CN117766561A - P-channel gallium nitride heterojunction transistor and preparation method thereof - Google Patents
P-channel gallium nitride heterojunction transistor and preparation method thereof Download PDFInfo
- Publication number
- CN117766561A CN117766561A CN202310526901.3A CN202310526901A CN117766561A CN 117766561 A CN117766561 A CN 117766561A CN 202310526901 A CN202310526901 A CN 202310526901A CN 117766561 A CN117766561 A CN 117766561A
- Authority
- CN
- China
- Prior art keywords
- layer
- channel
- gan
- barrier
- heterojunction transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 4
- 229910002601 GaN Inorganic materials 0.000 title abstract description 49
- 238000002360 preparation method Methods 0.000 title abstract description 5
- 230000004888 barrier function Effects 0.000 claims abstract description 54
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 230000010287 polarization Effects 0.000 claims abstract description 8
- 238000003780 insertion Methods 0.000 claims description 35
- 230000037431 insertion Effects 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 23
- 230000008569 process Effects 0.000 claims description 15
- 230000000694 effects Effects 0.000 claims description 10
- 229910002704 AlGaN Inorganic materials 0.000 claims description 8
- 238000000206 photolithography Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 2
- 229910004140 HfO Inorganic materials 0.000 claims description 2
- 229910052594 sapphire Inorganic materials 0.000 claims description 2
- 239000010980 sapphire Substances 0.000 claims description 2
- 238000005530 etching Methods 0.000 abstract description 8
- 230000001939 inductive effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 5
- 238000000137 annealing Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 239000004047 hole gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
技术领域Technical field
本发明涉及GaN器件,具体涉及一种势垒插入层p沟道异质结晶体管,属于电力电子器件领域。The invention relates to GaN devices, in particular to a barrier insertion layer p-channel heterojunction transistor, and belongs to the field of power electronic devices.
背景技术Background technique
由于GaN材料本身所具有的高击穿场强、高电子饱和速度和异质结高迁移率等特点,基于宽带隙GaN半导体材料的微波功率器件有望突破Si基器件的限制,成为下一代功率转换系统的候选者。Due to the characteristics of GaN material itself such as high breakdown field strength, high electron saturation velocity and high heterojunction mobility, microwave power devices based on wide bandgap GaN semiconductor materials are expected to break through the limitations of Si-based devices and become the next generation of power conversion system candidate.
按照载流子的导电类型可以将GaN器件分为n型和p型两种类型,n型器件是以电子导电为主,p型器件是以空穴导电为主。由于二维电子气(2DEG)密度高、电子迁移率高的优点,GaN高电子迁移率晶体管(HEMT)适用于高功率和高频应用,并且随着技术的发展,GaNHEMT器件已经逐渐商业化。基于n沟道的功率开关器件的快速发展刺激了基于p沟道的GaN晶体管的发展。实现互补的n沟道和p沟道GaN晶体管可以降低功率集成电路的设计复杂度和静态功耗。作为互补金属氧化物半导体(CMOS)结构中的关键元件,我们非常期待p沟道GaN晶体管在实现增强型的基础上能够具有与n沟道器件相当的电流密度。对于p沟道晶体管增强型的实现,沟槽栅技术已经逐渐成为主流,即将栅极下方的p型GaN进行部分刻蚀,使得在零栅压下栅极下方的耗尽区填满沟道,进而实现增强型。然而随着刻蚀深度的增加,栅极下方的导通电阻会大大增加,同时,刻蚀工艺过程中的等离子体又会对被刻蚀部分的p型GaN表面造成损伤,进而降低表面载流子的迁移率,另外,由于典型的p型GaN中掺入的Mg具有高的活化能,使得杂质具有非完全电离的特性,以上这些因素在一定程度上大大降低了p沟道GaN晶体管的电流密度。According to the conductivity type of carriers, GaN devices can be divided into two types: n-type and p-type. N-type devices are mainly conductive by electrons, and p-type devices are mainly conductive by holes. Due to the advantages of high density and high electron mobility of two-dimensional electron gas (2DEG), GaN high electron mobility transistor (HEMT) is suitable for high power and high frequency applications, and with the development of technology, GaNHEMT devices have gradually been commercialized. The rapid development of n-channel-based power switching devices has stimulated the development of p-channel-based GaN transistors. Implementing complementary n-channel and p-channel GaN transistors can reduce design complexity and static power consumption of power integrated circuits. As a key element in the complementary metal oxide semiconductor (CMOS) structure, we very much expect that p-channel GaN transistors can have a current density comparable to n-channel devices based on the realization of enhancement mode. For the realization of enhancement mode of p-channel transistors, trench gate technology has gradually become mainstream, that is, the p-type GaN under the gate is partially etched so that the depletion region under the gate fills the channel under zero gate voltage. And then achieve enhanced. However, as the etching depth increases, the on-resistance under the gate will greatly increase. At the same time, the plasma during the etching process will cause damage to the p-type GaN surface of the etched part, thereby reducing the surface current carrying capacity. Mobility of electrons. In addition, due to the high activation energy of Mg doped in typical p-type GaN, the impurities have incomplete ionization characteristics. These factors greatly reduce the current of p-channel GaN transistors to a certain extent. density.
2013年圣母大学的Guowang Li等人利用GaN/AlN外延层极化诱导二维空穴气(2DHG)的方法来增加载流子密度和迁移率,并且实现了100mA/mm的电流密度[1]。然而,这一外延层并没有提供n沟道,进而对n型和p型GaN晶体管的互补集成产生了影响。In 2013, Guowang Li and others from the University of Notre Dame used the method of polarization-induced two-dimensional hole gas (2DHG) in the GaN/AlN epitaxial layer to increase carrier density and mobility, and achieved a current density of 100mA/mm[1] . However, this epitaxial layer does not provide an n-channel, thereby affecting the complementary integration of n-type and p-type GaN transistors.
香港科技大学的Zheyang Zheng等人在2020年提出了OPT技术,在保留更多栅极下方p型GaN的基础上又进行了OPT工艺[2],即对表面进行氧处理和高温退火,旨在实现低导通电阻的基础上又具有增强型的操作模式,然而这并未在根本上解决电流密度低的问题,并且增加了工艺的复杂度。Zheyang Zheng and others from the Hong Kong University of Science and Technology proposed OPT technology in 2020. On the basis of retaining more p-type GaN under the gate, the OPT process [2] was performed, that is, oxygen treatment and high-temperature annealing were performed on the surface, aiming to On the basis of achieving low on-resistance, it also has an enhanced operating mode. However, this does not fundamentally solve the problem of low current density and increases the complexity of the process.
2022年麻省理工学院的Nadim Chowdhury等人通过栅极缩放来降低器件的导通电阻进而增加器件的电流密度,然而随着栅极长度的不断减小,器件的漏致势垒降低效应会变得显著,并且该工作中所制作的器件为耗尽型工作模式[3]。In 2022, Nadim Chowdhury and others from the Massachusetts Institute of Technology used gate scaling to reduce the on-resistance of the device and thereby increase the current density of the device. However, as the gate length continues to decrease, the drain-induced barrier lowering effect of the device will change. The results are significant, and the device produced in this work is a depletion mode operating mode [3].
参考文献:references:
[1]G.Li et al.,“Polarization-Induced GaN-on-Insulator E/D Mode p-Channel Heterostructure FETs,”IEEE Electron Device Lett.,vol.34,no.7,pp.852–854.[1]G.Li et al., "Polarization-Induced GaN-on-Insulator E/D Mode p-Channel Heterostructure FETs," IEEE Electron Device Lett., vol.34, no.7, pp.852–854.
[2]Z.Zheng,W.Song,L.Zhang,S.Yang,J.Wei,and K.J.Chen,“High ION and ION/Ioff Ratio Enhancement-Mode Buried p-Channel GaN MOSFETs on p-GaN Gate PowerHEMT Platform,”[2]Z.Zheng, W.Song, L.Zhang, S.Yang, J.Wei, and KJChen, “High I ON and I ON /I off Ratio Enhancement-Mode Buried p-Channel GaN MOSFETs on p-GaN Gate PowerHEMT Platform,”
IEEE Electron Device Lett.,vol.41,no.1,pp.26–29.IEEE Electron Device Lett., vol.41, no.1, pp.26–29.
[3]N.Chowdhury,Q.Xie,and T.Palacios,“Tungsten-Gated GaN/AlGaN p-FETWith I max>120mA/mm on GaN-on-Si,”IEEE Electron Device Lett.,vol.43,no.4,pp.545–548.[3] N.Chowdhury, Q.Xie, and T.Palacios, "Tungsten-Gated GaN/AlGaN p-FETWith I max>120mA/mm on GaN-on-Si," IEEE Electron Device Lett., vol.43, no.4, pp.545–548.
发明内容Contents of the invention
本发明的目的是提出一种新型p沟道GaN器件结构,用以解决器件导通电流小、导通电阻大的问题。本发明提出的器件结构在实现增强型的同时,通过在顶部的p型GaN中插入一层势垒层来将其下方p型GaN中的空穴转到其上方的p型GaN中,且由于很强的极化效应,下方p型GaN中的空穴完全电离到该势垒插入层上方,增加了载流子密度,进而实现了电流密度的增加。The purpose of the present invention is to propose a new p-channel GaN device structure to solve the problems of low device conduction current and high conduction resistance. While realizing enhancement mode, the device structure proposed by the present invention inserts a barrier layer into the top p-type GaN to transfer the holes in the p-type GaN below it to the p-type GaN above it, and because Due to the strong polarization effect, the holes in the lower p-type GaN are completely ionized to the top of the barrier insertion layer, increasing the carrier density, thus achieving an increase in current density.
具体的,本发明的技术方案如下:Specifically, the technical solutions of the present invention are as follows:
一种p沟道GaN异质结晶体管,包括衬底及衬底上依次层叠的缓冲层、n沟道层、势垒层、空穴提供层、势垒插入层和p沟道层,栅极、源极和漏极位于p沟道层上,其中所述势垒插入层的禁带宽度相对于空穴提供层和p沟道层的禁带宽度大。A p-channel GaN heterojunction transistor, including a substrate and a buffer layer, an n-channel layer, a barrier layer, a hole providing layer, a barrier insertion layer and a p-channel layer stacked sequentially on the substrate, and a gate electrode , the source electrode and the drain electrode are located on the p-channel layer, wherein the bandgap width of the barrier insertion layer is larger than the bandgap width of the hole providing layer and the p-channel layer.
进一步的,上述p沟道GaN异质结晶体管可以采用MIS栅结构或者肖特基型栅结构。在MIS栅结构中,栅极与p沟道层之间为栅介质层。Furthermore, the above-mentioned p-channel GaN heterojunction transistor can adopt an MIS gate structure or a Schottky gate structure. In the MIS gate structure, there is a gate dielectric layer between the gate electrode and the p-channel layer.
上述p沟道GaN异质结晶体管中,所述衬底可以是Si衬底、蓝宝石衬底、GaN衬底等。In the above p-channel GaN heterojunction transistor, the substrate may be a Si substrate, a sapphire substrate, a GaN substrate, etc.
所述n沟道层可以是GaN层、InGaN层等可以与势垒层产生极化效应的外延层,其相对于势垒层禁带宽度较小;所述势垒层可以是AlGaN、AlN、AlInGaN等可以与n沟道层产生极化效应的外延层,其相对于n沟道层禁带宽度较大。The n-channel layer may be a GaN layer, an InGaN layer, or other epitaxial layer that can produce a polarization effect with the barrier layer, which has a smaller bandgap width than the barrier layer; the barrier layer may be AlGaN, AlN, Epitaxial layers such as AlInGaN that can produce polarization effects with the n-channel layer have a larger bandgap than the n-channel layer.
所述空穴提供层可以是掺Mg或C的p型GaN层、InGaN层等可以提供空穴的外延层,其相对于势垒插入层禁带宽度小;所述势垒插入层可以是AlGaN、AlN、AlInGaN等材料的势垒层,其相对于空穴提供层禁带宽度大;所述p沟道层可以是掺Mg或C的p型GaN层、InGaN层等可以提供空穴的外延层,其相对于势垒插入层禁带宽度小。所述空穴提供层/势垒插入层/p沟道层具有多种相互组合方式,例如p-GaN/AlN/p-GaN、p-GaN/AlGaN/p-InGaN、p-InGaN/AlN/p-GaN等多种外延层的相互组合。The hole providing layer may be a Mg- or C-doped p-type GaN layer, an InGaN layer, or other epitaxial layer that can provide holes, and its bandgap width is smaller than that of the barrier insertion layer; the barrier insertion layer may be AlGaN , AlN, AlInGaN and other materials barrier layer, which has a larger band gap than the hole providing layer; the p channel layer can be a Mg or C-doped p-type GaN layer, InGaN layer, etc., which can provide the epitaxy of holes layer, whose bandgap width is smaller than that of the barrier insertion layer. The hole providing layer/barrier insertion layer/p channel layer has various combinations, such as p-GaN/AlN/p-GaN, p-GaN/AlGaN/p-InGaN, p-InGaN/AlN/ The mutual combination of various epitaxial layers such as p-GaN.
上述栅介质层可以为Al2O3、SiO2、HfO2等介质层。The above-mentioned gate dielectric layer may be a dielectric layer such as Al 2 O 3 , SiO 2 , HfO 2 or the like.
本发明还提供了上述p沟道GaN异质结晶体管的制备方法,包括以下步骤:The present invention also provides a method for preparing the above-mentioned p-channel GaN heterojunction transistor, which includes the following steps:
1)在衬底上依次外延生长缓冲层、n沟道层、势垒层、空穴提供层、势垒插入层和p沟道层;1) Epitaxially grow a buffer layer, an n-channel layer, a barrier layer, a hole providing layer, a barrier insertion layer and a p-channel layer on the substrate in sequence;
2)利用光刻工艺在p沟道层上刻蚀出栅极凹陷区域;2) Use photolithography process to etch the gate recessed area on the p-channel layer;
3)外延生长栅介质层然后制备源漏极,或者直接在p沟道层上制备源漏极;3) Epitaxially grow the gate dielectric layer and then prepare the source and drain electrodes, or directly prepare the source and drain electrodes on the p-channel layer;
4)在栅介质层上制备栅极,或者直接在p沟道层上制备栅极。4) Prepare the gate electrode on the gate dielectric layer, or directly prepare the gate electrode on the p-channel layer.
总之,本发明的关键点在于势垒插入层的禁带宽度相对于空穴提供层和p沟道层的禁带宽度较大,这样势垒插入层将会把空穴提供层的能带压下来进而使得该层内空穴完全电离,顶部p沟道层充当p型导电沟道的作用。这里并不将顶部p沟道层限制为某单一外延层材料,也可以为不同掺杂、组分等的其他导电材料的相互组合。此外,各区域的长度、厚度、掺杂浓度以及电极种类等参数的变化都是本发明所涉及的范畴,这取决于不同的设计需求和制备工艺。值得注意的是,本发明的重点在于势垒插入层的插入,使得势垒插入层上界面的空穴浓度增加,并通过控制栅极区域的刻蚀深度或通过其他栅极处理方法使得器件达到增强型的工作模式,当然,本发明所提出的通过势垒插入层以提高导电能力同样适用于耗尽型工作模式器件(一般耗尽型器件相对于增强型器件栅极下方刻蚀深度较浅)。可以理解,在不脱离本发明的范围,可以有其他结构和其他变化的实例。再者,不同的实例、结构和工艺可以相互组合来实现相同的目的。In short, the key point of the present invention is that the bandgap width of the barrier insertion layer is larger than the bandgap width of the hole providing layer and the p-channel layer. In this way, the barrier insertion layer will suppress the energy bandgap of the hole providing layer. Then the holes in this layer are completely ionized, and the top p-channel layer acts as a p-type conductive channel. Here, the top p-channel layer is not limited to a single epitaxial layer material, and can also be a combination of other conductive materials with different doping, composition, etc. In addition, changes in parameters such as the length, thickness, doping concentration, and electrode type of each region are within the scope of the present invention, which depends on different design requirements and preparation processes. It is worth noting that the focus of the present invention lies in the insertion of the barrier insertion layer, which increases the hole concentration at the interface on the barrier insertion layer, and controls the etching depth of the gate region or other gate processing methods to enable the device to achieve Enhancement mode working mode, of course, the method of inserting a barrier layer to improve conductivity proposed by the present invention is also applicable to depletion mode working mode devices (generally, depletion mode devices have a shallower etching depth below the gate than enhancement mode devices). ). It is understood that other structures and other modified examples are possible without departing from the scope of the present invention. Furthermore, different examples, structures and processes can be combined with each other to achieve the same purpose.
本发明的有益效果:Beneficial effects of the present invention:
现有技术已经可以通过控制刻蚀深度或者栅极后处理工艺来达到增强型的工作模式,但沟道区域载流子迁移率低,导通电阻大等问题还没有有效解决。为此,本发明提出了这样一种结构,通过势垒插入层的插入使得下方空穴提供层中的空穴全部电离,并借助极化效应将底层中完全电离的空穴转移到势垒插入层上界面,因为刻蚀会对GaN表面造成损伤导致表面载流子迁移率较低,而势垒插入层插入后的沟道位于底部,这恰恰避免了沟道载流子迁移率低的问题。基于以上原因,本发明所制备的器件电流密度要高于其他器件。总之,本发明既可以通过控制刻蚀深度来实现增强型,又可以通过势垒插入层极化诱导底层空穴完全电离实现相对高的电流密度。The existing technology can already achieve enhanced working mode by controlling the etching depth or gate post-processing process, but problems such as low carrier mobility in the channel region and high on-resistance have not been effectively solved. To this end, the present invention proposes a structure in which the holes in the hole providing layer below are all ionized through the insertion of the barrier insertion layer, and the fully ionized holes in the bottom layer are transferred to the barrier insertion layer by means of the polarization effect. At the interface above the layer, etching will cause damage to the GaN surface, resulting in low surface carrier mobility. However, the channel after the barrier insertion layer is inserted is located at the bottom, which avoids the problem of low channel carrier mobility. . Based on the above reasons, the current density of the device prepared by the present invention is higher than that of other devices. In short, the present invention can not only achieve enhancement mode by controlling the etching depth, but also can achieve relatively high current density by inducing complete ionization of bottom holes through barrier insertion layer polarization.
附图说明Description of the drawings
图1是本发明实施例1制备的一种具有势垒插入层的MIS栅p沟道GaN器件二维截面图。Figure 1 is a two-dimensional cross-sectional view of a MIS gate p-channel GaN device with a barrier insertion layer prepared in Embodiment 1 of the present invention.
图2是本发明实施例2制备的一种具有势垒插入层的肖特基栅p沟道GaN器件二维截面图。Figure 2 is a two-dimensional cross-sectional view of a Schottky gate p-channel GaN device with a barrier insertion layer prepared in Embodiment 2 of the present invention.
图3是实施例1和2的步骤1完成效果图。Figure 3 is a diagram showing the completion effect of step 1 in Embodiments 1 and 2.
图4是实施例1和2的步骤2完成效果图。Figure 4 is a diagram showing the completion effect of step 2 in Embodiments 1 and 2.
图5是实施例1的步骤3完成效果图。Figure 5 is a diagram showing the completion effect of step 3 of Embodiment 1.
图6是实施例2的步骤3完成效果图。Figure 6 is a diagram of the completion effect of step 3 in Embodiment 2.
图7是实施例1制备的器件(a)和没有势垒插入层器件(b)的电流密度比较图。Figure 7 is a current density comparison diagram of the device (a) prepared in Example 1 and the device (b) without barrier insertion layer.
具体实施方式Detailed ways
以下结合附图,通过实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。The present invention will be further described in detail through examples below in conjunction with the accompanying drawings. It should be understood that the specific embodiments described here are only used to explain the present invention and are not intended to limit the present invention.
实施例1、MIS栅p沟道GaN器件的制备Example 1. Preparation of MIS gate p-channel GaN device
1、选取衬底1,在其上依次外延生长缓冲层2、n沟道层3、势垒层4、空穴提供层5、势垒插入层6和顶部p沟道层7,如图3所示;1. Select substrate 1, and sequentially epitaxially grow buffer layer 2, n-channel layer 3, barrier layer 4, hole providing layer 5, barrier insertion layer 6 and top p-channel layer 7, as shown in Figure 3 shown;
其中,衬底1选择Si衬底,采用外延生长的方法依次生长GaN缓冲层、n沟道层i-GaN、势垒层AlGaN、空穴提供层p-GaN、势垒插入层AlN、p沟道层p-GaN;Among them, the substrate 1 is a Si substrate, and the epitaxial growth method is used to sequentially grow a GaN buffer layer, an n-channel layer i-GaN, a barrier layer AlGaN, a hole providing layer p-GaN, a barrier insertion layer AlN, and a p-channel layer. Channel layer p-GaN;
2、利用光刻工艺在p沟道层p-GaN刻蚀出栅极凹陷区域,如图4所示;2. Use the photolithography process to etch the gate recessed area in the p-GaN layer of the p-channel layer, as shown in Figure 4;
3、外延生长栅介质层SiO2,然后利用光刻、剥离工艺制作源漏极Ni/Au并进行退火工艺,如图5所示;3. Epitaxially grow the gate dielectric layer SiO 2 , then use photolithography and stripping processes to make the source and drain Ni/Au and perform an annealing process, as shown in Figure 5;
4、利用光刻、剥离工艺制作栅极Ti/Au,得到如图1所示的MIS栅p沟道GaN器件。4. Use photolithography and lift-off processes to make the gate Ti/Au to obtain the MIS gate p-channel GaN device as shown in Figure 1.
将上述方法制备的器件与传统结构器件相比,势垒插入层结构对电流密度的影响见图7,其中(a)展示的是本实施例制作的具有势垒插入层结构的器件,(b)展示的是传统的没有AlN插入层结构的器件。对于同样尺寸的器件,势垒插入层的引入可使得p-FET电流密度提高至少一倍。Comparing the device prepared by the above method with the traditional structural device, the influence of the barrier insertion layer structure on the current density is shown in Figure 7, in which (a) shows the device with the barrier insertion layer structure produced in this embodiment, (b) ) shows a traditional device without an AlN insertion layer structure. For devices of the same size, the introduction of the barrier insertion layer can at least double the p-FET current density.
实施例2、肖特基栅p沟道GaN器件的制备Example 2. Preparation of Schottky gate p-channel GaN device
1、选取衬底1,在其上依次外延生长缓冲层2、n沟道层3、势垒层4、空穴提供层5、势垒插入层6和顶部p沟道层7,如图3所示;1. Select substrate 1, and sequentially epitaxially grow buffer layer 2, n-channel layer 3, barrier layer 4, hole providing layer 5, barrier insertion layer 6 and top p-channel layer 7, as shown in Figure 3 shown;
其中,衬底1选择Si衬底,采用外延生长的方法依次生长GaN缓冲层、n沟道层i-GaN、势垒层AlGaN、空穴提供层p-GaN、势垒插入层AlN、p沟道层p-GaN;Among them, the substrate 1 is a Si substrate, and the epitaxial growth method is used to sequentially grow a GaN buffer layer, an n-channel layer i-GaN, a barrier layer AlGaN, a hole providing layer p-GaN, a barrier insertion layer AlN, and a p-channel layer. Channel layer p-GaN;
2、利用光刻工艺在p沟道层p-GaN刻蚀出栅极凹陷区域,如图4所示;2. Use the photolithography process to etch the gate recessed area in the p-GaN layer of the p-channel layer, as shown in Figure 4;
3、外延生长栅介质层SiO2,然后利用光刻、剥离工艺制作源漏极Ni/Au并进行退火工艺,如图6所示;3. Epitaxially grow the gate dielectric layer SiO 2 , then use photolithography and stripping processes to make the source and drain Ni/Au and perform an annealing process, as shown in Figure 6;
4、利用光刻、剥离工艺制作栅极Ti/Au,得到如图2所示的肖特基栅p沟道GaN器件。4. Use photolithography and lift-off processes to make the gate Ti/Au to obtain the Schottky gate p-channel GaN device as shown in Figure 2.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310526901.3A CN117766561A (en) | 2023-05-11 | 2023-05-11 | P-channel gallium nitride heterojunction transistor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310526901.3A CN117766561A (en) | 2023-05-11 | 2023-05-11 | P-channel gallium nitride heterojunction transistor and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117766561A true CN117766561A (en) | 2024-03-26 |
Family
ID=90313275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310526901.3A Pending CN117766561A (en) | 2023-05-11 | 2023-05-11 | P-channel gallium nitride heterojunction transistor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117766561A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118553765A (en) * | 2024-07-31 | 2024-08-27 | 西交利物浦大学 | Semiconductor device and preparation method thereof |
CN118630013A (en) * | 2024-08-12 | 2024-09-10 | 西交利物浦大学 | Semiconductor device and method for manufacturing the same |
-
2023
- 2023-05-11 CN CN202310526901.3A patent/CN117766561A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118553765A (en) * | 2024-07-31 | 2024-08-27 | 西交利物浦大学 | Semiconductor device and preparation method thereof |
CN118630013A (en) * | 2024-08-12 | 2024-09-10 | 西交利物浦大学 | Semiconductor device and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12094962B2 (en) | Enhancement-mode semiconductor device and preparation method therefor | |
CN102386223B (en) | High-threshold voltage gallium nitride (GaN) enhancement metal oxide semiconductor heterostructure field effect transistor (MOSHFET) device and manufacturing method | |
CN104269434B (en) | A kind of HEMT | |
US20190296139A1 (en) | Transistor and Method for Manufacturing the Same | |
CN102856374B (en) | GaN enhanced MIS-HFET device and preparation method of same | |
CN113380623A (en) | Method for realizing enhanced HEMT (high Electron mobility transistor) through p-type passivation | |
CN106783960A (en) | A kind of ladder p GaN enhanced AlGaNs/GaN HFETs | |
CN104167445B (en) | GaN-based enhancement/depletion mode heterojunction field effect transistor with buried gate structure | |
CN108565283A (en) | GaN base T-type grid high-frequency element and its preparation method and application | |
CN104269433B (en) | Gallium-nitride-based enhancement type heterojunction field effect transistor with composite channel layer | |
CN117766561A (en) | P-channel gallium nitride heterojunction transistor and preparation method thereof | |
CN102945859A (en) | GaN heterojunction HEMT (High Electron Mobility Transistor) device | |
CN106298903A (en) | Secondary epitaxy p-type III group-III nitride realizes method and enhancement mode HEMT of enhancement mode HEMT | |
CN111081763B (en) | Normally-off HEMT device with honeycomb groove barrier layer structure below field plate and preparation method thereof | |
WO2020107754A1 (en) | Epitaxial layer structure for increasing threshold voltage of gan-enhanced mosfet and device fabrication method | |
CN106783961A (en) | A kind of AlGaN/GaN HFETs with part p-type GaN cap | |
CN102194819A (en) | Enhanced GaN heterojunction field effect transistor based on metal oxide semiconductor (MOS) control | |
CN109950323B (en) | Polarized superjunction III-nitride diode device and method of making the same | |
CN113745331A (en) | Group III nitride grooved gate normally-off P-channel HEMT device and manufacturing method thereof | |
WO2021072812A1 (en) | Lateral gan-based enhancement junction field-effect transistor device and preparation method therefor | |
CN106783963A (en) | A kind of AlGaN/GaN HFETs with the intrinsic GaN cap in part | |
CN108346695A (en) | Based on P-GaN HEMT T-type grid high-frequency element structures and its preparation method and application | |
CN105826369A (en) | Novel enhanced III-V heterojunction field effect transistor | |
CN110970499A (en) | GaN-based lateral superjunction device and fabrication method thereof | |
CN104157679A (en) | GaN-based enhancement type heterogeneous junction field effect transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |