[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN117712229B - 一种高效n型背接触太阳能电池制备工艺 - Google Patents

一种高效n型背接触太阳能电池制备工艺 Download PDF

Info

Publication number
CN117712229B
CN117712229B CN202311834474.1A CN202311834474A CN117712229B CN 117712229 B CN117712229 B CN 117712229B CN 202311834474 A CN202311834474 A CN 202311834474A CN 117712229 B CN117712229 B CN 117712229B
Authority
CN
China
Prior art keywords
silicon wafer
type
type silicon
efficiency
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311834474.1A
Other languages
English (en)
Other versions
CN117712229A (zh
Inventor
王伟
江俊杰
杨伟锋
吴仕梁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ma'anshan Lingzhong New Energy Technology Co ltd
Jiangsu Lingzhong New Energy Technology Co ltd
Original Assignee
Ma'anshan Lingzhong New Energy Technology Co ltd
Jiangsu Lingzhong New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ma'anshan Lingzhong New Energy Technology Co ltd, Jiangsu Lingzhong New Energy Technology Co ltd filed Critical Ma'anshan Lingzhong New Energy Technology Co ltd
Priority to CN202311834474.1A priority Critical patent/CN117712229B/zh
Publication of CN117712229A publication Critical patent/CN117712229A/zh
Application granted granted Critical
Publication of CN117712229B publication Critical patent/CN117712229B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开一种高效N型背接触电池的制备工艺,对N型硅片进行双面抛光处理;在高温炉管中进行硼扩散,形成p+层;对非硼扩散面进行单面制绒;对制绒面进行磷扩散;清洗去除硅片正背面PSG/BSG层;在高温炉中进行热氧化;正面进行氮化硅沉积,背面进行氧化铝膜沉积,叠加氮化硅;背面局部采用激光进行N区图形化,形成P/N叉指装交错图形,随后在碱液中将激光的N区刻蚀抛光;在背面通过气体种类和流量的控制依次进行氧化硅、掺杂多晶硅层的沉积;在碱液中刻蚀去掉正面绕度;对背面进行氮化硅层架;背面P区进行氮化硅/掺杂多晶硅层的开膜;将P区印刷银铝浆,N区印刷银浆。本发明实现了P区和N区的不同钝化膜结构,使得钝化效果最大化,提升电池效率。

Description

一种高效N型背接触太阳能电池制备工艺
技术领域
本发明涉及一种高效N型背接触太阳能电池制备工艺,属于太阳能光伏发电即技术领域,尤其适应于太阳能光伏电池的生产制造。
背景技术
背接触太阳能电池是一种正负电极都在背面,正面没有栅线的电池结构,一般电池转换效率较高,但工艺难度较大,成本相对较高,一定程度上限制了其发展。近年来随着接触钝化技术的应用,电池转换效率有了较大的提升,开路电压和填充因子几乎达到理论极限,进一步提升电池效率的难度越来越大,背接触接触由于正面没有栅线遮挡,将大大提升短路电流,此外背接触电池具有单面高效率、外观独特、更易轻质化等原因,更适合分布式光伏系统,行业又掀起了背接触电池的研究热潮。
背接触电池结构有很多种类型,哪种结构结构设计能够产业化,取决于其成本和转化效率,不同的结构设计其工艺复杂程度以及达到效率差异较大,已经产业化的背接触电池有,以Sunpower、爱旭公司为代表的基于N型硅片的背接触电池,金属化采用电镀工艺实现,正负极均采用接触钝化,成本较高,黄河水电公司工艺过程需要低温银浆,成本比较高,工艺流程比较复杂;另一类是以隆基为代表的,基于P型硅片的背接触电池,由于正极采用铝浆,成本相对较低,效率与目前主流的N型电池如N-TOPCon、HJT电池相当,进一步提升难度效率的难度较大。
发明内容
发明目的:针对现有技术中存在的问题与不足,本发明提出了一种高效N型背接触电池的制备工艺,以低成本的方式实现高效N型背接触电池的制备工艺方案,工艺流程与目前N-TOPCon电池兼容度较高,成本低,效率可以与Sunpower、爱旭公司的双极接触钝化电池相当。
技术方案:一种高效N型背接触电池的制备工艺,包括如下步骤:
步骤1,对N型硅片,进行双面抛光处理;
步骤2,在高温炉管中对N型硅片进行硼扩散,形成p+层;
步骤3,对N型硅片的非硼扩散面进行单面制绒;
步骤4,对N型硅片的制绒面进行磷扩散;
步骤5,清洗去除N型硅片正背面PSG/BSG层;
步骤6,将N型硅片在高温炉中进行热氧化;
步骤7,对N型硅片的正面进行氮化硅沉积,背面进行氧化铝膜沉积,叠加氮化硅;
步骤8,对N型硅片的背面局部采用激光进行N区图形化,形成P/N叉指装交错图形,随后在碱液中将激光的N区刻蚀抛光;
步骤9,在N型硅片的背面通过气体种类和流量的控制依次进行氧化硅、掺杂多晶硅层的沉积;
步骤10,在碱液中刻蚀去掉N型硅片正面绕度;
步骤11,对N型硅片的背面进行氮化硅沉积;
步骤12,对N型硅片背面P区进行氮化硅/掺杂多晶硅层的开膜;
步骤13,将N型硅片的P区印刷银铝浆,N区印刷银浆。
所述步骤1中,选择电阻率为0.3~3Ω.cm的N型硅片,进行双面抛光处理。
所述步骤2中,采用BBr3或BCl3在高温炉管中对硅片进行硼扩散,形成p+层。
所述步骤4中,制绒面进行磷扩散,采用POCl3作为扩散源,800-950℃的高温扩散。
所述步骤6中,在高温炉中的温度为550-850℃。
所述步骤7中,N型硅片正面采用PECVD进行氮化硅沉积,背面通过ALD/PECVD等方式进行氧化铝膜沉积,叠加氮化硅。
所述步骤9中,采用PECVD、LPCVD、PVD、APCVD等方式在背面通过气体种类和流量的控制依次进行氧化硅、掺杂多晶硅层的沉积,沉积的氧化硅的厚度为0.5-2nm,掺杂多晶硅的厚度为50-400nm 。
有益效果:与现有技术相比,本发明提供的高效N型背接触太阳能电池制备工艺,主要创新内容是实现了P区和N区的不同钝化膜结构,使得钝化效果最大化,提升电池效率,具有如下优点:
(1)通过前表面场的设计,氧化硅+掺杂多晶硅层的接触钝化结构,增加背面载流子的收集,提升电池转化效率;
(2)步骤9中,背面N区采用与N-TOPCon电池相同的接触钝化结构,步骤2中,背面P区采用N-TOPCon正面相同的结构,结合激光诱导烧结,降低金属接触区的复合,相比N-TOPCon不增加成本,但将N-TOPCon的正电极移到了背面,正面没有遮光,电流会大幅度增加,转化效率提升。
附图说明
图1是本发明实施例的工艺流程图;
图2是本发明实施例工艺加工实现的太阳能电池结构示意图。
具体实施方式
下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
如图1所示,一种高效N型背接触电池的制备工艺,包括如下步骤:
步骤1,选择电阻率为0.3~3Ω.cm的N型硅片,对N型硅片,进行双面抛光处理;
步骤2,采用BBr3或BCl3在高温炉管中对N型硅片进行硼扩散,形成p+层;
步骤3,对N型硅片的非硼扩散面进行单面制绒,采用POCl3作为扩散源,800-950℃的高温扩散;
步骤4,对N型硅片的制绒面进行磷扩散;
步骤5,清洗去除N型硅片正背面PSG/BSG层;
步骤6,将N型硅片在温度为550-850℃的高温炉中进行热氧化;
步骤7,对N型硅片的正面采用PECVD进行氮化硅沉积,背面通过ALD/PECVD等方式进行氧化铝膜沉积,叠加氮化硅;
步骤8,对N型硅片的背面局部采用激光进行N区图形化,形成P/N叉指装交错图形,随后在碱液中将激光的N区刻蚀抛光;
步骤9,采用PECVD、LPCVD、PVD、APCVD等方式在N型硅片的背面通过气体种类和流量的控制依次进行氧化硅、掺杂多晶硅层的沉积;
步骤10,在碱液中刻蚀去掉N型硅片正面绕度;
步骤11,对N型硅片的背面进行氮化硅沉积;
步骤12,对N型硅片背面P区进行氮化硅/掺杂多晶硅层的开膜;
步骤13,将N型硅片的P区印刷银铝浆,N区印刷银浆。
如图2所示,该太阳能电池采用N型硅片作为衬底,正面有通过磷扩散方式形成的n+区域作为前表面场,然后采用氧化硅/氮化硅的叠层膜进行表面钝化和减反射;电池背面负极P区为硼扩散形成的p+层,采用表面使用氧化铝/氮化硅的叠层膜,正极N区采用氧化硅/掺杂多晶硅的接触钝化结构,表面采用氧化硅/氮化硅的叠层结构进行钝化和减反射。负极的电极为银铝浆,正极的电极材料的银浆。

Claims (7)

1.一种高效N型背接触电池的制备工艺,其特征在于,包括如下步骤:
步骤1,对N型硅片,进行双面抛光处理;
步骤2,在高温炉管中对N型硅片进行硼扩散,形成p+层;
步骤3,对N型硅片的非硼扩散面进行单面制绒;
步骤4,对N型硅片的制绒面进行磷扩散;
步骤5,清洗去除N型硅片正背面PSG/BSG层;
步骤6,将N型硅片在高温炉中进行热氧化;
步骤7,对N型硅片的正面进行氮化硅沉积,背面进行氧化铝膜沉积,叠加氮化硅;
步骤8,对N型硅片的背面局部采用激光进行N区图形化,形成P/N叉指装交错图形,随后在碱液中将激光的N区刻蚀抛光;
步骤9,在 N 型硅片的背面通过气体种类和流量的控制依次进行氧化硅、N 型掺杂多晶硅层的沉积;
步骤10,在碱液中刻蚀去掉N型硅片正面绕镀;
步骤11,对N型硅片的背面进行氮化硅沉积;
步骤12,对N型硅片背面P区进行氮化硅/掺杂多晶硅层的开膜;
步骤13,将N型硅片的P区印刷银铝浆,N区印刷银浆。
2.根据权利要求1所述的高效N型背接触电池的制备工艺,其特征在于,所述步骤1中,选择电阻率为0.3~3Ω.cm的N型硅片,进行双面抛光处理。
3.根据权利要求1所述的高效N型背接触电池的制备工艺,其特征在于,所述步骤2中,采用BBr3或BCl3在高温炉管中对硅片进行硼扩散,形成p+层。
4.根据权利要求1所述的高效N型背接触电池的制备工艺,其特征在于,所述步骤4中,制绒面进行磷扩散,采用POCl3作为扩散源,800-950℃的高温扩散。
5.根据权利要求1所述的高效N型背接触电池的制备工艺,其特征在于,所述步骤6中,在高温炉中的温度为550-850℃。
6.根据权利要求1所述的高效N型背接触电池的制备工艺,其特征在于,所述步骤7中,N型硅片正面采用PECVD进行氮化硅沉积,背面通过ALD/PECVD的方式进行氧化铝膜沉积,叠加氮化硅。
7.根据权利要求1所述的高效N型背接触电池的制备工艺,其特征在于,所述步骤9中,采用PECVD、LPCVD、PVD、APCVD的方式在背面通过气体种类和流量的控制依次进行氧化硅、掺杂多晶硅层的沉积。
CN202311834474.1A 2023-12-28 2023-12-28 一种高效n型背接触太阳能电池制备工艺 Active CN117712229B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311834474.1A CN117712229B (zh) 2023-12-28 2023-12-28 一种高效n型背接触太阳能电池制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311834474.1A CN117712229B (zh) 2023-12-28 2023-12-28 一种高效n型背接触太阳能电池制备工艺

Publications (2)

Publication Number Publication Date
CN117712229A CN117712229A (zh) 2024-03-15
CN117712229B true CN117712229B (zh) 2024-10-01

Family

ID=90151595

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311834474.1A Active CN117712229B (zh) 2023-12-28 2023-12-28 一种高效n型背接触太阳能电池制备工艺

Country Status (1)

Country Link
CN (1) CN117712229B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244194A (zh) * 2018-11-06 2019-01-18 东方日升(常州)新能源有限公司 一种低成本p型全背电极晶硅太阳电池的制备方法
CN110838536A (zh) * 2019-11-28 2020-02-25 泰州中来光电科技有限公司 具有多种隧道结结构的背接触太阳能电池及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851698B2 (en) * 2008-06-12 2010-12-14 Sunpower Corporation Trench process and structure for backside contact solar cells with polysilicon doped regions
CN112164728A (zh) * 2020-10-29 2021-01-01 天合光能股份有限公司 图形化的钝化接触太阳能电池及其制造方法
CN113113510A (zh) * 2021-04-09 2021-07-13 通威太阳能(成都)有限公司 一种p型双面perc太阳电池及其制备方法和应用
CN114242801A (zh) * 2021-12-07 2022-03-25 普乐新能源科技(徐州)有限公司 一种背面钝化接触结构的hbc太阳能电池及其制备方法
CN114678446B (zh) * 2022-03-25 2024-07-12 江苏润阳世纪光伏科技有限公司 一种低成本接触钝化全背电极太阳能电池及其制备方法
CN115020508A (zh) * 2022-06-17 2022-09-06 青海黄河上游水电开发有限责任公司西宁太阳能电力分公司 一种全背接触太阳能电池及其制作方法
CN115566099A (zh) * 2022-08-22 2023-01-03 泰州隆基乐叶光伏科技有限公司 一种太阳能电池的制造方法
CN115692548B (zh) * 2022-11-24 2024-10-11 通威太阳能(成都)有限公司 太阳电池及其制备方法
CN219350243U (zh) * 2023-04-13 2023-07-14 正泰新能科技有限公司 一种p型晶硅TBC太阳能电池
CN116525708B (zh) * 2023-07-05 2023-09-12 福建金石能源有限公司 正面宽带隙掺杂的联合钝化背接触太阳电池及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244194A (zh) * 2018-11-06 2019-01-18 东方日升(常州)新能源有限公司 一种低成本p型全背电极晶硅太阳电池的制备方法
CN110838536A (zh) * 2019-11-28 2020-02-25 泰州中来光电科技有限公司 具有多种隧道结结构的背接触太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN117712229A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
CN115621333B (zh) 双面隧穿氧化硅钝化的背接触太阳能电池及其制备方法
CN114678446B (zh) 一种低成本接触钝化全背电极太阳能电池及其制备方法
CN110707178A (zh) N型太阳能电池硼扩se结构的制备方法
CN108666376B (zh) 一种p型背接触太阳电池及其制备方法
CN213519984U (zh) 太阳能电池
CN108666386B (zh) 一种p型背接触太阳电池及其制备方法
CN110690297A (zh) 一种p型隧穿氧化物钝化接触太阳能电池及其制备方法
CN102683493A (zh) N型晶体硅双面背接触太阳电池的制备方法
CN113644142A (zh) 一种具有钝化接触的太阳能电池及其制备方法
CN1719621A (zh) 一种硅太阳电池的结构与制作方法
CN210349847U (zh) 一种p型隧穿氧化物钝化接触太阳能电池
CN116705915A (zh) 一种新型双面TOPCon电池的制备方法
CN116682891A (zh) 一种高效双polo ibc电池结构的制备方法
CN112382698A (zh) 适用于碱抛工艺单晶perc-se双面电池制作方法
CN201323204Y (zh) 一种背点接触异质结太阳能电池
US20230361227A1 (en) Laminated passivation structure of solar cell and preparation method thereof
CN117712229B (zh) 一种高效n型背接触太阳能电池制备工艺
CN114725225A (zh) 一种高效p型ibc电池及其制备方法
CN209675296U (zh) 背接触太阳电池
CN111599873A (zh) 背接触太阳电池
CN103035771B (zh) N型mwt太阳能电池结构及其制造工艺
CN102522453B (zh) 一种场效应晶体硅太阳能电池的制作方法
CN110600561A (zh) 一种ibc电池叉指状pn结的电池结构及其制备方法
CN109461783A (zh) 一种双面晶硅太阳能电池及其制作方法
CN212874518U (zh) 太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant