[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN117594658B - A trench field effect transistor and a method for manufacturing the same - Google Patents

A trench field effect transistor and a method for manufacturing the same Download PDF

Info

Publication number
CN117594658B
CN117594658B CN202311550132.7A CN202311550132A CN117594658B CN 117594658 B CN117594658 B CN 117594658B CN 202311550132 A CN202311550132 A CN 202311550132A CN 117594658 B CN117594658 B CN 117594658B
Authority
CN
China
Prior art keywords
dielectric layer
body region
trench
forming
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311550132.7A
Other languages
Chinese (zh)
Other versions
CN117594658A (en
Inventor
马献
刘杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Xiner Semiconductor Technology Co Ltd
Original Assignee
Shenzhen Xiner Semiconductor Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Xiner Semiconductor Technology Co Ltd filed Critical Shenzhen Xiner Semiconductor Technology Co Ltd
Priority to CN202311550132.7A priority Critical patent/CN117594658B/en
Publication of CN117594658A publication Critical patent/CN117594658A/en
Application granted granted Critical
Publication of CN117594658B publication Critical patent/CN117594658B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

The invention discloses a groove type field effect transistor and a preparation method thereof, which belong to the technical field of semiconductors, and the groove type field effect transistor comprises: a substrate layer; an epitaxial layer; a first body region; a second body region; a first trench; a second trench; a first source region; and a second source region. According to the invention, the depth of the first body region and the depth of the second body region are preset, so that the depth of the second body region is smaller than that of the first body region, and the second body region with the shallower depth compared with that of the first body region is obtained, so that the length of the body region is reduced, and the threshold voltage for starting the diode is further reduced, and the body diode is started at a lower threshold voltage, thereby reducing the reverse freewheeling power consumption.

Description

一种沟槽型场效应晶体管及其制备方法A trench field effect transistor and a method for manufacturing the same

技术领域Technical Field

本发明涉及半导体技术领域,尤其涉及一种沟槽型场效应晶体管及其制备方法。The present invention relates to the field of semiconductor technology, and in particular to a trench field effect transistor and a preparation method thereof.

背景技术Background Art

沟槽型场效应晶体管在半导体技术领域扮演着不可或缺的角色,对于功率半导体器件的发展至关重要。然而,由于半导体技术领域的高度复杂性,传统的沟槽MOS自带的寄生二极管是由其P型体基区和N型外延层所构成的PN结二极管,其开启电压在1V左右,存在当反向续流时,电流通过体二极管,产生开启电压较高、功耗较大。Trench field effect transistors play an indispensable role in the field of semiconductor technology and are crucial to the development of power semiconductor devices. However, due to the high complexity of the field of semiconductor technology, the parasitic diode of the traditional trench MOS is a PN junction diode composed of its P-type body base region and N-type epitaxial layer, and its turn-on voltage is around 1V. When the reverse current flows, the current passes through the body diode, resulting in a higher turn-on voltage and greater power consumption.

因此,如何以更低的开启电压开启体二极管,实现降低反向续流功耗成为亟待解决的问题。Therefore, how to turn on the body diode with a lower turn-on voltage to reduce the reverse freewheeling power consumption becomes an urgent problem to be solved.

发明内容Summary of the invention

基于此,本申请实施例提供了一种沟槽型场效应晶体管及其制备方法,以解决当前传统的沟槽MOS自带的寄生二极管在反向续流时,电流通过体二极管,产生开启电压较高、功耗较大的问题。Based on this, an embodiment of the present application provides a trench field effect transistor and a method for preparing the same, in order to solve the problem that when the parasitic diode of the current traditional trench MOS is reversely freewheeling, the current passes through the body diode, resulting in a high turn-on voltage and high power consumption.

第一方面,本申请实施例提供一种沟槽型场效应晶体管及其制备方法,包括:In a first aspect, an embodiment of the present application provides a trench field effect transistor and a method for manufacturing the same, including:

第一导电类型的衬底层;a substrate layer of a first conductivity type;

第一导电类型的外延层,所述外延层位于所述衬底层上;An epitaxial layer of a first conductivity type, the epitaxial layer being located on the substrate layer;

第二导电类型的第一体区,所述第一体区位于所述外延层上;a first body region of a second conductivity type, the first body region being located on the epitaxial layer;

第二导电类型的第二体区,所述第二体区位于所述外延层上,所述第一体区和所述第二体区相邻,所述第二体区的深度小于所述第一体区的深度;A second body region of a second conductivity type, the second body region being located on the epitaxial layer, the first body region and the second body region being adjacent to each other, and a depth of the second body region being less than a depth of the first body region;

第一沟槽,所述第一沟槽沿深度方向贯穿所述第一体区,并延伸至所述外延层内部,所述第一沟槽中设置有第一栅极结构;a first trench, the first trench penetrating the first body region along a depth direction and extending to the inside of the epitaxial layer, a first gate structure being disposed in the first trench;

第二沟槽,所述第二沟槽沿深度方向贯穿所述第二体区,并延伸至所述外延层内部,所述第二沟槽中设置有第二栅极结构;a second trench, the second trench penetrating the second body region along a depth direction and extending into the interior of the epitaxial layer, wherein a second gate structure is disposed in the second trench;

第一导电类型的第一源区,所述第一源区位于所述第一体区上;a first source region of a first conductivity type, the first source region being located on the first body region;

第一导电类型的第二源区,所述第二源区位于所述第二体区上。A second source region of the first conductivity type is located on the second body region.

可选的,所述第二体区的离子掺杂浓度小于所述第一体区的离子掺杂浓度。Optionally, the ion doping concentration of the second body region is less than the ion doping concentration of the first body region.

可选的,形成所述第一栅极结构包括:形成所述第一栅极结构的第一介质层,位于所述第一介质层上的第一栅极;Optionally, forming the first gate structure includes: forming a first dielectric layer of the first gate structure, and a first gate located on the first dielectric layer;

形成所述第二栅极结构包括:形成所述第二栅极结构的第二介质层,位于所述第二介质层上的第二栅极,所述第二介质层的厚度小于所述第一介质层的厚度。Forming the second gate structure includes: forming a second dielectric layer of the second gate structure, and a second gate located on the second dielectric layer, wherein the thickness of the second dielectric layer is less than the thickness of the first dielectric layer.

可选的,形成所述第二栅极结构的第二介质层包括:形成位于所述第二沟槽底部上方的底部介质层,位于所述第二沟槽侧壁上的上壁介质层,以及位于所述第二沟槽侧壁上的下壁介质层,所述上壁介质层位于所述下壁介质层的上方,所述上壁介质层的厚度小于所述下壁介质层的厚度。Optionally, forming the second dielectric layer of the second gate structure includes: forming a bottom dielectric layer located above the bottom of the second trench, an upper wall dielectric layer located on the side wall of the second trench, and a lower wall dielectric layer located on the side wall of the second trench, the upper wall dielectric layer is located above the lower wall dielectric layer, and the thickness of the upper wall dielectric layer is less than the thickness of the lower wall dielectric layer.

可选的,所述第二栅极结构上设置有预设形状的第一接触孔,所述第一源区和所述第二源区之间设置有第二接触孔,所述第一接触孔、所述第二接触孔中填有金属,用于通过所述第一接触孔、所述金属、以及所述第二接触孔连接所述第二栅极结构和所述第一源区、所述第二源区。Optionally, a first contact hole of a preset shape is provided on the second gate structure, a second contact hole is provided between the first source region and the second source region, and the first contact hole and the second contact hole are filled with metal for connecting the second gate structure and the first source region and the second source region through the first contact hole, the metal, and the second contact hole.

可选的,所述第一接触孔、所述第二接触孔的深度范围是0.3um-0.5um,宽度范围是0.2um-0.4um。Optionally, the first contact hole and the second contact hole have a depth range of 0.3um-0.5um, and a width range of 0.2um-0.4um.

可选的,所述第一体区的深度范围是1um-2um,所述第二体区的深度范围是0.5um-1um。Optionally, the depth range of the first body region is 1um-2um, and the depth range of the second body region is 0.5um-1um.

可选的,层间介质层,位于所述第一源区和所述第二源区上。Optionally, an interlayer dielectric layer is located on the first source region and the second source region.

可选的,金属层,位于所述层间介质层上。Optionally, a metal layer is located on the interlayer dielectric layer.

第二方面,本申请实施例提供一种沟槽型场效应晶体管及其制备方法,包括:In a second aspect, the present invention provides a trench field effect transistor and a method for manufacturing the same, including:

提供第一导电类型的衬底层;providing a substrate layer of a first conductivity type;

在所述衬底层上形成第一导电类型的外延层;forming an epitaxial layer of a first conductivity type on the substrate layer;

形成沿深度方向延伸至所述外延层内部的第一沟槽,在所述第一沟槽中形成第一栅极结构;形成沿深度方向延伸至所述外延层内部的第二沟槽,在所述第二沟槽中形成第二栅极结构;Forming a first trench extending into the epitaxial layer along a depth direction, and forming a first gate structure in the first trench; forming a second trench extending into the epitaxial layer along a depth direction, and forming a second gate structure in the second trench;

在所述外延层上形成第二导电类型的第一体区,使所述第一沟槽贯穿所述第一体区,在所述外延层上形成第二导电类型的第二体区,使所述第二沟槽贯穿所述第二体区,所述第二体区的深度小于所述第一体区的深度;forming a first body region of a second conductivity type on the epitaxial layer, so that the first trench penetrates the first body region, forming a second body region of a second conductivity type on the epitaxial layer, so that the second trench penetrates the second body region, and the depth of the second body region is less than the depth of the first body region;

在所述第一体区上形成第一导电类型的第一源区,在所述第二体区上形成第一导电类型的第二源区。A first source region of a first conductivity type is formed on the first body region, and a second source region of the first conductivity type is formed on the second body region.

可选的,在所述第一沟槽中形成第一栅极结构包括:Optionally, forming a first gate structure in the first trench includes:

在所述第一沟槽的内壁上生长第一预设厚度的第一介质层,对所述第一介质层进行刻蚀,保留位于所述第一沟槽底部的所述第一介质层;Growing a first dielectric layer of a first preset thickness on the inner wall of the first trench, etching the first dielectric layer, and retaining the first dielectric layer at the bottom of the first trench;

在所述第一沟槽的侧壁上生长第二预设厚度的第一介质层,在所述第一介质层上淀积第一栅极,刻蚀部分所述第一栅极,得到所述第一沟槽中的第一栅极结构。A first dielectric layer of a second preset thickness is grown on the sidewall of the first trench, a first gate is deposited on the first dielectric layer, and a portion of the first gate is etched to obtain a first gate structure in the first trench.

可选的,在所述第二沟槽中形成第二栅极结构包括:Optionally, forming a second gate structure in the second trench includes:

在所述第一沟槽中的第一栅极结构上涂覆光刻胶,对所述第二沟槽中栅极的上部、介质层的上部进行刻蚀,保留所述栅极的下部,将所述介质层的下部作为第二介质层的底部介质层和下壁介质层;Coating a photoresist on the first gate structure in the first trench, etching the upper part of the gate and the upper part of the dielectric layer in the second trench, retaining the lower part of the gate, and using the lower part of the dielectric layer as the bottom dielectric layer and the lower wall dielectric layer of the second dielectric layer;

对所述栅极的下部进行刻蚀,去除所述光刻胶,生长上壁介质层,所述上壁介质层位于所述下壁介质层上方,由所述底部介质层、下部介质层、上壁介质层形成第二介质层;Etching the lower part of the gate to remove the photoresist and grow an upper wall dielectric layer, wherein the upper wall dielectric layer is located above the lower wall dielectric layer, and a second dielectric layer is formed by the bottom dielectric layer, the lower dielectric layer and the upper wall dielectric layer;

在所述第二介质层上淀积第二栅极,刻蚀部分所述第二栅极,得到所述第二沟槽中的第二栅极结构。A second gate is deposited on the second dielectric layer, and a portion of the second gate is etched to obtain a second gate structure in the second trench.

本申请实施例相对于现有技术相比存在的有益效果是:通过预设第一体区、第二体区的深度,使第二体区的深度小于所述第一体区的深度,得到相较于第一体区来说体区深度较浅的第二体区,降低了体区的长度,进而降低了二极管开启的阈值电压,从而以较低的阈值电压开启了体二极管,实现了降低反向续流功耗。The beneficial effect of the embodiments of the present application compared with the prior art is as follows: by presetting the depths of the first body region and the second body region, the depth of the second body region is made smaller than the depth of the first body region, thereby obtaining a second body region with a shallower body region depth than the first body region, thereby reducing the length of the body region, and further reducing the threshold voltage for turning on the diode, thereby turning on the body diode with a lower threshold voltage, thereby reducing the reverse freewheeling power consumption.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the accompanying drawings required for use in the description of the embodiments of the present invention will be briefly introduced below. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For ordinary technicians in this field, other accompanying drawings can be obtained based on these accompanying drawings without paying creative labor.

图1为本发明一实施例提供的一种沟槽型场效应晶体管结构的示意图;FIG1 is a schematic diagram of a trench field effect transistor structure provided by an embodiment of the present invention;

图2为本发明一实施例提供的一种沟槽型场效应晶体管的各个制备过程下得到的相应结构示意图;FIG2 is a schematic diagram of the corresponding structures obtained in various preparation processes of a trench field effect transistor provided by an embodiment of the present invention;

图3是本发明一实施例提供的一种沟槽型场效应晶体管的各个制备过程下得到的相应结构示意图;3 is a schematic diagram of the corresponding structures obtained in various preparation processes of a trench field effect transistor provided by an embodiment of the present invention;

图4-图14是本发明一实施例提供的一种沟槽型场效应晶体管的制备方法流程图;4 to 14 are flow charts of a method for preparing a trench field effect transistor according to an embodiment of the present invention;

图15是本发明一实施例提供的一种沟槽型场效应晶体管的制备方法流程图;15 is a flow chart of a method for preparing a trench field effect transistor according to an embodiment of the present invention;

图16是本发明一实施例提供的一种沟槽型场效应晶体管的制备方法流程图;16 is a flow chart of a method for preparing a trench field effect transistor according to an embodiment of the present invention;

图17-图27是本发明另一实施例提供的一种沟槽型场效应晶体管的制备方法流程图;17 to 27 are flow charts of a method for preparing a trench field effect transistor according to another embodiment of the present invention;

标号说明:Description of labels:

101、衬底层;102、外延层;103、第一体区;104、第二体区;105、第一沟槽;106、第一栅极结构;107、第二沟槽;108、第二栅极结构;109、第一源区;110、第二源区;111、第一栅极;112、第一介质层;112-1、第一底部介质层;113、第二栅极;114、第二介质层;114-1底部介质层;114-2下壁介质层;114-3上壁介质层;115、层间介质层;116、金属层;117、第一接触孔;118、第二接触孔;119、硬掩模介质层;120、光刻胶。101. substrate layer; 102. epitaxial layer; 103. first body region; 104. second body region; 105. first trench; 106. first gate structure; 107. second trench; 108. second gate structure; 109. first source region; 110. second source region; 111. first gate; 112. first dielectric layer; 112-1. first bottom dielectric layer; 113. second gate; 114. second dielectric layer; 114-1 bottom dielectric layer; 114-2 lower wall dielectric layer; 114-3 upper wall dielectric layer; 115. interlayer dielectric layer; 116. metal layer; 117. first contact hole; 118. second contact hole; 119. hard mask dielectric layer; 120. photoresist.

具体实施方式DETAILED DESCRIPTION

以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。In the following description, specific details such as specific system structures, technologies, etc. are provided for the purpose of illustration rather than limitation, so as to provide a thorough understanding of the embodiments of the present application. However, it should be clear to those skilled in the art that the present application may also be implemented in other embodiments without these specific details. In other cases, detailed descriptions of well-known systems, devices, circuits, and methods are omitted to prevent unnecessary details from obstructing the description of the present application.

应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。It should be understood that when used in the present specification and the appended claims, the term "comprising" indicates the presence of described features, wholes, steps, operations, elements and/or components, but does not exclude the presence or addition of one or more other features, wholes, steps, operations, elements, components and/or combinations thereof.

还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。It should also be understood that the term “and/or” used in the specification and appended claims refers to any and all possible combinations of one or more of the associated listed items, and includes these combinations.

如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。As used in the specification and appended claims of this application, the term "if" can be interpreted as "when" or "uponce" or "in response to determining" or "in response to detecting", depending on the context. Similarly, the phrase "if it is determined" or "if [described condition or event] is detected" can be interpreted as meaning "uponce it is determined" or "in response to determining" or "uponce [described condition or event] is detected" or "in response to detecting [described condition or event]", depending on the context.

另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。In addition, in the description of the present application specification and the appended claims, the terms "first", "second", "third", etc. are only used to distinguish the descriptions and cannot be understood as indicating or implying relative importance.

在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。References to "one embodiment" or "some embodiments" etc. described in the specification of this application mean that one or more embodiments of the present application include specific features, structures or characteristics described in conjunction with the embodiment. Therefore, the statements "in one embodiment", "in some embodiments", "in some other embodiments", "in some other embodiments", etc. that appear in different places in this specification do not necessarily refer to the same embodiment, but mean "one or more but not all embodiments", unless otherwise specifically emphasized in other ways. The terms "including", "comprising", "having" and their variations all mean "including but not limited to", unless otherwise specifically emphasized in other ways.

应理解,以下实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。It should be understood that the size of the serial numbers of the steps in the following embodiments does not mean the order of execution. The execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.

为了说明本申请的技术方案,下面通过具体实施例来进行说明。In order to illustrate the technical solution of the present application, a specific embodiment is provided below for illustration.

在一实施例中,如图1所示,提供的一种沟槽型场效应晶体管,包括:In one embodiment, as shown in FIG. 1 , a trench field effect transistor is provided, comprising:

第一导电类型的衬底层101;A substrate layer 101 of a first conductivity type;

第一导电类型的外延层102,所述外延层102位于所述衬底层101上;An epitaxial layer 102 of a first conductivity type, wherein the epitaxial layer 102 is located on the substrate layer 101;

第二导电类型的第一体区103,所述第一体区103位于所述外延层102上;A first body region 103 of a second conductivity type, wherein the first body region 103 is located on the epitaxial layer 102;

第二导电类型的第二体区104,所述第二体区104位于所述外延层102上,所述第一体区103和所述第二体区104相邻,所述第二体区104的深度小于所述第一体区103的深度;A second body region 104 of a second conductivity type, the second body region 104 is located on the epitaxial layer 102, the first body region 103 and the second body region 104 are adjacent, and the depth of the second body region 104 is less than the depth of the first body region 103;

第一沟槽105,所述第一沟槽105沿深度方向贯穿所述第一体区103,并延伸至所述外延层102内部,所述第一沟槽105中设置有第一栅极结构106;A first trench 105, wherein the first trench 105 penetrates the first body region 103 along a depth direction and extends to the inside of the epitaxial layer 102, and a first gate structure 106 is disposed in the first trench 105;

第二沟槽107,所述第二沟槽107沿深度方向贯穿所述第二体区104,并延伸至所述外延层102内部,所述第二沟槽107中设置有第二栅极结构108;A second trench 107, wherein the second trench 107 penetrates the second body region 104 along a depth direction and extends to the inside of the epitaxial layer 102, and a second gate structure 108 is disposed in the second trench 107;

第一导电类型的第一源区109,所述第一源区109位于所述第一体区103上;A first source region 109 of a first conductivity type, wherein the first source region 109 is located on the first body region 103;

第一导电类型的第二源区110所述第二源区110位于所述第二体区104上。A second source region 110 of the first conductivity type is located on the second body region 104 .

上述的沟槽型场效应晶体管中,衬底层101为第一导电类型,第一导电类型可以为N型,也可以为P型,衬底层101中掺杂的离子为N型重掺杂离子,N型掺杂离子可以为铝离子、硼离子以及铟(In)和镓(Ga)等。In the above-mentioned trench field effect transistor, the substrate layer 101 is of the first conductivity type, which can be N-type or P-type. The ions doped in the substrate layer 101 are N-type heavily doped ions, which can be aluminum ions, boron ions, indium (In), gallium (Ga), etc.

上述的沟槽型场效应晶体管中,外延层102为第一导电类型,外延层102中掺杂的离子为N型轻掺杂离子,N型轻掺杂离子可以为氮离子、磷离子等。In the above trench field effect transistor, the epitaxial layer 102 is of the first conductivity type, and the ions doped in the epitaxial layer 102 are N-type lightly doped ions, which may be nitrogen ions, phosphorus ions, and the like.

上述的沟槽型场效应晶体管中,第一体区103为P型,第一体区103通常具有与外延层102相反的导电类型,例如,在N型体区中,通常添加磷(P)等掺杂物质,而在P型体区中,通常添加硼(B)等掺杂物质。In the above-mentioned trench field effect transistor, the first body region 103 is P-type, and the first body region 103 usually has a conductivity type opposite to that of the epitaxial layer 102. For example, in the N-type body region, doping materials such as phosphorus (P) are usually added, and in the P-type body region, doping materials such as boron (B) are usually added.

上述的沟槽型场效应晶体管中,第二体区104为P型,第二体区104通常通过离子注入扩散等掺杂技术形成,第二体区104通常具有与外延层102相反的导电类型。In the above trench field effect transistor, the second body region 104 is of P type. The second body region 104 is usually formed by doping techniques such as ion implantation and diffusion. The second body region 104 usually has a conductivity type opposite to that of the epitaxial layer 102 .

上述的沟槽型场效应晶体管中,第一沟槽105按照预设形状进行刻蚀,穿过半导体器件的第一体区103,延伸至外延层102内部。举例说明,沟槽通常通过光刻或者刻蚀等制造过程创建,光刻用于定义沟槽的形状,刻蚀用于将沟槽延预设方向刻入半导体材料,沟槽的深度和形状取决于器件的设计和所需的功能。In the above trench field effect transistor, the first trench 105 is etched according to a preset shape, passes through the first body region 103 of the semiconductor device, and extends to the inside of the epitaxial layer 102. For example, the trench is usually created by a manufacturing process such as photolithography or etching. Photolithography is used to define the shape of the trench, and etching is used to carve the trench into the semiconductor material along a preset direction. The depth and shape of the trench depend on the design of the device and the required function.

上述的沟槽型场效应晶体管中,第二沟槽107按照预设形状进行刻蚀,穿过半导体器件的第二体区104,延伸至外延层102内部。举例说明,沟槽通常用于隔离不同部分的器件,定义电子元件的边界或形状,在半导体器件中,沟槽一般用于分离不同电子元件,以确保各电子元件之间互不干扰。In the above-mentioned trench field effect transistor, the second trench 107 is etched according to a preset shape, passes through the second body region 104 of the semiconductor device, and extends to the inside of the epitaxial layer 102. For example, trenches are usually used to isolate different parts of the device and define the boundary or shape of the electronic component. In semiconductor devices, trenches are generally used to separate different electronic components to ensure that the electronic components do not interfere with each other.

上述的沟槽型场效应晶体管中,第一源区109为N型,其导电类型与衬底层101和外延层102相同,均是第一导电类型。In the above trench field effect transistor, the first source region 109 is of N type, and its conductivity type is the same as that of the substrate layer 101 and the epitaxial layer 102 , which are both of the first conductivity type.

上述的沟槽型场效应晶体管中,第二源区110为N型,举例说明,源区通常是N型或者P型半导体材料,源区的形成通常包括再次进行离子注入或其他掺杂过程,在实际应用过程中掺杂类型的设定可以根据实际情况进行调整。In the above-mentioned trench field effect transistor, the second source region 110 is N-type. For example, the source region is usually N-type or P-type semiconductor material. The formation of the source region usually includes ion implantation or other doping processes again. In actual application, the setting of the doping type can be adjusted according to actual conditions.

本申请实施例的一种沟槽型场效应晶体管,通过预设第一体区103、第二体区104的深度,得到相较于第一体区103来说体区深度较浅的第二体区104,通过预设体区的长度,进而降低了二极管开启的阈值电压,从而以较低的阈值电压开启了体二极管,实现了降低反向续流功耗。A trench field effect transistor in an embodiment of the present application obtains a second body region 104 having a shallower body region depth than the first body region 103 by presetting the depth of the first body region 103 and the second body region 104. By presetting the length of the body region, the threshold voltage for turning on the diode is reduced, thereby turning on the body diode with a lower threshold voltage, thereby reducing the reverse freewheeling power consumption.

在一实施例中,所述第二体区104的离子掺杂浓度小于所述第一体区103的离子掺杂浓度。In one embodiment, the ion doping concentration of the second body region 104 is less than the ion doping concentration of the first body region 103 .

如图1所示,第一体区103为P型体区,第一体区103的离子掺杂浓度为1×1017cm-3、第二体区104为P型体区,第二体区104的掺杂浓度为5×1016cm-3。第一体区103的离子掺杂浓度大于第二体区104的离子掺杂浓度,即掺杂浓度越高,阈值电压越大,掺杂浓度越低,阈值电压越小,具体的掺杂程度可以根据使用情况设置。As shown in FIG1 , the first body region 103 is a P-type body region, and the ion doping concentration of the first body region 103 is 1×10 17 cm -3 , and the second body region 104 is a P-type body region, and the doping concentration of the second body region 104 is 5×10 16 cm -3 . The ion doping concentration of the first body region 103 is greater than that of the second body region 104, that is, the higher the doping concentration, the greater the threshold voltage, and the lower the doping concentration, the smaller the threshold voltage. The specific doping degree can be set according to the usage.

其中,体区掺杂的离子可以是硼离子等,离子掺杂浓度是指特定类型的离子在半导体晶体中的密度,在半导体制造过程中,通过控制和调整离子的掺杂浓度来调整半导体材料的导电性质,通常具有高离子掺杂浓度的区域具有更好的导电性,而具有低离子掺杂浓度的区域则可能表现出较高的电阻或者其他性质。Among them, the ions doped in the body region can be boron ions, etc., and the ion doping concentration refers to the density of a specific type of ions in the semiconductor crystal. In the semiconductor manufacturing process, the conductive properties of the semiconductor material are adjusted by controlling and adjusting the ion doping concentration. Generally, areas with high ion doping concentrations have better conductivity, while areas with low ion doping concentrations may exhibit higher resistance or other properties.

本申请实施例的一种沟槽型场效应晶体管,在限定了第一体区103和第二体区104的深度的基础上,进一步限定第一体区103和第二体区104的离子掺杂浓度,使第二体区104的离子掺杂浓度小于第一体区103的离子掺杂浓度,进而降低了沟槽MOS器件的二极管的导通电压,减少了二极管导通损耗。A trench field effect transistor in an embodiment of the present application, on the basis of defining the depths of the first body region 103 and the second body region 104, further defines the ion doping concentrations of the first body region 103 and the second body region 104, so that the ion doping concentration of the second body region 104 is less than the ion doping concentration of the first body region 103, thereby reducing the conduction voltage of the diode of the trench MOS device and reducing the conduction loss of the diode.

在一实施例中,如图2所示,形成所述第一栅极结构106包括:形成所述第一栅极结构106的第一介质层112,位于所述第一介质层112上的第一栅极111;In one embodiment, as shown in FIG. 2 , forming the first gate structure 106 includes: forming a first dielectric layer 112 of the first gate structure 106 , and a first gate 111 located on the first dielectric layer 112 ;

形成所述第二栅极结构108包括:形成所述第二栅极结构108的第二介质层114,位于所述第二介质层114上的第二栅极113,所述第二介质层114的厚度小于所述第一介质层112的厚度。Forming the second gate structure 108 includes: forming a second dielectric layer 114 of the second gate structure 108 , and a second gate 113 located on the second dielectric layer 114 , wherein the thickness of the second dielectric layer 114 is smaller than the thickness of the first dielectric layer 112 .

具体地,通过化学气相沉积工艺生长第一介质层112和第二介质层114,第一介质层112和第二介质层114可以是二氧化硅,也可以是多晶硅、金属、或者其他氧化物等材料,其中,第二介质层114的厚度小于第一介质层112的厚度,举例说明,第一介质层112的厚度范围为0.2um-2um,第二介质层114中的下壁介质层114-2的厚度范围为0.2um-2um,第二介质层114中的上壁介质层114-3的厚度范围为0.1um-1um。Specifically, the first dielectric layer 112 and the second dielectric layer 114 are grown by a chemical vapor deposition process. The first dielectric layer 112 and the second dielectric layer 114 can be silicon dioxide, or can be polysilicon, metal, or other oxide materials. The thickness of the second dielectric layer 114 is less than the thickness of the first dielectric layer 112. For example, the thickness range of the first dielectric layer 112 is 0.2um-2um, the thickness range of the lower wall dielectric layer 114-2 in the second dielectric layer 114 is 0.2um-2um, and the thickness range of the upper wall dielectric layer 114-3 in the second dielectric layer 114 is 0.1um-1um.

本申请实施例的一种沟槽型场效应晶体管,在限定了第一体区103和第二体区104的深度和限定第一体区103和第二体区104的离子掺杂浓度的基础上,进一步限制了第一栅极结构106和第二栅极结构108中介质层的厚度,进一步的降低了二极管开启的阈值电压,以较低的阈值电压开启了体二极管,加强了降低反向续流功耗的效果。A trench field effect transistor according to an embodiment of the present application, on the basis of limiting the depth of the first body region 103 and the second body region 104 and limiting the ion doping concentration of the first body region 103 and the second body region 104, further limits the thickness of the dielectric layer in the first gate structure 106 and the second gate structure 108, further reduces the threshold voltage for turning on the diode, turns on the body diode with a lower threshold voltage, and enhances the effect of reducing reverse freewheeling power consumption.

在一实施例中,如图2所示,形成所述第二栅极结构108的第二介质层114包括:形成位于所述第二沟槽107底部上方的底部介质层114-1,位于所述第二沟槽107侧壁上的上壁介质层114-3,以及位于所述第二沟槽107侧壁上的下壁介质层114-2,所述上壁介质层114-3位于所述下壁介质层114-2的上方,所述上壁介质层114-3的厚度小于所述下壁介质层114-2的厚度。In one embodiment, as shown in Figure 2, the second dielectric layer 114 forming the second gate structure 108 includes: forming a bottom dielectric layer 114-1 located above the bottom of the second trench 107, an upper wall dielectric layer 114-3 located on the side wall of the second trench 107, and a lower wall dielectric layer 114-2 located on the side wall of the second trench 107, the upper wall dielectric layer 114-3 is located above the lower wall dielectric layer 114-2, and the thickness of the upper wall dielectric layer 114-3 is less than the thickness of the lower wall dielectric layer 114-2.

举例说明,可以通过刻蚀工艺形成底部介质层114-1、下壁介质层114-2、上壁介质层114-3,举例说明,刻蚀后的底部介质层114-1的厚度范围为0.06um-0.3um,刻蚀后的下壁介质层114-2的厚度范围为0.02um-0.1um,刻蚀后的上壁介质层114-3的厚度范围为0.01um-0.05um。For example, a bottom dielectric layer 114-1, a lower wall dielectric layer 114-2, and an upper wall dielectric layer 114-3 can be formed by an etching process. For example, the thickness of the bottom dielectric layer 114-1 after etching is in the range of 0.06um-0.3um, the thickness of the lower wall dielectric layer 114-2 after etching is in the range of 0.02um-0.1um, and the thickness of the upper wall dielectric layer 114-3 after etching is in the range of 0.01um-0.05um.

本申请实施例的一种沟槽型场效应晶体管,第二栅极结构108包括第二介质层114,第二介质层114由底部介质层114-1,上壁介质层114-3,下壁介质层114-2共同构成,其中,底部介质层114-1具有减小电容,增加耐压的作用,上壁介质层114-3和下壁介质层114-2降低了二极管开启的阈值电压。In a trench field effect transistor according to an embodiment of the present application, the second gate structure 108 includes a second dielectric layer 114, and the second dielectric layer 114 is composed of a bottom dielectric layer 114-1, an upper wall dielectric layer 114-3, and a lower wall dielectric layer 114-2. The bottom dielectric layer 114-1 has the function of reducing capacitance and increasing withstand voltage, and the upper wall dielectric layer 114-3 and the lower wall dielectric layer 114-2 reduce the threshold voltage for turning on the diode.

在一实施例中,如图1所示,所述第二栅极结构108上设置有预设形状的第一接触孔117,所述第一源区109和所述第二源区110之间设置有第二接触孔118,所述第一接触孔117、所述第二接触孔118中填有金属116,用于通过所述第一接触孔117、所述金属116、以及所述第二接触孔118连接所述第二栅极结构108和所述第一源区109、所述第二源区110。In one embodiment, as shown in FIG. 1 , a first contact hole 117 of a preset shape is provided on the second gate structure 108, a second contact hole 118 is provided between the first source region 109 and the second source region 110, and the first contact hole 117 and the second contact hole 118 are filled with metal 116 for connecting the second gate structure 108 and the first source region 109 and the second source region 110 through the first contact hole 117, the metal 116, and the second contact hole 118.

具体地,第一接触孔117位于第二栅极结构108上,第二接触孔118位于第一源区109和第二源区110之间,金属116通常用作导电材料,将金属116填充到第一接触孔117和第二接触孔118中,通过第一接触孔117、第二接触孔118、金属116建立电连接,从而将第二栅极结构108、第一源区109、第二源区110连接起来。Specifically, the first contact hole 117 is located on the second gate structure 108, and the second contact hole 118 is located between the first source region 109 and the second source region 110. The metal 116 is generally used as a conductive material. The metal 116 is filled into the first contact hole 117 and the second contact hole 118, and an electrical connection is established through the first contact hole 117, the second contact hole 118, and the metal 116, thereby connecting the second gate structure 108, the first source region 109, and the second source region 110.

本申请实施例的一种沟槽型场效应晶体管,通过设置第一接触孔117、第二接触孔118、金属116,将第二栅极结构108、第一源区109、第二源区110进行连接,使得图1中的器件在反向续流时,源极为高电位,漏极为低电位,从而以较低的阈值电压开启了体二极管,以通过电流,确保器件的正常运行和可靠性。A trench field effect transistor in an embodiment of the present application connects a second gate structure 108, a first source region 109, and a second source region 110 by setting a first contact hole 117, a second contact hole 118, and a metal 116, so that when the device in Figure 1 is in reverse freewheeling, the source is at a high potential and the drain is at a low potential, thereby turning on the body diode with a lower threshold voltage to pass current and ensure the normal operation and reliability of the device.

在一实施例中,所述第一接触孔117、所述第二接触孔118的深度范围是0.3um-0.5um,宽度范围是0.2um-0.4um。In one embodiment, the first contact hole 117 and the second contact hole 118 have a depth ranging from 0.3um to 0.5um and a width ranging from 0.2um to 0.4um.

如图1所示,深度是指从孔口到孔底的距离,用于确定孔的深度,宽度是指孔的跨度,用于确定孔的直径或者横向尺寸,接触孔通常位于半导体器件的表面,用于建立电连接,以便连接到器件的不同部分,第一接触孔117和第二接触孔118的形状可以根据具体情况预先设计,接触孔的形状为规则四边形,还可以是不规则的多边形,圆形等。As shown in Figure 1, the depth refers to the distance from the hole mouth to the hole bottom, which is used to determine the depth of the hole. The width refers to the span of the hole, which is used to determine the diameter or lateral size of the hole. The contact hole is usually located on the surface of the semiconductor device and is used to establish an electrical connection so as to connect to different parts of the device. The shapes of the first contact hole 117 and the second contact hole 118 can be pre-designed according to the specific situation. The shape of the contact hole can be a regular quadrilateral, or it can be an irregular polygon, a circle, etc.

本申请实施例的一种沟槽型场效应晶体管,通过第一接触孔117、第二接触孔118与第二栅极结构108、第一源区109、第二源区110建立电连接,以便连接到器件的不同部分,从而实现以较低的阈值电压开启体二极管,实现了降低反向续流功耗。A trench field effect transistor in an embodiment of the present application establishes electrical connections with a second gate structure 108, a first source region 109, and a second source region 110 through a first contact hole 117 and a second contact hole 118 so as to be connected to different parts of the device, thereby turning on the body diode with a lower threshold voltage, thereby reducing reverse freewheeling power consumption.

在一实施例中,所述第一体区103的深度范围是1um-2um,所述第二体区104的深度范围是0.5um-1um。In one embodiment, the depth of the first body region 103 is in the range of 1 um-2 um, and the depth of the second body region 104 is in the range of 0.5 um-1 um.

具体地,第一体区103的深度范围是1um-2um,第二体区104的深度范围是0.5um-1um,举例说明,第一体区103的深度范围还可以是0.8um-1.8um、1.2um-2.2um等,第二体区104的深度范围还可以是0.2um-0.7um、0.8um-1.3um。Specifically, the depth range of the first body region 103 is 1um-2um, and the depth range of the second body region 104 is 0.5um-1um. For example, the depth range of the first body region 103 can also be 0.8um-1.8um, 1.2um-2.2um, etc., and the depth range of the second body region 104 can also be 0.2um-0.7um, 0.8um-1.3um.

本申请实施例的一种沟槽型场效应晶体管,体区的深度越深,阈值电压越高,通过预设第一体区103和第二体区104的深度范围,降低了体区长度,进而降低了二极管开启的阈值电压,从而以较低的阈值电压开启了体二极管,实现了降低反向续流功耗。In a trench field effect transistor of an embodiment of the present application, the deeper the depth of the body region, the higher the threshold voltage. By presetting the depth range of the first body region 103 and the second body region 104, the length of the body region is reduced, thereby reducing the threshold voltage for turning on the diode, thereby turning on the body diode with a lower threshold voltage, thereby reducing reverse freewheeling power consumption.

在一实施例中,如图1所示的一种沟槽型场效应晶体管还包括:层间介质层115,位于所述第一源区109和所述第二源区110上。In one embodiment, the trench field effect transistor as shown in FIG. 1 further includes: an interlayer dielectric layer 115 located on the first source region 109 and the second source region 110 .

具体地,层间介质层115的材料可以是二氧化硅,还可以是氮化硅等材料。Specifically, the material of the interlayer dielectric layer 115 may be silicon dioxide, or silicon nitride or other materials.

本申请实施例的一种沟槽型场效应晶体管,通过在第一源区109和第二源区110设置层间介质层115,以便在后续步骤中得到符合设计要求的结构和性能。A trench field effect transistor according to an embodiment of the present application provides an interlayer dielectric layer 115 between the first source region 109 and the second source region 110 so as to obtain a structure and performance that meet design requirements in subsequent steps.

在一实施例中,如图1所示的一种沟槽型场效应晶体管还包括:金属层116,位于所述层间介质层115上。In one embodiment, the trench field effect transistor as shown in FIG. 1 further includes: a metal layer 116 located on the interlayer dielectric layer 115 .

具体地,金属层116的材料可以为铝、硅、铜合金等材料,金属层116通常用于引出电子流,以便将电流输入或输出到半导体器件。Specifically, the material of the metal layer 116 may be aluminum, silicon, copper alloy, etc. The metal layer 116 is usually used to lead out electron flow so as to input or output current to the semiconductor device.

本申请实施例的一种沟槽型场效应晶体管,金属层116通常用于连接、引线、控制电子通道或提供外部连接,金属层116通常会被精确的制造和排列,以确保器件的正常运行和可靠性。In a trench field effect transistor of an embodiment of the present application, the metal layer 116 is usually used for connection, wiring, controlling electronic channels or providing external connections. The metal layer 116 is usually precisely manufactured and arranged to ensure the normal operation and reliability of the device.

在一实施例中,如图3所示,所述沟槽型场效应晶体管的制备方法制备方法包括以下步骤:In one embodiment, as shown in FIG3 , the method for preparing the trench field effect transistor comprises the following steps:

步骤S21,提供第一导电类型的衬底层101;Step S21, providing a substrate layer 101 of a first conductivity type;

如图4所示,第一导电类型的衬底层101为重掺杂N型,衬底层101可以是硅(Si)、碳化硅(SiC)等半导体材料,第一导电类型的衬底层101可以是N型半导体材料或者P型半导体材料。当衬底层101是N型半导体材料时,在所述衬底层101上形成第一导电类型的外延层102也是N型半导体材料。As shown in FIG4 , the substrate layer 101 of the first conductivity type is heavily doped N-type, and the substrate layer 101 may be a semiconductor material such as silicon (Si), silicon carbide (SiC), etc. The substrate layer 101 of the first conductivity type may be an N-type semiconductor material or a P-type semiconductor material. When the substrate layer 101 is an N-type semiconductor material, the epitaxial layer 102 of the first conductivity type formed on the substrate layer 101 is also an N-type semiconductor material.

步骤S22,在所述衬底层101上形成第一导电类型的外延层102;Step S22, forming an epitaxial layer 102 of a first conductivity type on the substrate layer 101;

如图4所示,第一导电类型的外延层102为轻掺杂的N型外延层102,外延层102与衬底层101具有相同的导电类型。As shown in FIG. 4 , the epitaxial layer 102 of the first conductivity type is a lightly doped N-type epitaxial layer 102 , and the epitaxial layer 102 and the substrate layer 101 have the same conductivity type.

步骤S23,形成沿深度方向延伸至所述外延层102内部的第一沟槽105,在所述第一沟槽105中形成第一栅极结构106;形成沿深度方向延伸至所述外延层102内部的第二沟槽107,在所述第二沟槽107中形成第二栅极结构108;Step S23, forming a first trench 105 extending to the inside of the epitaxial layer 102 along the depth direction, and forming a first gate structure 106 in the first trench 105; forming a second trench 107 extending to the inside of the epitaxial layer 102 along the depth direction, and forming a second gate structure 108 in the second trench 107;

如图5所示,在外延层102上淀积硬掩模介质层119,硬掩模介质层119可以为二氧化硅,还可以是第一氧化硅、第一氮化硅等。在硬掩模介质层119上涂覆光刻胶120,按照预设沟槽图形进行光刻,对硬掩模介质层119进行干法刻蚀,去除光刻胶120,去除硬掩膜介质层119,如图6所示,形成第一沟槽105和第二沟槽107。As shown in FIG5 , a hard mask dielectric layer 119 is deposited on the epitaxial layer 102. The hard mask dielectric layer 119 may be silicon dioxide, or may be a first silicon oxide, a first silicon nitride, etc. A photoresist 120 is coated on the hard mask dielectric layer 119, and photolithography is performed according to a preset groove pattern. The hard mask dielectric layer 119 is dry-etched to remove the photoresist 120 and the hard mask dielectric layer 119. As shown in FIG6 , a first groove 105 and a second groove 107 are formed.

如图7所示,在第一沟槽105和第二沟槽107上采用化学气相沉积工艺生长第一介质层112和第二介质层114,第一介质层112和第二介质层114可以是二氧化硅,也可以是多晶硅、金属、或者其他氧化物等材料。对第一介质层112和第二介质层114进行刻蚀,如图8所示,保留第一底部介质层112-1和底部介质层114-1。如图9所示,在第一沟槽105侧壁上生长第一介质层112、在第二沟槽107侧壁上生长第二介质层114,生长的速度和厚度可以根据具体情况进行预设。如图10所示,淀积第一栅极111和第二栅极113,第一栅极111和第二栅极113可以是多晶硅、金属等材料。对第一栅极111和第二栅极113进行刻蚀,如图11所示,最终得到第一栅极结构106和第二栅极结构108,刻蚀的程度和次数可以根据具体使用情况进行预设。As shown in FIG7 , a first dielectric layer 112 and a second dielectric layer 114 are grown on the first trench 105 and the second trench 107 by chemical vapor deposition process. The first dielectric layer 112 and the second dielectric layer 114 may be silicon dioxide, or polysilicon, metal, or other oxide materials. The first dielectric layer 112 and the second dielectric layer 114 are etched, as shown in FIG8 , and the first bottom dielectric layer 112-1 and the bottom dielectric layer 114-1 are retained. As shown in FIG9 , the first dielectric layer 112 is grown on the sidewall of the first trench 105, and the second dielectric layer 114 is grown on the sidewall of the second trench 107. The growth speed and thickness can be preset according to specific conditions. As shown in FIG10 , the first gate 111 and the second gate 113 are deposited. The first gate 111 and the second gate 113 may be polysilicon, metal, or other materials. The first gate 111 and the second gate 113 are etched, as shown in FIG11 , and finally the first gate structure 106 and the second gate structure 108 are obtained. The degree and number of etchings can be preset according to specific usage conditions.

步骤S24,在所述外延层102上形成第二导电类型的第一体区103,使所述第一沟槽105贯穿所述第一体区103,在所述外延层102上形成第二导电类型的第二体区104,使所述第二沟槽107贯穿所述第二体区104,所述第二体区104的深度小于所述第一体区103的深度;Step S24, forming a first body region 103 of a second conductivity type on the epitaxial layer 102, so that the first trench 105 penetrates the first body region 103, forming a second body region 104 of a second conductivity type on the epitaxial layer 102, so that the second trench 107 penetrates the second body region 104, and the depth of the second body region 104 is less than the depth of the first body region 103;

如图12所示,在得到第一栅极结构106和第二栅极结构108之后,首先在第二栅极结构108上涂覆光刻胶120,在第一体区103中注入掺杂浓度较多的离子,形成第一体区103。然后去除光刻胶120,如图13所示,在第二体区104中注入掺杂浓度较少的离子,形成第二体区104,其中,第二体区104的深度小于第一体区103的深度,举例说明,当第一体区103的深度为2um时,第二体区104的深度可以为1um,当第一体区103的深度为1.8um时,第二体区104的深度可以为0.8um。As shown in FIG12, after obtaining the first gate structure 106 and the second gate structure 108, firstly, a photoresist 120 is coated on the second gate structure 108, and ions with a higher doping concentration are implanted into the first body region 103 to form the first body region 103. Then, the photoresist 120 is removed, and as shown in FIG13, ions with a lower doping concentration are implanted into the second body region 104 to form the second body region 104, wherein the depth of the second body region 104 is less than the depth of the first body region 103. For example, when the depth of the first body region 103 is 2 um, the depth of the second body region 104 may be 1 um, and when the depth of the first body region 103 is 1.8 um, the depth of the second body region 104 may be 0.8 um.

步骤S25,在所述第一体区103上形成第一导电类型的第一源区109,在所述第二体区104上形成第一导电类型的第二源区110。Step S25 , forming a first source region 109 of the first conductivity type on the first body region 103 , and forming a second source region 110 of the first conductivity type on the second body region 104 .

如图14所示,通过将不同掺杂浓度的离子注入至第一体区103和第二体区104中,形成第一源区109和第二源区110。其中,注入的离子可以是砷离子,也可以是磷离子等。As shown in Fig. 14, the first source region 109 and the second source region 110 are formed by implanting ions of different doping concentrations into the first body region 103 and the second body region 104. The implanted ions may be arsenic ions or phosphorus ions.

然后,在第一源区109和第二源区110上淀积二氧化硅形成层间介质层115,对层间介质层115刻蚀出第一接触孔117和第二接触孔118,最后在第一接触孔117和第二接触孔118中淀积金属116。Then, silicon dioxide is deposited on the first source region 109 and the second source region 110 to form an interlayer dielectric layer 115 , and a first contact hole 117 and a second contact hole 118 are etched in the interlayer dielectric layer 115 . Finally, metal 116 is deposited in the first contact hole 117 and the second contact hole 118 .

本实施例的制备方法,通过预设第一体区103、第二体区104的深度,得到相较于第一体区103来说体区深度较浅的第二体区104,通过降低体区的长度,进而降低了二极管开启的阈值电压,从而以较低的阈值电压开启了体二极管,实现了降低反向续流功耗。其中,在步骤S25中,在第一体区103里面注入了浓度较多的离子,在第二体区104中注入了浓度较少的离子,相当于在第一体区103注入了两次不同浓度的离子,使得第二体区104的离子掺杂浓度小于第一体区103的离子掺杂浓度,通过在不同的体区中设置掺杂不同浓度的离子,在限制第一103、第二体区104深度的基础上进一步的降低了沟槽MOS器件的二极管的导通电压,减少了二极管导通损耗。The preparation method of this embodiment obtains the second body region 104 with a shallower body region depth than the first body region 103 by presetting the depth of the first body region 103 and the second body region 104, and reduces the threshold voltage of the diode opening by reducing the length of the body region, so that the body diode is turned on with a lower threshold voltage, thereby reducing the reverse freewheeling power consumption. Wherein, in step S25, ions with a higher concentration are injected into the first body region 103, and ions with a lower concentration are injected into the second body region 104, which is equivalent to injecting ions of different concentrations into the first body region 103 twice, so that the ion doping concentration of the second body region 104 is less than the ion doping concentration of the first body region 103. By setting ions with different doping concentrations in different body regions, the conduction voltage of the diode of the trench MOS device is further reduced on the basis of limiting the depth of the first 103 and the second body region 104, and the diode conduction loss is reduced.

在一实施例中,如图15所示,步骤S23中,在所述第一沟槽105中形成第一栅极结构106包括:In one embodiment, as shown in FIG. 15 , in step S23 , forming a first gate structure 106 in the first trench 105 includes:

步骤S231,在所述第一沟槽105的内壁上生长第一预设厚度的第一介质层112,对所述第一介质层112进行刻蚀,保留位于所述第一沟槽105底部的所述第一介质层112;Step S231, growing a first dielectric layer 112 of a first preset thickness on the inner wall of the first trench 105, etching the first dielectric layer 112, and retaining the first dielectric layer 112 at the bottom of the first trench 105;

如图7和图8所示,在第一沟槽105的内壁上采用化学气相沉积工艺生长第一预设后的第一介质层112,举例说明,第一预设厚度的介质层的厚度范围为0.2um-2um,对第一介质层112进行刻蚀,保留第一底部介质层112-1,第一底部介质层112-1的厚度范围为0.06um-0.3um。As shown in Figures 7 and 8, a first preset first dielectric layer 112 is grown on the inner wall of the first groove 105 by chemical vapor deposition process. For example, the thickness range of the first preset thickness of the dielectric layer is 0.2um-2um. The first dielectric layer 112 is etched to retain the first bottom dielectric layer 112-1. The thickness range of the first bottom dielectric layer 112-1 is 0.06um-0.3um.

步骤S232,在所述第一沟槽105的侧壁上生长第二预设厚度的第一介质层112,在所述第一介质层112上淀积第一栅极111,刻蚀部分所述第一栅极111,得到所述第一沟槽105中的第一栅极结构106。Step S232 , growing a first dielectric layer 112 of a second preset thickness on the sidewall of the first trench 105 , depositing a first gate 111 on the first dielectric layer 112 , and etching a portion of the first gate 111 to obtain a first gate structure 106 in the first trench 105 .

如图9-图11所示,在第一沟槽105的侧壁上生长第二预设厚度的介质层,举例说明,第二预设厚度的介质层的厚度范围为0.02um-0.1um,在第一介质层112上淀积第一栅极111,第一栅极111的厚度范围为0.2um-2um,对第一栅极111进行刻蚀,得到第一沟槽105中的第一栅极结构106。As shown in Figures 9 to 11, a dielectric layer of a second preset thickness is grown on the side wall of the first groove 105. For example, the thickness range of the dielectric layer of the second preset thickness is 0.02um-0.1um. The first gate 111 is deposited on the first dielectric layer 112. The thickness range of the first gate 111 is 0.2um-2um. The first gate 111 is etched to obtain the first gate structure 106 in the first groove 105.

本申请实施例的制备方法,通过限制了第一栅极结构106的厚度,降低了二极管开启的阈值电压,以较低的阈值电压开启了体二极管,加强了降低反向续流功耗的效果。The preparation method of the embodiment of the present application reduces the threshold voltage for turning on the diode by limiting the thickness of the first gate structure 106 , turns on the body diode at a lower threshold voltage, and enhances the effect of reducing reverse freewheeling power consumption.

在一实施例中,如图16所示,步骤S23中,在所述第二沟槽107中形成第二栅极结构108包括:In one embodiment, as shown in FIG. 16 , in step S23 , forming the second gate structure 108 in the second trench 107 includes:

步骤S233,在所述第一沟槽105中的第一栅极结构106上涂覆光刻胶120,对所述第二沟槽107中栅极的上部、介质层的上部进行刻蚀,保留所述栅极的下部,将所述介质层的下部作为第二介质层114的底部介质层114-1和下壁介质层114-2;Step S233, coating the first gate structure 106 in the first trench 105 with a photoresist 120, etching the upper portion of the gate and the upper portion of the dielectric layer in the second trench 107, retaining the lower portion of the gate, and using the lower portion of the dielectric layer as the bottom dielectric layer 114-1 and the lower wall dielectric layer 114-2 of the second dielectric layer 114;

如图17所示,在第一沟槽105中的第一栅极结构106上涂覆光刻胶120之后,对第二沟槽107的第二栅极113进行刻蚀,分别刻蚀上部的第二栅极113和上部的第二介质层114。如图18所示,得到下部的第二栅极113和下部的第二介质层114,下部的第二介质层114由底部介质层114-1和下壁介质层114-2构成。As shown in FIG17, after the photoresist 120 is coated on the first gate structure 106 in the first trench 105, the second gate 113 in the second trench 107 is etched, and the upper second gate 113 and the upper second dielectric layer 114 are etched respectively. As shown in FIG18, the lower second gate 113 and the lower second dielectric layer 114 are obtained, and the lower second dielectric layer 114 is composed of a bottom dielectric layer 114-1 and a lower wall dielectric layer 114-2.

步骤S234,对所述栅极的下部进行刻蚀,去除所述光刻胶120,生长上壁介质层114-3,所述上壁介质层114-3位于所述下壁介质层114-2上方,由所述底部介质层114-1、下部介质层、上壁介质层114-3形成第二介质层114;Step S234, etching the lower part of the gate to remove the photoresist 120, growing an upper wall dielectric layer 114-3, wherein the upper wall dielectric layer 114-3 is located above the lower wall dielectric layer 114-2, and forming a second dielectric layer 114 by the bottom dielectric layer 114-1, the lower dielectric layer, and the upper wall dielectric layer 114-3;

如图19所示,对第二栅极113的下部进行刻蚀,去除光刻胶120。如图20所示,生长上壁介质层114-3,其中,第二介质层114的形状为阶梯型,即按照从上到下的顺序介质层的厚度依次变厚,举例说明,底部介质层114-1的厚度范围为0.06um-0.3um,下壁介质层114-2的厚度范围为0.01um-0.05um,上壁介质层114-3的厚度范围为0.005um-0.025um,例如,上壁介质层114-3的厚度为0.025um、下壁介质层114-2的厚度为0.01um、底部介质层114-1的厚度为0.06um。As shown in Fig. 19, the lower part of the second gate 113 is etched to remove the photoresist 120. As shown in Fig. 20, an upper wall dielectric layer 114-3 is grown, wherein the second dielectric layer 114 is in a stepped shape, i.e., the thickness of the dielectric layer increases from top to bottom. For example, the thickness of the bottom dielectric layer 114-1 is in the range of 0.06um-0.3um, the thickness of the lower wall dielectric layer 114-2 is in the range of 0.01um-0.05um, and the thickness of the upper wall dielectric layer 114-3 is in the range of 0.005um-0.025um. For example, the thickness of the upper wall dielectric layer 114-3 is 0.025um, the thickness of the lower wall dielectric layer 114-2 is 0.01um, and the thickness of the bottom dielectric layer 114-1 is 0.06um.

步骤S235,在所述第二介质层114上淀积第二栅极113,刻蚀部分所述第二栅极113,得到所述第二沟槽107中的第二栅极结构108。Step S235 , depositing a second gate 113 on the second dielectric layer 114 , and etching a portion of the second gate 113 to obtain a second gate structure 108 in the second trench 107 .

如图21所示,在第二介质层114上淀积第二栅极113。如图22所示,对第二栅极113刻蚀。得到第二栅极结构108,其中淀积、刻蚀的程度和次数可以根据具体使用情况进行预设。As shown in Fig. 21, a second gate 113 is deposited on the second dielectric layer 114. As shown in Fig. 22, the second gate 113 is etched to obtain a second gate structure 108, wherein the degree and number of deposition and etching can be preset according to specific usage conditions.

在制备形成第二栅极结构108之后,在步骤S25中,在所述外延层102上形成第二导电类型的第一体区103,使所述第一沟槽105贯穿所述第一体区103,在所述外延层102上形成第二导电类型的第二体区104,使所述第二沟槽107贯穿所述第二体区104,所述第二体区104的深度小于所述第一体区103的深度,包括:After the second gate structure 108 is prepared and formed, in step S25, a first body region 103 of a second conductivity type is formed on the epitaxial layer 102, so that the first trench 105 penetrates the first body region 103, and a second body region 104 of a second conductivity type is formed on the epitaxial layer 102, so that the second trench 107 penetrates the second body region 104, and the depth of the second body region 104 is less than the depth of the first body region 103, including:

具体地,在得到第一栅极结构106和第二栅极结构108之后,如图23所示,首先在第二栅极结构108上涂覆光刻胶120,在第一体区103中注入浓度较多的离子,形成第一体区103。然后去除光刻胶120,在第二体区104中注入浓度较少的离子,形成第二体区104,如图24所示。Specifically, after obtaining the first gate structure 106 and the second gate structure 108, as shown in FIG23, a photoresist 120 is first coated on the second gate structure 108, and ions with a higher concentration are implanted into the first body region 103 to form the first body region 103. Then, the photoresist 120 is removed, and ions with a lower concentration are implanted into the second body region 104 to form the second body region 104, as shown in FIG24.

在步骤S26中,在所述第一体区103上形成第一导电类型的第一源区109,在所述第二体区104上形成第一导电类型的第二源区110包括:In step S26, forming a first source region 109 of a first conductivity type on the first body region 103 and forming a second source region 110 of a first conductivity type on the second body region 104 includes:

如图25所示,将不同掺杂浓度的离子注入至第一体区103和第二体区104中,形成第一源区109和第二源区110。As shown in FIG. 25 , ions with different doping concentrations are implanted into the first body region 103 and the second body region 104 to form a first source region 109 and a second source region 110 .

然后,如图25所示,在第一源区109和第二源区110上淀积二氧化硅形成层间介质层115。如图26所示,对层间介质层115刻蚀出第一接触孔117和第二接触孔118。如图27所示,最后在第一接触孔117和第二接触孔118中淀积金属116。Then, as shown in Fig. 25, silicon dioxide is deposited on the first source region 109 and the second source region 110 to form an interlayer dielectric layer 115. As shown in Fig. 26, a first contact hole 117 and a second contact hole 118 are etched through the interlayer dielectric layer 115. Finally, as shown in Fig. 27, metal 116 is deposited in the first contact hole 117 and the second contact hole 118.

本实施例的制备方法,将第一接触孔117增加深度,设置两个等深的接触孔,通过将第一接触孔117、第二接触孔118、金属116,将第二栅极结构108、第一源区109、第二源区110进行连接,使得图27中的器件在反向续流时,源极为高电位,漏极为低电位,从而以较低的阈值电压开启了体二极管,加强了降低反向续流功耗的效果。以通过电流,确保器件的正常运行和可靠性。In the preparation method of this embodiment, the depth of the first contact hole 117 is increased, two contact holes of equal depth are set, and the second gate structure 108, the first source region 109, and the second source region 110 are connected through the first contact hole 117, the second contact hole 118, and the metal 116, so that when the device in FIG. 27 is in reverse freewheeling, the source is at a high potential and the drain is at a low potential, thereby turning on the body diode with a lower threshold voltage, and enhancing the effect of reducing the reverse freewheeling power consumption. The current is passed to ensure the normal operation and reliability of the device.

以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。The embodiments described above are only used to illustrate the technical solutions of the present invention, rather than to limit the same. Although the present invention has been described in detail with reference to the aforementioned embodiments, those skilled in the art should understand that the technical solutions described in the aforementioned embodiments may still be modified, or some of the technical features may be replaced by equivalents. Such modifications or replacements do not deviate the essence of the corresponding technical solutions from the spirit and scope of the technical solutions of the embodiments of the present invention, and should all be included in the protection scope of the present invention.

Claims (11)

1.A trench field effect transistor, comprising:
a substrate layer of a first conductivity type;
an epitaxial layer of a first conductivity type, the epitaxial layer being located on the substrate layer;
A first body region of a second conductivity type, the first body region being located on the epitaxial layer;
A second body region of a second conductivity type, the second body region being located on the epitaxial layer, the first body region being adjacent the second body region, the second body region having a depth less than a depth of the first body region;
The first groove penetrates through the first body region along the depth direction and extends into the epitaxial layer, and a first grid structure is arranged in the first groove;
the second groove penetrates through the second body region along the depth direction and extends into the epitaxial layer, and a second grid structure is arranged in the second groove;
A first source region of a first conductivity type, the first source region being located on the first body region;
a second source region of the first conductivity type, the second source region being located on the second body region;
The second body region has an ion doping concentration that is less than the ion doping concentration of the first body region.
2. The trench field effect transistor of claim 1, wherein forming said first gate structure comprises: forming a first dielectric layer of the first gate structure and a first gate electrode positioned on the first dielectric layer;
forming the second gate structure includes: and forming a second dielectric layer of the second gate structure, and a second gate positioned on the second dielectric layer, wherein the thickness of the second dielectric layer is smaller than that of the first dielectric layer.
3. The trench field effect transistor of claim 2, wherein forming the second dielectric layer of the second gate structure comprises: forming a bottom dielectric layer above the bottom of the second trench, an upper wall dielectric layer on the side wall of the second trench, and a lower wall dielectric layer on the side wall of the second trench, wherein the upper wall dielectric layer is above the lower wall dielectric layer, and the thickness of the upper wall dielectric layer is smaller than that of the lower wall dielectric layer.
4. The trench field effect transistor of claim 2, wherein a first contact hole of a predetermined shape is provided on the second gate structure, a second contact hole is provided between the first source region and the second source region, and metal is filled in the first contact hole and the second contact hole, so as to connect the second gate structure and the first source region and the second source region through the first contact hole, the metal, and the second contact hole.
5. The trench fet of claim 4 wherein the first and second contact holes have a depth ranging from 0.3um to 0.5um and a width ranging from 0.2um to 0.4um.
6. The trench field effect transistor of claim 1 wherein the depth of the first body region is in the range of 1um to 2um and the depth of the second body region is in the range of 0.5um to 1um.
7. The trench field effect transistor of claim 1, further comprising:
And the interlayer dielectric layer is positioned on the first source region and the second source region.
8. The trench field effect transistor of claim 7, further comprising:
and the metal layer is positioned on the interlayer dielectric layer.
9. The preparation method of the trench field effect transistor is characterized by comprising the following steps of:
Providing a substrate layer of a first conductivity type;
forming an epitaxial layer of a first conductivity type on the substrate layer;
Forming a first groove extending to the inside of the epitaxial layer along the depth direction, and forming a first grid structure in the first groove; forming a second groove extending to the inside of the epitaxial layer along the depth direction, and forming a second grid structure in the second groove;
Forming a first body region of a second conductivity type on the epitaxial layer, enabling the first trench to penetrate through the first body region, forming a second body region of the second conductivity type on the epitaxial layer, enabling the second trench to penetrate through the second body region, and enabling the depth of the second body region to be smaller than that of the first body region; controlling the ion doping concentration of the second body region to be smaller than that of the first body region;
A first source region of a first conductivity type is formed over the first body region and a second source region of the first conductivity type is formed over the second body region.
10. The method of manufacturing of claim 9, wherein forming a first gate structure in the first trench comprises:
Growing a first dielectric layer with a first preset thickness on the inner wall of the first groove, etching the first dielectric layer, and reserving the first dielectric layer at the bottom of the first groove;
And growing a first dielectric layer with a second preset thickness on the side wall of the first groove, depositing a first grid electrode on the first dielectric layer, and etching part of the first grid electrode to obtain a first grid electrode structure in the first groove.
11. The method of manufacturing of claim 10, wherein forming a second gate structure in the second trench comprises:
Coating photoresist on a first grid structure in the first groove, etching the upper part of the grid and the upper part of the dielectric layer in the second groove, reserving the lower part of the grid, and taking the lower part of the dielectric layer as a bottom dielectric layer and a lower wall dielectric layer of the second dielectric layer;
Etching the lower part of the grid electrode, removing the photoresist, and growing an upper wall dielectric layer, wherein the upper wall dielectric layer is positioned above the lower wall dielectric layer, and a second dielectric layer is formed by the bottom dielectric layer, the lower dielectric layer and the upper wall dielectric layer;
And depositing a second grid electrode on the second dielectric layer, and etching part of the second grid electrode to obtain a second grid electrode structure in the second groove.
CN202311550132.7A 2023-11-16 2023-11-16 A trench field effect transistor and a method for manufacturing the same Active CN117594658B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311550132.7A CN117594658B (en) 2023-11-16 2023-11-16 A trench field effect transistor and a method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311550132.7A CN117594658B (en) 2023-11-16 2023-11-16 A trench field effect transistor and a method for manufacturing the same

Publications (2)

Publication Number Publication Date
CN117594658A CN117594658A (en) 2024-02-23
CN117594658B true CN117594658B (en) 2024-10-22

Family

ID=89917561

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311550132.7A Active CN117594658B (en) 2023-11-16 2023-11-16 A trench field effect transistor and a method for manufacturing the same

Country Status (1)

Country Link
CN (1) CN117594658B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171891A (en) * 2007-01-09 2008-07-24 Toyota Motor Corp Semiconductor device and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472678B1 (en) * 2000-06-16 2002-10-29 General Semiconductor, Inc. Trench MOSFET with double-diffused body profile
US6674124B2 (en) * 2001-11-15 2004-01-06 General Semiconductor, Inc. Trench MOSFET having low gate charge
JP5647420B2 (en) * 2010-02-10 2014-12-24 株式会社豊田中央研究所 Semiconductor device
CN102623316A (en) * 2011-01-27 2012-08-01 无锡华润上华半导体有限公司 Methods for preparing groove bottom auxiliary gate dielectric layer and groove DMOS pipe
JP2014103352A (en) * 2012-11-22 2014-06-05 Toyota Motor Corp Semiconductor device
JP2014150113A (en) * 2013-01-31 2014-08-21 Toyota Motor Corp Semiconductor device, and method of manufacturing the same
CN103151309B (en) * 2013-03-11 2015-03-25 中航(重庆)微电子有限公司 Deeply-grooved power MOS (Metal Oxide Semiconductor) device and preparation method thereof
CN108649072B (en) * 2018-02-09 2024-02-02 江苏捷捷微电子股份有限公司 Low-on-resistance trench MOSFET device and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171891A (en) * 2007-01-09 2008-07-24 Toyota Motor Corp Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
CN117594658A (en) 2024-02-23

Similar Documents

Publication Publication Date Title
TWI441336B (en) Metal oxide semiconductor field effect transistor device with reduced breakdown voltage
JP5862729B2 (en) Manufacturing method of trench gate type semiconductor device
JP2010500765A (en) JFET with built-in back gate in either SOI or bulk silicon
CN103295907A (en) Semiconductor device and method of manufacture thereof
CN100463217C (en) Structure and method for fabricating high-performance semiconductor device with narrow doping profile
CN110223959B (en) Metal oxide semiconductor field effect transistor with deep and shallow grooves and preparation method thereof
US8143680B2 (en) Gated diode with non-planar source region
JP2009032967A (en) Semiconductor apparatus and method of manufacturing the same
CN103681315A (en) Method for forming buried layer
CN101506956A (en) A method for fabricating a semiconductor device
KR100902585B1 (en) Trench gate type MOS transistor and manufacturing method thereof
CN113193039A (en) Manufacturing method of trench type IGBT (insulated gate bipolar transistor) cell structure and trench type IGBT cell structure
CN117594658B (en) A trench field effect transistor and a method for manufacturing the same
CN108231583B (en) Bipolar transistor and manufacturing method thereof
CN112103185B (en) Manufacturing method and structure of trench MOSFET
CN112420845B (en) Trench power semiconductor device and manufacturing method
CN109087942A (en) A kind of groove-shaped triode and preparation method thereof
CN112768356B (en) Manufacturing method of trench gate IGBT
KR19990008495A (en) High speed bipolar transistor and manufacturing method thereof
CN106653610A (en) Improved groove superbarrier rectifier device and manufacturing method thereof
KR100971422B1 (en) Semiconductor device manufacturing method
CN115621127B (en) Trench MOSFET (Metal-oxide-semiconductor field Effect transistor) based on two layers of light shades and manufacturing method thereof
WO2021082273A1 (en) Trench-type field-effect transistor structure and preparation method therefor
CN116110785B (en) Insulated gate bipolar transistor and preparation method thereof
JPH10154809A (en) Semiconductor device and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant