CN116899570B - Metal catalyst and preparation method and application thereof - Google Patents
Metal catalyst and preparation method and application thereof Download PDFInfo
- Publication number
- CN116899570B CN116899570B CN202310717303.4A CN202310717303A CN116899570B CN 116899570 B CN116899570 B CN 116899570B CN 202310717303 A CN202310717303 A CN 202310717303A CN 116899570 B CN116899570 B CN 116899570B
- Authority
- CN
- China
- Prior art keywords
- mof
- metal catalyst
- cobalt
- pyrolysis
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 157
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 86
- 239000002184 metal Substances 0.000 title claims abstract description 86
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 238000000197 pyrolysis Methods 0.000 claims abstract description 66
- 239000002243 precursor Substances 0.000 claims abstract description 50
- 238000009903 catalytic hydrogenation reaction Methods 0.000 claims abstract description 12
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 275
- 238000006243 chemical reaction Methods 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 26
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 20
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 19
- 150000001868 cobalt Chemical class 0.000 claims description 18
- 150000002815 nickel Chemical class 0.000 claims description 18
- 239000012298 atmosphere Substances 0.000 claims description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 14
- 229910052759 nickel Inorganic materials 0.000 claims description 13
- 239000013110 organic ligand Substances 0.000 claims description 13
- 239000002904 solvent Substances 0.000 claims description 11
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 9
- OYFRNYNHAZOYNF-UHFFFAOYSA-N 2,5-dihydroxyterephthalic acid Chemical compound OC(=O)C1=CC(O)=C(C(O)=O)C=C1O OYFRNYNHAZOYNF-UHFFFAOYSA-N 0.000 claims description 6
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 claims description 6
- 229910017052 cobalt Inorganic materials 0.000 claims description 6
- 239000010941 cobalt Substances 0.000 claims description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 239000012265 solid product Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- KKHAAAOUAMONAO-UHFFFAOYSA-N 1,4-diazabicyclo[2.2.2]octane;hexahydrate Chemical compound O.O.O.O.O.O.C1CN2CCN1CC2 KKHAAAOUAMONAO-UHFFFAOYSA-N 0.000 claims description 5
- 230000035484 reaction time Effects 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 3
- 229910021585 Nickel(II) bromide Inorganic materials 0.000 claims description 3
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 3
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 3
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 claims description 3
- 229940011182 cobalt acetate Drugs 0.000 claims description 3
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 claims description 3
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 3
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 3
- 229910000361 cobalt sulfate Inorganic materials 0.000 claims description 3
- 229940044175 cobalt sulfate Drugs 0.000 claims description 3
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 claims description 3
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 claims description 3
- BZRRQSJJPUGBAA-UHFFFAOYSA-L cobalt(ii) bromide Chemical compound Br[Co]Br BZRRQSJJPUGBAA-UHFFFAOYSA-L 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 235000019253 formic acid Nutrition 0.000 claims description 3
- 229940078494 nickel acetate Drugs 0.000 claims description 3
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 3
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 3
- IPLJNQFXJUCRNH-UHFFFAOYSA-L nickel(2+);dibromide Chemical compound [Ni+2].[Br-].[Br-] IPLJNQFXJUCRNH-UHFFFAOYSA-L 0.000 claims description 3
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 3
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 3
- SIOXPEMLGUPBBT-UHFFFAOYSA-N picolinic acid Chemical compound OC(=O)C1=CC=CC=N1 SIOXPEMLGUPBBT-UHFFFAOYSA-N 0.000 claims description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 3
- YCGAZNXXGKTASZ-UHFFFAOYSA-N thiophene-2,5-dicarboxylic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)S1 YCGAZNXXGKTASZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 239000012621 metal-organic framework Substances 0.000 abstract description 163
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 abstract description 96
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 abstract description 39
- 230000003197 catalytic effect Effects 0.000 abstract description 10
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 6
- 239000012922 MOF pore Substances 0.000 abstract description 6
- 150000001299 aldehydes Chemical class 0.000 abstract description 3
- 150000001336 alkenes Chemical class 0.000 abstract description 3
- 150000001345 alkine derivatives Chemical class 0.000 abstract description 3
- 239000001569 carbon dioxide Substances 0.000 abstract description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 3
- 150000002148 esters Chemical class 0.000 abstract description 3
- 150000002576 ketones Chemical class 0.000 abstract description 3
- 239000002086 nanomaterial Substances 0.000 abstract description 3
- 230000000717 retained effect Effects 0.000 abstract description 2
- 208000034486 Multi-organ failure Diseases 0.000 description 305
- 238000005984 hydrogenation reaction Methods 0.000 description 38
- 238000002441 X-ray diffraction Methods 0.000 description 19
- 229910045601 alloy Inorganic materials 0.000 description 19
- 239000000956 alloy Substances 0.000 description 19
- 238000003795 desorption Methods 0.000 description 17
- 229910052739 hydrogen Inorganic materials 0.000 description 17
- 229910017709 Ni Co Inorganic materials 0.000 description 16
- 229910003267 Ni-Co Inorganic materials 0.000 description 16
- 229910003262 Ni‐Co Inorganic materials 0.000 description 16
- 230000000694 effects Effects 0.000 description 16
- 239000011148 porous material Substances 0.000 description 15
- 238000000354 decomposition reaction Methods 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 12
- 239000012921 cobalt-based metal-organic framework Substances 0.000 description 12
- 238000001179 sorption measurement Methods 0.000 description 12
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 239000002082 metal nanoparticle Substances 0.000 description 9
- 239000013099 nickel-based metal-organic framework Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 230000000875 corresponding effect Effects 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000002923 metal particle Substances 0.000 description 6
- 239000010453 quartz Substances 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 239000000376 reactant Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000002411 thermogravimetry Methods 0.000 description 5
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 4
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 229910003266 NiCo Inorganic materials 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000012018 catalyst precursor Substances 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000012924 metal-organic framework composite Substances 0.000 description 2
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 2
- 238000000696 nitrogen adsorption--desorption isotherm Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 229910020647 Co-O Inorganic materials 0.000 description 1
- 229910020704 Co—O Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 229910018553 Ni—O Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/1691—Coordination polymers, e.g. metal-organic frameworks [MOF]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2204—Organic complexes the ligands containing oxygen or sulfur as complexing atoms
- B01J31/2208—Oxygen, e.g. acetylacetonates
- B01J31/2226—Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
- B01J31/223—At least two oxygen atoms present in one at least bidentate or bridging ligand
- B01J31/2239—Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
- B01J37/086—Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B31/00—Reduction in general
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/02—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
- C07C5/10—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/60—Reduction reactions, e.g. hydrogenation
- B01J2231/64—Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
- B01J2231/641—Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
- B01J2231/645—Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/60—Reduction reactions, e.g. hydrogenation
- B01J2231/64—Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
- B01J2231/641—Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
- B01J2231/646—Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of aromatic or heteroaromatic rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/84—Metals of the iron group
- B01J2531/845—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/84—Metals of the iron group
- B01J2531/847—Nickel
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明提供一种金属催化剂及其制备方法和应用,所述催化剂是由结构通式为:NixCoy‑MOF的前驱体热解获得;其中0≤x≤2,0≤y≤2,且x和y不同时为0;MOF表示有机金属骨架。本发明通过可控热解对MOF框架结构进行部分分解的技术构思,使得MOF的多孔纳米结构部分保留,从而在多孔MOF中产生MNPs活性中心,并且残留MOF框架能够保证该活性中心的稳定,从而产生良好的催化效果,可以用于苯、甲苯、烯、炔、醛、酮、酯等有机化合物不饱和键催化加氢,以及二氧化碳催化加氢。
The present invention provides a metal catalyst and a preparation method and application thereof. The catalyst is obtained by pyrolysis of a precursor having a general structural formula: Ni x Co y ‑MOF; wherein 0≤x≤2, 0≤y≤2, and x and y are not 0 at the same time; MOF represents an organic metal framework. The present invention partially decomposes the MOF framework structure through controlled pyrolysis, so that the porous nanostructure of the MOF is partially retained, thereby generating an MNPs active center in the porous MOF, and the residual MOF framework can ensure the stability of the active center, thereby producing a good catalytic effect, and can be used for catalytic hydrogenation of unsaturated bonds of organic compounds such as benzene, toluene, olefins, alkynes, aldehydes, ketones, esters, and catalytic hydrogenation of carbon dioxide.
Description
技术领域Technical Field
本发明涉及催化剂技术领域,具体涉及一种金属催化剂及其制备方法和应用。The present invention relates to the technical field of catalysts, and in particular to a metal catalyst and a preparation method and application thereof.
背景技术Background Art
金属-有机骨架(MOFs)具有高的表面积和结构的多样性,在催化、气体储存/分离、药物输送和化学传感等领域有着重要的应用价值。研究金属纳米颗粒(MNP)和MOF之间协同作用在催化中具有重要意义,如果MNP和MOF之间能够合理协调,可能使得MNP/MOF复合材料不仅具有大的比表面积和孔体积,还具有组分和形貌可调控等优点,从而大大提高其催化性能。Metal-organic frameworks (MOFs) have high surface area and structural diversity, and have important application value in catalysis, gas storage/separation, drug delivery and chemical sensing. The study of the synergistic effect between metal nanoparticles (MNPs) and MOFs is of great significance in catalysis. If MNPs and MOFs can be reasonably coordinated, the MNP/MOF composite material may not only have a large specific surface area and pore volume, but also have the advantages of adjustable composition and morphology, thereby greatly improving its catalytic performance.
目前制备MNP/MOF的方法包括溶剂热法、固体研磨法、溶液浸渍法、化学气相沉积法和自模板法等。热解法是一种暴露MNP/MOF材料金属活性位点的简单而有效方式。然而,目前报道的直接高温煅烧(400℃以上)MOF衍生的纳米材料,高温导致MOF完全分解,使得MOF内部的孔道和框架结构崩塌,使得大量的活性金属位嵌入到体相中,阻碍了反应物与金属位的接触,因此这种方法获得的催化剂催化效果一般,很难推广。固体研磨法是一种将具有挥发性有机金属前体通过研磨升华蒸发扩散到MOF腔,再经还原嵌入在MOF中的有机金属前驱体,形成MNP/MOF复合材料。固体研磨法操作简单,可避免多余的溶剂,且可实现引入前体的完全加载。但对金属前体要求很高,需要所加载的金属前体具有挥发性,因此,该方法价格昂贵,且不具有普适性。溶液浸渍法通过毛细管压力将含金属前体的溶液渗透到MOF的内部空腔,再将金属前体还原成MNP。该方法同样具有操作简单的优点,但问题是MNP在MOF孔道内外很难分布均匀,并且吸附在表面上的MNP容易发生迁移,这些问题导致所获得的催化剂催化效果一般,同时也限制了该方法的应用。化学气相沉积法是在一定温度的真空条件下,将挥发性金属前体扩散到脱溶剂的MOF孔道中。该方法制备MNP/MOF不需要溶剂,可以加载大量的MNP,但同样需要有机金属前体在室温下高度挥发,或升高温度容易升华。At present, the methods for preparing MNP/MOF include solvothermal method, solid grinding method, solution impregnation method, chemical vapor deposition method and self-template method. Pyrolysis is a simple and effective way to expose the metal active sites of MNP/MOF materials. However, the direct high-temperature calcination (above 400°C) of MOF-derived nanomaterials reported so far causes the complete decomposition of MOF at high temperature, causing the collapse of the pores and framework structure inside MOF, so that a large number of active metal sites are embedded in the bulk phase, hindering the contact between the reactants and the metal sites. Therefore, the catalytic effect of the catalyst obtained by this method is general and difficult to promote. The solid grinding method is a method in which a volatile organic metal precursor is ground, sublimated, evaporated and diffused into the MOF cavity, and then the organic metal precursor embedded in the MOF is reduced to form an MNP/MOF composite material. The solid grinding method is simple to operate, can avoid excess solvent, and can achieve complete loading of the introduced precursor. However, it has high requirements for the metal precursor, and the loaded metal precursor needs to be volatile. Therefore, this method is expensive and not universal. The solution impregnation method uses capillary pressure to infiltrate a solution containing a metal precursor into the internal cavity of the MOF, and then reduces the metal precursor to MNP. This method also has the advantage of simple operation, but the problem is that it is difficult to evenly distribute MNPs inside and outside the MOF pores, and the MNPs adsorbed on the surface are prone to migration. These problems result in the catalytic effect of the obtained catalyst being average, and also limit the application of this method. The chemical vapor deposition method diffuses a volatile metal precursor into the desolvated MOF pores under vacuum conditions at a certain temperature. This method does not require solvents to prepare MNP/MOF and can load a large amount of MNPs, but it also requires the organic metal precursor to be highly volatile at room temperature or to be easily sublimated at elevated temperatures.
发明内容Summary of the invention
针对现有MNP/MOF及其制备方法存在的催化效果不佳、制备成本高、对原材料要求苛刻等问题,本发明提供了一种金属催化剂及其制备方法和应用。通过可控热解对MOF框架结构进行部分分解的技术构思,使得MOF的多孔纳米结构部分保留,从而在多孔MOF中产生MNPs活性中心,并且残留MOF框架能够保证该活性中心的稳定,从而产生良好的催化效果。In view of the problems of poor catalytic effect, high preparation cost, and strict requirements on raw materials in the existing MNP/MOF and its preparation method, the present invention provides a metal catalyst and its preparation method and application. The technical concept of partially decomposing the MOF framework structure through controlled pyrolysis allows the porous nanostructure of MOF to be partially retained, thereby generating MNPs active centers in the porous MOF, and the residual MOF framework can ensure the stability of the active center, thereby producing a good catalytic effect.
为实现上述目的,本发明的技术方案为:To achieve the above object, the technical solution of the present invention is:
第一方面,本发明提供一种金属催化剂,所述催化剂是由结构通式为:NixCoy-MOF的前驱体热解获得;其中0≤x≤2,0≤y≤2,且x和y不同时为0;MOF表示有机金属骨架。In a first aspect, the present invention provides a metal catalyst obtained by thermal decomposition of a precursor having a general structural formula: Ni x Co y -MOF; wherein 0≤x≤2, 0≤y≤2, and x and y are not simultaneously 0; MOF represents an organic metal framework.
优选地,所述前驱体在H2气氛或者N2气氛中热解获得所述金属催化剂;进一步优选地,在H2气氛中的热解温度为300~350℃,优选为320~330℃;热解时间为1~2h;Preferably, the precursor is pyrolyzed in a H2 atmosphere or a N2 atmosphere to obtain the metal catalyst; further preferably, the pyrolysis temperature in the H2 atmosphere is 300 to 350°C, preferably 320 to 330°C; the pyrolysis time is 1 to 2 hours;
进一步优选地,在N2气氛中的热解温度为300~600℃,优选为450~500℃;热解时间为1~2h。Further preferably, the pyrolysis temperature in N2 atmosphere is 300-600°C, preferably 450-500°C; and the pyrolysis time is 1-2h.
优选地,所述前驱体的制备方法包括:将镍盐和/或钴盐、有机配体、碱性调节剂在溶剂中进行水热反应。Preferably, the method for preparing the precursor comprises: subjecting nickel salt and/or cobalt salt, an organic ligand and an alkaline regulator to a hydrothermal reaction in a solvent.
优选地,所述镍盐选自:硝酸镍、醋酸镍、硫酸镍、氯化镍、溴化镍中的至少一种;所述钴盐选自硝酸钴、醋酸钴、氯化钴、溴化钴、硫酸钴中的至少一种;所述有机配体选自对苯二甲酸、1,3,5-苯三甲酸、2,5-二羟基对苯二甲酸、2,5-噻吩二羧酸、蚁酸、吡啶羧酸类中的至少一种;所述碱性调节剂选自六水三乙烯二胺、氢氧化钠、氢氧化钾、三乙胺、三乙醇胺、聚烯吡酮中的至少一种;所述溶剂选自:DMF、甲醇、乙醇、去离子水中的至少一种。Preferably, the nickel salt is selected from: at least one of nickel nitrate, nickel acetate, nickel sulfate, nickel chloride, and nickel bromide; the cobalt salt is selected from: at least one of cobalt nitrate, cobalt acetate, cobalt chloride, cobalt bromide, and cobalt sulfate; the organic ligand is selected from: at least one of terephthalic acid, 1,3,5-benzenetricarboxylic acid, 2,5-dihydroxyterephthalic acid, 2,5-thiophenedicarboxylic acid, formic acid, and pyridine carboxylic acid; the alkaline regulator is selected from: at least one of triethylenediamine hexahydrate, sodium hydroxide, potassium hydroxide, triethylamine, triethanolamine, and polyvinylpyrrolidone; the solvent is selected from: at least one of DMF, methanol, ethanol, and deionized water.
优选地,所述前驱体的制备方法中,镍盐和钴盐的摩尔比为0~2:0~2;有机配体的摩尔用量为镍盐中镍摩尔量和钴盐中钴摩尔量总和的0.9~1.1;碱性调节剂的用量为镍盐中镍摩尔量和钴盐中钴摩尔量总和的0.5~2.0。Preferably, in the preparation method of the precursor, the molar ratio of nickel salt to cobalt salt is 0-2:0-2; the molar amount of the organic ligand is 0.9-1.1 of the sum of the molar amount of nickel in the nickel salt and the molar amount of cobalt in the cobalt salt; the amount of the alkaline regulator is 0.5-2.0 of the sum of the molar amount of nickel in the nickel salt and the molar amount of cobalt in the cobalt salt.
优选地,所述前驱体的制备方法中,水热反应温度为110~150℃,优选为125~135℃;水热反应时间为12~48h,优选为20~30h。Preferably, in the method for preparing the precursor, the hydrothermal reaction temperature is 110 to 150° C., preferably 125 to 135° C.; the hydrothermal reaction time is 12 to 48 h, preferably 20 to 30 h.
优选地,所述前驱体的制备方法还包括:将水热反应的固体产物分离后洗涤并干燥;进一步优选地,所述水热反应的固体产物分离后先用DMF洗涤多次,再用乙醇洗涤多次;进一步优选地,洗涤后的固体于60~80℃真空干燥8h以上。Preferably, the preparation method of the precursor also includes: separating the solid product of the hydrothermal reaction, washing and drying; further preferably, after separation, the solid product of the hydrothermal reaction is washed multiple times with DMF, and then washed multiple times with ethanol; further preferably, the washed solid is vacuum dried at 60-80°C for more than 8h.
优选地,所述制备方法包括:将镍盐和/或钴盐、有机配体、碱性调节剂在溶剂中进行水热反应获得金属前驱体,再将金属前驱体进行热解反应,获得所述金属催化剂。Preferably, the preparation method comprises: subjecting nickel salt and/or cobalt salt, organic ligand and alkaline regulator to a hydrothermal reaction in a solvent to obtain a metal precursor, and then subjecting the metal precursor to a pyrolysis reaction to obtain the metal catalyst.
第二方面,本发明提供一种用于合成上述金属催化剂的金属前驱体,所述金属前驱体具有结构通式为:NixCoy-MOF;其中0≤x≤2,0≤y≤2,且x和y不同时为0;MOF表示有机金属骨架。In a second aspect, the present invention provides a metal precursor for synthesizing the above-mentioned metal catalyst, wherein the metal precursor has a general structural formula: NixCoy-MOF; wherein 0≤x≤2, 0≤y≤2, and x and y are not 0 at the same time; MOF represents an organic metal framework.
第三方面,上述金属催化剂或者上述金属前驱体在有机化合物不饱和键催化加氢反应上的应用。The third aspect is the use of the above-mentioned metal catalyst or the above-mentioned metal precursor in the catalytic hydrogenation reaction of unsaturated bonds in organic compounds.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
本发明制备了一种具有MOF框架结构的金属催化剂,采用镍盐和钴盐作为金属离子,并选择适宜的有机配体,通过调控MOF结构中金属物种的含量和分布,调控所制备的MNP/MOF材料的微观结构,最终达到调控其热解后金属催化剂微观结构的目的。本发明制备的金属催化剂与传统的金属相比,热解残留的纳米级多孔MOF结构具有易于接近的活性位点,其框架结构可富集活性MNPs位点附近的反应物浓度,从而提高反应物的转化率,可以用于苯、甲苯、烯、炔、醛、酮、酯等有机化合物不饱和键催化加氢,以及二氧化碳催化加氢。此外,本发明的金属催化剂不含有贵金属,制备方法简单,条件也并不苛刻,在一定程度上成本可控,具有很好的工业化前景。The present invention prepares a metal catalyst with a MOF framework structure, uses nickel salt and cobalt salt as metal ions, selects suitable organic ligands, and regulates the content and distribution of metal species in the MOF structure to regulate the microstructure of the prepared MNP/MOF material, thereby ultimately achieving the purpose of regulating the microstructure of the metal catalyst after pyrolysis. Compared with traditional metals, the metal catalyst prepared by the present invention has a nano-scale porous MOF structure residual from pyrolysis with easily accessible active sites, and its framework structure can enrich the concentration of reactants near the active MNPs site, thereby improving the conversion rate of the reactants, and can be used for catalytic hydrogenation of unsaturated bonds of organic compounds such as benzene, toluene, alkene, alkyne, aldehyde, ketone, ester, and catalytic hydrogenation of carbon dioxide. In addition, the metal catalyst of the present invention does not contain precious metals, the preparation method is simple, the conditions are not harsh, the cost is controllable to a certain extent, and it has a good industrialization prospect.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为NixCoy-MOF的TG分析图。FIG1 is a TG analysis chart of Ni x Co y -MOF.
图2为NixCoy-MOF前驱体和金属催化剂的FTIR分析图,其中,(a)图为NixCoy-MOFs的FTIR分析图;(b)图为NixCoy-MOFs在325℃分解获得的催化剂的FTIR分析图;(c)图为Ni1Co2-MOFs在不同分解温度(300℃、325℃、350℃)获得的催化剂的FTIR分析图。Figure 2 is the FTIR analysis graph of NixCoy-MOF precursor and metal catalyst, wherein (a) is the FTIR analysis graph of NixCoy-MOFs; (b) is the FTIR analysis graph of the catalyst obtained by decomposing NixCoy-MOFs at 325°C; (c) is the FTIR analysis graph of the catalyst obtained by decomposing Ni1Co2-MOFs at different decomposition temperatures (300°C, 325°C, 350°C).
图3为NixCoy-MOF前驱体和金属催化剂的XRD图谱,其中,(a)图为NixCoy-MOFs的XRD分析图;(b)图为NixCoy-MOFs在325℃分解获得的催化剂的XRD分析图;(c)图为不同NixCoy-MOFs在325℃分解获得的催化剂的局部(43.6°~45.6°)XRD分析图;(d)图为Ni1Co2-MOFs在不同分解温度(300℃、325℃、350℃)获得的催化剂的XRD分析图。Figure 3 shows the XRD patterns of NixCoy-MOF precursor and metal catalyst, where (a) is the XRD analysis diagram of NixCoy-MOFs; (b) is the XRD analysis diagram of the catalyst obtained by decomposing NixCoy-MOFs at 325°C; (c) is the local (43.6°~45.6°) XRD analysis diagram of the catalyst obtained by decomposing different NixCoy-MOFs at 325°C; (d) is the XRD analysis diagram of the catalyst obtained by decomposing Ni 1 Co 2 -MOFs at different decomposition temperatures (300°C, 325°C, 350°C).
图4为金属催化剂的N2吸附-解吸等温线。Figure 4 shows the N2 adsorption-desorption isotherms of the metal catalysts.
图5为NixCoy-MOFs以及金属催化剂的扫描电镜(SEM)分析,其中a~j图对应的催化剂分别为Ni-MOF、Ni2Co1-MOF、Ni1Co1-MOF、Ni1Co2-MOF、Co-MOF、Ni/MOF-325、Ni2Co1/MOF-325、Ni1Co1/MOF-325、Ni1Co2/MOF-325、Co/MOF-325。Figure 5 is a scanning electron microscope (SEM) analysis of NixCoy-MOFs and metal catalysts, where the catalysts corresponding to Figures a to j are Ni-MOF, Ni2Co1-MOF, Ni1Co1-MOF, Ni1Co2-MOF, Co-MOF, Ni/MOF-325, Ni2Co1/MOF-325, Ni1Co1/MOF-325, Ni1Co2/MOF-325, and Co/MOF-325, respectively.
图6为金属催化剂的XPS谱图,其中,(a)图表示各种金属催化剂中Ni 2p的XPS谱图;(b)图表示各种金属催化剂中Co 2p的XPS谱图。FIG6 is an XPS spectrum of metal catalysts, wherein (a) shows the XPS spectrum of Ni 2p in various metal catalysts; and (b) shows the XPS spectrum of Co 2p in various metal catalysts.
图7为金属催化剂在60~210℃区间的H2-TPD曲线。FIG7 is the H2-TPD curve of the metal catalyst in the range of 60 to 210°C.
图8为金属催化剂的催化活性以及稳定性分析图,其中,(a)图为NixCoy-MOF前驱体在氮气中不同热解温度得到的催化剂催化甲苯加氢的转化率;(b)图为NixCoy-MOF前驱体在氢气中于325℃热解得到的催化剂催化甲苯加氢的转化率;(c)图为Ni1Co2/MOF在不同热解温度得到的催化剂催化甲苯加氢的转化率;(d)图为不同金属催化剂在160℃的稳定性。Figure 8 is an analysis diagram of the catalytic activity and stability of metal catalysts, wherein (a) shows the conversion rate of toluene hydrogenation catalyzed by the catalysts obtained by pyrolysis of NixCoy-MOF precursor in nitrogen at different temperatures; (b) shows the conversion rate of toluene hydrogenation catalyzed by the catalysts obtained by pyrolysis of NixCoy-MOF precursor in hydrogen at 325°C; (c) shows the conversion rate of toluene hydrogenation catalyzed by the catalysts obtained by pyrolysis of Ni1Co2/MOF at different temperatures; (d) shows the stability of different metal catalysts at 160°C.
图9为金属催化剂Ni/MOF-300随温度催化苯加氢的转化率曲线。FIG9 is a curve showing the conversion rate of benzene hydrogenation catalyzed by the metal catalyst Ni/MOF-300 over temperature.
注意:NixCoy-MOF-325表示NixCoy-MOF在325℃热解获得的金属催化剂。Note: NixCoy-MOF-325 indicates the metal catalyst obtained by pyrolysis of NixCoy-MOF at 325 °C.
具体实施方式DETAILED DESCRIPTION
在本发明的描述中,需要说明的是,实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。In the description of the present invention, it should be noted that, if the specific conditions are not specified in the examples, the experiments were carried out according to conventional conditions or the conditions recommended by the manufacturer. The reagents or instruments used, if the manufacturer is not specified, are all conventional products that can be purchased commercially.
本发明提供一种金属催化剂,所述催化剂是由结构通式为:NixCoy-MOF的前驱体热解获得;其中0≤x≤2,0≤y≤2,x、y均可以为0、1、2,但x和y不同时为0;MOF则表示有机金属骨架。The present invention provides a metal catalyst, which is obtained by thermal decomposition of a precursor with a general structural formula: Ni x Co y -MOF; wherein 0≤x≤2, 0≤y≤2, x and y can both be 0, 1, 2, but x and y cannot be 0 at the same time; MOF represents an organic metal framework.
在本发明的优选实施例中,所述前驱体的制备方法包括:将镍盐和/或钴盐、有机配体、碱性调节剂在溶剂中进行水热反应。In a preferred embodiment of the present invention, the method for preparing the precursor comprises: subjecting nickel salt and/or cobalt salt, an organic ligand, and an alkaline regulator to a hydrothermal reaction in a solvent.
本发明优选地,所述镍盐选自:硝酸镍、醋酸镍、硫酸镍、氯化镍、溴化镍中的至少一种;所述钴盐选自硝酸钴、醋酸钴、氯化钴、溴化钴、硫酸钴中的至少一种;所述有机配体选自对苯二甲酸、1,3,5-苯三甲酸、2,5-二羟基对苯二甲酸、2,5-噻吩二羧酸、蚁酸、吡啶羧酸类中的至少一种。这些有机配体可以为本发明的金属催化剂提供稳定的MOF骨架结构,本发明优选采用对苯二甲酸。In the present invention, the nickel salt is preferably selected from at least one of nickel nitrate, nickel acetate, nickel sulfate, nickel chloride, and nickel bromide; the cobalt salt is selected from at least one of cobalt nitrate, cobalt acetate, cobalt chloride, cobalt bromide, and cobalt sulfate; the organic ligand is selected from at least one of terephthalic acid, 1,3,5-benzenetricarboxylic acid, 2,5-dihydroxyterephthalic acid, 2,5-thiophenedicarboxylic acid, formic acid, and pyridinecarboxylic acid. These organic ligands can provide a stable MOF skeleton structure for the metal catalyst of the present invention, and terephthalic acid is preferably used in the present invention.
本发明优选地,所述碱性调节剂选自六水三乙烯二胺、氢氧化钠、氢氧化钾、三乙胺、三乙醇胺、聚烯吡酮中的至少一种;优选为六水三乙烯二胺。加入碱性调节剂是为了改善金属离子和配体的配位能力,目前发现前述的这几种可以用于本发明。In the present invention, the alkaline regulator is preferably selected from at least one of triethylenediamine hexahydrate, sodium hydroxide, potassium hydroxide, triethylamine, triethanolamine, and polyvinylpyrrolidone; preferably triethylenediamine hexahydrate. The alkaline regulator is added to improve the coordination ability of metal ions and ligands. It is currently found that the aforementioned several can be used in the present invention.
本发明优选地,所述溶剂选自:DMF、甲醇、乙醇、去离子水中的至少一种。In the present invention, the solvent is preferably selected from at least one of DMF, methanol, ethanol and deionized water.
在本发明的优选实施例中,所述前驱体的制备方法中,镍盐和钴盐的摩尔比为0~2:0~2;有机配体的摩尔用量为镍盐中镍摩尔量和钴盐中钴摩尔量总和的0.9~1.1,控制在1.0附近比较好;碱性调节剂的用量为镍盐中镍摩尔量和钴盐中钴摩尔量总和的0.5~2.0,优选控制在0.5~1.0。In a preferred embodiment of the present invention, in the preparation method of the precursor, the molar ratio of nickel salt to cobalt salt is 0-2:0-2; the molar amount of the organic ligand is 0.9-1.1 of the sum of the molar amount of nickel in the nickel salt and the molar amount of cobalt in the cobalt salt, and it is better to control it at around 1.0; the amount of the alkaline regulator is 0.5-2.0 of the sum of the molar amount of nickel in the nickel salt and the molar amount of cobalt in the cobalt salt, and it is preferably controlled at 0.5-1.0.
在本发明的优选实施例中,所述前驱体的制备方法中,水热反应温度为110~150℃,优选为125~135℃;更优选为130℃;水热反应时间为12~48h,优选为20~30h,更优选为24h。In a preferred embodiment of the present invention, in the method for preparing the precursor, the hydrothermal reaction temperature is 110-150°C, preferably 125-135°C; more preferably 130°C; the hydrothermal reaction time is 12-48h, preferably 20-30h, more preferably 24h.
本发明优选地,所述前驱体的制备方法还包括:将水热反应的固体产物分离后洗涤并干燥;优选地,水热反应的固体产物分离后先用DMF洗涤多次,再用乙醇洗涤多次;优选地,洗涤后的固体于60~80℃真空干燥8h以上,优选于70±2℃干燥24h。Preferably, in the present invention, the method for preparing the precursor further comprises: separating the solid product of the hydrothermal reaction, washing and drying; preferably, after separation, the solid product of the hydrothermal reaction is first washed multiple times with DMF, and then washed multiple times with ethanol; preferably, the washed solid is vacuum dried at 60-80°C for more than 8h, preferably dried at 70±2°C for 24h.
所述的金属催化剂应用在有机化合物不饱和键催化加氢反应上。以1/2的Ni/Co摩尔比衍生的Ni1Co2/MOF-325催化剂催化甲苯加氢为例,其不但较好地保留有类似MOF的优异结构和较大的比表面积,而且富Co的合金催化剂中Co的d能带中存在更多未占用的d轨道,提高了催化剂对H2的吸附和活化能力,使金属活性成分与H2分子充分接触,有利于提高其甲苯加氢活性和反应的稳定性。The metal catalyst is applied to the catalytic hydrogenation reaction of unsaturated bonds of organic compounds. Taking the Ni 1 Co 2 /MOF-325 catalyst derived from the Ni/Co molar ratio of 1/2 as an example, it not only retains the excellent structure and large specific surface area similar to MOF, but also has more unoccupied d orbitals in the d energy band of Co in the Co-rich alloy catalyst, which improves the adsorption and activation ability of the catalyst to H 2 , makes the metal active components fully contact with the H 2 molecules, and is conducive to improving its toluene hydrogenation activity and reaction stability.
下面结合附图和具体实施例,进一步阐述本发明。The present invention is further described below in conjunction with the accompanying drawings and specific embodiments.
实施例1Example 1
1.1金属催化剂的制备方法如下:1.1 The preparation method of the metal catalyst is as follows:
准确称量Ni(NO3)2·6H2O、Co(NO3)2·6H2O(质量见表1)、0.700g对苯二甲酸(0.0042mol)和0.464g(0.0021mol)六水三乙烯二胺溶解在50mL N,N-二甲基甲酰胺(DMF)中,超声振动10min、磁力搅拌20min,将搅拌好的溶液转移到100mL聚乙烯水热釜并密封,于130℃下保持24.0h。自然降温冷却后,产物用DMF洗涤两次,用乙醇洗涤两次,每次以4000rpm的转速离心7min,在70℃下真空干燥过夜。得到的结晶粉末即为NixCoy-MOF前驱体,根据Ni/Co摩尔比分别记为:Ni-MOF、Ni2Co1-MOF、Ni1Co1-MOF、Ni1Co2-MOF和Co-MOF,它们经325℃下的H2气氛热解1h后,即得本发明的金属催化剂Ni/MOF-325、Ni2Co1/MOF-325、Ni1Co1/MOF-325、Ni1Co2/MOF-325和Co/MOF-325。Accurately weigh Ni(NO 3 ) 2 ·6H 2 O, Co(NO 3 ) 2 ·6H 2 O (mass see Table 1), 0.700g terephthalic acid (0.0042mol) and 0.464g (0.0021mol) triethylenediamine hexahydrate, dissolve in 50mL N,N-dimethylformamide (DMF), ultrasonically vibrate for 10min, magnetically stir for 20min, transfer the stirred solution to a 100mL polyethylene hydrothermal autoclave and seal it, keep it at 130℃ for 24.0h. After cooling naturally, the product is washed twice with DMF and twice with ethanol, centrifuged at 4000rpm for 7min each time, and vacuum dried at 70℃ overnight. The obtained crystalline powder is the Ni x Co y -MOF precursor, which is recorded as Ni-MOF, Ni 2 Co 1 -MOF, Ni 1 Co 1 -MOF, Ni 1 Co 2 -MOF and Co-MOF according to the Ni/Co molar ratio. After pyrolysis in a H 2 atmosphere at 325°C for 1 h, the metal catalysts Ni/MOF-325, Ni 2 Co 1 /MOF-325, Ni 1 Co 1 /MOF-325, Ni 1 Co 2 /MOF-325 and Co/MOF-325 of the present invention are obtained.
表1不同Ni/Co摩尔比的Ni(NO3)2·6H2O和Co(NO3)2·6H2OTable 1 Ni(NO 3 ) 2 ·6H 2 O and Co(NO 3 ) 2 ·6H 2 O with different Ni/Co molar ratios
1.2催化剂的表征1.2 Characterization of catalysts
1.2.1热失重分析(TG)1.2.1 Thermogravimetric analysis (TG)
采用STA4493F3同步热分析仪(德国耐驰仪器制造有限公司)对催化剂前驱体进行热失重分析(TG)。测试气氛为氮气,温度范围25~900℃、升温速率10℃/min。The catalyst precursor was subjected to thermogravimetric analysis (TG) using a STA4493F3 synchronous thermal analyzer (Netzsch Instrument Manufacturing Co., Ltd., Germany). The test atmosphere was nitrogen, the temperature range was 25-900°C, and the heating rate was 10°C/min.
1.2.2X射线衍射(XRD)1.2.2 X-ray diffraction (XRD)
样品的X射线衍射(XRD)在XRD-6100(日本岛津公司)上测试。射线管为2.2kW的Cu靶,Kα射线源,管内电压为40kV,电流为30mA,扫描步长为0.02°、扫描速率4°/min、扫描范围5~80°。The X-ray diffraction (XRD) of the sample was tested on XRD-6100 (Shimadzu Corporation, Japan). The ray tube was a 2.2kW Cu target, a Kα ray source, a tube voltage of 40kV, a current of 30mA, a scanning step of 0.02°, a scanning rate of 4°/min, and a scanning range of 5 to 80°.
1.2.3比表面积和孔径分布测试(BET)1.2.3 Specific surface area and pore size distribution test (BET)
采用ASAP2020HD88型全自动比表面及微孔吸附仪(BET,美国麦克有限公司)测定样品的比表面积及孔结构。在BET测量之前,将准确称量的样品在氮气流,150℃下真空脱气3.0h,然后在液氮温度(-196℃)下进行测试。The specific surface area and pore structure of the samples were measured using an ASAP2020HD88 fully automatic specific surface and micropore adsorption instrument (BET, Micromeritics, Inc., USA). Before the BET measurement, the accurately weighed samples were vacuum degassed at 150 °C for 3.0 h in a nitrogen flow and then tested at liquid nitrogen temperature (-196 °C).
1.2.4傅立叶变换红外光谱测试(FTIR)1.2.4 Fourier Transform Infrared Spectroscopy (FTIR)
通过IRPrestige-21型傅立叶变换红外光谱仪(FTIR,日本日立公司)对样品的官能团组成进行测试分析。以KBr作为测试背景,测试波数范围为500~4000cm–1。The functional group composition of the samples was tested and analyzed by IRPrestige-21 Fourier transform infrared spectrometer (FTIR, Hitachi, Japan). KBr was used as the test background, and the test wave number range was 500-4000 cm –1 .
1.2.5H2程序升温还原(H2-TPR)1.2.5H 2 -TPR
采用全自动化学吸附仪(Belcat-II,日本麦奇克拜尔有限公司)进行H2程序升温还原(H2-TPR)。称取50mg催化剂前驱体置于石英管中,在6%的H2/Ar流动混合气中,以10℃/min的升温速率从室温升至设定温度,耗氢量由热导池检测器(TCD)检测。A fully automatic chemisorption instrument (Belcat-II, Japan Microchem Belcat Co., Ltd.) was used for H 2 -TPR. 50 mg of catalyst precursor was weighed and placed in a quartz tube. In a 6% H 2 /Ar flowing mixed gas, the temperature was raised from room temperature to the set temperature at a rate of 10 °C /min. The hydrogen consumption was detected by a thermal conductivity detector (TCD).
1.2.6H2程序升温脱附(H2-TPD)1.2.6H 2 temperature programmed desorption (H 2 -TPD)
采用全自动化学吸附仪(Belcat-II,日本麦奇克拜尔有限公司)进行H2程序升温脱附(H2-TPD)测试。称取50mg前驱体转移至石英管中,先在H2氛围于325℃热解1.0h,再在He气氛围中降温至50℃,然后将6%的H2/Ar混合气引入催化剂床层30min,随后,在该温度下用He气吹扫以除去物理吸附的H2分子。最后,样品以10℃/min从50℃升至设定温度,样品的氢脱附量经TCD检测获得。A fully automatic chemisorption instrument (Belcat-II, Japan Micro-Bel Co., Ltd.) was used for H 2 temperature-programmed desorption (H 2 -TPD) test. 50 mg of the precursor was weighed and transferred to a quartz tube. It was first pyrolyzed at 325 °C for 1.0 h in a H 2 atmosphere, then cooled to 50 °C in a He atmosphere, and then a 6% H 2 /Ar mixed gas was introduced into the catalyst bed for 30 min. Subsequently, He gas was purged at this temperature to remove physically adsorbed H 2 molecules. Finally, the sample was heated from 50 °C to the set temperature at 10 °C /min, and the hydrogen desorption amount of the sample was obtained by TCD detection.
1.2.7描电子显微镜(SEM)1.2.7 Scanning Electron Microscope (SEM)
样品的形貌特征采用SU1510型扫描电子显微镜(SEM)进行表征(日本日立公司),工作电压为15kV。The morphological characteristics of the samples were characterized using a SU1510 scanning electron microscope (SEM) (Hitachi, Japan) with an operating voltage of 15 kV.
1.2.8X射线光电子能谱(XPS)1.2.8 X-ray Photoelectron Spectroscopy (XPS)
在X射线光电子能谱仪(Thermo Scientific K-Alpha,美国赛默飞世尔科技公司)上测试Ni 2p和Co 2p的X射线光电子能谱(XPS),所有的结合能校准均基于284.8eV处的C1s峰。工作电压为12kV,灯丝电流为6mA,以Al Kα作为激发源(hν=1486.6eV)。The X-ray photoelectron spectroscopy (XPS) of Ni 2p and Co 2p was measured on an X-ray photoelectron spectrometer (Thermo Scientific K-Alpha, Thermo Fisher Scientific, USA), and all binding energy calibrations were based on the C1s peak at 284.8 eV. The operating voltage was 12 kV, the filament current was 6 mA, and Al Kα was used as the excitation source (hν = 1486.6 eV).
1.3金属催化剂催化活性评价1.3 Evaluation of catalytic activity of metal catalysts
甲苯加氢反应在固定床反应器中进行。称取50mg步骤1.1制备的NixCoy-MOF前驱体样品置于石英管反应器中部,再将石英反应管固定在管式炉中,在20mL/min的流动H2中,以10℃/min的升温速率升至催化剂的热解温度,并在该温度下保持1.0h,热解结束后待温度降至80℃时,继而将获得的金属催化剂进行原位加氢反应:将甲苯和H2组成的原料气以20mL/min引入反应器中,并在80~200℃范围内评价了催化剂上甲苯加氢活性。反应产物采用配有FID的气相色谱仪进行在线分析。The toluene hydrogenation reaction was carried out in a fixed bed reactor. Weigh 50 mg of the Ni x Co y -MOF precursor sample prepared in step 1.1 and place it in the middle of the quartz tube reactor. Then fix the quartz tube in a tube furnace. In 20 mL/min of flowing H 2 , heat the temperature to the pyrolysis temperature of the catalyst at a rate of 10 °C/min and keep it at this temperature for 1.0 h. After the pyrolysis is completed, when the temperature drops to 80 °C, the obtained metal catalyst is then subjected to in-situ hydrogenation reaction: the raw gas composed of toluene and H 2 is introduced into the reactor at 20 mL/min, and the toluene hydrogenation activity on the catalyst is evaluated in the range of 80-200 °C. The reaction products are analyzed online using a gas chromatograph equipped with FID.
2结果与讨论2 Results and discussion
2.1TG分析2.1TG analysis
采用同步热分析仪考察了氮气氛围中Ni-MOF、Ni2Co1-MOF、Ni1Co1-MOF、Ni1Co2-MOF和Co-MOF的热解行为。The thermal decomposition behaviors of Ni-MOF, Ni 2 Co 1 -MOF, Ni 1 Co 1 -MOF, Ni 1 Co 2 -MOF and Co-MOF in nitrogen atmosphere were investigated using a simultaneous thermal analyzer.
由图1可知,NixCoy-MOF在氮气氛围下的热降解主要包含三个温度阶段:(1)当温度为25-370℃时,各前驱体存在较少的质量损失,归因于封装在骨架中的溶剂DMF分子和吸收的水分子的释放,以及部分MOFs骨架结构的分解;(2)当温度为370-500℃时,该阶段有着明显的质量损失,这是由于配体在MOFs中大量分解引起的;(3)当温度为500-800℃时,Ni-MOF、Ni1Co1-MOF、Ni1Co2-MOF和Ni2Co1-MOF均有较少的质量损失,而Co-MOF质量略有增加,可能是因为在该温度区间内,Co-MOF进一步分解放出大量的气相产物,导致局部压力突然增大。以上结果表明,Ni-MOF、Ni2Co1-MOF、Ni1Co1-MOF、Ni1Co2-MOF和Co-MOF在惰性气氛中的热解温度范围为370-500℃,而温度高于500℃则MOFs骨架结构将完全分解。因此,在370-500℃的氮气中可控热解可能使得MOFs的结构部分分解,从而保留部分MOFs的框架结构。As shown in Figure 1, the thermal degradation of NixCoy - MOF in a nitrogen atmosphere mainly includes three temperature stages: (1) When the temperature is 25-370℃, each precursor has a small mass loss, which is attributed to the release of solvent DMF molecules and absorbed water molecules encapsulated in the skeleton, as well as the decomposition of part of the MOFs skeleton structure; (2) When the temperature is 370-500℃, there is an obvious mass loss in this stage, which is caused by the large-scale decomposition of ligands in MOFs; (3) When the temperature is 500-800℃, Ni-MOF, Ni1Co1 -MOF , Ni1Co2 - MOF and Ni2Co1 - MOF all have a small mass loss, while the mass of Co-MOF increases slightly, which may be because in this temperature range, Co-MOF further decomposes and releases a large amount of gas phase products, resulting in a sudden increase in local pressure. The above results show that the pyrolysis temperature range of Ni-MOF, Ni 2 Co 1 -MOF, Ni 1 Co 1 -MOF, Ni 1 Co 2 -MOF and Co-MOF in an inert atmosphere is 370-500°C, and the MOFs framework structure will be completely decomposed at a temperature above 500°C. Therefore, controlled pyrolysis in nitrogen at 370-500°C may partially decompose the structure of MOFs, thereby retaining part of the MOFs framework structure.
2.2FTIR研究2.2 FTIR study
我们采用FTIR分析研究了NixCoy-MOF前驱体和催化剂的官能团。We used FTIR analysis to study the functional groups of Ni x Co y -MOF precursors and catalysts.
图2(a)为不同Ni/Co摩尔比的NixCoy-MOF前驱体的FTIR谱图,位于3603cm-1和3430cm-1处的谱带归属于NixCoy-MOF前驱体中O-H,这是由MOFs中的配位水引起的,表明水分子存在于NixCoy-MOF结构中。2927、1502、815和753cm-1处的峰是对位芳族C-H拉伸带的特征峰。1572cm-1和1383cm-1处的强带分别归属于配位基团(-COO–)的不对称和对称伸缩模式,表明对苯二甲酸的-COO–通过双齿配体模式与Ni2+和Co2+配位(金属离子和连接分子之间配位成功)。另外,在608cm-1和698cm-1处的峰归属于Ni-O或Co-O的特征峰,表明Ni或Co原子与对苯二甲酸的-COO–成功形成了金属氧键。因此,Ni和Co物种已经成功地引入到MOFs的框架中,进而形成NixCoy-MOF结构。Figure 2(a) shows the FTIR spectra of Ni x Co y -MOF precursors with different Ni/Co molar ratios. The bands at 3603 cm -1 and 3430 cm -1 are attributed to OH in the Ni x Co y -MOF precursor, which is caused by the coordinated water in MOFs, indicating that water molecules exist in the Ni x Co y -MOF structure. The peaks at 2927, 1502, 815 and 753 cm -1 are characteristic peaks of para-aromatic CH stretching bands. The strong bands at 1572 cm -1 and 1383 cm -1 are respectively attributed to the asymmetric and symmetric stretching modes of the coordination group (-COO – ), indicating that the -COO – of terephthalic acid is coordinated with Ni 2+ and Co 2+ through a bidentate ligand mode (coordination between metal ions and linker molecules is successful). In addition, the peaks at 608 cm -1 and 698 cm -1 are attributed to the characteristic peaks of Ni-O or Co-O, indicating that Ni or Co atoms successfully formed metal oxygen bonds with -COO- of terephthalic acid. Therefore, Ni and Co species have been successfully introduced into the framework of MOFs, thereby forming a NixCoy - MOF structure.
图2(b)为NixCoy-MOF在325℃、H2流下热解1.0h所得的NixCoy/MOF-325催化剂的FTIR谱图。与Ni/MOF、Ni2Co1/MOF、Ni1Co1/MOF相比(2(a)),图2(b)中Ni/MOF-325和Ni2Co1/MOF-325、Ni1Co1/MOF-325催化剂上的MOFs结构的特征峰几乎消失,明显减弱甚至消失,表明在325℃、H2流下Ni/MOF-325和Ni2Co1/MOF-325催化剂中MOFs框架结构已经分解。类似地,与Ni1Co1/MOF前驱体相比,Ni1Co1/MOF-325催化剂上的MOFs结构的特征峰明显减弱,说明其MOFs框架结构遭到破坏。此外,Co/MOF-325及Ni1Co2/MOF-325的FTIR谱图与Co/MOF和Ni1Co2/MOF前驱体类似,说明Co/MOF-325及Ni1Co2/MOF-325催化剂较好的保留了MOFs的框架结构。Figure 2(b) shows the FTIR spectrum of Ni x Co y /MOF-325 catalyst obtained by pyrolysis of Ni x Co y -MOF at 325℃ and H 2 flow for 1.0h. Compared with Ni/MOF, Ni 2 Co 1 /MOF, and Ni 1 Co 1 /MOF (2(a)), the characteristic peaks of MOFs structure on Ni/MOF-325, Ni 2 Co 1 /MOF-325, and Ni 1 Co 1 /MOF-325 catalysts in Figure 2(b) almost disappear, significantly weaken or even disappear, indicating that the MOFs framework structure in Ni/MOF-325 and Ni 2 Co 1 /MOF-325 catalysts has been decomposed under 325℃ and H 2 flow. Similarly, compared with the Ni 1 Co 1 /MOF precursor, the characteristic peaks of MOFs structure on the Ni 1 Co 1 /MOF-325 catalyst are significantly weakened, indicating that its MOFs framework structure is destroyed. In addition, the FTIR spectra of Co/MOF-325 and Ni 1 Co 2 /MOF-325 are similar to those of Co/MOF and Ni 1 Co 2 /MOF precursors, indicating that the Co/MOF-325 and Ni 1 Co 2 /MOF-325 catalysts retain the framework structure of MOFs well.
图2(c)为Ni1Co2-MOF不同热解温度处理后所得催化剂的FTIR谱图。与Ni1Co2/MOF-300和Ni1Co2/MOF-325相比,Ni1Co2/MOF-350上的MOFs结构的特征峰几乎消失,说明其MOFs框架结构严重解体,而Ni1Co2/MOF-300和Ni1Co2/MOF-325的MOFs框架结构相对完整,因此,热解温度也是影响催化剂MOFs框架结构重要因素之一。Figure 2(c) shows the FTIR spectra of the catalysts obtained after Ni 1 Co 2 -MOF was treated at different pyrolysis temperatures. Compared with Ni 1 Co 2 /MOF-300 and Ni 1 Co 2 /MOF-325, the characteristic peaks of the MOFs structure on Ni 1 Co 2 /MOF-350 almost disappeared, indicating that its MOFs framework structure was seriously disintegrated, while the MOFs framework structure of Ni 1 Co 2 /MOF-300 and Ni 1 Co 2 /MOF-325 was relatively complete. Therefore, the pyrolysis temperature is also one of the important factors affecting the MOFs framework structure of the catalyst.
2.3XRD研究2.3 XRD study
图3(a)为Ni-MOF、Ni2Co1-MOF、Ni1Co1-MOF、Ni1Co2-MOF和Co-MOF的XRD谱图。它们具有相似的XRD晶相衍射峰,因为其晶格常数和晶体结构相似,表明Ni、Co金属离子对合成的MOFs晶体结构几乎没有影响。其中,Co-MOF衍射峰较弱,说明相应物相的结晶度较差,这可能是Co原子促进了MOF材料以非晶形式生长的缘故。Figure 3(a) shows the XRD spectra of Ni-MOF, Ni 2 Co 1 -MOF, Ni 1 Co 1 -MOF, Ni 1 Co 2 -MOF and Co-MOF. They have similar XRD crystal phase diffraction peaks because their lattice constants and crystal structures are similar, indicating that Ni and Co metal ions have almost no effect on the crystal structure of the synthesized MOFs. Among them, the diffraction peak of Co-MOF is weak, indicating that the crystallinity of the corresponding phase is poor, which may be because Co atoms promote the growth of MOF materials in amorphous form.
图3(b)为上述MOFs材料在325℃、H2流下热解1.0h所得的Ni/MOF-325、Ni2Co1/MOF-325、Ni1Co1/MOF-325、Ni1Co2/MOF-325和Co/MOF-325催化剂的XRD谱图。在Ni/MOF-325和Ni2Co1/MOF-325的谱图中未观察到Ni/MOF和Ni2Co1/MOF特征衍射峰,说明325℃、H2流下使得Ni/MOF和Ni2Co1/MOF完全分解。与Ni1Co1-MOF相比,Ni1Co1/MOF-325中的MOFs特征衍射峰强度明显降低,而Ni1Co2/MOF-325基本保持与Ni1Co2-MOF一致的MOF特征衍射峰强度。说明Ni1Co2-MOF在325℃、H2流下热解后的Ni1Co2/MOF-325较好的保持了MOFs材料的框架结构,进一步说明了在Ni基MOF中引入Co形成的NiCo基(NiCo-based)MOFs材料,可增强其在H2气氛中耐高温能力。另外,在图3(b)中可明显观察到Ni/MOF-325催化剂在2θ=44.5°,51.8°,76.4°出现了衍射峰,分别归属于面心立方金属Ni的{111}、{200}和{220}晶面,这是Ni/MOF完全分解生成的Ni NPs。Ni2Co1/MOF-325、Ni1Co1/MOF-325和Ni1Co2/MOF-325催化剂在2θ=44.4°、51.6°和76.2°处也出现了衍射峰,如图3(c)所示(图3(b)的局部放大图),分别为面心立方Ni-Co合金的{111},{200},{220}晶面。五种样品中,Ni/MOF-325的XRD图谱显示出尖锐的金属Ni衍射峰,表明金属Ni高的结晶度,说明了Ni/MOF在325℃的H2氛围中热解导致MOFs结构急剧坍塌并形成了巨大Ni团聚体。通过Scherrer方程从{111}衍射峰的半峰宽计算得到Ni/MOF-325、Ni2Co1/MOF-325、Ni1Co1/MOF-325和Ni1Co2/MOF-325中金属粒子尺寸分别为:25.5、15.2、12.3和10.2nm。显然,在Ni基MOFs中引入Co,明显降低了热解后催化剂的金属粒径尺寸,归因于Co-MOF在H2气氛中具有更强的耐高温能力(见活性测试部分),阻止高温热解过程中MOF框架结构的分解和金属物种的聚集,改善了热解产生的金属粒子在MOFs载体中的分散。Figure 3(b) shows the XRD spectra of Ni/MOF-325, Ni 2 Co 1 /MOF-325, Ni 1 Co 1 /MOF-325, Ni 1 Co 2 /MOF-325 and Co/MOF-325 catalysts obtained by pyrolysis of the above MOFs materials at 325°C under H 2 flow for 1.0 h. No characteristic diffraction peaks of Ni/MOF and Ni 2 Co 1 /MOF were observed in the spectra of Ni/MOF-325 and Ni 2 Co 1 /MOF-325, indicating that Ni/MOF and Ni 2 Co 1 /MOF were completely decomposed under 325°C and H 2 flow. Compared with Ni 1 Co 1 -MOF, the intensity of the MOFs characteristic diffraction peak in Ni 1 Co 1 /MOF-325 was significantly reduced, while Ni 1 Co 2 /MOF-325 basically maintained the MOF characteristic diffraction peak intensity consistent with that of Ni 1 Co 2 -MOF. This indicates that Ni 1 Co 2 /MOF-325, after pyrolysis of Ni 1 Co 2 -MOF at 325°C under H 2 flow, maintains the framework structure of MOFs materials well, further indicating that the introduction of Co into Ni-based MOFs to form NiCo-based MOFs materials can enhance their high temperature resistance in H 2 atmosphere. In addition, it can be clearly observed in Figure 3(b) that the Ni/MOF-325 catalyst has diffraction peaks at 2θ=44.5°, 51.8°, and 76.4°, which are respectively attributed to the {111}, {200}, and {220} crystal planes of face-centered cubic metal Ni, which are Ni NPs generated by the complete decomposition of Ni/MOF. Ni 2 Co 1 /MOF-325, Ni 1 Co 1 /MOF-325 and Ni 1 Co 2 /MOF-325 catalysts also showed diffraction peaks at 2θ=44.4°, 51.6° and 76.2°, as shown in Figure 3(c) (partial enlargement of Figure 3(b)), which are the {111}, {200}, and {220} crystal planes of face-centered cubic Ni-Co alloy, respectively. Among the five samples, the XRD spectrum of Ni/MOF-325 showed sharp metallic Ni diffraction peaks, indicating high crystallinity of metallic Ni, which explained that the pyrolysis of Ni/MOF in H 2 atmosphere at 325℃ caused the MOFs structure to collapse sharply and formed huge Ni agglomerates. The metal particle sizes of Ni/MOF-325, Ni 2 Co 1 /MOF-325, Ni 1 Co 1 /MOF-325 and Ni 1 Co 2 /MOF-325 were calculated from the half-peak width of the {111} diffraction peak by the Scherrer equation and were 25.5, 15.2, 12.3 and 10.2 nm, respectively. Obviously, the introduction of Co into Ni-based MOFs significantly reduced the metal particle size of the catalyst after pyrolysis, which was attributed to the stronger high temperature resistance of Co-MOF in H 2 atmosphere (see the activity test section), preventing the decomposition of the MOF framework structure and the aggregation of metal species during high temperature pyrolysis, and improving the dispersion of metal particles produced by pyrolysis in the MOFs carrier.
图3(d)中考察了Ni1Co2-MOF在不同热解温度下(300、325和350℃)所得的Ni1Co2/MOF-300、Ni1Co2/MOF-325和Ni1Co2/MOF-350催化剂XRD谱图。图中,Ni1Co2/MOF-300的MOFs特征峰强度明显强于Ni1Co2/MOF-325,而Ni1Co2/MOF-350中没有观察到Ni1Co2/MOF的特征衍射峰,说明300℃、H2流下可能只能使MOF结构少量分解,因而生成的Ni-Co合金纳米粒子较少;而350℃、H2流下,由于热解温度过高,使得MOFs框架结构完全分解,导致金属物种的聚集和MOFs的特征衍射峰消失。特别地,Ni1Co2/MOF-325催化剂的XRD图谱中同时具有MOFs和Ni-Co合金的衍射峰,表明可控制的热解路径使得Ni1Co2/MOF-325催化剂很好的保留了MOF的框架结构,同时在Ni1Co2/MOF中形成了大量分散性较好的Ni-Co合金纳米粒子(NiCo NPs),有助于提高它的催化加氢性能。因此,适宜的热解温度对NiCo基MOFs衍生的Ni-Co合金催化剂的物相结构有着重要的影响。Figure 3(d) shows the XRD spectra of Ni 1 Co 2 /MOF-300, Ni 1 Co 2 /MOF-325 and Ni 1 Co 2 /MOF-350 catalysts obtained at different pyrolysis temperatures (300, 325 and 350°C). In the figure, the MOFs characteristic peak intensity of Ni 1 Co 2 /MOF-300 is significantly stronger than that of Ni 1 Co 2 / MOF -325, while no characteristic diffraction peak of Ni 1 Co 2 /MOF is observed in Ni 1 Co 2 /MOF-350, indicating that only a small amount of MOF structure may be decomposed under 300°C and H 2 flow, so the generated Ni-Co alloy nanoparticles are small; while under 350°C and H 2 flow, due to the high pyrolysis temperature, the MOFs framework structure is completely decomposed, resulting in the aggregation of metal species and the disappearance of the characteristic diffraction peak of MOFs. In particular, the XRD pattern of the Ni 1 Co 2 /MOF-325 catalyst has diffraction peaks of both MOFs and Ni-Co alloys, indicating that the controllable pyrolysis path allows the Ni 1 Co 2 /MOF-325 catalyst to retain the MOF framework structure well, and at the same time, a large number of well-dispersed Ni-Co alloy nanoparticles (NiCo NPs) are formed in the Ni 1 Co 2 /MOF, which helps to improve its catalytic hydrogenation performance. Therefore, the appropriate pyrolysis temperature has an important influence on the phase structure of Ni-Co alloy catalysts derived from NiCo-based MOFs.
2.4BET研究2.4BET Research
采用BET技术对MOFs衍生的催化剂Ni/MOF-325、Ni2Co1/MOF-325、Ni1Co1/MOF-325、Ni1Co2/MOF-325和Co/MOF-325的比表面积和孔隙结构进行了研究,结果如图4所示。其中,图4为这些催化剂的N2吸附-脱附等温线,相对压力范围为0.0~1.0(P/P0),吸附量范围为0~400(cm3/g STP)。The specific surface area and pore structure of MOFs derived catalysts Ni/MOF-325, Ni 2 Co 1 /MOF-325, Ni 1 Co 1 /MOF-325, Ni 1 Co 2 /MOF-325 and Co/MOF-325 were studied by BET technique, and the results are shown in Figure 4. Among them, Figure 4 shows the N 2 adsorption-desorption isotherms of these catalysts, with a relative pressure range of 0.0 to 1.0 (P/P 0 ) and an adsorption amount range of 0 to 400 (cm 3 /g STP).
如图4所示,在0.7~1.0P/P0的相对压力范围内,所有等温线均显示典型的IV型曲线,具有H3型滞后回线,表明这些样品中存在介孔结构。Ni/MOF-325、Ni2Co1/MOF-325、Ni1Co1/MOF-325、Ni1Co2/MOF-325和Co/MOF-325的比表面积分别为4.67、5.12、9.67、46.55和23.64m2/g,即比表面积大小顺序:Ni1Co2/MOF-325>Co/MOF-325>Ni1Co1/MOF-325>Ni2Co1/MOF-325>Ni/MOF-325。这说明在325℃的热解温度下,催化剂中Ni与Co元素的摩尔比对其比表面积的影响较大,当Ni/Co为1/2时,对应的Ni1Co2/MOF-325催化剂比表面积达到最大值。而Ni2Co1/MOF-325和Ni/MOF-325比表面积较小,可能是在热解过程中,其MOF框架结构严重分解的缘故。As shown in Figure 4, in the relative pressure range of 0.7 to 1.0P/P 0 , all isotherms show typical IV type curves with H3 type hysteresis loops, indicating the presence of mesoporous structures in these samples. The specific surface areas of Ni/MOF-325, Ni 2 Co 1 /MOF-325, Ni 1 Co 1 /MOF-325, Ni 1 Co 2 /MOF-325 and Co/MOF-325 are 4.67, 5.12, 9.67, 46.55 and 23.64 m 2 /g, respectively, that is, the order of specific surface area is: Ni 1 Co 2 /MOF-325>Co/MOF-325>Ni 1 Co 1 /MOF-325>Ni 2 Co 1 /MOF-325>Ni/MOF-325. This shows that at a pyrolysis temperature of 325°C, the molar ratio of Ni to Co in the catalyst has a greater influence on its specific surface area. When Ni/Co is 1/2, the specific surface area of the corresponding Ni 1 Co 2 /MOF-325 catalyst reaches the maximum value. The specific surface areas of Ni 2 Co 1 /MOF-325 and Ni/MOF-325 are smaller, which may be due to the serious decomposition of their MOF framework structure during the pyrolysis process.
使用Barrett-Joyner-Halenda(BJH)方法计算NixCoy/MOF-325催化剂的平均孔径和总孔体积数据如表2所示,Ni/MOF-325、Ni2Co1/MOF-325、Ni1Co1/MOF-325、Ni1Co2/MOF-325和Co/MOF-325的总孔体积分别为0.02、0.01、0.02、0.26和0.17cm3/g,平均孔径分别为6.84、6.83、7.33、22.66和28.61nm。可见,Ni1Co2/MOF-325不仅拥有高的比表面积,而且其总孔体积较大,这可能有利于提高它的催化活性。The average pore size and total pore volume data of Ni x Co y /MOF-325 catalyst calculated by Barrett-Joyner-Halenda (BJH) method are shown in Table 2. The total pore volumes of Ni/MOF-325, Ni 2 Co 1 /MOF-325, Ni 1 Co 1 /MOF-325, Ni 1 Co 2 /MOF-325 and Co/MOF-325 are 0.02, 0.01, 0.02, 0.26 and 0.17 cm 3 /g, respectively, and the average pore sizes are 6.84, 6.83, 7.33, 22.66 and 28.61 nm, respectively. It can be seen that Ni 1 Co 2 /MOF-325 not only has a high specific surface area, but also has a large total pore volume, which may be beneficial to improving its catalytic activity.
本节BET分析结果表明,不同的Ni/Co摩尔比可调节金属催化剂的比表面积和纳米孔结构。The BET analysis results in this section show that different Ni/Co molar ratios can adjust the specific surface area and nanopore structure of the metal catalyst.
表2NixCoy-MOF-325的平均孔径和总孔体积数据Table 2 Average pore size and total pore volume data of Ni x Co y -MOF-325
2.5扫描电镜(SEM)分析2.5 Scanning electron microscopy (SEM) analysis
利用扫描电镜对制备的MOFs和NixCoy/MOF-325催化剂的形貌进行了表征,其结果如图5所示。从图中可看出,所制备的MOFs中,Ni-MOF、Ni2Co1-MOF、Ni1Co1-MOF和Ni1Co2-MOF(图5中a,b,c,d)呈柱状结构,尺寸分布广泛,而Co-MOF(图5中e)中可观察到块状结构的存在。经H2热解后的NixCoy/MOF-325催化剂的SEM中,可观察到Ni/MOF-325(图5中f)和Ni2Co1/MOF-325(图5中g)催化剂的柱状结构明显的坍塌,说明经325℃的H2热解使其MOFs骨架结构完全分解。Ni1Co1/MOF-325(图5中h)和Ni1Co2/MOF-325(图5中i)催化剂表面与其相应的MOFs相比粗糙了许多,特别是Ni1Co2/MOF-325催化剂,它既较好的保留了热解前MOF的框架结构,表面还形成了明显的蜂窝状小孔,说明在325℃的氢气中热解可使Ni1Co2-MOF的结构部分分解,从而在形成金属粒子的同时保留部分MOFs的框架结构。此外,Co/MOF-325(图5中j)催化剂表面与其相应的MOF相比,既没出现结构坍塌,也没有形成粗糙的表面,可能在325℃的氢气环境下,只能将少量的Co-MOF进行分解。The morphology of the prepared MOFs and Ni x Co y /MOF-325 catalyst was characterized by scanning electron microscopy, and the results are shown in Figure 5. As can be seen from the figure, among the prepared MOFs, Ni-MOF, Ni 2 Co 1 -MOF, Ni 1 Co 1 -MOF and Ni 1 Co 2 -MOF (a, b, c, d in Figure 5) have columnar structures with a wide size distribution, while block structures can be observed in Co-MOF (e in Figure 5). In the SEM of the Ni x Co y /MOF-325 catalyst after H 2 pyrolysis, it can be observed that the columnar structure of Ni/MOF-325 (f in Figure 5) and Ni 2 Co 1 /MOF-325 (g in Figure 5) catalysts collapsed significantly, indicating that the MOFs skeleton structure was completely decomposed by H 2 pyrolysis at 325℃. The surfaces of Ni 1 Co 1 /MOF-325 (h in Figure 5) and Ni 1 Co 2 /MOF-325 (i in Figure 5) catalysts are much rougher than their corresponding MOFs. In particular, the Ni 1 Co 2 /MOF-325 catalyst not only retains the framework structure of MOF before pyrolysis, but also forms obvious honeycomb pores on the surface, indicating that pyrolysis in hydrogen at 325°C can partially decompose the structure of Ni 1 Co 2 -MOF, thereby retaining part of the framework structure of MOFs while forming metal particles. In addition, compared with its corresponding MOF, the surface of the Co/MOF-325 (j in Figure 5) catalyst has neither structural collapse nor rough surface formation, which may be due to the decomposition of only a small amount of Co-MOF in the hydrogen environment at 325°C.
2.6XPS研究2.6XPS study
通过XPS研究了所制备的NixCoy/MOF-325催化剂(Ni/MOF-325、Ni1Co1/MOF-325、Ni2Co1/MOF-325、Ni1Co2/MOF-325和Co/MOF-325)中Ni和Co的表面组成和化学状态,其结果如图6所示,其中图6中(a)图和(b)图分别为Ni 2p和Co 2p的XPS谱图。The surface composition and chemical state of Ni and Co in the prepared Ni x Co y /MOF-325 catalysts (Ni/MOF-325, Ni 1 Co 1 /MOF-325, Ni 2 Co 1 /MOF-325, Ni 1 Co 2 /MOF-325 and Co/MOF-325) were studied by XPS, and the results are shown in Figure 6, where (a) and (b) in Figure 6 are the XPS spectra of Ni 2p and Co 2p, respectively.
在Ni 2p和Co 2p光谱中,分别显示了对应于Ni 2p3/2(856.2eV)和Ni 2p1/2(873.6eV)两个主要特征峰和Co 2p3/2(781.5eV)、Co 2p1/2(797.2eV)两个主要特征峰,可分别在862.2、880.1eV和787.8、803.7eV处观察到归属于Ni2+和Co2+物种的两个震激峰,表明各催化剂表面Ni和Co物种之间存在强相互作用。Ni 2p和Co 2p的两个主峰可分别划分为三个和两个子峰。其中,Ni 2p3/2中位于电子结合能852.9±0.9eV、854.8±1.5eV、858.0±2.5eV的三个子峰和Ni 2p1/2中位于电子结合能871.6±1.9eV、873.5±1.4eV、876.3±2.2eV的三个子峰在各自的区域内分别归属于催化剂表面Ni0、Ni2+、Ni3+物种。Co 2p3/2位于780.5±0.9eV、782.6±1.1eV的两个子峰和Co 2p1/2位于796.3±1.0eV、798.2±1.0eV的两个子峰,分别归属于催化剂表面Co0、Co2+物种。In the Ni 2p and Co 2p spectra, two main characteristic peaks corresponding to Ni 2p 3/2 (856.2eV) and Ni 2p 1/2 (873.6eV) and two main characteristic peaks of Co 2p 3/2 (781.5eV) and Co 2p 1/2 (797.2eV) are shown, respectively. Two shock peaks belonging to Ni 2+ and Co 2+ species can be observed at 862.2, 880.1eV and 787.8, 803.7eV, respectively, indicating that there is a strong interaction between Ni and Co species on the surface of each catalyst. The two main peaks of Ni 2p and Co 2p can be divided into three and two sub-peaks, respectively. Among them, the three sub-peaks of Ni 2p 3/2 at electron binding energies of 852.9±0.9eV, 854.8±1.5eV, and 858.0±2.5eV and the three sub-peaks of Ni 2p 1/2 at electron binding energies of 871.6±1.9eV, 873.5±1.4eV, and 876.3±2.2eV are respectively attributed to Ni 0 , Ni 2+ , and Ni 3+ species on the catalyst surface in their respective regions. The two sub-peaks of Co 2p 3/2 at 780.5±0.9eV and 782.6±1.1eV and the two sub-peaks of Co 2p 1/2 at 796.3±1.0eV and 798.2±1.0eV are respectively attributed to Co 0 and Co 2+ species on the catalyst surface.
由图6可知,这5种催化剂表面都存在大量的氧化物种,这可能是催化剂还原后在空气中氧化产生的氧化物质。Ni-MOF-325中Ni0物种的XPS峰强度和峰面积最高,Co-MOF-325的Co0物种的XPS峰强度和峰面积较低。这是因为在325℃的热解条件下,Ni-MOF的框架结构完全塌陷,其表面暴露出较多的Ni0物种;而Co-MOF经325℃热解后其结构仍处于稳态,导致Co0物种暴露较少,这符合XRD的分析结果。As shown in Figure 6, there are a large number of oxidized species on the surfaces of these five catalysts, which may be oxidized species produced by oxidation of the catalyst in the air after reduction. The XPS peak intensity and peak area of Ni 0 species in Ni-MOF-325 are the highest, and the XPS peak intensity and peak area of Co 0 species in Co-MOF-325 are lower. This is because under the pyrolysis conditions of 325℃, the framework structure of Ni-MOF completely collapses, and more Ni 0 species are exposed on its surface; while the structure of Co-MOF is still in a steady state after pyrolysis at 325℃, resulting in less exposure of Co 0 species, which is consistent with the analysis results of XRD.
对于Ni1Co1/MOF-325、Ni2Co1/MOF-325和Ni1Co2/MOF-325而言,由于Ni1Co2/MOF-325保留了较多的MOF框架结构(见XRD研究结果),使其表面Ni0和Co0物种检测量降低,相应XPS峰强度降低和峰面积减小;Ni1Co1/MOF-325和Ni2Co1/MOF-325中Ni0和Co0物种的XPS峰面积较大,归因于它们的MOFs框架结构破坏较严重,Ni-Co合金嵌于催化剂中,但其微晶尺寸较大(见XRD研究结果),在其表面仍可检测出Ni0和Co0物种,说明Ni/Co摩尔比为1/1和2/1时制得的合金催化剂结构不稳定,Ni/Co摩尔比为1/2时较稳定,这有利于提高Ni1Co2/MOF-325的催化加氢性能。For Ni 1 Co 1 /MOF-325, Ni 2 Co 1 /MOF-325 and Ni 1 Co 2 /MOF-325, since Ni 1 Co 2 /MOF-325 retains more MOF framework structure (see XRD research results), the detection amount of Ni 0 and Co 0 species on its surface is reduced, and the corresponding XPS peak intensity and peak area are reduced; the XPS peak areas of Ni 0 and Co 0 species in Ni 1 Co 1 /MOF-325 and Ni 2 Co 1 /MOF-325 are larger, which is attributed to the serious damage of their MOFs framework structure. The Ni-Co alloy is embedded in the catalyst, but its crystallite size is larger (see XRD research results). Ni 0 and Co 0 species can still be detected on its surface, indicating that the alloy catalyst prepared when the Ni/Co molar ratio is 1/1 and 2/1 is unstable, and it is more stable when the Ni/Co molar ratio is 1/2, which is beneficial to improve the Ni 1 Co 2 /Catalytic hydrogenation performance of MOF-325.
以上XPS结果表明,Ni/Co摩尔比会影响前驱体的组成,进而影响热解后的Ni-Co合金在催化剂中的分布情况,进一步影响催化活性。The above XPS results show that the Ni/Co molar ratio affects the composition of the precursor, which in turn affects the distribution of the Ni-Co alloy in the catalyst after pyrolysis, and further affects the catalytic activity.
2.7H2-TPD研究2.7H 2 -TPD study
通过H2-TPD对Ni/MOF-325、Ni2Co1/MOF-325、Ni1Co1/MOF-325、Ni1Co2/MOF-325和Co-MOF-325催化剂上的H2吸脱附性能进行了研究,其结果如图7所示。所有的催化剂在60~210℃区间内均形成了一个H2脱附峰,归属于催化剂表面弱化学吸附H物种的脱附,而本工作中的甲苯加氢的反应温度(80~200℃)恰好处于该脱附温度范围内,因此,该区间内的解吸H2为甲苯加氢反应提供了所需的活性H物种。The H 2 adsorption and desorption performance of Ni/MOF-325, Ni 2 Co 1 /MOF-325, Ni 1 Co 1 /MOF-325, Ni 1 Co 2 /MOF-325 and Co-MOF-325 catalysts was studied by H 2 -TPD, and the results are shown in Figure 7. All catalysts formed a H 2 desorption peak in the range of 60-210 °C, which was attributed to the desorption of weakly chemically adsorbed H species on the catalyst surface. The reaction temperature of toluene hydrogenation in this work (80-200 °C) is just within this desorption temperature range. Therefore, the desorbed H 2 in this range provides the required active H species for the toluene hydrogenation reaction.
催化剂上H2-TPD脱附峰温度可知其H2吸附强弱。Ni/MOF-325、Ni2Co1/MOF-325、Ni1Co1/MOF-325、Ni1Co2/MOF-325和Co/MOF-325催化剂的H2解析峰温分别为101℃、89℃、103℃、121℃和107℃。其中,Ni1Co2-MOF-325的H2解析峰温度明显较高,说明它在该区域具有更强的H2吸附强度。H2-TPD脱附峰的面积与H2脱附量成正相关。所研究催化剂的H2脱附峰面积大小顺序为:Ni1Co2/MOF-325>Co/MOF-325>Ni1Co1/MOF-325>Ni2Co1/MOF-325≈Ni/MOF-325。其中,Ni/MOF-325和Ni2Co1/MOF-325的H2脱附峰面积较小,可能是其MOFs框架结构完全分解的缘故(见FTIR和XRD分析结果)。一方面,MOFs框架结构的完全分解,导致Ni/MOF-325和Ni2Co1/MOF-325催化剂具有低的比表面积和孔体积,削弱了催化剂对H2的吸附和活化能力。另一方面,MOFs结构的分解形成较大的金属团聚体,使活性金属位点嵌在体相中,不利于H2与活性金属位点的接触,从而降低了H2吸附量。与Ni/MOF-325相比,Co/MOF-325具有较大的H2的脱附峰面积,归因于Co/MOF-325催化剂中幸存的MOFs结构。在所研究的催化剂中,Ni1Co2/MOF-325的H2脱附峰面积最大,主要因为该催化剂保留了MOFs的框架结构,使其具有较大的表面积和孔体积,有利于H2的吸附与活化。其次,幸存的MOFs结构改善了热解产生的金属粒子在MOFs载体中的分散,形成了较小的纳米金属粒子,这些纳米金属粒子有利于金属表面的H弱化学吸附。The H 2 -TPD desorption peak temperature on the catalyst can be used to determine the strength of H 2 adsorption. The H 2 desorption peak temperatures of Ni/MOF-325, Ni 2 Co 1 /MOF-325, Ni 1 Co 1 /MOF-325, Ni 1 Co 2 /MOF-325 and Co/MOF-325 catalysts are 101°C, 89°C, 103°C, 121°C and 107°C, respectively. Among them, the H 2 desorption peak temperature of Ni 1 Co 2 -MOF-325 is significantly higher, indicating that it has a stronger H 2 adsorption strength in this area. The area of the H 2 -TPD desorption peak is positively correlated with the amount of H 2 desorption. The order of the H 2 desorption peak area of the studied catalysts is: Ni 1 Co 2 /MOF-325>Co/MOF-325>Ni 1 Co 1 /MOF-325>Ni 2 Co 1 /MOF-325≈Ni/MOF-325. Among them, the H 2 desorption peak area of Ni/MOF-325 and Ni 2 Co 1 /MOF-325 is smaller, which may be due to the complete decomposition of their MOFs framework structure (see FTIR and XRD analysis results). On the one hand, the complete decomposition of the MOFs framework structure leads to low specific surface area and pore volume of Ni/MOF-325 and Ni 2 Co 1 /MOF-325 catalysts, which weakens the catalyst's ability to adsorb and activate H 2. On the other hand, the decomposition of the MOFs structure forms larger metal agglomerates, which embeds the active metal sites in the bulk phase, which is not conducive to the contact between H 2 and the active metal sites, thereby reducing the amount of H 2 adsorption. Compared with Ni/MOF-325, Co/MOF-325 has a larger H 2 desorption peak area, which is attributed to the surviving MOFs structure in the Co/MOF-325 catalyst. Among the catalysts studied, Ni 1 Co 2 /MOF-325 has the largest H 2 desorption peak area, mainly because the catalyst retains the framework structure of MOFs, which gives it a larger surface area and pore volume, which is conducive to the adsorption and activation of H 2. Secondly, the surviving MOFs structure improves the dispersion of metal particles produced by pyrolysis in the MOFs carrier, forming smaller nano-metal particles, which are conducive to the weak chemical adsorption of H on the metal surface.
2.8催化剂活性与稳定性测试2.8 Catalyst activity and stability test
在常压,反应温度为80~200℃的条件下,测试了在氮气氛围中热解制得的Ni1Co2/MOF-325、Ni1Co2/MOF-400、Ni1Co2/MOF-450、Ni1Co2/MOF-500、Ni1Co2/MOF-600催化剂和在氢气氛围中热解制得的Ni/MOF-325、Ni2Co1/MOF-325、Ni1Co2/MOF-325、Ni1Co1/MOF-325、Co/MOF-325催化剂的气相甲苯加氢性能,本发明中甲苯加氢检测到的产物只有甲基环己烷。各催化剂对甲苯的转化率随温度变化情况如图8(a)和8(b)所示。同时,比较了在氢气氛围下热解制得的Ni1Co2/MOF-N、Ni1Co2/MOF-300、Ni1Co2/MOF-325和Ni1Co2/MOF-350催化剂的甲苯加氢活性,如图8(c)所示。另外,以甲苯加氢为探针反应,于160℃测试了Ni/MOF-325、Ni2Co1/MOF-325、Ni1Co2/MOF-325、Ni1Co1/MOF-325和Co/MOF-325催化剂10.0h内的稳定性能,其结果如图8(d)所示。Under normal pressure and reaction temperature of 80-200°C, the gas phase toluene hydrogenation performance of Ni 1 Co 2 /MOF-325, Ni 1 Co 2 /MOF-400, Ni 1 Co 2 /MOF-450, Ni 1 Co 2 /MOF-500, Ni 1 Co 2 /MOF-600 catalysts prepared by pyrolysis in a nitrogen atmosphere and Ni/MOF-325, Ni 2 Co 1 /MOF-325, Ni 1 Co 2 /MOF-325, Ni 1 Co 1 /MOF-325, Co/MOF-325 catalysts prepared by pyrolysis in a hydrogen atmosphere were tested. In the present invention, the only product detected by toluene hydrogenation is methylcyclohexane. The change of toluene conversion rate of each catalyst with temperature is shown in Figures 8(a) and 8(b). At the same time, the toluene hydrogenation activities of Ni 1 Co 2 /MOF-N, Ni 1 Co 2 /MOF-300, Ni 1 Co 2 /MOF-325 and Ni 1 Co 2 /MOF-350 catalysts prepared by pyrolysis in a hydrogen atmosphere were compared, as shown in Figure 8(c). In addition, the stability of Ni/MOF-325, Ni 2 Co 1 /MOF-325, Ni 1 Co 2 /MOF-325, Ni 1 Co 1 /MOF-325 and Co/MOF-325 catalysts was tested at 160°C for 10.0 h using toluene hydrogenation as a probe reaction, and the results are shown in Figure 8(d).
由图8(a)可知,在氮气中热解得到的催化剂的最高转化率均在反应温度为180℃,且各催化剂的加氢活性顺序为:Ni1Co2/MOF-500-N>Ni1Co2/MOF-450-N>Ni1Co2/MOF-600-N>Ni1Co2/MOF-400-N>Ni1Co2/MOF-325-N。它们对甲苯的最高转化率均在10.0%以下,远不及在氢气氛围下热解制得的催化剂的加氢活性,故本文选择氢气作为MNP-MOF的热解和还原气流。As shown in Figure 8(a), the highest conversion rates of the catalysts obtained by pyrolysis in nitrogen are all at a reaction temperature of 180°C, and the order of hydrogenation activity of each catalyst is: Ni 1 Co 2 /MOF-500-N>Ni 1 Co 2 /MOF-450-N>Ni 1 Co 2 /MOF-600-N>Ni 1 Co 2 /MOF-400-N>Ni 1 Co 2 /MOF-325-N. Their highest conversion rates for toluene are all below 10.0%, which is far less than the hydrogenation activity of the catalysts obtained by pyrolysis in a hydrogen atmosphere. Therefore, hydrogen is selected as the pyrolysis and reduction gas flow for MNP-MOF in this paper.
如图8(b)所示,各催化剂上甲苯加氢转化率随反应温度的升高均呈现先升高后降低的趋势,在高温区域,它们的甲苯转化率均明显下降,可能与生成的甲环己烷高温下脱氢有关。Co/MOF-325催化剂对甲苯加氢的转化率为0,Ni/MOF-325催化剂在180℃时甲苯加氢转化率最高为27.0%,而Ni2Co1/MOF-325、Ni1Co2/MOF-325和Ni1Co1/MOF-325催化剂在160℃时甲苯加氢转化率最高,分别为81.3%,95.7%和87.3%,即各催化剂上甲苯的转化率遵循规律为:Ni1Co2/MOF-325>Ni1Co1/MOF-325>Ni2Co1/MOF-325>Ni/MOF-325>Co/MOF-325。表明Ni1Co2/MOF-325催化剂具有较好的甲苯加氢性能。As shown in Figure 8(b), the toluene hydrogenation conversion rate on each catalyst shows a trend of increasing first and then decreasing with the increase of reaction temperature. In the high temperature region, their toluene conversion rates all decrease significantly, which may be related to the dehydrogenation of the generated methylcyclohexane at high temperature. The conversion rate of toluene hydrogenation on Co/MOF-325 catalyst is 0, and the toluene hydrogenation conversion rate of Ni/MOF-325 catalyst is the highest at 180℃, which is 27.0%. The toluene hydrogenation conversion rates of Ni 2 Co 1 /MOF-325, Ni 1 Co 2 /MOF-325 and Ni 1 Co 1 /MOF-325 catalysts are the highest at 160℃, which are 81.3%, 95.7% and 87.3%, respectively. That is, the toluene conversion rates on each catalyst follow the rule: Ni 1 Co 2 /MOF-325>Ni 1 Co 1 /MOF-325>Ni 2 Co 1 /MOF-325>Ni/MOF-325>Co/MOF-325. It shows that Ni 1 Co 2 /MOF-325 catalyst has good toluene hydrogenation performance.
为了验证325℃是最佳热解温度,比较了Ni1Co2/MOF-U、Ni1Co2/MOF-300、Ni1Co2/MOF-325和Ni1Co2/MOF-350催化剂的甲苯加氢活性。如图8(c)所示,各催化剂在反应温度范围内对甲苯加氢活性顺序为:Ni1Co2/MOF-325>Ni1Co2/MOF-350>Ni1Co2/MOF-300>Ni1Co2/MOF-N。其中,325℃热解的Ni1Co2/MOF-325催化剂对甲苯的转化率在反应温度范围内明显大于其它温度热解下的催化剂,说明热解温度为325℃时,催化剂具有优异的催化加氢性能。In order to verify that 325℃ is the optimal pyrolysis temperature, the toluene hydrogenation activities of Ni 1 Co 2 /MOF-U, Ni 1 Co 2 /MOF-300, Ni 1 Co 2 /MOF-325 and Ni 1 Co 2 /MOF-350 were compared. As shown in Figure 8(c), the order of toluene hydrogenation activities of each catalyst within the reaction temperature range is: Ni 1 Co 2 /MOF-325>Ni 1 Co 2 /MOF-350>Ni 1 Co 2 /MOF-300>Ni 1 Co 2 /MOF-N. Among them, the conversion rate of toluene of Ni 1 Co 2 /MOF-325 catalyst pyrolyzed at 325℃ is significantly greater than that of catalysts pyrolyzed at other temperatures within the reaction temperature range, indicating that the catalyst has excellent catalytic hydrogenation performance when the pyrolysis temperature is 325℃.
如图8(d)所示,各催化剂在160℃恒温反应10.0h后,Co/MOF-325上甲苯的转化率为0,Ni1Co2/MOF-325、Ni1Co1/MOF-325、Ni2Co1/MOF-325和Ni/MOF-325催化剂对甲苯的转化率的极差分别为:2.1%、7.3%、6.9%和4.3%,即稳定性顺序为:Ni1Co2/MOF-325>Ni/MOF-325>Ni2Co1/MOF-325>Ni1Co1/MOF-325。其中,Ni1Co2/MOF-325稳定性较好,这可能与Ni1Co2/MOF-325上Ni-Co合金的结构有关。As shown in Figure 8(d), after the catalysts were reacted at 160°C for 10.0 h, the conversion rate of toluene on Co/MOF-325 was 0, and the extreme differences in the conversion rates of toluene for Ni 1 Co 2 /MOF-325, Ni 1 Co 1 /MOF-325, Ni 2 Co 1 /MOF-325 and Ni/MOF-325 were 2.1%, 7.3%, 6.9% and 4.3%, respectively, that is, the stability order was Ni 1 Co 2 /MOF-325>Ni/MOF-325>Ni 2 Co 1 /MOF-325>Ni 1 Co 1 /MOF-325. Among them, Ni 1 Co 2 /MOF-325 had better stability, which may be related to the structure of Ni-Co alloy on Ni 1 Co 2 /MOF-325.
活性组分的结构和性质决定着催化剂的加氢性能。XRD、BET、FTIR、XPS和H2-TPD结果表明,热解温度和Ni/Co摩尔比均可调控Ni-Co合金的微观结构,从而改善催化剂的加氢性能。一方面,以Ni1Co2-MOF作为研究对象,保持其它条件不变,当热解温度为300℃时,不足以热解MOF框架结构,缺乏加氢活性位点,其加氢活性较小;当热解温度为350℃时,提供了足够多的能量使MOF框架结构完全分解,Ni-Co合金暴露于催化剂表面,催化剂表面金属物种团聚严重,对H2吸脱附能力减弱,从而使其加氢能力减弱;325℃是其临界热解温度,该温度热解衍生的Ni1Co2/MOF-325催化剂不仅能保留Ni1Co2/MOF中大部分MOF的多孔结构以供Ni-Co合金的分散和H2的吸附,还暴露大量的Ni-Co合金活性位点,因此Ni1Co2/MOF-325催化剂表现出优异的甲苯加氢活性。另一方面,保持325℃的热解温度以及其它相关条件不变,当Ni/Co摩尔比为1/0和0/1时,可衍生Ni/MOF-325和Co/MOF-325催化剂,由于Ni/MOF-325多孔结构塌陷,Co/MOF-325的Co纳米颗粒包裹于非晶结构中而未被活化,导致它们加氢活性不足,很难与形成了双金属Ni-Co合金催化剂相媲美;当Ni/Co摩尔比为1/1时,所衍生的Ni1Co1/MOF-325催化剂相较于其前驱体,MOF框架结构分解严重,提供给Ni-Co合金的活性位点较少,稳定性降低;当Ni/Co摩尔比为2/1时,制得的Ni2Co1/MOF-325催化剂MOF框架结构完全分解并塌陷,使其Ni-Co合金活性组分镶嵌于催化剂体相中,对H2的吸脱附能力随之下降,但其稳定性略高于Ni1Co1/MOF-325催化剂;以1/2的Ni/Co摩尔比衍生的Ni1Co2/MOF-325催化剂不但较好地保留有类似MOF的优异结构和较大的比表面积,而且富Co的合金催化剂中Co的d能带中存在更多未占用的d轨道,提高了催化剂对H2的吸附和活化能力,使Ni-Co合金活性成分与H2分子充分接触,有利于提高其甲苯加氢活性和反应的稳定性。The structure and properties of the active components determine the hydrogenation performance of the catalyst. XRD, BET, FTIR, XPS and H 2 -TPD results show that both pyrolysis temperature and Ni/Co molar ratio can regulate the microstructure of Ni-Co alloy, thereby improving the hydrogenation performance of the catalyst. On the one hand, taking Ni 1 Co 2 -MOF as the research object and keeping other conditions unchanged, when the pyrolysis temperature is 300℃, it is not enough to pyrolyze the MOF framework structure, lacks hydrogenation active sites, and its hydrogenation activity is relatively low; when the pyrolysis temperature is 350℃, it provides enough energy to completely decompose the MOF framework structure, and the Ni-Co alloy is exposed on the catalyst surface. The metal species on the catalyst surface are severely agglomerated, and the ability to adsorb and desorb H 2 is weakened, thereby weakening its hydrogenation ability; 325℃ is its critical pyrolysis temperature. The Ni 1 Co 2 /MOF-325 catalyst derived from pyrolysis at this temperature can not only retain most of the porous structure of MOF in Ni 1 Co 2 /MOF for the dispersion of Ni-Co alloy and the adsorption of H 2 , but also expose a large number of Ni-Co alloy active sites. Therefore, the Ni 1 Co 2 /MOF-325 catalyst exhibits excellent toluene hydrogenation activity. On the other hand, keeping the pyrolysis temperature at 325℃ and other related conditions unchanged, when the Ni/Co molar ratio is 1/0 and 0/1, Ni/MOF-325 and Co/MOF-325 catalysts can be derived. Due to the collapse of the porous structure of Ni/MOF-325, the Co nanoparticles of Co/MOF-325 are wrapped in the amorphous structure and not activated, resulting in insufficient hydrogenation activity, which is difficult to compare with the bimetallic Ni-Co alloy catalyst. When the Ni/Co molar ratio is 1/1, the derived Ni 1 Co 1 /MOF-325 catalyst has a serious decomposition of the MOF framework structure compared with its precursor, providing fewer active sites for the Ni-Co alloy and reducing its stability. When the Ni/Co molar ratio is 2/1, the MOF framework structure of the prepared Ni 2 Co 1 /MOF-325 catalyst is completely decomposed and collapsed, so that the active components of the Ni-Co alloy are embedded in the catalyst body phase, and the adsorption and desorption ability of H 2 decreases accordingly, but its stability is slightly higher than that of Ni 1 Co 1 /MOF-325 catalyst; the Ni 1 Co 2 /MOF-325 catalyst derived with a Ni/Co molar ratio of 1/2 not only retains the excellent structure and large specific surface area similar to MOF, but also the Co-rich alloy catalyst has more unoccupied d orbitals in the d energy band of Co, which improves the catalyst's adsorption and activation ability for H 2 , allowing the active components of the Ni-Co alloy to fully contact with H 2 molecules, which is beneficial to improving its toluene hydrogenation activity and reaction stability.
实施例2Example 2
将实施例1制备的Ni/MOF在300℃的氢气气氛热解1h(Ni/MOF-300)进一步用于苯加氢考察,苯加氢反应在固定床反应器中进行。称取50mg实施例1的步骤1.1制备的Ni-MOF前驱体样品置于石英管反应器中部,再将石英反应管固定在管式炉中,在13.4mL/min的流动H2中,以10℃/min的升温速率升至催化剂的热解温度,并在该温度下保持1.0h,热解结束后待温度降至80℃时,继而将获得的金属催化剂进行原位加氢反应:将苯和H2组成的原料气以13.4mL/min引入反应器中,并在80~200℃范围内评价了催化剂上苯加氢活性。反应产物采用配有FID的气相色谱仪进行在线分析。具体结果如下:如图9所示,Ni/MOF-300催化剂上苯加氢转化率随反应温度的升高呈现先升高后降低的趋势。高温区苯加氢转化率下降可能是生成的环己烷进一步脱氢转化为苯。结果表明,本发明的金属催化剂对苯同样具有高的加氢活性,在180℃苯的转化率达到80%以上。The Ni/MOF prepared in Example 1 was pyrolyzed in a hydrogen atmosphere at 300°C for 1h (Ni/MOF-300) and further used for benzene hydrogenation investigation. The benzene hydrogenation reaction was carried out in a fixed bed reactor. 50 mg of the Ni-MOF precursor sample prepared in step 1.1 of Example 1 was weighed and placed in the middle of a quartz tube reactor. The quartz reaction tube was then fixed in a tube furnace. In a flowing H2 of 13.4 mL/min, the temperature was raised to the pyrolysis temperature of the catalyst at a rate of 10°C/min and maintained at this temperature for 1.0 h. After the pyrolysis was completed, when the temperature dropped to 80°C, the obtained metal catalyst was then subjected to in-situ hydrogenation reaction: the raw gas composed of benzene and H2 was introduced into the reactor at 13.4 mL/min, and the benzene hydrogenation activity on the catalyst was evaluated in the range of 80-200°C. The reaction product was analyzed online using a gas chromatograph equipped with FID. The specific results are as follows: As shown in Figure 9, the benzene hydrogenation conversion rate on the Ni/MOF-300 catalyst shows a trend of first increasing and then decreasing with the increase of reaction temperature. The decrease in the benzene hydrogenation conversion rate in the high temperature zone may be due to the further dehydrogenation of the generated cyclohexane into benzene. The results show that the metal catalyst of the present invention also has high hydrogenation activity for benzene, and the conversion rate of benzene at 180°C reaches more than 80%.
综上所述,本发明制备了一种具有MOF框架结构的金属催化剂,该金属催化剂具有热解残留的纳米级多孔MOF结构,该MOF结构具有易于接近的活性位点,其框架结构可富集活性MNPs位点附近的反应物浓度,从而提高反应物的转化率。本发明的金属催化剂还可以用于苯、甲苯、烯、炔、醛、酮、酯等有机化合物不饱和键催化加氢,以及二氧化碳催化加氢。In summary, the present invention prepares a metal catalyst with a MOF framework structure, the metal catalyst has a nano-scale porous MOF structure residual from pyrolysis, the MOF structure has accessible active sites, and its framework structure can enrich the concentration of reactants near the active MNPs sites, thereby improving the conversion rate of the reactants. The metal catalyst of the present invention can also be used for the catalytic hydrogenation of unsaturated bonds of organic compounds such as benzene, toluene, olefins, alkynes, aldehydes, ketones, esters, and the catalytic hydrogenation of carbon dioxide.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation methods of the present invention, and the description thereof is relatively specific and detailed, but it cannot be understood as limiting the scope of the patent of the present invention. It should be pointed out that, for ordinary technicians in this field, several variations and improvements can be made without departing from the concept of the present invention, which all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention shall be subject to the attached claims.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310717303.4A CN116899570B (en) | 2023-06-16 | 2023-06-16 | Metal catalyst and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310717303.4A CN116899570B (en) | 2023-06-16 | 2023-06-16 | Metal catalyst and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116899570A CN116899570A (en) | 2023-10-20 |
CN116899570B true CN116899570B (en) | 2024-10-29 |
Family
ID=88351984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310717303.4A Active CN116899570B (en) | 2023-06-16 | 2023-06-16 | Metal catalyst and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116899570B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118976497A (en) * | 2024-08-01 | 2024-11-19 | 重庆工商大学 | A CH4/CO2 dry reforming CoNi bimetallic catalyst, preparation method and application |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112473708A (en) * | 2020-11-27 | 2021-03-12 | 中国林业科学研究院林产化学工业研究所 | Catalyst for producing biological aviation fuel oil by catalyzing hydrogenation of grease, and preparation method and application thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2578593A1 (en) * | 2011-10-04 | 2013-04-10 | Fundació Privada Institut Català de Nanotecnologia | Method for the preparation of metal organic frameworks |
GB201515869D0 (en) * | 2015-09-08 | 2015-10-21 | Johnson Matthey Fuel Cells Ltd | Oxygen reduction reactor catalyst |
CN110787788A (en) * | 2018-08-01 | 2020-02-14 | 香港科技大学 | Two-dimensional catalytic materials derived from metal-organic frameworks and their applications in volatile organic compound removal |
US11795554B2 (en) * | 2019-02-12 | 2023-10-24 | Research Triangle Institute | Method of producing isopropanol from electrochemical reduction of carbon dioxide and related copper-based electrocatalysts |
CN114522688B (en) * | 2020-11-23 | 2024-02-23 | 中国科学院大连化学物理研究所 | Porous carbon supported bimetallic catalyst and preparation and application thereof |
CN113578388B (en) * | 2021-07-30 | 2022-10-11 | 中南大学 | Nickel-doped MOF-5 material and preparation method and application thereof |
CN115259096A (en) * | 2022-07-27 | 2022-11-01 | 中国原子能科学研究院 | Preparation method of nanometer metal oxide |
-
2023
- 2023-06-16 CN CN202310717303.4A patent/CN116899570B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112473708A (en) * | 2020-11-27 | 2021-03-12 | 中国林业科学研究院林产化学工业研究所 | Catalyst for producing biological aviation fuel oil by catalyzing hydrogenation of grease, and preparation method and application thereof |
Non-Patent Citations (1)
Title |
---|
Ni–Co alloys via controlled pyrolysis of NiCo– MOF as heterogeneous hydrogenation catalysts;Lidan Deng et al.;《New J. Chem.》;20240514;第48卷(第19期);8620–8630 * |
Also Published As
Publication number | Publication date |
---|---|
CN116899570A (en) | 2023-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109304201B (en) | Carbon-coated transition metal nanocomposite and its preparation method and application | |
Gao et al. | Highly reactive Ni-Co/SiO2 bimetallic catalyst via complexation with oleylamine/oleic acid organic pair for dry reforming of methane | |
CN111054416B (en) | Nitrogen-doped carbon material supported alloy catalyst and preparation method and application thereof | |
Lin et al. | Alumina-supported Cu@ Ni and Ni@ Cu core–shell nanoparticles: Synthesis, characterization, and catalytic activity in water–gas-shift reaction | |
Qi et al. | Causation of catalytic activity of Cu-ZnO for CO2 hydrogenation to methanol | |
KR101446116B1 (en) | Metal catalyst for producing carbon nanotubes and method for preparing carbon nanotubes using thereof | |
Hu et al. | Hydrogen production via catalytic decomposition of NH 3 using promoted MgO-supported ruthenium catalysts | |
Chen et al. | Two-step pyrolytic engineering of carbon-doped Co 3 O 4 with rich defects for efficient low-temperature CO oxidation | |
Yoshii et al. | Synthesis of carbon-supported Pd–Co bimetallic catalysts templated by Co nanoparticles using the galvanic replacement method for selective hydrogenation | |
Yao et al. | Enhanced low temperature CO oxidation by pretreatment: specialty of the Au–Co 3 O 4 oxide interfacial structures | |
CN116899570B (en) | Metal catalyst and preparation method and application thereof | |
Xiong et al. | Bridging Mo 2 C–C and highly dispersed copper by incorporating N-functional groups to greatly enhance the catalytic activity and durability for carbon dioxide hydrogenation | |
Liu et al. | Construction of highly-dispersed and composition-adjustable CoxN in stable Co@ CoxN@ C nanocomposite catalysts via a dual-ligand-MOF strategy for the selective hydrogenation of citral | |
CN111468117A (en) | Carbon-coated transition metal nanocomposite containing alkaline earth metal and preparation method and application thereof | |
CN109908931B (en) | Catalyst with Al modified activated carbon as carrier and preparation method thereof | |
CN110732335B (en) | Transition metal @ BO for methane dry gas reforming reactionxCore-shell structure nano catalyst and preparation method thereof | |
Zhao et al. | One-step synthesis of metallic Ni–C/Al2O3 directly applied for CO2 reforming of CH4 | |
JP2009078235A (en) | Manufacturing method of catalyst body for carbon nanotube synthesis | |
CN111468126A (en) | Carbon-coated transition metal nanocomposite containing alkali metal, and preparation method and application thereof | |
KR20140043772A (en) | Metal catalyst for producing carbon nanotubes and method for preparing carbon nanotubes using thereof | |
CN112705236B (en) | Carbon-coated nickel carbide nanocomposite and preparation method and application thereof | |
Tian et al. | Metal-organic framework-derived Co-C catalyst for the selective hydrogenation of cinnamaldehyde to cinnamic alcohol | |
Zhang et al. | A stable Pt modified cobalt tungstate catalyst for CO 2-assisted oxidative dehydrogenation of ethane | |
CN111468119A (en) | Carbon-coated transition metal nanocomposite containing alkaline earth metal and preparation method and application thereof | |
CN116139910B (en) | A new use of nickel-based rehydroxylation silicon-based catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |