[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN117120663A - 处理基板的方法及设备 - Google Patents

处理基板的方法及设备 Download PDF

Info

Publication number
CN117120663A
CN117120663A CN202280025633.0A CN202280025633A CN117120663A CN 117120663 A CN117120663 A CN 117120663A CN 202280025633 A CN202280025633 A CN 202280025633A CN 117120663 A CN117120663 A CN 117120663A
Authority
CN
China
Prior art keywords
gas
precursor
housing
gas supply
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280025633.0A
Other languages
English (en)
Inventor
阿卜杜拉·扎法尔
威廉·约翰·杜兰德
种心原
肯里克·乔伊
胡蔚泽
陈劲文
阿米尔·巴亚提
米歇尔·桑佩德罗
菲利普·A·克劳斯
阿道夫·米勒·艾伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN117120663A publication Critical patent/CN117120663A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/3299Feedback systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/61Non-dispersive gas analysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24571Measurements of non-electric or non-magnetic variables
    • H01J2237/24585Other variables, e.g. energy, mass, velocity, time, temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本文提供了用于处理基板的方法及设备。例如,被构造为与处理腔室一起使用的气体供应器包括安瓿及传感器组件,该安瓿储存前驱物并包括用于接收载气的输入端和用于向该处理腔室提供载气和前驱物的混合物的输出端,且该传感器组件包括检测器及红外源以及气体测量空间,该红外源可操作地连接至该混合物流经的壳体的外部,且该气体测量空间设置在该壳体内并沿着该壳体的内壁,使得该混合物中的该前驱物的浓度可以由该检测器测量并传送至控制器。

Description

处理基板的方法及设备
技术领域
本公开内容的实施方式一般涉及处理基板的方法及设备,且具体而言,涉及包括用于基板处理的整合高精度非分散红外(non-dispersive infrared,NDIR)传感器组件的方法及设备。
背景技术
用于处理基板的方法及设备是已知的。例如,在一些情况下,处理腔室可被构造为在基板的一个或多个层(例如,金属层,诸如氮化钽(TaN)阻挡物)上发展膜特性。通常,将一种或多种前驱物引入处理腔室(例如,化学气相沉积(chemical vapor deposition,CVD)、原子层沉积(atomic layer deposition,ALD)等)。在基板处理的前驱物阶段期间,需要气体浓度感测来确定输送到基板的前驱物的量。通常,借由惰性载气(例如,氩或其他稀有气体)将前驱物从气体供应安瓿推动到处理腔室。当前的传感器技术使用位于安瓿下游的传感器(例如,在壳体(enclosure)中(由于其中的高温,通常被称为热罐))来测量绝对气体浓度水平,该绝对气体浓度水平可以是0.2%的量级。然而,当前的传感器技术不足以用于工艺控制,因为此类技术仅能够达到绝对气体浓度水平的约+/-2.5%的精度。亦即,壳体中的高温会导致过量的噪声并降低习知传感器的SNR。
发明内容
本文提供了用于处理基板的方法及设备。例如,一种被构造为与处理腔室一起使用的气体供应器包括安瓿及传感器组件,该安瓿储存前驱物并包括用于接收载气的输入端和用于向该处理腔室提供载气和前驱物的混合物的输出端,且该传感器组件包括检测器及红外源以及气体测量空间,该红外源可操作地连接至该混合物流经的壳体的外部,且该气体测量空间设置在该壳体内并沿着该壳体的内壁,使得该混合物中的该前驱物的浓度可以由该检测器测量并传送至控制器。
根据本公开内容的至少一些实施方式,一种被构造为与处理腔室一起使用的气体供应器包括安瓿及传感器组件,该安瓿储存前驱物并包括用于接收载气的输入端和用于向该处理腔室提供载气和前驱物的混合物的输出端,且该传感器组件包括检测器及红外源以及气体测量空间,该检测器包括热电堆传感器或热释电传感器,该红外源可操作地连接至该混合物流经的壳体的外部,且该气体测量空间设置在该壳体内并沿该壳体的内壁平行延伸,使得该混合物中的该前驱物的浓度可由该检测器测量并传送至控制器。
根据本公开内容的至少一些实施方式,用于处理基板的系统包括处理腔室及气体供应器,该气体供应器可操作地耦接至该处理腔室并且包括安瓿,该安瓿储存前驱物并且包括用于接收载气的输入端和用于向该处理腔室提供载气和前驱物的混合物的输出端;及传感器组件,该传感器组件包括检测器及红外源以及气体测量空间,该检测器可操作地连接至壳体的外部,且该红外源设置在该混合物流经的该壳体内,且该气体测量空间设置在该壳体内并沿该壳体的内壁延伸,使得该混合物中的该前驱物的浓度可由该检测器测量并传送至控制器。
根据本公开内容的至少一些实施方式,一种处理基板的方法包括:将载气从气体供应器供应至储存前驱物的安瓿的输入端;将载气和前驱物的混合物从安瓿的输出端供应到传感器组件,该传感器组件包括检测器及红外源以及气体测量空间,该红外源可操作地连接至该混合物流经的壳体的外部,且该气体测量空间设置在该壳体内并沿着该壳体的内壁,使得该混合物中的该前驱物的浓度可以由该检测器测量并传送至控制器;该前驱物的浓度基于以下等式确定:C=CA/CB=(kB TNAδv/ΨlP)log10(φ0/φ)×100%,其中C=A在B中的浓度[Abs],CA=A的浓度[mol/m3],CB=B的浓度[mol/m3],KB=玻尔兹曼常数[J/K],T=温度[K],NA=阿伏加德罗常数[#/mol],Ψ=积分摩尔吸光系数[m/mol],l=IR源路径长度[m],P=总压力[Pa],φ0=不使用A时的光电二极管信号,φ=使用A时的光电二极管信号,并且δv=滤光器的光谱宽度[m-1];以及基于所确定的该前驱物的浓度来调整安瓿的温度。
下面描述本公开内容的其他及进一步的实施方式。
附图说明
借由参考附图中描绘的本公开内容的说明性实施方式,可以理解上面简要总结并且下面更详细论述的本公开内容的实施方式。然而,附图仅图示了本公开内容的典型实施方式,因此不应被认为是对范畴的限制,因为本公开内容可以允许其他同等有效的实施方式。
图1是根据本公开内容的至少一些实施方式的处理腔室的示意图。
图2是根据本公开内容的至少一些实施方式的气体供应器的示意图。
图3A是根据本公开内容的至少一些实施方式的非分散红外传感器的示意图。
图3B是根据本公开内容的至少一些实施方式的非分散红外传感器的检测器构造的图。
图3C是根据本公开内容的至少一些实施方式的非分散红外传感器的检测器构造的图。
图4是根据本公开内容的至少一些实施方式的处理基板的方法的流程图。
为了促进理解,在可能的情况下,使用相同的附图标记来表示附图中共享的元件。附图不是按比例绘制的,并且为了清楚起见可以简化。一个实施方式的元件和特征可以有益地结合到其他实施方式中,而无需进一步叙述。
具体实施方式
本文提供了用于处理基板的方法及设备的实施方式。例如,本文所述的方法及设备使用传感器组件,该传感器组件包括检测器及红外源,该红外源可操作地连接至壳体(例如,热罐)的外部。该传感器组件的气体测量空间设置在该壳体内并沿着该壳体的内壁,使得在基板处理期间,该混合物中的前驱物的浓度可以由检测器测量并传送至控制器。该传感器组件可以是非分散红外传感器组件(NDIR传感器组件),其被构造为直接测量载气中所含的前驱物的浓度(例如,载气中所含的前驱物的背景)。与习知传感器技术相比,借由将NDIR的检测器移动到壳体的外部(例如,移动到温度降低的位置)并增加气体测量空间(例如,借由增加吸收测量空间),归因于检测器的噪声大大降低,并且检测器精度大大增加(例如,当与习知传感器技术相比时,为高达五(5)倍)。
图1是根据本公开内容的至少一些实施方式的处理腔室100的横截面侧视图。处理腔室100被构造为对基板110执行一种或多种处理。例如,在一些实施方式中,处理腔室100可以是被构造为执行化学气相沉积(chemical vapor deposition,CVD)工艺的CVD腔室、被构造为执行原子层沉积(atomic layer deposition,ALD)工艺的ALD腔室、被构造为执行清洁或预清洁工艺的清洁或预清洁腔室、和/或被构造为对基板执行蚀刻工艺的蚀刻腔室。例如,处理腔室100可被构造为在处理基板110时执行ALD。可被构造为使用本文所述的NDIR传感器组件执行清洁或蚀刻工艺的设备可以是可从位于加州圣克拉拉市的应用材料公司(Applied Materials,Inc.located in Santa Clara CA)获得的沉积腔室之一。可从应用材料公司获得的其他设备,以及可从其他制造商获得的那些设备,亦可根据本文所公开的教示进行修改。此类设备可以是独立的设备,或者设备中的一个或多个设备可以组合在群集工具中。
尽管处理腔室100可被构造用于使用如本文所公开的其他技术来处理基板,但是出于说明目的,处理腔室100被假设为被构造为执行ALD工艺。因此,在一些实施方式中,处理腔室100包括腔室主体112、盖组件114及支撑组件116。盖组件114设置在腔室主体112的上端处,并且支撑组件116至少部分地设置在于腔室主体112内限定的内部空间111内。真空系统可用于从处理腔室100中抽空/移除处理气体,并且可包括真空泵118,该真空泵耦接至设置在腔室主体112中的真空端口121。
处理腔室100亦包括用于控制处理腔室100内的工艺的控制器102(或处理器)或与处理腔室100内的工艺的控制器102(或处理器)通信。控制器102包括存储器123(非暂时性计算机可读取储存介质),该存储器上储存有指令,这些指令在被执行时使得控制器102执行用于处理基板110的方法,包括本文所公开的方法中的任何方法。例如,在一些实施方式中,控制器102可被构造或程序化为将IR光源调谐至与在操作期间提供给处理腔室100的气体混合物中存在的各种前驱物对应的一个或多个频率,如将在下面更详细描述的。
盖组件114包括至少两个堆叠的部件,该至少两个堆叠的部件被构造为形成等离子体空间或空腔。第一电极120竖直地设置在第二电极122上方,以限定等离子体空间。第一电极120连接至电源124(例如,射频(RF)电供应器和/或DC电供应器),并且第二电极122连接至接地或参考电势,从而在第一电极120与第二电极122之间形成电容。
盖组件114亦包括一个或多个气体入口126,气体供应器129可耦接至该气体入口以经由阻挡板128及气体分配板130(诸如喷头)将处理气体(例如,载气及前驱物的混合物)提供至基板110的表面。在至少一些实施方式中,处理气体可以使用由一种或多种合适的处理气体形成的等离子体的自由基。例如,在一些实施方式中,处理气体可以包括但不限于氢(H2)、氦(He)、惰性气体如氩(Ar)(或其他惰性气体)、氨(NH3)、水(H2O)、含氟气体如三氟化氮(NF3)、氟化氢(HF)、四氟化硅(SiF4)、一种或多种前驱物,或这些气体的任何组合。例如,前驱物可包括烷基酰胺前驱物,包括但不限于五(二甲基胺基)钽(V)-Ta(NMe2)5,通常称为PDMAT;二氧化钛-四(二甲基胺基)钛(C8H24N4Ti),通常称为TDMAT);Al(C2H5)3、AlEt3、B2H6、CCTBA、CH3C(O)N(CH3)2(DMA)、C3H8(丙烷)、CO(一氧化碳)、Ru(EtCp)2、Ru(EtCp)2、SiF4、4-二甲基戊二烯基SiH4、双(2,4-二甲基戊二烯基)钌(RU)、Ru(EtCp)(MeCp)、TiCl4、WCl5、WF6,以及在共同拥有的标题名称为“SELECTIVE COBALT DEPOSITION ON COPPER SURFACES(铜表面上的选择性钴沉积)”的美国专利公布第20090269507号中所公开的那些前驱物。
在一些实施方式中,包含处理气体的远程等离子体源131可被构造为将处理气体(例如,包括离子和自由基的等离子体形式的活化处理气体)引入处理腔室100。例如,远程等离子体源可耦接至设置在腔室主体112一侧处的单独气体入口125,以将处理气体直接引入内部空间111。
支撑组件116包括基板支撑件132,该基板支撑件具有平坦或实质上平坦的基板支撑表面以用于在处理期间支撑基板110。基板支撑件132可借由轴136耦接至致动器134,该轴延伸穿过形成在腔室主体112的底部中的中央定位的开口。致动器134可以借由波纹管(未图示)挠性地密封至腔室主体112,这些波纹管防止轴136周围的真空泄漏。致动器134允许基板支撑件132在腔室主体112内在一个或多个处理位置与装载位置之间竖直移动。装载位置略低于形成在腔室主体112的侧壁中的狭缝阀的开口,以用于将基板110装载到基板支撑件132上。可以在基板110正在被处理时改变处理位置。
图2是根据本公开内容的至少一些实施方式的气体供应器129的示意图。气体供应器129被构造为与CVD工艺和/或ALD工艺一起使用。气体供应器129包括壳体200(例如,热罐)和安瓿202,该安瓿储存与一种或多种处理气体(例如,载气)混合的前驱物。例如,安瓿202包括接收载气的输入端204及向处理腔室100提供载气与前驱物的混合物的输出端206。
传感器组件208可操作地连接至壳体200的外部。例如,传感器组件208可以是能够测量前驱物浓度的任何合适的传感器,例如傅立叶变换IR(FTIR)传感器组件、NDIR传感器组件等。发明人已发现,NDIR传感器组件相对便宜,并且包括简单的硬件,该简单的硬件使得NDIR传感器组件易于构造用于在气体供应器129的壳体200内使用。因此,传感器组件包括检测器210及红外源212,该检测器及红外源可操作地连接至壳体200的外部。在至少一些实施方式中,红外源212可以放置在壳体200内部,例如,以优化SNR。红外源212可以是基于灯丝的板禁IR源(filament-based board ban IR source)、基于半导体的宽带IR源、LEDIR源或激光IR源。在至少一些实施方式中,红外源212可以是LED IR源。气体测量空间214设置在壳体200内并沿着该壳体的内壁201。在操作中,混合物中前驱物的浓度可以由检测器210测量并传送至控制器(例如,控制器102)。
第一热绝缘体220及第二热绝缘体222分别设置在壳体200与检测器210及壳体200与红外源212之间。第一热绝缘体220及第二热绝缘体222被构造为在操作期间提供与由壳体散发的热量的隔离(例如,充当热扼流器)。
一个或多个压力传感器可设置在连接至传感器组件208的输出端207的气体管线205上和/或连接至安瓿202的输入端204的气体管线203上。例如,在至少一些实施方式中,压力传感器216可连接至气体管线205,并且压力传感器218可连接至气体管线203并且被构造为提供气体管线203中的载气的压力和气体管线205中的载气与前驱物的混合物的压力,如下面更详细描述的。在至少一些实施方式中,压力传感器216亦可连接至在安瓿202与传感器组件208之间(例如,在安瓿202与测量空间之间,如下所述)的气体管线。
图3A是根据本公开内容的至少一些实施方式的传感器组件208(例如,NDIR传感器组件)的示意图。除了关于图2描述的部件之外,传感器组件208的气体测量空间214包括被构造为容纳一种或多种气体(例如,空气、载气等)的腔室302。腔室302设置在检测器210与窗口304之间,该窗口可以由一种或多种合适的透明材料制成。例如,在至少一些实施方式中,窗口304可由玻璃制成。类似地,腔室306设置在红外源212与窗口308之间,该窗口可以与窗口304相同。窗口304及窗口308允许红外射束从红外源212透射穿过气体测量空间214并到达检测器210,使得检测器210可测量包含载气及前驱物的混合物中的前驱物浓度,如将在下面更详细描述的。
检测器210包括至少一个或多个传感器。例如,在至少一些实施方式中,该一个或多个传感器可包括能够提供高信噪比(signal-to-noise ratio,SNR)的热电堆传感器310(例如,大面积热电堆)、热释电传感器312、或高精度传感器315(例如,光电导传感器或光伏传感器,诸如碲镉汞(mercury cadmium telluride;MCT)、InAsSb检测器、InSb检测器、InAs检测器、InGaAs检测器、或HgCdTe检测器)。
在至少一些实施方式中,传感器组件208可包括多于一个检测器。例如,在至少一些实施方式中,前驱物检测器311a及参考检测器311b可以彼此成约90°放置(图3B)。前驱物检测器310a及参考检测器310b可以彼此相同或彼此不同,例如,可以使用相同或不同的传感器。在至少一些实施方式中,前驱物检测器310a及参考检测器310b可以彼此相同,但是可使用不同的滤光器(例如,光学滤光器),这些滤光器可经选择以使具有特定于前驱物和参考的某一波长的IR穿过。在至少一些实施方式中,IR分束器301(例如,棱镜)可用于将IR射束分成两个射束,一个射束用于前驱物检测器210a(例如,前驱物射束),而另一个射束用于参考检测器310b(例如,参考射束)。参考检测器310b被构造为补偿IR源中的漂移(drifts)。
在至少一些实施方式中,前驱物检测器310a和参考检测器310b可以并排构造设置(图3C)。在这些实施方式中,可以使用IR分束器301。
再次参考图2,由于检测器210定位在壳体200的外部,所以通常由壳体200内的高温(例如,大约105℃的安瓿温度设定点)引起的噪声不会影响检测器210的测量。在一些实施方式中,检测器210可以被冷却(例如,<5℃)以增加SNR。
在至少一些实施方式中,温度传感器211可耦接至检测器210。例如,温度传感器211可以是热敏电阻、热电偶、电阻温度检测器(resistance temperature detector,RTD)或其他合适的温度感测装置。温度传感器211被构造为在操作期间测量检测器210及/或壳体200的温度。
检测器210包括至少一个滤光器。例如,在至少一些实施方式中,至少一个滤光器包括第一滤光器314及第二滤光器316,该第一滤光器被构造为过滤未被任何气体吸收的红外光(例如,参考光),且该第二滤光器被构造为过滤被前驱物吸收的红外光。因此,在操作期间,检测器210可测量混合物中载气的浓度及混合物中前驱物的浓度。检测器210亦可包括运算放大器或模拟数字转换器(未图标)中的至少一者。
继续参考图3A,气体测量空间214沿着内壁201延伸,并限定红外吸收路径。本发明人已发现,为了将传感器组件整合到安瓿的输出端处的壳体中的有限空间内,习知传感器组件的气体测量路径(例如,长度为约7.5cm并且总体积为约30cm3)受到限制。本发明人已发现,具有大长度(例如,增加的空间)的气体测量空间为检测器210提供了增加的SNR。亦即,借由增加路径长度,在到达检测器之前提供了更多的气体(例如,载气和/或前驱物气体)来吸收从红外源透射的光。例如,气体测量空间可以是约0.635cm至约40.0cm,例如38.0cm。例如,本发明人已发现,借由将气体测量空间的长度增加至约40cm(例如,约160cm3的总体积为检测器210提供了改进的SNR(例如,大五(5)倍)),此可以基于体积增加将相对误差减小>2.2倍(例如,12%的相对误差减小到5%的相对误差),从而使得能够在工艺控制所需的水平上感测气体浓度。在一些实施方式中,气体测量空间可小于0.635cm且大于40.0cm。此外,本发明人已发现气体测量空间214的横截面可以在从约2cm×2cm至约5cm×5cm的数量级。如可以理解的,长度和总体积可以根据需要进行调整(例如,增加或减小)。
图4是根据本公开内容的至少一些实施方式的处理基板的方法400的流程图。例如,方法400在402处包括将载气从气体供应器供应到储存前驱物的安瓿的输入端。例如,气体供应器129可以向安瓿202供应上述载气中的一种或多种载气。在至少一些实施方式中,载气可以是氩(或其他稀有气体)。同样,前驱物可以是上述前驱物中的一种或多种前驱物,诸如五(二甲基胺基)钽(V)-Ta(NMe2)5或四(二甲基胺基)钛(C8H24N4Ti)。
接下来,在404处,方法400包括从安瓿的输出端向传感器组件(例如,传感器组件208)供应载气与前驱物的混合物。如上所述,传感器组件208包括检测器及红外源以及气体测量空间,该红外源可操作地连接至该混合物流经的壳体的外部,该气体测量空间设置在该壳体内并沿着该壳体的内壁,使得该混合物中的该前驱物的浓度可由该检测器测量并传送至控制器。可替代地或另外地,如上所述,在至少一些实施方式中,红外源可以放置在壳体内部。
接下来,在406处,方法400包括基于等式(1)确定前驱物的浓度:
C=CA/CB=(kB TNA δv/ΨlP)log10(φ0/φ)×100%......,(1)
其中C=A在B中的浓度[Abs],CA=A的浓度[mol/m3],CB=B的浓度[mol/m3],KB=玻尔兹曼常数[J/K],T=温度[K],NA=阿伏加德罗常数[#/mol],Ψ=积分摩尔吸光系数[m/mol],l=IR源路径长度[m],P=总压力[Pa],φ0=不使用A时的光电二极管信号,φ=使用A时的光电二极管信号,并且δv=滤光器的光谱宽度[m-1]。载体与前驱物的混合物的压力。在等式(1)中,总压力是气体管线205中载气与前驱物的混合物的压力。检测器210将前驱物的吸收率的测量值传送至控制器102并且压力传感器216将所检测到的载体与前驱物混合物的压力传送至该控制器,该控制器继而使用等式(1)来确定前驱物的浓度。
接下来,在408处,方法400包括基于确定的前驱物浓度来调节壳体的温度。例如,控制器102可调节安瓿202的温度。例如,在至少一些实施方式中,当所确定的前驱物浓度低于预定值时,控制器102提高安瓿202的温度,以增加储存在安瓿202中的前驱物的蒸发,此继而增加了前驱物的浓度。在至少一些实施方式中,诸如当安瓿处的温度过高时,控制器102可被构造为降低该安瓿的温度。
尽管前面是针对本公开内容的实施方式,但是在不脱离本公开内容的基本范畴的情况下,可以设计本公开内容的其他及进一步的实施方式。

Claims (20)

1.一种被构造用于与处理腔室一起使用的气体供应器,包括:
安瓿,所述安瓿储存前驱物并包括用于接收载气的输入端和用于向所述处理腔室提供所述载气与所述前驱物的混合物的输出端;和
传感器组件,所述传感器组件包括检测器和红外源和气体测量空间,所述红外源可操作地连接至所述混合物流经的壳体的外部,且所述气体测量空间设置在所述壳体内并沿着所述壳体的内壁,使得所述混合物中的所述前驱物的浓度可由所述检测器测量并传送至控制器。
2.如权利要求1所述的气体供应器,进一步包括至少一个压力传感器,所述至少一个压力传感器连接至一个连接至所述传感器组件的输出端的气体管线或一个连接至所述安瓿的输入端的气体管线。
3.如权利要求1所述的气体供应器,其中所述前驱物是烷基酰胺前驱物。
4.如权利要求1至3中任一项所述的气体供应器,其中所述烷基酰胺前驱物包括五(二甲基胺基)钽(V)-Ta(NMe2)5或四(二甲基胺基)钛(C8H24N4Ti)。
5.如权利要求1所述的气体供应器,其中所述载气是惰性气体。
6.如权利要求1至3或5中任一项所述的气体供应器,其中所述惰性气体是稀有气体。
7.如权利要求1所述的气体供应器,其中所述检测器包括热电堆传感器、热释电传感器、光电导传感器或光伏传感器中的至少一者。
8.如权利要求1至3、5或7中任一项所述的气体供应器,其中所述检测器包括运算放大器或模拟数字转换器中的至少一者。
9.如权利要求1所述的气体供应器,其中所述检测器包括至少一个滤光器。
10.如权利要求1至3、5、7或9中任一项所述的气体供应器,其中所述至少一个滤光器包括第一滤光器和第二滤光器,所述第一滤光器被构造为过滤未被任何气体吸收的红外光(参考光),且所述第二滤光器被构造为过滤被所述前驱物吸收的红外光。
11.如权利要求1所述的气体供应器,其中所述传感器组件是非分散红外传感器组件。
12.如权利要求1所述的气体供应器,其中所述气体供应器被构造用于与化学气相沉积腔室或原子层沉积腔室中的至少一者一起使用。
13.如权利要求1所述的气体供应器,其中所述气体测量空间具有约0.635cm至约40.0cm的长度。
14.如权利要求1所述的气体供应器,其中所述气体测量空间具有约38.0cm的长度。
15.如权利要求1所述的气体供应器,其中所述气体测量空间限定红外吸收路径。
16.如权利要求1至3、5、7、9、或11至15中任一项所述的气体供应器,其中第一热绝缘体和第二热绝缘体分别设置在所述壳体与所述检测器之间及所述壳体与所述红外源之间。
17.一种被构造用于与处理腔室一起使用的气体供应器,包括:
安瓿,所述安瓿储存前驱物并包括用于接收载气的输入端和用于向所述处理腔室提供所述载气与所述前驱物的混合物的输出端;和
传感器组件,所述传感器组件包括检测器和红外源和气体测量空间,所述检测器包括热电堆传感器或热释电传感器,且所述红外源可操作地连接至所述混合物流经的壳体的外部,且所述气体测量空间设置在所述壳体内并沿所述壳体的内壁平行延伸,使得所述混合物中的所述前驱物的浓度可由所述检测器测量并传送至控制器。
18.一种用于处理基板的系统,包括:
处理腔室;和
气体供应器,所述气体供应器可操作地耦接至所述处理腔室并且包括:
安瓿,所述安瓿储存前驱物并包括用于接收载气的输入端和用于向所述处理腔室提供所述载气与所述前驱物的混合物的输出端;和
传感器组件,所述传感器组件包括检测器和红外源和气体测量空间,所述检测器可操作地连接至壳体的外部,且所述红外源设置在所述混合物流经的所述壳体内,且所述气体测量空间设置在所述壳体内并沿所述壳体的内壁延伸,使得所述混合物中的所述前驱物的浓度可以由所述检测器测量并传送至控制器。
19.如权利要求18所述的系统,进一步包括压力传感器,所述压力传感器连接至所述传感器组件的输出端。
20.如权利要求18或19中任一项所述的系统,其中所述前驱物是烷基酰胺前驱物。
CN202280025633.0A 2021-04-09 2022-03-09 处理基板的方法及设备 Pending CN117120663A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202163173270P 2021-04-09 2021-04-09
US63/173,270 2021-04-09
US17/496,427 2021-10-07
US17/496,427 US20220328285A1 (en) 2021-04-09 2021-10-07 Methods and apparatus for processing a substrate
PCT/US2022/019528 WO2022216400A1 (en) 2021-04-09 2022-03-09 Methods and apparatus for processing a substrate

Publications (1)

Publication Number Publication Date
CN117120663A true CN117120663A (zh) 2023-11-24

Family

ID=83509465

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280025633.0A Pending CN117120663A (zh) 2021-04-09 2022-03-09 处理基板的方法及设备

Country Status (5)

Country Link
US (1) US20220328285A1 (zh)
KR (1) KR20230170705A (zh)
CN (1) CN117120663A (zh)
TW (1) TW202242384A (zh)
WO (1) WO2022216400A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20250043423A1 (en) * 2023-07-31 2025-02-06 Applied Materials, Inc. Vapor concentration sensors for process chambers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4012454C1 (zh) * 1990-04-19 1991-08-08 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V., 8000 Muenchen, De
US5534066A (en) * 1993-10-29 1996-07-09 International Business Machines Corporation Fluid delivery apparatus having an infrared feedline sensor
US7129519B2 (en) * 2002-05-08 2006-10-31 Advanced Technology Materials, Inc. Monitoring system comprising infrared thermopile detector
US20050095859A1 (en) * 2003-11-03 2005-05-05 Applied Materials, Inc. Precursor delivery system with rate control
CN109416320A (zh) * 2016-05-09 2019-03-01 英弗勒索利得有限责任公司 用于感测不同气体和气体浓度的测量装置和方法
US10975470B2 (en) * 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11009455B2 (en) * 2018-07-31 2021-05-18 Applied Materials, Inc. Precursor delivery system and methods related thereto

Also Published As

Publication number Publication date
TW202242384A (zh) 2022-11-01
KR20230170705A (ko) 2023-12-19
WO2022216400A1 (en) 2022-10-13
US20220328285A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
TWI806964B (zh) 在高溫環境下偵測或監測化學前體的設備
KR100634326B1 (ko) 반도체 처리용 샤워 헤드 구조
JP3901265B2 (ja) 薄板状基体の搬送方法及び搬送装置
Granier et al. Diagnostics in helicon plasmas for deposition
KR100602926B1 (ko) 처리 장치 및 처리 방법
CN108292589B (zh) 在处理工具中的板载计量(obm)设计与影响
KR970003888B1 (ko) 박막의 정확한 에칭 및 제거를 위한 장치 및 그 방법
US6482266B1 (en) Metal organic chemical vapor deposition method and apparatus
KR100431040B1 (ko) Cvd 장치 및 그 퍼지 방법
KR102552386B1 (ko) 반도체 프로세싱 툴에서 rf 전류 측정
JP2008508728A (ja) ガス洗浄のための閉ループ制御方法およびシステム
KR20190105089A (ko) 플라스마 생성 장치, 기판 처리 장치 및 반도체 장치의 제조 방법
US11009455B2 (en) Precursor delivery system and methods related thereto
US20030026921A1 (en) Low temperature synthesis of semiconductor fiber
US20210005435A1 (en) Methods, apparatus, and systems for processing a substrate
US20130059403A1 (en) Method and apparatus for wafer temperature measurement using an independent light source
US20100190098A1 (en) Infrared endpoint detection for photoresist strip processes
CN117120663A (zh) 处理基板的方法及设备
JP4544265B2 (ja) シャワーヘッド構造及び成膜処理装置
US7094614B2 (en) In-situ monitoring of chemical vapor deposition process by mass spectrometry
Vereecke et al. Wafer thermal desorption spectrometry in a rapid thermal processor using atmospheric pressure ionization mass spectrometry
Sperling et al. Quantitative infrared spectroscopy of tetrakis (dimethylamido) titanium for process measurements
Maslar et al. In Situ Gas-Phase Diagnostics for Titanium Nitride Atomic Layer Deposition
KR20180025821A (ko) 탄화수소-기반 극박막을 형성하여 층을 보호하기 위한 방법
Haverlag et al. High-resolution infrared spectroscopy of etching plasmas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination