (en) | Preparation method of artificial antibody | |
CN113249380A (en) | Antisense oligonucleotide targeting COVID-19 novel coronavirus, NATAC chimeric molecule and application thereof | |
CN117821463A (en) | A nucleic acid specifically resisting viral proliferation and its application | |
US9328347B2 (en) | siRNA useful in the treatment of flavivirus infection | |
US20230272400A1 (en) | SYNTHESIS METHOD OF TARGETED DRUG nCoVshRNA 2ACE2 | |
KR20100057591A (en) | Treatment of influenza | |
CN102137682A (en) | Anti-hepatitis c virus composition | |
EP3081647B1 (en) | Avian influenza virus mirna, and appraisal, detection, and application thereof | |
CN116200391A (en) | Nucleic acid aptamers combined with the Spike protein of the novel coronavirus SARS-CoV-2 and their applications | |
CN101333525B (en) | siRNA sequence and application for HCMV UL86 gene | |
WO2010061881A1 (en) | Oligoribonucleotide or peptide nucleic acid capable of inhibiting activity of hepatitis c virus | |
CN115216452A (en) | A kind of SARS-CoV-2 virus replicon and its construction method and use | |
Joshi et al. | Bifunctional siRNA containing immunostimulatory motif enhances protection against pandemic H1N1 virus infection | |
AU2020101588A4 (en) | A Kind of Delivery Molecule and Nanoparticle, its Preparation Method, and the Use | |
CN115554391A (en) | Application of transmembrane protein 106A in the preparation of anti-hand, foot and mouth disease drugs | |
CN116144655A (en) | A kind of siRNA that transiently targets and interferes with the expression of HS3ST5 gene and its application | |
US20230313203A1 (en) | Fluoroarabino nucleic acid (fana) aptamers that bind sars-2 receptor binding domain and block binding to the ace2 cellular receptor | |
CN108283646A (en) | Hsa-miRNA-155-5p is preparing the application in inhibiting human enterovirus 71 drug | |
CA2743913A1 (en) | Inhibition of apoe cleavage activity in the treatment of apoe-related disorders | |
CN116144707A (en) | Application of a Reagent for Overexpressing HS3ST5 Gene in Promoting Virus Infection and Recombinant CHO-K1 Cell Line | |
US20100286238A1 (en) | Suppression of viruses involved in respiratory infection or disease |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |