CN117117012A - An avalanche photodiode and its manufacturing method - Google Patents
An avalanche photodiode and its manufacturing method Download PDFInfo
- Publication number
- CN117117012A CN117117012A CN202210512345.XA CN202210512345A CN117117012A CN 117117012 A CN117117012 A CN 117117012A CN 202210512345 A CN202210512345 A CN 202210512345A CN 117117012 A CN117117012 A CN 117117012A
- Authority
- CN
- China
- Prior art keywords
- layer
- type
- electric field
- contact layer
- passivation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 239000010410 layer Substances 0.000 claims abstract description 461
- 230000005684 electric field Effects 0.000 claims abstract description 129
- 238000002161 passivation Methods 0.000 claims abstract description 102
- 238000000034 method Methods 0.000 claims abstract description 86
- 230000008569 process Effects 0.000 claims abstract description 72
- 239000000758 substrate Substances 0.000 claims abstract description 33
- 230000007797 corrosion Effects 0.000 claims abstract description 15
- 238000005260 corrosion Methods 0.000 claims abstract description 15
- 239000002346 layers by function Substances 0.000 claims abstract description 13
- 230000031700 light absorption Effects 0.000 claims description 33
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 31
- 238000000206 photolithography Methods 0.000 claims description 31
- 229910052751 metal Inorganic materials 0.000 claims description 28
- 239000002184 metal Substances 0.000 claims description 28
- 238000005530 etching Methods 0.000 claims description 24
- 229920002120 photoresistant polymer Polymers 0.000 claims description 21
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 17
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 17
- 238000000151 deposition Methods 0.000 claims description 11
- 238000005566 electron beam evaporation Methods 0.000 claims description 11
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 10
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 claims description 9
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical class [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 9
- JGJLWPGRMCADHB-UHFFFAOYSA-N hypobromite Inorganic materials Br[O-] JGJLWPGRMCADHB-UHFFFAOYSA-N 0.000 claims description 9
- 230000000873 masking effect Effects 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 230000008021 deposition Effects 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- 238000007740 vapor deposition Methods 0.000 claims description 8
- 238000007747 plating Methods 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000005498 polishing Methods 0.000 claims description 6
- 230000003667 anti-reflective effect Effects 0.000 claims description 5
- UYJXRRSPUVSSMN-UHFFFAOYSA-P ammonium sulfide Chemical compound [NH4+].[NH4+].[S-2] UYJXRRSPUVSSMN-UHFFFAOYSA-P 0.000 claims description 3
- QCUOBSQYDGUHHT-UHFFFAOYSA-L cadmium sulfate Chemical compound [Cd+2].[O-]S([O-])(=O)=O QCUOBSQYDGUHHT-UHFFFAOYSA-L 0.000 claims description 3
- 229910000331 cadmium sulfate Inorganic materials 0.000 claims description 3
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 3
- 238000001020 plasma etching Methods 0.000 claims description 3
- 238000001259 photo etching Methods 0.000 claims 11
- 238000001035 drying Methods 0.000 claims 1
- 238000004528 spin coating Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 8
- 239000003292 glue Substances 0.000 description 13
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000007772 electroless plating Methods 0.000 description 4
- 238000001338 self-assembly Methods 0.000 description 4
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000000407 epitaxy Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/225—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier working in avalanche mode, e.g. avalanche photodiodes
- H10F30/2255—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers form heterostructures, e.g. SAM structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/127—The active layers comprising only Group III-V materials, e.g. GaAs or InP
- H10F71/1272—The active layers comprising only Group III-V materials, e.g. GaAs or InP comprising at least three elements, e.g. GaAlAs or InGaAsP
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
- H10F77/148—Shapes of potential barriers
Landscapes
- Light Receiving Elements (AREA)
Abstract
本发明涉及芯片制造技术领域,尤其涉及一种雪崩光电二极管及其制作方法,该雪崩光电二极管在半绝缘衬底上至少堆叠有P型接触层、基础功能层以及N型接触层,基础功能层和N型接触层之间还设置有N型电场控制层和I型边缘电场缓冲层,其中,半绝缘衬底与P型接触层的侧周形成第一台阶,P型接触层与基础功能层的侧周形成第二台阶,基础功能层、N型电场控制层和I型边缘电场缓冲层的侧周依次覆盖有第一钝化层、第二钝化层、第三钝化层。本发明可以降低电容,提高带宽。另外,在工艺上,可以解决腐蚀过程中钻蚀的问题,可以提高整个芯片的可靠性。
The invention relates to the field of chip manufacturing technology, and in particular to an avalanche photodiode and a manufacturing method thereof. The avalanche photodiode has at least a P-type contact layer, a basic functional layer and an N-type contact layer stacked on a semi-insulating substrate. The basic functional layer An N-type electric field control layer and an I-type edge electric field buffer layer are also provided between the N-type contact layer and the semi-insulating substrate to form a first step on the side periphery of the P-type contact layer. A second step is formed on the side circumference of the basic functional layer, the N-type electric field control layer and the I-type edge electric field buffer layer, and are covered with a first passivation layer, a second passivation layer and a third passivation layer in sequence. The invention can reduce capacitance and increase bandwidth. In addition, in terms of technology, the problem of undercutting during the corrosion process can be solved and the reliability of the entire chip can be improved.
Description
技术领域Technical field
本发明涉及芯片制造技术领域,尤其涉及一种雪崩光电二极管及其制作方法。The present invention relates to the field of chip manufacturing technology, and in particular to an avalanche photodiode and a manufacturing method thereof.
背景技术Background technique
在不超过10Gbps的光纤通信系统中,光接收端芯片广泛采用雪崩光电二极管(APD)来实现,这是因为其具有内部增益,可以获得更高的灵敏度,实现更远距离的信号传输。但是在雪崩光电二极管设计过程中,对于其所有的结构不能单方面考虑其中一个,而是需要对其响应度、带宽和增益进行综合考虑。其中,响应度和带宽会相互牵制,提高带宽需要减少吸收层和倍增层的厚度,而这又会带来响应度的降低以及电容的增大,从而又会降低带宽。因此,当光纤通信系统发展到100G和400G时,10Gbps系统中的雪崩光电二极管的结构便不再适用,对于该需求,传统方法是采用倏逝波探测器结构,采取波导传输方式来解决光路和电路的串扰。但是,这种结构经常会造成TE和TM模式响应度差别较大,造成耦合的问题。而且波导台面结构对可靠性的要求也是传统垂直入射探测器难以比拟的。In optical fiber communication systems not exceeding 10Gbps, avalanche photodiodes (APDs) are widely used as optical receiver chips because they have internal gain and can achieve higher sensitivity and longer-distance signal transmission. However, in the design process of avalanche photodiodes, all of its structures cannot be considered unilaterally, but its responsivity, bandwidth and gain need to be comprehensively considered. Among them, responsivity and bandwidth will restrain each other. Increasing bandwidth requires reducing the thickness of the absorption layer and multiplication layer, which in turn will reduce the responsivity and increase the capacitance, which in turn will reduce the bandwidth. Therefore, when the optical fiber communication system develops to 100G and 400G, the structure of the avalanche photodiode in the 10Gbps system is no longer applicable. For this requirement, the traditional method is to use the evanescent wave detector structure and use waveguide transmission to solve the optical path and Crosstalk in circuits. However, this structure often results in a large difference in responsivity between TE and TM modes, causing coupling problems. Moreover, the reliability requirements of the waveguide mesa structure are difficult to match with traditional vertical incidence detectors.
另外,对于传统的雪崩光电二极管结构,其外延结构为:N+-I-P-I-P+结构。其是在InP掺Fe半绝缘衬底上用分子束气象外延沉积的方法(MBE)依次堆叠N型InP接触层、I型InAlAs倍增层、P型InP电场控制层、I型InGaAs光吸收层、I型InAlAs包层、I型InP帽层和P型InGaAs接触层。通过该结构可以用于100G和400G的光纤通信系统中,但其同样还是会有一些缺陷,例如:PN结面积较大、P+N+结之间的距离不足,导致电容较大,带宽降低。另外,现有雪崩光电二极管的制造工艺上也存在一些问题,例如:在腐蚀过程中容易出现钻蚀问题;钝化层采用传统的硫化工艺,形成的表面不够细致精密。In addition, for the traditional avalanche photodiode structure, the epitaxial structure is: N+-I-P-I-P+ structure. It uses molecular beam epitaxial deposition (MBE) on an InP-doped Fe-doped semi-insulating substrate to sequentially stack an N-type InP contact layer, an I-type InAlAs multiplication layer, a P-type InP electric field control layer, an I-type InGaAs light absorption layer, I-type InAlAs cladding layer, I-type InP cap layer and P-type InGaAs contact layer. This structure can be used in 100G and 400G optical fiber communication systems, but it still has some defects, such as the large PN junction area and insufficient distance between P+N+ junctions, resulting in large capacitance and reduced bandwidth. In addition, there are also some problems in the manufacturing process of existing avalanche photodiodes. For example, undercutting is prone to occur during the corrosion process; the passivation layer adopts the traditional sulfurization process, and the surface formed is not delicate and precise enough.
所以在如今的100G和400G系统中,急需新的雪崩光电二极管结构以及制作工艺来解决上述问题。Therefore, in today's 100G and 400G systems, new avalanche photodiode structures and manufacturing processes are urgently needed to solve the above problems.
鉴于此,克服现有技术所存在的上述缺陷是本技术领域亟待解决的难题。In view of this, overcoming the above-mentioned defects in the prior art is an urgent problem to be solved in this technical field.
发明内容Contents of the invention
本发明的目的之一正是基于现有技术中雪崩光电二极管PN结面积较大、P+N+结之间距离不足,导致电容较大,带宽降低的问题,以及制造工艺上容易出现钻蚀、形成的表面不够细致精密的问题,提供一种雪崩光电二极管及其制作方法。该雪崩光电二极管通过设计一种InAlAs/InGaAs材料的APD外延片,采用特殊的P+-I-N-I-P-I-N+结构,通过该特殊结构可以缩小有源区尺寸,降低电容,提高带宽。另外,在工艺上,采取由外向里的分级台型腐蚀工艺,解决了腐蚀过程中钻蚀的问题,采用两次化镀自组装方式形成硫化镉钝化层覆盖在台型侧壁,提高了整个芯片的可靠性。One of the purposes of the present invention is based on the problems in the prior art that the PN junction area of the avalanche photodiode is large and the distance between the P+N+ junctions is insufficient, resulting in large capacitance and reduced bandwidth, and the manufacturing process is prone to undercutting and erosion. To solve the problem that the formed surface is not delicate enough, an avalanche photodiode and a manufacturing method thereof are provided. The avalanche photodiode designs an APD epitaxial wafer of InAlAs/InGaAs material and adopts a special P+-I-N-I-P-I-N+ structure. Through this special structure, the size of the active area can be reduced, the capacitance can be reduced, and the bandwidth can be increased. In addition, in terms of technology, a graded mesa corrosion process from outside to in is adopted to solve the problem of undercutting during the corrosion process. Two electroless plating self-assembly methods are used to form a cadmium sulfide passivation layer to cover the mesa side walls, which improves the efficiency of the mesa. The reliability of the entire chip.
本发明是这样实现的:The present invention is implemented as follows:
第一方面,本发明提供一种雪崩光电二极管,在半绝缘衬底上至少堆叠有P型接触层、基础功能层以及N型接触层,所述基础功能层和所述N型接触层之间还设置有N型电场控制层和I型边缘电场缓冲层,其中,所述半绝缘衬底与所述P型接触层的侧周形成第一台阶,所述P型接触层与所述基础功能层的侧周形成第二台阶,所述基础功能层、N型电场控制层和I型边缘电场缓冲层的侧周依次覆盖有第一钝化层、第二钝化层、第三钝化层。In a first aspect, the present invention provides an avalanche photodiode, in which at least a P-type contact layer, a basic functional layer and an N-type contact layer are stacked on a semi-insulating substrate, and between the basic functional layer and the N-type contact layer An N-type electric field control layer and an I-type edge electric field buffer layer are also provided, wherein the semi-insulating substrate and the side periphery of the P-type contact layer form a first step, and the P-type contact layer and the basic function A second step is formed on the side periphery of the layer. The side periphery of the basic functional layer, the N-type electric field control layer and the I-type edge electric field buffer layer are covered with a first passivation layer, a second passivation layer and a third passivation layer in sequence. .
进一步的,所述基础功能层包括I型光吸收层、P型电场控制层、I型倍增层,具体的,所述P型接触层、所述I型光吸收层、所述P型电场控制层、所述I型倍增层、所述N型电场控制层、所述I型边缘电场缓冲层、所述N型接触层通过分子束气象外延沉积的方式依次堆叠在所述半绝缘衬底上。Further, the basic functional layer includes an I-type light absorption layer, a P-type electric field control layer, and an I-type multiplication layer. Specifically, the P-type contact layer, the I-type light absorption layer, and the P-type electric field control layer layer, the I-type multiplication layer, the N-type electric field control layer, the I-type edge electric field buffer layer, and the N-type contact layer are sequentially stacked on the semi-insulating substrate through molecular beam vapor epitaxial deposition. .
进一步的,所述N型接触层设置在所述I型边缘电场缓冲层上表面且为环形结构,所述P型电场控制层、所述I型倍增层、所述N型电场控制层、所述I型边缘电场缓冲层的侧周与所述I型光吸收层的侧周形成第三台阶,所述第一钝化层覆盖在所述第三台阶上,所述第二钝化层覆盖在所述第一钝化层、第一台阶以及部分第二台阶上,所述第三钝化层覆盖在所述第二钝化层上。Further, the N-type contact layer is disposed on the upper surface of the I-type edge electric field buffer layer and has a ring structure, and the P-type electric field control layer, the I-type multiplication layer, the N-type electric field control layer, The side periphery of the I-type edge electric field buffer layer and the side periphery of the I-type light absorption layer form a third step, the first passivation layer covers the third step, and the second passivation layer covers On the first passivation layer, the first step and part of the second step, the third passivation layer covers the second passivation layer.
进一步的,所述半绝缘衬底底部依次设有氮化硅介质反射层和高反射金属层,所述N型接触层上引出N电极金属接触层,所述P型接触层上引出P电极金属接触层,且所述P电极金属接触层延伸到所述第三钝化层的上表面。Further, the bottom of the semi-insulating substrate is provided with a silicon nitride dielectric reflective layer and a highly reflective metal layer in sequence, an N-electrode metal contact layer is led out on the N-type contact layer, and a P-electrode metal is led out on the P-type contact layer. contact layer, and the P electrode metal contact layer extends to the upper surface of the third passivation layer.
进一步的,所述半绝缘衬底包括InP掺Fe半绝缘衬底,所述P型接触层包括P型InGaAs接触层,所述I型光吸收层包括I型InGaAs光吸收层,所述P型电场控制层包括P型InAlAs电场控制层,所述I型倍增层包括I型InAlAs倍增层,所述N型电场控制层包括N型InAlAs电场控制层,所述I型边缘电场缓冲层包括I型InP边缘电场缓冲层,所述N型接触层包括N型InGaAs接触层,所述第一钝化层包括CdS钝化层,所述第二钝化层包括BCB钝化层,所述第三钝化层包括SiN增透钝化层。Further, the semi-insulating substrate includes an InP-doped Fe semi-insulating substrate, the P-type contact layer includes a P-type InGaAs contact layer, the I-type light absorption layer includes an I-type InGaAs light absorption layer, and the P-type The electric field control layer includes a P-type InAlAs electric field control layer, the I-type multiplication layer includes an I-type InAlAs multiplication layer, the N-type electric field control layer includes an N-type InAlAs electric field control layer, and the I-type edge electric field buffer layer includes an I-type InP edge electric field buffer layer, the N-type contact layer includes an N-type InGaAs contact layer, the first passivation layer includes a CdS passivation layer, the second passivation layer includes a BCB passivation layer, and the third passivation layer The passivation layer includes SiN anti-reflective passivation layer.
进一步的,所述P型InGaAs接触层的掺杂浓度为1e19cm-3、厚度为0.5μm;所述I型InGaAs光吸收层的掺杂浓度小于5e15cm-3、厚度在0.4至0.6μm范围内;所述P型InAlAs电场控制层的掺杂浓度为1e18cm-3、厚度在0.32至0.35μm范围内;所述I型InAlAs倍增层的掺杂浓度小于5e15cm-3、厚度在0.2至0.3μm范围内;所述N型InAlAs电场控制层的掺杂浓度为1e18cm-3、厚度在0.32至0.35μm范围内;所述I型InP边缘电场缓冲层的掺杂浓度小于5e15cm-3、厚度在1至1.5μm范围内;所述N型InGaAs接触层的掺杂浓度小于1e19cm-3、厚度为0.15μm。Further, the doping concentration of the P-type InGaAs contact layer is 1e19cm -3 and the thickness is 0.5 μm; the doping concentration of the I-type InGaAs light absorption layer is less than 5e15cm -3 and the thickness is in the range of 0.4 to 0.6 μm; The P-type InAlAs electric field control layer has a doping concentration of 1e18cm -3 and a thickness in the range of 0.32 to 0.35 μm; the I-type InAlAs multiplication layer has a doping concentration of less than 5e15cm -3 and a thickness in the range of 0.2 to 0.3 μm. ; The N-type InAlAs electric field control layer has a doping concentration of 1e18cm -3 and a thickness in the range of 0.32 to 0.35μm; the I-type InP edge electric field buffer layer has a doping concentration of less than 5e15cm -3 and a thickness of 1 to 1.5 Within the range of μm; the doping concentration of the N-type InGaAs contact layer is less than 1e19cm -3 and the thickness is 0.15μm.
第二方面,本发明还提供一种雪崩光电二极管的制作方法,方法包括:In a second aspect, the present invention also provides a method for manufacturing an avalanche photodiode, which method includes:
在半绝缘衬底上通过分子束气象外延沉积的方式依次堆叠P型接触层、I型光吸收层、P型电场控制层、I型倍增层、N型电场控制层、I型边缘电场缓冲层、N型接触层;The P-type contact layer, I-type light absorption layer, P-type electric field control layer, I-type multiplication layer, N-type electric field control layer, and I-type edge electric field buffer layer are sequentially stacked on the semi-insulating substrate through molecular beam vapor epitaxial deposition. , N-type contact layer;
通过光刻和腐蚀工艺形成环形的N型接触层,并在不去胶的情况下通过光刻和腐蚀工艺形成圆柱台的第一台阶、第二台阶以及第三台阶;The annular N-type contact layer is formed through photolithography and etching processes, and the first step, the second step and the third step of the cylindrical platform are formed through photolithography and etching processes without removing the glue;
在去胶情况下通过光刻、化镀工艺、钝化工艺、低温等离子增强化学气相沉积的方式以及刻蚀工艺形成第一钝化层、第二钝化层、第三钝化层,并露出P型接触层和N型接触层;The first passivation layer, the second passivation layer and the third passivation layer are formed through photolithography, chemical plating process, passivation process, low-temperature plasma enhanced chemical vapor deposition and etching process under the condition of removing the glue, and are exposed P-type contact layer and N-type contact layer;
采用电子束蒸发和剥离工艺,形成P电极金属接触层以及N电极金属接触层;Using electron beam evaporation and stripping processes, the P electrode metal contact layer and N electrode metal contact layer are formed;
通过热处理、减薄抛光、增强等离子气相沉积方式以及电子束蒸发工艺形成氮化硅介质反射层和高反射金属层;The silicon nitride dielectric reflective layer and highly reflective metal layer are formed through heat treatment, thinning polishing, enhanced plasma vapor deposition and electron beam evaporation processes;
将晶片经过解理形成300X300μm2的雪崩光电二极管芯片。The wafer is cleaved to form a 300X300μm 2 avalanche photodiode chip.
进一步的,所述通过光刻和腐蚀工艺形成环形的N型接触层,并在不去胶的情况下通过光刻和腐蚀工艺形成圆柱台的第一台阶、第二台阶以及第三台阶具体包括:Further, forming the annular N-type contact layer through photolithography and etching processes, and forming the first step, the second step and the third step of the cylindrical platform through photolithography and etching processes without removing glue specifically include: :
通过光刻和腐蚀工艺形成环形的N型接触层;A ring-shaped N-type contact layer is formed through photolithography and etching processes;
通过光刻和腐蚀工艺形成第一台阶,具体的:以光刻胶做掩蔽膜,用氢溴酸、饱和溴水和水比例为1:1:1的溶液腐蚀I型边缘电场缓冲层、N型电场控制层、I型倍增层、P型电场控制层、I型光吸收层、P型接触层,最终停止在半绝缘衬底中,以形成第一台阶;The first step is formed through photolithography and etching processes. Specifically: use photoresist as a masking film, use hydrobromic acid, saturated bromine water and a solution with a water ratio of 1:1:1 to etch the I-type edge electric field buffer layer and N Type electric field control layer, I-type multiplication layer, P-type electric field control layer, I-type light absorption layer, P-type contact layer, and finally stop in the semi-insulating substrate to form the first step;
不去胶,继续通过光刻和腐蚀工艺形成第二台阶,具体的:以光刻胶做掩蔽膜,用氢溴酸、饱和溴水和水比例为1:1:1的溶液腐蚀I型边缘电场缓冲层、N型电场控制层、I型倍增层、P型电场控制层、I型光吸收层,最终停止在P型接触层处,以形成第二台阶;Without removing the glue, continue to form the second step through photolithography and etching processes. Specifically: use photoresist as a masking film, and use a solution of hydrobromic acid, saturated bromine water and water with a ratio of 1:1:1 to etch the I-type edge. The electric field buffer layer, N-type electric field control layer, I-type multiplication layer, P-type electric field control layer, and I-type light absorption layer finally stop at the P-type contact layer to form the second step;
不去胶,继续通过光刻和腐蚀工艺形成第三台阶,具体的:以光刻胶做掩蔽膜,用氢溴酸、饱和溴水和水比例为1:1:1的溶液腐蚀I型边缘电场缓冲层、N型电场控制层、I型倍增层、P型电场控制层,最终停止在I型光吸收层中,以形成第三台阶。Without removing the glue, continue to form the third step through photolithography and etching processes. Specifically: use photoresist as a masking film, and use a solution of hydrobromic acid, saturated bromine water and water with a ratio of 1:1:1 to etch the I-type edge. The electric field buffer layer, N-type electric field control layer, I-type multiplication layer, and P-type electric field control layer finally stop in the I-type light absorption layer to form the third step.
进一步的,所述在去胶情况下通过光刻、化镀工艺、钝化工艺、低温等离子增强化学气相沉积的方式以及刻蚀工艺形成第一钝化层、第二钝化层、第三钝化层,并露出P型接触层和N型接触层具体包括:Further, the first passivation layer, the second passivation layer, and the third passivation layer are formed by photolithography, chemical plating process, passivation process, low-temperature plasma enhanced chemical vapor deposition, and etching process under the condition of removing the glue. layer, and expose the P-type contact layer and N-type contact layer, including:
去胶,通过光刻和化镀工艺形成第一钝化层,具体的:首先通过光刻工艺,用光刻胶覆盖整个外延片表面,漏出圆柱台的侧壁;然后置于硫化铵溶液中40-60min,紧接着置于硫酸镉溶液中;吹干,去胶,最终在侧壁形成10-20nm的CdS钝化层;Remove the glue and form the first passivation layer through photolithography and chemical plating processes. Specifically: first cover the entire epitaxial wafer surface with photoresist through the photolithography process, leaking out the side walls of the cylindrical platform; and then place it in an ammonium sulfide solution. 40-60min, then place it in a cadmium sulfate solution; blow dry, remove the glue, and finally form a 10-20nm CdS passivation layer on the side wall;
通过光刻和钝化工艺形成第二钝化层,具体的:将光敏BCB旋涂在外延片表面,再通过光刻工艺将其覆盖在圆柱台的侧壁和周围,然后在氮气气氛中、250摄氏度下钝化2小时,以形成BCB钝化层;The second passivation layer is formed through photolithography and passivation processes. Specifically: the photosensitive BCB is spin-coated on the surface of the epitaxial wafer, and then covered on the side walls and surroundings of the cylindrical platform through the photolithography process, and then in a nitrogen atmosphere, Passivate at 250 degrees Celsius for 2 hours to form a BCB passivation layer;
通过低温等离子增强化学气相沉积的方式形成第三钝化层,具体的:通过低温等离子增强化学气相沉积的方式淀积厚度的氮化硅介质层,以形成SiN增透钝化层;The third passivation layer is formed by low-temperature plasma enhanced chemical vapor deposition. Specifically: deposited by low-temperature plasma enhanced chemical vapor deposition. A thick silicon nitride dielectric layer to form a SiN anti-reflective passivation layer;
通过光刻和刻蚀工艺露出P型接触层和N型接触层。The P-type contact layer and N-type contact layer are exposed through photolithography and etching processes.
进一步的,所述通过热处理、减薄抛光、增强等离子气相沉积方式以及电子束蒸发工艺形成氮化硅介质反射层和高反射金属层具体包括:Further, the formation of the silicon nitride dielectric reflective layer and the highly reflective metal layer through heat treatment, thinning polishing, enhanced plasma vapor deposition and electron beam evaporation processes specifically includes:
使外延片处于300~360℃下热处理1~3分钟;Heat the epitaxial wafer at 300-360°C for 1-3 minutes;
将外延片减薄抛光到150μm,在外延片抛光面用增强等离子气相沉积方式淀积厚度的氮化硅介质反射层;The epitaxial wafer is thinned and polished to 150μm, and the polished surface of the epitaxial wafer is deposited using enhanced plasma vapor deposition. Thick silicon nitride dielectric reflective layer;
采用电子束蒸发工艺,在氮化硅介质反射层上形成Ti/Pt/Au高反射金属层,其中,Ti厚度为Pt厚度为/>Au厚度为/> An electron beam evaporation process is used to form a Ti/Pt/Au highly reflective metal layer on the silicon nitride dielectric reflective layer, where the Ti thickness is Pt thickness is/> Au thickness is/>
与现有技术相比,本发明的有益效果在于:通过设计一种InAlAs/InGaAs材料的APD外延片,采用特殊的P+-I-N-I-P-I-N+结构,通过该特殊结构可以缩小有源区尺寸,降低电容,提高带宽。另外,在工艺上,采取由外向里的分级台型腐蚀工艺,解决了腐蚀过程中钻蚀的问题,采用两次化镀自组装方式形成硫化镉钝化层覆盖在台型侧壁,提高了整个芯片的可靠性。Compared with the existing technology, the beneficial effect of the present invention is that by designing an APD epitaxial wafer of InAlAs/InGaAs material and adopting a special P+-I-N-I-P-I-N+ structure, the size of the active area can be reduced and the capacitance can be reduced through this special structure. , improve bandwidth. In addition, in terms of technology, a graded mesa corrosion process from outside to in is adopted to solve the problem of undercutting during the corrosion process. Two electroless plating self-assembly methods are used to form a cadmium sulfide passivation layer to cover the mesa side walls, which improves the efficiency of the mesa. The reliability of the entire chip.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the drawings needed to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can be obtained based on these drawings without exerting creative efforts.
图1为本发明实施例1提供的一种雪崩光电二极管的外延结构示意图;Figure 1 is a schematic diagram of the epitaxial structure of an avalanche photodiode provided in Embodiment 1 of the present invention;
图2为本发明实施例1提供的一种雪崩光电二极管的剖视结构示意图;Figure 2 is a schematic cross-sectional structural diagram of an avalanche photodiode provided in Embodiment 1 of the present invention;
图3为本发明实施例2提供的本发明雪崩光电二极管电场示意图;Figure 3 is a schematic diagram of the electric field of the avalanche photodiode of the present invention provided in Embodiment 2 of the present invention;
图4为本发明实施例2提供的传统雪崩光电二极管电场示意图;Figure 4 is a schematic diagram of the electric field of a traditional avalanche photodiode provided in Embodiment 2 of the present invention;
图5为本发明实施例3提供的一种雪崩光电二极管的制作方法流程图;Figure 5 is a flow chart of a manufacturing method of an avalanche photodiode provided in Embodiment 3 of the present invention;
图6为本发明实施例3提供的步骤200的细化流程图;Figure 6 is a detailed flow chart of step 200 provided in Embodiment 3 of the present invention;
图7为本发明实施例3提供的步骤300的细化流程图;Figure 7 is a detailed flow chart of step 300 provided in Embodiment 3 of the present invention;
图8为本发明实施例3提供的步骤500的细化流程图。Figure 8 is a detailed flow chart of step 500 provided in Embodiment 3 of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the purpose, technical solutions and advantages of the present invention more clear, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention and are not intended to limit the present invention.
在本发明的描述中,术语“内”、“外”、“纵向”、“横向”、“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不应当理解为对本发明的限制。In the description of the present invention, the terms "inside", "outer", "longitudinal", "transverse", "upper", "lower", "top", "bottom", etc. indicate an orientation or positional relationship based on the drawings. The illustrated orientation or positional relationship is only for convenience of describing the present invention and does not require that the present invention must be constructed and operated in a specific orientation, and therefore should not be understood as limiting the present invention.
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.
实施例1Example 1
如图1所示,参考图2,本发明实施例1提供一种雪崩光电二极管,在半绝缘衬底1上至少堆叠有P型接触层2、基础功能层以及N型接触层8,所述基础功能层和所述N型接触层8之间还设置有N型电场控制层6和I型边缘电场缓冲层7,其中,所述半绝缘衬底1与所述P型接触层2的侧周形成第一台阶,所述P型接触层2与所述基础功能层的侧周形成第二台阶,所述基础功能层、N型电场控制层6和I型边缘电场缓冲层7的侧周依次覆盖有第一钝化层30、第二钝化层40、第三钝化层50。As shown in Figure 1, with reference to Figure 2, Embodiment 1 of the present invention provides an avalanche photodiode, in which at least a P-type contact layer 2, a basic functional layer and an N-type contact layer 8 are stacked on a semi-insulating substrate 1. An N-type electric field control layer 6 and an I-type edge electric field buffer layer 7 are also provided between the basic functional layer and the N-type contact layer 8, wherein the sides of the semi-insulating substrate 1 and the P-type contact layer 2 A first step is formed around the circumference of the P-type contact layer 2 and the basic functional layer forms a second step. The side circumferences of the basic functional layer, the N-type electric field control layer 6 and the I-type edge electric field buffer layer 7 form a second step. It is covered with the first passivation layer 30, the second passivation layer 40, and the third passivation layer 50 in sequence.
在本优选实施例中,所述基础功能层包括I型光吸收层3、P型电场控制层4、I型倍增层5,具体的,参考图1所示,所述P型接触层2、所述I型光吸收层3、所述P型电场控制层4、所述I型倍增层5、所述N型电场控制层6、所述I型边缘电场缓冲层7、所述N型接触层8通过分子束气象外延沉积的方式依次堆叠在所述半绝缘衬底1上,以形成雪崩光电二极管的外延结构,也即特殊的P+-I-N-I-P-I-N+结构。In this preferred embodiment, the basic functional layer includes an I-type light absorption layer 3, a P-type electric field control layer 4, and an I-type multiplication layer 5. Specifically, as shown in Figure 1, the P-type contact layer 2, The I-type light absorption layer 3, the P-type electric field control layer 4, the I-type multiplication layer 5, the N-type electric field control layer 6, the I-type edge electric field buffer layer 7, and the N-type contact Layers 8 are sequentially stacked on the semi-insulating substrate 1 through molecular beam vapor epitaxial deposition to form the epitaxial structure of the avalanche photodiode, that is, a special P+-I-N-I-P-I-N+ structure.
参考图2,在本优选实施例中,所述N型接触层8设置在所述I型边缘电场缓冲层7上表面且为环形结构;所述P型电场控制层4、所述I型倍增层5、所述N型电场控制层6、所述I型边缘电场缓冲层7的侧周与所述I型光吸收层3的侧周形成第三台阶,所述第一钝化层30覆盖在所述第三台阶上,所述第二钝化层40覆盖在所述第一钝化层30、第一台阶以及部分第二台阶上,所述第三钝化层50覆盖在所述第二钝化层40上。具体的,本实施例中的第一台阶是指图中半绝缘衬底1相对于P型接触层2多漏出的部分上表面以及P型接触层2的侧壁、还有和P型接触层2侧壁相连的那部分半绝缘衬底1的侧壁;本实施例中的第二台阶是指P型接触层2相对于I型光吸收层3多漏出的部分上表面以及I型光吸收层3的下半部分侧壁;本实施例中的第二台阶是指I型光吸收层3相对于P型电场控制层4、I型倍增层5、N型电场控制层6、I型边缘电场缓冲层7多漏出的部分上表面以及I型光吸收层3的上半部分侧壁,还有P型电场控制层4、I型倍增层5、N型电场控制层6、I型边缘电场缓冲层7的侧壁。在本实施例中,形成三个台阶后的各层在外观上类似于三层圆柱台,圆柱台的侧壁覆盖有第一钝化层30,第一钝化层30表面和芯片表面大部分区域覆盖有第二钝化层40,第二钝化层40表面和芯片中心光敏区域覆盖有第三钝化层50。Referring to Figure 2, in this preferred embodiment, the N-type contact layer 8 is provided on the upper surface of the I-type edge electric field buffer layer 7 and has a ring structure; the P-type electric field control layer 4, the I-type multiplication layer The side peripheries of layer 5, the N-type electric field control layer 6, the I-type edge electric field buffer layer 7 and the I-type light absorption layer 3 form a third step, and the first passivation layer 30 covers On the third step, the second passivation layer 40 covers the first passivation layer 30, the first step and part of the second step, and the third passivation layer 50 covers the third step. on the second passivation layer 40 . Specifically, the first step in this embodiment refers to the upper surface of the semi-insulating substrate 1 that leaks more than the P-type contact layer 2 and the sidewalls of the P-type contact layer 2, as well as the P-type contact layer. The side wall of the semi-insulating substrate 1 where the 2 side walls are connected; the second step in this embodiment refers to the upper surface of the P-type contact layer 2 that leaks more than the I-type light absorption layer 3 and the I-type light absorption The lower half sidewall of layer 3; the second step in this embodiment refers to the relative position of the I-type light absorption layer 3 to the P-type electric field control layer 4, the I-type multiplication layer 5, the N-type electric field control layer 6, and the I-type edge. The upper surface of the mostly leaked portion of the electric field buffer layer 7 and the upper half sidewall of the I-type light absorption layer 3, as well as the P-type electric field control layer 4, the I-type multiplication layer 5, the N-type electric field control layer 6, and the I-type edge electric field The side walls of the buffer layer 7. In this embodiment, the appearance of each layer after forming three steps is similar to a three-layer cylindrical cone. The side walls of the cylindrical cone are covered with the first passivation layer 30 , and most of the surface of the first passivation layer 30 and the chip surface The area is covered with the second passivation layer 40, and the surface of the second passivation layer 40 and the photosensitive area in the center of the chip are covered with the third passivation layer 50.
在本优选实施例中,所述半绝缘衬底1底部依次设有氮化硅介质反射层20和高反射金属层10,另外,所述N型接触层8上引出N电极金属接触层70,所述P型接触层2上引出P电极金属接触层60,且所述P电极金属接触层60延伸到所述第三钝化层50的上表面,优选的,P电极金属接触层60和N电极金属接触层70的高度一致。In this preferred embodiment, the bottom of the semi-insulating substrate 1 is provided with a silicon nitride dielectric reflective layer 20 and a high-reflective metal layer 10 in sequence. In addition, an N electrode metal contact layer 70 is drawn on the N-type contact layer 8. A P electrode metal contact layer 60 is drawn on the P-type contact layer 2, and the P electrode metal contact layer 60 extends to the upper surface of the third passivation layer 50. Preferably, the P electrode metal contact layer 60 and N The height of the electrode metal contact layer 70 is uniform.
在本优选实施例中,所述半绝缘衬底1包括InP掺Fe半绝缘衬底,所述P型接触层2包括P型InGaAs接触层,所述I型光吸收层3包括I型InGaAs光吸收层,所述P型电场控制层4包括P型InAlAs电场控制层,所述I型倍增层5包括I型InAlAs倍增层,所述N型电场控制层6包括N型InAlAs电场控制层,所述I型边缘电场缓冲层7包括I型InP边缘电场缓冲层,所述N型接触层8包括N型InGaAs接触层,所述第一钝化层30包括CdS钝化层,所述第二钝化层40包括BCB钝化层,所述第三钝化层50包括SiN增透钝化层。In this preferred embodiment, the semi-insulating substrate 1 includes an InP-doped Fe semi-insulating substrate, the P-type contact layer 2 includes a P-type InGaAs contact layer, and the I-type light absorbing layer 3 includes an I-type InGaAs light absorbing layer. Absorption layer, the P-type electric field control layer 4 includes a P-type InAlAs electric field control layer, the I-type multiplication layer 5 includes an I-type InAlAs multiplication layer, and the N-type electric field control layer 6 includes an N-type InAlAs electric field control layer, so The I-type edge electric field buffer layer 7 includes an I-type InP edge electric field buffer layer, the N-type contact layer 8 includes an N-type InGaAs contact layer, the first passivation layer 30 includes a CdS passivation layer, and the second passivation layer The passivation layer 40 includes a BCB passivation layer, and the third passivation layer 50 includes a SiN anti-reflective passivation layer.
具体的,在本优选实施例中,所述P型InGaAs接触层的掺杂浓度为1e19cm-3、厚度为0.5μm;所述I型InGaAs光吸收层的掺杂浓度小于5e15cm-3、厚度在0.4至0.6μm范围内;所述P型InAlAs电场控制层的掺杂浓度为1e18cm-3、厚度在0.32至0.35μm范围内;所述I型InAlAs倍增层的掺杂浓度小于5e15cm-3、厚度在0.2至0.3μm范围内;所述N型InAlAs电场控制层的掺杂浓度为1e18cm-3、厚度在0.32至0.35μm范围内;所述I型InP边缘电场缓冲层的掺杂浓度小于5e15cm-3、厚度在1至1.5μm范围内;所述N型InGaAs接触层的掺杂浓度小于1e19cm-3、厚度为0.15μm。Specifically, in this preferred embodiment, the doping concentration of the P-type InGaAs contact layer is 1e19cm -3 and the thickness is 0.5 μm; the doping concentration of the I-type InGaAs light absorption layer is less than 5e15cm -3 and the thickness is 0.5μm. Within the range of 0.4 to 0.6 μm; the doping concentration of the P-type InAlAs electric field control layer is 1e18cm -3 and the thickness is within the range of 0.32 to 0.35 μm; the doping concentration of the I-type InAlAs multiplication layer is less than 5e15cm -3 and the thickness In the range of 0.2 to 0.3 μm; the N-type InAlAs electric field control layer has a doping concentration of 1e18cm -3 and a thickness in the range of 0.32 to 0.35 μm; the I-type InP edge electric field buffer layer has a doping concentration of less than 5e15cm - 3. The thickness is in the range of 1 to 1.5 μm; the doping concentration of the N-type InGaAs contact layer is less than 1e19cm -3 and the thickness is 0.15 μm.
综上所述,本实施例的上述结构设计,通过设计一种InAlAs/InGaAs材料的APD外延片,采用特殊的P+-I-N-I-P-I-N+结构,通过该特殊结构可以缩小有源区尺寸,降低电容,提高带宽。To sum up, the above structural design of this embodiment adopts a special P+-I-N-I-P-I-N+ structure by designing an APD epitaxial wafer made of InAlAs/InGaAs material. This special structure can reduce the size of the active area and reduce the capacitance. Increase bandwidth.
实施例2Example 2
基于上述实施例1提供的一种雪崩光电二极管,本实施例2通过其电场上的区别来与传统结构的雪崩光电二极管进行对比,以更好的说明本发明实施例提供的雪崩光电二极管的优点。Based on the avalanche photodiode provided in the above-mentioned Embodiment 1, this Embodiment 2 compares it with an avalanche photodiode of a traditional structure through the difference in its electric field to better illustrate the advantages of the avalanche photodiode provided by the embodiment of the present invention. .
如图3所示,为本发明实施例提供的雪崩光电二极管电场示意图。其是在在InP掺Fe半绝缘衬底(半绝缘衬底1)上用分子束气象外延沉积的方法(MBE)依次堆叠P型InGaAs接触层(P型接触层2)、I型InGaAs光吸收层(I型光吸收层3)、P型InAlAs电场控制层(P型电场控制层4)、I型InAlAs倍增层(I型倍增层5)、N型InAlAs电场控制层(N型电场控制层6)、I型InP边缘电场缓冲层(I型边缘电场缓冲层7)和N型InGaAs接触层(N型接触层8)。本发明实施例的外延结构为P+-I-N-I-P-I-N+结构。As shown in Figure 3, it is a schematic diagram of the electric field of an avalanche photodiode provided by an embodiment of the present invention. It is to sequentially stack a P-type InGaAs contact layer (P-type contact layer 2) and an I-type InGaAs light absorption layer on an InP-doped Fe semi-insulating substrate (semi-insulating substrate 1) using the molecular beam vapor epitaxy deposition method (MBE). layer (I-type light absorption layer 3), P-type InAlAs electric field control layer (P-type electric field control layer 4), I-type InAlAs multiplication layer (I-type multiplication layer 5), N-type InAlAs electric field control layer (N-type electric field control layer 6), I-type InP edge electric field buffer layer (I-type edge electric field buffer layer 7) and N-type InGaAs contact layer (N-type contact layer 8). The epitaxial structure of the embodiment of the present invention is a P+-I-N-I-P-I-N+ structure.
如图4所示,为传统雪崩光电二极管电场示意图。其是在InP掺Fe半绝缘衬底11上用分子束气象外延沉积的方法(MBE)依次堆叠N型InP接触层12、I型InAlAs倍增层13、P型InP电场控制层14、I型InGaAs光吸收层15、I型InAlAs包层(为方便对比,图中未示出)、I型InP帽层(为方便对比,图中未示出)和P型InGaAs接触层16。传统的外延结构为N+-I-P-I-P+结构。As shown in Figure 4, it is a schematic diagram of the electric field of a traditional avalanche photodiode. The method is to sequentially stack an N-type InP contact layer 12, an I-type InAlAs multiplication layer 13, a P-type InP electric field control layer 14, and an I-type InGaAs on an InP Fe-doped semi-insulating substrate 11 using a molecular beam vapor epitaxy deposition method (MBE). The light absorption layer 15, the I-type InAlAs cladding layer (not shown in the figure for the convenience of comparison), the I-type InP cap layer (not shown in the figure for the convenience of comparison) and the P-type InGaAs contact layer 16. The traditional epitaxial structure is N+-I-P-I-P+ structure.
通过对比可发现,本发明实施例的有源区域是在图中虚线梯形区域的上部,而传统的有源区域是在图中虚线梯形区域的下部,如此一来,在梯形相同的情况下,梯形上部的有源区域面积自然会较小,也即本申请相对于传统技术可以缩小有源区域面积,进而,参考电场方向和电场强度方向示意,在相同的有源区面积下,本发明实施例提供的结构可以有效降低PN结面积,从而减少电容,提高带宽;另外,本发明实施例的结构比传统结构多出N型InAlAs电场控制层和I型InP边缘电场缓冲层,增大了P+N+结之间的距离,减少了电容,提高了带宽。Through comparison, it can be found that the active area of the embodiment of the present invention is in the upper part of the dotted trapezoidal area in the figure, while the traditional active area is in the lower part of the dotted trapezoidal area in the figure. In this way, when the trapezoids are the same, The area of the active area in the upper part of the trapezoid will naturally be smaller. That is to say, this application can reduce the area of the active area compared to the traditional technology. Furthermore, with reference to the direction of the electric field and the direction of the intensity of the electric field, under the same active area area, the present invention implements The structure provided by the example can effectively reduce the PN junction area, thereby reducing the capacitance and increasing the bandwidth; in addition, the structure of the embodiment of the present invention has more N-type InAlAs electric field control layer and I-type InP edge electric field buffer layer than the traditional structure, increasing P The distance between +N+ junctions reduces capacitance and increases bandwidth.
实施例3Example 3
基于实施例1对本发明提供的雪崩光电二极管的结构描述,本实施例3还提供与其对应的一种雪崩光电二极管的制作方法。Based on the structural description of the avalanche photodiode provided by the present invention in Embodiment 1, this Embodiment 3 also provides a corresponding manufacturing method of the avalanche photodiode.
如图5所示,为本实施例3提供的雪崩光电二极管的制作方法流程图。该制作方法包括如下工艺步骤。As shown in FIG. 5 , it is a flow chart of the manufacturing method of the avalanche photodiode provided in Embodiment 3. The production method includes the following process steps.
步骤100:在半绝缘衬底1上通过分子束气象外延沉积的方式依次堆叠P型接触层2、I型光吸收层3、P型电场控制层4、I型倍增层5、N型电场控制层6、I型边缘电场缓冲层7、N型接触层8。需说明的是,本实施例中各层对应标号可参照实施例1的图2。Step 100: Stack P-type contact layer 2, I-type light absorption layer 3, P-type electric field control layer 4, I-type multiplication layer 5, and N-type electric field control layer in sequence on the semi-insulating substrate 1 by molecular beam vapor epitaxy deposition. Layer 6, I-type edge electric field buffer layer 7, N-type contact layer 8. It should be noted that the corresponding labels of each layer in this embodiment may refer to Figure 2 of Embodiment 1.
步骤200:通过光刻和腐蚀工艺形成环形的N型接触层8,并在不去胶的情况下通过光刻和腐蚀工艺形成圆柱台的第一台阶、第二台阶以及第三台阶。Step 200: Form the annular N-type contact layer 8 through photolithography and etching processes, and form the first step, the second step and the third step of the cylindrical platform through photolithography and etching processes without removing the glue.
步骤300:在去胶情况下通过光刻、化镀工艺、钝化工艺、低温等离子增强化学气相沉积(LPPECVD)的方式以及刻蚀工艺形成第一钝化层30、第二钝化层40、第三钝化层50,并露出P型接触层2和N型接触层8。Step 300: Form the first passivation layer 30, the second passivation layer 40, The third passivation layer 50 exposes the P-type contact layer 2 and the N-type contact layer 8 .
步骤400:采用电子束蒸发和剥离工艺,形成P电极金属接触层60以及N电极金属接触层70。Step 400: Use electron beam evaporation and lift-off processes to form the P electrode metal contact layer 60 and the N electrode metal contact layer 70.
步骤500:通过热处理、减薄抛光、增强等离子气相沉积方式(PECVD)以及电子束蒸发工艺形成氮化硅介质反射层20和高反射金属层10。Step 500: Form the silicon nitride dielectric reflective layer 20 and the highly reflective metal layer 10 through heat treatment, thinning polishing, enhanced plasma vapor deposition (PECVD) and electron beam evaporation processes.
步骤600:将晶片经过解理形成300X300μm2的雪崩光电二极管芯片。Step 600: Cleave the wafer to form an avalanche photodiode chip of 300×300 μm 2 .
如图6所示,在本优选实施例中,对于上述步骤200,可具体细化为如下步骤:As shown in Figure 6, in this preferred embodiment, the above step 200 can be specifically refined into the following steps:
步骤201:通过光刻和腐蚀工艺形成环形的N型接触层8(也即N型InGaAs接触层)。Step 201: Form a ring-shaped N-type contact layer 8 (ie, N-type InGaAs contact layer) through photolithography and etching processes.
步骤202:通过光刻和腐蚀工艺形成第一台阶。具体的:以光刻胶做掩蔽膜,用氢溴酸、饱和溴水和水比例为1:1:1的溶液腐蚀I型边缘电场缓冲层7(也即I型InP边缘电场缓冲层)、N型电场控制层6(也即N型InAlAs电场控制层)、I型倍增层5(也即I型InAlAs倍增层)、P型电场控制层4(也即P型InAlAs电场控制层)、I型光吸收层3(也即I型InGaAs光吸收层)、P型接触层2(也即P型InGaAs接触层),最终停止在半绝缘衬底1(也即InP掺Fe半绝缘衬底)中,以形成第一台阶。Step 202: Form the first step through photolithography and etching processes. Specifically: use photoresist as a masking film, use hydrobromic acid, saturated bromine water and a solution with a water ratio of 1:1:1 to corrode the I-type edge electric field buffer layer 7 (that is, the I-type InP edge electric field buffer layer), N-type electric field control layer 6 (that is, N-type InAlAs electric field control layer), I-type multiplication layer 5 (that is, I-type InAlAs multiplication layer), P-type electric field control layer 4 (that is, P-type InAlAs electric field control layer), I Type light absorption layer 3 (i.e., I-type InGaAs light absorption layer), P-type contact layer 2 (i.e., P-type InGaAs contact layer), and finally stop at the semi-insulating substrate 1 (i.e., InP-doped Fe-doped semi-insulating substrate) in to form the first step.
步骤203:不去胶,继续通过光刻和腐蚀工艺形成第二台阶。具体的:以光刻胶做掩蔽膜,用氢溴酸、饱和溴水和水比例为1:1:1的溶液腐蚀I型边缘电场缓冲层7、N型电场控制层6、I型倍增层5、P型电场控制层4、I型光吸收层3,最终停止在P型接触层2处,以形成第二台阶。Step 203: Without removing the glue, continue to form the second step through photolithography and etching processes. Specifically: use photoresist as a masking film, use hydrobromic acid, saturated bromine water and a solution with a water ratio of 1:1:1 to corrode the I-type edge electric field buffer layer 7, N-type electric field control layer 6, and I-type multiplication layer 5. The P-type electric field control layer 4 and the I-type light absorption layer 3 finally stop at the P-type contact layer 2 to form a second step.
步骤204:不去胶,继续通过光刻和腐蚀工艺形成第三台阶。具体的:以光刻胶做掩蔽膜,用氢溴酸、饱和溴水和水比例为1:1:1的溶液腐蚀I型边缘电场缓冲层7、N型电场控制层6、I型倍增层5、P型电场控制层4,最终停止在I型光吸收层3中,以形成第三台阶。Step 204: Without removing the glue, continue to form the third step through photolithography and etching processes. Specifically: use photoresist as a masking film, use hydrobromic acid, saturated bromine water and a solution with a water ratio of 1:1:1 to corrode the I-type edge electric field buffer layer 7, N-type electric field control layer 6, and I-type multiplication layer 5. The P-type electric field control layer 4 finally stops in the I-type light absorption layer 3 to form a third step.
在上述步骤中,在腐蚀第一、第二、第三台阶形成圆柱台时,先腐蚀最大台阶,最后腐蚀最小台阶,整个光刻和腐蚀过程中不去光刻胶,对比传统先腐蚀小台阶,最后腐蚀大台阶,可以很好保护腐蚀过程中钻蚀现场。In the above steps, when etching the first, second, and third steps to form a cylindrical platform, the largest step is etched first, and the smallest step is etched last. The photoresist is not removed during the entire photolithography and etching process. Compared with the traditional method, the small steps are etched first. , and finally corrodes a large step, which can well protect the drilling site during the corrosion process.
如图7所示,在本优选实施例中,对于上述步骤300,可具体细化为如下步骤:As shown in Figure 7, in this preferred embodiment, the above step 300 can be specifically refined into the following steps:
步骤301:去胶,通过光刻和化镀工艺形成第一钝化层30。具体的:首先通过光刻工艺,用光刻胶覆盖整个外延片表面,漏出圆柱台的侧壁;然后置于硫化铵溶液中40-60min,紧接着置于硫酸镉溶液中;吹干,去胶,最终在侧壁形成10-20nm的CdS钝化层,也即第一钝化层30。该层工艺由两步化镀自组装形成,相比传统的硫化工艺,可以形成更加致密的表面。Step 301: Remove the glue, and form the first passivation layer 30 through photolithography and chemical plating processes. Specifically: first, cover the entire epitaxial wafer surface with photoresist through the photolithography process, leaking out the side walls of the cylindrical platform; then place it in an ammonium sulfide solution for 40-60 minutes, and then place it in a cadmium sulfate solution; blow dry and remove glue, and finally a CdS passivation layer of 10-20 nm is formed on the side wall, that is, the first passivation layer 30. This layer process is formed by two-step electroless plating and self-assembly, which can form a denser surface than the traditional vulcanization process.
步骤302:通过光刻和钝化工艺形成第二钝化层40。具体的:将光敏BCB旋涂在外延片表面,再通过光刻工艺将其覆盖在圆柱台的侧壁和周围,然后在氮气气氛中、250摄氏度下钝化2小时,以形成BCB钝化层,也即第二钝化层40。Step 302: Form the second passivation layer 40 through photolithography and passivation processes. Specifically: spin-coat the photosensitive BCB on the surface of the epitaxial wafer, then cover it on the side walls and surroundings of the cylindrical platform through the photolithography process, and then passivate it in a nitrogen atmosphere at 250 degrees Celsius for 2 hours to form a BCB passivation layer , that is, the second passivation layer 40.
步骤303:通过低温等离子增强化学气相沉积的方式形成第三钝化层50。具体的:通过低温等离子增强化学气相沉积的方式淀积厚度的氮化硅介质层,以形成SiN增透钝化层,也即第三钝化层50。Step 303: Form the third passivation layer 50 by low-temperature plasma enhanced chemical vapor deposition. Specific: Deposited by low-temperature plasma enhanced chemical vapor deposition Thick silicon nitride dielectric layer to form a SiN anti-reflective passivation layer, that is, the third passivation layer 50 .
步骤304:通过光刻和刻蚀工艺露出P型接触层2和N型接触层8。Step 304: Expose the P-type contact layer 2 and the N-type contact layer 8 through photolithography and etching processes.
如图8所示,在本优选实施例中,对于上述步骤500,可具体细化为如下步骤:As shown in Figure 8, in this preferred embodiment, the above step 500 can be specifically refined into the following steps:
步骤501:使外延片处于300~360℃下热处理1~3分钟。Step 501: Heat-treat the epitaxial wafer at 300-360°C for 1-3 minutes.
步骤502:将外延片减薄抛光到约150μm,在外延片抛光面用增强等离子气相沉积方式淀积厚度的氮化硅介质反射层20。Step 502: Thin and polish the epitaxial wafer to about 150 μm, and deposit it on the polished surface of the epitaxial wafer using enhanced plasma vapor deposition. Thick silicon nitride dielectric reflective layer 20.
步骤503:采用电子束蒸发工艺,在氮化硅介质反射层20上形成Ti/Pt/Au高反射金属层10,其中,Ti厚度为Pt厚度为/>Au厚度为/> Step 503: Use an electron beam evaporation process to form a Ti/Pt/Au highly reflective metal layer 10 on the silicon nitride dielectric reflective layer 20, where the Ti thickness is Pt thickness is/> Au thickness is/>
需要说明的是,上述所有步骤中的数据均可以有领域内允许的一定误差,而非完全限定在精确数据上。It should be noted that the data in all the above steps can have a certain error allowed in the field, and is not completely limited to precise data.
通过上述步骤,本实施例的制作工艺与现有技术相比,采取由外向里的分级台型腐蚀工艺,解决了腐蚀过程中钻蚀的问题,采用两次化镀自组装方式形成硫化镉钝化层覆盖在台型侧壁,提高了整个芯片的可靠性。Through the above steps, compared with the existing technology, the manufacturing process of this embodiment adopts a graded table-type corrosion process from the outside to the inside, which solves the problem of undercutting during the corrosion process, and uses two electroless plating self-assembly methods to form cadmium sulfide passivation. The chemical layer covers the side walls of the mesa, improving the reliability of the entire chip.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention shall be included in the present invention. within the scope of protection.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210512345.XA CN117117012A (en) | 2022-05-12 | 2022-05-12 | An avalanche photodiode and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210512345.XA CN117117012A (en) | 2022-05-12 | 2022-05-12 | An avalanche photodiode and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117117012A true CN117117012A (en) | 2023-11-24 |
Family
ID=88811519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210512345.XA Pending CN117117012A (en) | 2022-05-12 | 2022-05-12 | An avalanche photodiode and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117117012A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220271182A1 (en) * | 2021-02-24 | 2022-08-25 | Sang Hwan Lee | Backside illuminated avalanche photodiode and manufacturing method thereof |
-
2022
- 2022-05-12 CN CN202210512345.XA patent/CN117117012A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220271182A1 (en) * | 2021-02-24 | 2022-08-25 | Sang Hwan Lee | Backside illuminated avalanche photodiode and manufacturing method thereof |
US12132131B2 (en) * | 2021-02-24 | 2024-10-29 | Sang Hwan Lee | Backside illuminated avalanche photodiode and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7893464B2 (en) | Semiconductor photodiode and method of manufacture thereof | |
CN106098836B (en) | Communication avalanche photodide and preparation method thereof | |
US6740861B2 (en) | Photodetector and method having a conductive layer with etch susceptibility different from that of the semiconductor substrate | |
CN103646997B (en) | The manufacture method of evanescent wave coupled mode high-speed high-power photodetector | |
CN104009104B (en) | A kind of table top indium gallium arsenic detector and preparation method thereof | |
CN106711274B (en) | A kind of avalanche photodide and its manufacture method | |
CN110176507B (en) | Passivation structure of mesa PIN, photodiode and preparation method of photodiode | |
US6492239B2 (en) | Method for fabricating avalanche photodiode | |
CN106784118A (en) | Back-illuminated type high-speed photodiode receives chip and preparation method thereof | |
CN104009103A (en) | High-speed indium-gallium-arsenic detector and manufacturing method thereof | |
JP5197930B2 (en) | Manufacturing method of semiconductor light receiving element | |
CN116053336A (en) | Preparation method of light trapping structure on surface of InGaAs avalanche detector | |
CN101614843A (en) | Fabrication method of evanescent wave coupled single carrier traveling wave photodetector | |
JP2011187607A (en) | Semiconductor light-receiving device | |
CN117117012A (en) | An avalanche photodiode and its manufacturing method | |
KR101371401B1 (en) | Avalanche photodiode and method of forming the same | |
CN110854141A (en) | Monolithic integrated balanced photoelectric detector chip and manufacturing method thereof | |
CN104576806A (en) | Lateral light incidence type PIN photoelectric detector chip and manufacturing method thereof | |
CN110571300B (en) | Epitaxial wafer, planar photodiode and preparation method thereof | |
CN100433341C (en) | Semiconductor photoreceptor | |
JP2000150923A (en) | Backside incidence type light receiving device and manufacture thereof | |
CN116469944A (en) | Class II superlattice photoelectric detector and manufacturing method thereof | |
KR102423371B1 (en) | Integrated circuit photodetector | |
CN114023831A (en) | High-speed high-response photoelectric detector and manufacturing method thereof | |
CN218299812U (en) | Avalanche photodetector structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |