CN116749162A - Automatic fault identification method, device, equipment and storage medium - Google Patents
Automatic fault identification method, device, equipment and storage medium Download PDFInfo
- Publication number
- CN116749162A CN116749162A CN202310748370.2A CN202310748370A CN116749162A CN 116749162 A CN116749162 A CN 116749162A CN 202310748370 A CN202310748370 A CN 202310748370A CN 116749162 A CN116749162 A CN 116749162A
- Authority
- CN
- China
- Prior art keywords
- fault
- alarm
- robot
- information
- code
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000012423 maintenance Methods 0.000 claims abstract description 50
- 230000006870 function Effects 0.000 claims description 17
- 238000004590 computer program Methods 0.000 claims description 14
- 238000004458 analytical method Methods 0.000 claims description 6
- 230000007257 malfunction Effects 0.000 claims description 4
- 238000010223 real-time analysis Methods 0.000 claims 1
- 238000013024 troubleshooting Methods 0.000 abstract description 14
- 230000008569 process Effects 0.000 abstract description 13
- 238000004891 communication Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000005856 abnormality Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000013439 planning Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/08—Programme-controlled manipulators characterised by modular constructions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
- B25J9/1666—Avoiding collision or forbidden zones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1674—Programme controls characterised by safety, monitoring, diagnostic
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
- Debugging And Monitoring (AREA)
Abstract
Description
技术领域Technical field
本申请实施例涉及自动化领域,尤其涉及一种故障自动识别方法、装置、设备及存储介质。Embodiments of the present application relate to the field of automation, and in particular, to an automatic fault identification method, device, equipment and storage medium.
背景技术Background technique
目前,随着科技的不断发展,机器人技术的发展也日新月异,目前部分机器人已经能够做到全自动化。由于机器人系统比较复杂,当机器人出现故障时,需要对机器人的故障进行排查以定位问题。然而,机器人作为一个复杂系统,其故障排查是一个系统工程,故障排查过程中要求维修人员能够理解机器人各功能系统与控制原理,并熟练应用各种测试手段,这需要研发团队的高度配合与维修人员具备深度的专业知识储备,实现条件较为严苛,导致机器人的故障排查过程存在着效率低下以及准确低下的技术问题。At present, with the continuous development of science and technology, the development of robot technology is also changing with each passing day. At present, some robots can achieve full automation. Since the robot system is relatively complex, when the robot malfunctions, it is necessary to troubleshoot the robot fault to locate the problem. However, as a complex system, troubleshooting of a robot is a systematic project. The troubleshooting process requires maintenance personnel to understand the functional systems and control principles of the robot, and to skillfully apply various testing methods. This requires a high degree of cooperation and maintenance from the R&D team. The personnel have in-depth professional knowledge reserves and the implementation conditions are relatively stringent, resulting in technical problems of low efficiency and low accuracy in the robot troubleshooting process.
发明内容Contents of the invention
本发明实施例提供了一种故障自动识别方法、装置、设备及存储介质,本发明实施例能够提高对机器人的故障进行排查的效率以及准确率,解决了现有技术中机器人的故障排查过程存在着效率低下以及准确低下的技术问题。The embodiments of the present invention provide an automatic fault identification method, device, equipment and storage medium. The embodiments of the present invention can improve the efficiency and accuracy of troubleshooting robot faults, and solve the problems in the troubleshooting process of robots in the prior art. technical problems of low efficiency and low accuracy.
第一方面,本发明实施例提供了一种故障自动识别方法,所述方法适用于机器人的功能系统,所述功能系统预先根据所述机器人的功能对电路模块进行划分得到,所述方法包括:In a first aspect, embodiments of the present invention provide a method for automatic fault identification. The method is suitable for a functional system of a robot. The functional system is obtained by dividing circuit modules in advance according to the functions of the robot. The method includes:
采集机器人基础功能元件的状态数据以及运行数据;Collect status data and operating data of the basic functional components of the robot;
实时对所述状态数据和所述运行数据进行分析,确定所述机器人是否发生故障;Analyze the status data and the operation data in real time to determine whether the robot malfunctions;
当确定所述机器人发生故障时,生成告警信息,所述告警信息中包括告警码,一个所述告警码对应一种故障,且所述告警码中不同的码段包括有所述故障不同维度的信息;When it is determined that the robot is faulty, alarm information is generated. The alarm information includes an alarm code. One alarm code corresponds to a fault, and different code segments in the alarm code include different dimensions of the fault. information;
将所述告警信息发送至主控模块,以使所述主控模块将各个所述功能系统的告警信息进行汇总后通过后台消息中心上传至运维平台,由所述运维平台根据预设规则对所述告警码进行解析,确定与所述告警码相对应的故障内容信息后,将所述告警信息以及所述故障内容信息发送至目标地址。Send the alarm information to the main control module, so that the main control module summarizes the alarm information of each functional system and uploads it to the operation and maintenance platform through the background message center, and the operation and maintenance platform uses the preset rules to After analyzing the alarm code and determining the fault content information corresponding to the alarm code, the alarm information and the fault content information are sent to the target address.
第二方面,本发明实施例提供了一种故障自动识别装置,所述装置适用于机器人的功能系统,所述功能系统预先对所述机器人的功能对电路模块进行划分得到,所述装置包括:In a second aspect, embodiments of the present invention provide an automatic fault identification device. The device is suitable for a functional system of a robot. The functional system is obtained by dividing the functions of the robot into circuit modules in advance. The device includes:
数据采集模块,用于采集机器人基础功能元件的状态数据以及运行数据;Data acquisition module, used to collect status data and operating data of basic functional components of the robot;
故障分析模块,用于实时对所述状态数据和所述运行数据进行分析,确定所述机器人是否发生故障;A fault analysis module, used to analyze the status data and the operation data in real time to determine whether the robot has failed;
信息生成模块,用于当确定所述机器人发生故障时,生成告警信息,所述告警信息中包括告警码,一个所述告警码对应一种故障,且所述告警码中不同的码段包括有所述故障不同维度的信息;An information generation module, configured to generate alarm information when it is determined that the robot is faulty. The alarm information includes an alarm code, one of the alarm codes corresponds to one kind of fault, and different code segments in the alarm code include: Information about different dimensions of the fault;
信息上报模块,用于将所述告警信息发送至主控模块,以使所述主控模块将各个所述功能系统的告警信息进行汇总后通过后台消息中心上传至运维平台,由所述运维平台根据预设规则对所述告警码进行解析,确定与所述告警码相对应的故障内容信息后,将所述告警信息以及所述故障内容信息发送至目标地址。The information reporting module is used to send the alarm information to the main control module, so that the main control module summarizes the alarm information of each of the functional systems and uploads it to the operation and maintenance platform through the background message center. The dimension platform analyzes the alarm code according to the preset rules, and after determining the fault content information corresponding to the alarm code, sends the alarm information and the fault content information to the target address.
第三方面,本发明实施例提供了一种故障自动识别设备,所述故障自动识别设备包括处理器以及存储器;In a third aspect, embodiments of the present invention provide an automatic fault identification device, which includes a processor and a memory;
所述存储器用于存储计算机程序,并将所述计算机程序传输给所述处理器;The memory is used to store a computer program and transmit the computer program to the processor;
所述处理器用于根据所述计算机程序中的指令执行如第一方面所述的一种故障自动识别方法。The processor is configured to execute an automatic fault identification method as described in the first aspect according to instructions in the computer program.
第四方面,本发明实施例提供了一种存储计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行如第一方面所述的一种故障自动识别方法。In a fourth aspect, embodiments of the present invention provide a storage medium that stores computer-executable instructions, which when executed by a computer processor are used to perform an automatic fault identification method as described in the first aspect. .
上述,本发明实施例通过利用机器人的功能系统来采集机器人基础功能元件的状态数据和运行数据,并实时对状态数据和运行数据进行分析,确定机器人是否发生故障。当确定机器人发生故障时,则功能系统生成包括有告警码的告警信息,并将告警信息发送至主控模块,再由主控模块将告警信息通过后台消息中心上传至运维平台,由运维平台根据告警信息生成相对应的故障内容信息后,将告警信息以及故障内容信息发送至目标地址。运维人员通过在目标地址查看故障内容信息即可快速定位和排查机器人发生的故障,提高对机器人的故障进行排查的准确率以及效率,解决了现有技术中机器人的故障排查过程存在着效率低下以及准确低下的技术问题。As mentioned above, the embodiment of the present invention uses the robot's functional system to collect the status data and operating data of the basic functional components of the robot, and analyzes the status data and operating data in real time to determine whether the robot has malfunctioned. When it is determined that the robot is faulty, the functional system generates alarm information including an alarm code and sends the alarm information to the main control module. The main control module then uploads the alarm information to the operation and maintenance platform through the background message center. After the platform generates corresponding fault content information based on the alarm information, it sends the alarm information and fault content information to the target address. Operation and maintenance personnel can quickly locate and troubleshoot the robot's fault by viewing the fault content information at the target address, improving the accuracy and efficiency of troubleshooting the robot's fault, and solving the inefficiency of the robot's troubleshooting process in the existing technology. and technical issues with poor accuracy.
附图说明Description of the drawings
图1为本发明实施例提供的一种故障自动识别方法的流程图。Figure 1 is a flow chart of an automatic fault identification method provided by an embodiment of the present invention.
图2为本发明实施例提供的一种机器人、后台消息中心、运维平台以及移动终端的数据传输关系示意图。Figure 2 is a schematic diagram of the data transmission relationship between a robot, a background message center, an operation and maintenance platform and a mobile terminal provided by an embodiment of the present invention.
图3为本发明实施例提供的另一种故障自动识别方法的流程图。Figure 3 is a flow chart of another automatic fault identification method provided by an embodiment of the present invention.
图4为本发明实施例提供的一种故障自动识别方法的架构示意图。Figure 4 is a schematic architectural diagram of an automatic fault identification method provided by an embodiment of the present invention.
图5为本发明实施例提供的一种故障自动识别装置的结构示意图。Figure 5 is a schematic structural diagram of an automatic fault identification device provided by an embodiment of the present invention.
图6为本发明实施例提供的一种故障自动识别设备的结构示意图。Figure 6 is a schematic structural diagram of an automatic fault identification device provided by an embodiment of the present invention.
具体实施方式Detailed ways
以下描述和附图充分地示出本申请的具体实施方案,以使本领域的技术人员能够实践它们。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本申请的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的结构、产品等而言,由于其与实施例公开的部分相对应,所以描述的比较简单,相关之处参见方法部分说明即可。The following description and drawings illustrate specific embodiments of the application sufficiently to enable those skilled in the art to practice them. The examples represent only possible variations. Unless explicitly required, individual components and features are optional and the order of operations may vary. Portions and features of some embodiments may be included in or substituted for those of other embodiments. The scope of embodiments of the present application includes the entire scope of the claims, and all available equivalents of the claims. Each embodiment may be referred to herein, individually or collectively, by the term "invention" for convenience only and is not intended to automatically limit the scope of the application to any one if the fact that more than one invention is disclosed is disclosed. A single invention or inventive concept. Herein, relational terms such as first, second, etc. are used only to distinguish one entity or operation from another entity or operation without requiring or implying that any actual relationship exists between these entities or operations or order. Furthermore, the terms "comprises," "comprises," or any other variation thereof are intended to cover a non-exclusive inclusion, such that a process, method, or apparatus that includes a list of elements includes not only those elements, but also others not expressly listed. elements. Each embodiment in this article is described in a progressive manner. Each embodiment focuses on its differences from other embodiments. The same and similar parts between the various embodiments can be referred to each other. For the structures, products, etc. disclosed in the embodiments, since they correspond to the parts disclosed in the embodiments, the descriptions are relatively simple. For relevant details, please refer to the description of the method section.
如图1所示,图1为本发明实施例提供的一种故障自动识别方法的流程图。本发明实施例提供的故障自动识别方法适用于机器人的功能系统,其中功能系统,是指用于执行某项或多项特定功能的系统。本实施例中,所述功能系统预先根据所述机器人的功能对电路模块进行划分得到,例如功能系统可以划分为机器人的导航系统、DCU系统、通信系统和人机系统等,其中导航系统用于实现机器人的路径导航功能,导航系统可以包括机器人中的定位模块、地图模块、路径规划模块、运动控制模块以及避障规划模块等。DCU系统用于实现机器人的驱动控制功能,DCU系统可以包括机器人中的主控模块、电机模块、驱动模块、传感器模块和电源模块等。通信系统用于实现机器人的通信功能,例如人机系统与导航系统的通信、人机系统与DCU系统的通信、导航系统与DCU系统的通信以及人机系统与系统后台的通信等。人机系统用于实现机器人的人机交互功能。可理解,本实施例中功能系统可根据实际需要进行划分,在本实施例中不进行具体限定。As shown in Figure 1, Figure 1 is a flow chart of an automatic fault identification method provided by an embodiment of the present invention. The automatic fault identification method provided by the embodiment of the present invention is applicable to the functional system of the robot, where the functional system refers to a system used to perform one or more specific functions. In this embodiment, the functional system is obtained by dividing circuit modules in advance according to the functions of the robot. For example, the functional system can be divided into the robot's navigation system, DCU system, communication system, human-machine system, etc., where the navigation system is used for To realize the path navigation function of the robot, the navigation system can include the positioning module, map module, path planning module, motion control module and obstacle avoidance planning module in the robot. The DCU system is used to realize the drive control function of the robot. The DCU system can include the main control module, motor module, drive module, sensor module and power module in the robot. The communication system is used to realize the communication function of the robot, such as the communication between the human-machine system and the navigation system, the communication between the human-machine system and the DCU system, the communication between the navigation system and the DCU system, and the communication between the human-machine system and the system background. The human-machine system is used to realize the human-machine interaction function of the robot. It can be understood that the functional system in this embodiment can be divided according to actual needs, and is not specifically limited in this embodiment.
本发明实施例提供的故障自动识别方法包括以下步骤:The automatic fault identification method provided by the embodiment of the present invention includes the following steps:
步骤101、采集机器人基础功能元件的状态数据以及运行数据。Step 101: Collect status data and operating data of the basic functional components of the robot.
本实施例中,每个功能系统需要实时采集机器人的基础功能元件的状态数据以及运行数据,其中机器人的基础功能元件,是指用于实现机器人的基础功能的元件,例如基础功能元件包括电池、传感器、雷达以及电机等元件。基础功能元件的状态数据,包括了基础功能元件当前的工作状态的数据,例如基础功能元件是否处于运行状态以及基础功能元件的工作模式;基础功能元件的运行数据,包括了基础功能元件运行过程中的数据,例如基础功能元件的电流数据、电压数据以及功率数据等。In this embodiment, each functional system needs to collect status data and operation data of the basic functional components of the robot in real time. The basic functional components of the robot refer to components used to realize the basic functions of the robot. For example, the basic functional components include batteries, Sensors, radars, motors and other components. The status data of the basic functional components includes data on the current working status of the basic functional components, such as whether the basic functional components are in running state and the working mode of the basic functional components; the operating data of the basic functional components includes the data on the basic functional components during operation. Data, such as current data, voltage data and power data of basic functional components.
一个实施例中,每个功能系统内部都设置有数据采集单元,数据采集单元可以通过软件和/或硬件的方式实现,用于采集机器人基础功能元件的状态数据和运行数据。数据采集单元可通过多种方式采集状态数据和运行数据,例如可以通过硬件监控物理信号采集状态数据和运行数据,通过定时检测上报数据与接口数据通信解析采集状态数据和运行数据,以及通过ROS话题采集机制与主从通信采集状态数据和运行数据。其中ROS话题采集机制,是指功能系统之间通过话题(Topic)进行通信,话题是用于传输数据的通道,通过采集和分析ROS话题信息,可以对机器人的基础功能元件进行监控。In one embodiment, each functional system is equipped with a data acquisition unit. The data acquisition unit can be implemented through software and/or hardware and is used to collect status data and operating data of the basic functional components of the robot. The data acquisition unit can collect status data and operation data in a variety of ways. For example, it can collect status data and operation data through hardware monitoring of physical signals, collect status data and operation data through regular detection and reporting data and interface data communication analysis, and through ROS topics. The collection mechanism communicates with the master-slave to collect status data and operating data. The ROS topic collection mechanism refers to communication between functional systems through topics. Topics are channels used to transmit data. By collecting and analyzing ROS topic information, the basic functional components of the robot can be monitored.
步骤102、实时对状态数据和运行数据进行分析,确定机器人是否发生故障。Step 102: Analyze the status data and operating data in real time to determine whether the robot malfunctions.
每个功能系统在获取到状态数据和运行数据后,需要实时对状态数据和运行数据进行分析,并从硬件故障、软件Bug、参数设置错误、数据畸变、通信故障、环境变化、模块负载、维护不当和业务流程等多维度确定机器人运行过程中产生的故障。一个实施例中,每个功能系统可只检测自身下属的各个模块是否发生故障,例如导航系统只检测定位模块和地图模块等模块的故障,DCU系统只检测主控模块和电机模块等模块的故障。After each functional system obtains status data and operation data, it needs to analyze the status data and operation data in real time, and analyze the status data and operation data from hardware failures, software bugs, parameter setting errors, data distortion, communication failures, environmental changes, module loads, and maintenance. Determine the faults that occur during the operation of the robot from multiple dimensions such as improper operation and business processes. In one embodiment, each functional system can only detect whether each of its subordinate modules is faulty. For example, the navigation system only detects faults in modules such as the positioning module and map module, and the DCU system only detects faults in modules such as the main control module and motor module. .
一个实施例中,功能系统可以根据预设的条件,对状态数据和运行数据进行分析,确定是否产生故障。例如DCU系统判断BMS(BATTERY MANAGEMENT SYSTEM,电池管理系统)的状态数据和运行数据是否满足预设的条件,来判断BMS是否产生故障。例如将BMS的电压数据与预设的电压范围阈值来比较判断是否产生故障;将BMS的温度数据与预设的电池充放时电池温度范围阈值来比较判断是否产生故障;将BMS的电流数据与预设的电池持续放电电流阈值来比较判断是否产生故障。又或者是DCU系统根据激光雷达的通信状态是否正常、激光雷达是否有故障状态和激光雷达上报的数据来判断激光雷达是否产生故障。In one embodiment, the functional system can analyze status data and operating data according to preset conditions to determine whether a fault has occurred. For example, the DCU system determines whether the status data and operating data of the BMS (BATTERY MANAGEMENT SYSTEM, battery management system) meet the preset conditions to determine whether the BMS has malfunctioned. For example, the voltage data of the BMS is compared with the preset voltage range threshold to determine whether a fault occurs; the temperature data of the BMS is compared with the preset battery temperature range threshold during battery charging and discharging to determine whether a fault occurs; the current data of the BMS is compared with the preset battery temperature range threshold during battery charging and discharging to determine whether a fault occurs; The preset battery continuous discharge current threshold is compared to determine whether a fault occurs. Or the DCU system determines whether the lidar has malfunctioned based on whether the communication status of the lidar is normal, whether the lidar has a fault status, and the data reported by the lidar.
步骤103、当确定机器人发生故障时,生成告警信息,告警信息中包括告警码,一个告警码对应一种故障,且告警码中不同的码段包括有故障不同维度的信息。Step 103: When it is determined that the robot is faulty, generate alarm information. The alarm information includes an alarm code. One alarm code corresponds to one kind of fault, and different code segments in the alarm code include information on different dimensions of the fault.
当功能系统确定机器人发生故障时,功能系统会生成相对应的告警信息,且生成的告警信息中包括有与故障相对应的告警码,一种故障对应一种告警码,且告警码中不同的码段包括有故障不同维度的信息。例如,假设告警码的一个码段包括有故障的位置信息,例如故障在哪个功能系统或功能系统中的哪个模块;一个码段包括有故障的属性信息,例如故障是属于电流故障、电压故障还是传感器故障等;一个码段包括有故障的类型信息,例如是电流欠压还是电流过压等。一个实施例中,当故障为电池电压过压时,告警码为601001;当故障为电池电压欠压时,告警码为601002,其中前两位60对应的位置信息为电池,中间两位10对应的属性信息为电流,最后两位01对应的类型信息为偏大,最后两位02对应的类型信息为偏小。可理解,告警码的具体数值可根据实际需要进行设置,例如告警码可以为数字、字母或者是数字和字母的组合等,在本实施例中不进行具体限定。When the functional system determines that a fault occurs on the robot, the functional system will generate corresponding alarm information, and the generated alarm information includes an alarm code corresponding to the fault. One fault corresponds to one alarm code, and different alarm codes include The code segment contains information about different dimensions of the fault. For example, assume that a code segment of the alarm code includes fault location information, such as which functional system or module in the functional system the fault is in; a code segment includes fault attribute information, such as whether the fault belongs to a current fault, a voltage fault, or Sensor failure, etc.; one code segment includes fault type information, such as current undervoltage or current overvoltage, etc. In one embodiment, when the fault is battery voltage overvoltage, the alarm code is 601001; when the fault is battery voltage undervoltage, the alarm code is 601002, where the first two digits 60 correspond to the location information of the battery, and the middle two digits 10 correspond to The attribute information is current, the type information corresponding to the last two digits 01 is too large, and the type information corresponding to the last two digits 02 is too small. It can be understood that the specific numerical value of the alarm code can be set according to actual needs. For example, the alarm code can be a number, a letter, or a combination of numbers and letters, etc., which is not specifically limited in this embodiment.
步骤104、将告警信息发送至主控模块,以使主控模块将各个功能系统的告警信息进行汇总后通过后台消息中心上传至运维平台,由运维平台根据预设规则对告警码进行解析,确定与告警码相对应的故障内容信息后,将告警信息以及故障内容信息发送至目标地址。Step 104. Send the alarm information to the main control module, so that the main control module summarizes the alarm information of each functional system and uploads it to the operation and maintenance platform through the background message center. The operation and maintenance platform parses the alarm code according to preset rules. , after determining the fault content information corresponding to the alarm code, send the alarm information and fault content information to the target address.
在生成告警信息后,各个功能系统需要将告警模块发送至主控模块,其中主控模块为机器人的控制中心。主控模块在汇总各个功能系统的告警信息后,会进一步将汇总后的告警信息发送至后台消息中心,再由后台消息中心告警信息上传至云端的运维平台。在另一个实施例中,也可以将人机交互系统作为机器人与外接进行通信的接口,主控模块将汇总后的告警信息发送至人机交互系统,由人机交互系统将汇总后的告警信息上传至云端的运维平台。After generating alarm information, each functional system needs to send the alarm module to the main control module, where the main control module is the control center of the robot. After the main control module summarizes the alarm information of each functional system, it will further send the summarized alarm information to the backend message center, and then the alarm information from the backend message center will be uploaded to the cloud operation and maintenance platform. In another embodiment, the human-computer interaction system can also be used as an interface for the robot to communicate with external devices. The main control module sends the summarized alarm information to the human-computer interaction system, and the human-computer interaction system sends the summarized alarm information. Upload to the cloud operation and maintenance platform.
运维平台在接收到告警信息后,会从告警信息中解析出告警码,并根据预设规则对告警码进行解析,即根据预设规则识别出告警码中不同码段所对应的故障的信息,解析完成后,生成与告警码相对应的故障内容信息,故障内容信息包括有与告警码相对应的故障内容,例如与告警码601001相对应的故障内容信息为“电池电压过压”,与告警码601002相对应的故障内容信息为“电池电压欠压”。运维平台在生成故障内容信息后,即可进一步将告警信息以及与告警信息中的告警码相对应的故障内容信息发送至目标地址,例如目标地址可以是运维人员的邮箱、聊天账号、移动终端以及监控中心等。机器人、后台消息中心、运维平台以及移动终端的数据传输关系如图2所示。运维人员在目标地址接收到告警信息以及故障内容信息后,通过在目标地址中查看告警信息以及故障内容信息,即可得知机器人发生的故障以及故障的具体内容,从而快速定位机器人的故障,提高对机器人的故障进行排查的准确率以及效率。After receiving the alarm information, the operation and maintenance platform will parse the alarm code from the alarm information and analyze the alarm code according to the preset rules. That is, it will identify the fault information corresponding to different code segments in the alarm code according to the preset rules. , after the analysis is completed, the fault content information corresponding to the alarm code is generated. The fault content information includes the fault content corresponding to the alarm code. For example, the fault content information corresponding to the alarm code 601001 is "battery voltage overvoltage", and The fault content information corresponding to alarm code 601002 is "battery voltage undervoltage". After the operation and maintenance platform generates the fault content information, it can further send the alarm information and the fault content information corresponding to the alarm code in the alarm information to the target address. For example, the target address can be the email, chat account, mobile phone number of the operation and maintenance personnel. Terminals and monitoring centers, etc. The data transmission relationship between the robot, the background message center, the operation and maintenance platform and the mobile terminal is shown in Figure 2. After the operation and maintenance personnel receive the alarm information and fault content information at the target address, they can know the fault of the robot and the specific content of the fault by checking the alarm information and fault content information at the target address, so as to quickly locate the robot fault. Improve the accuracy and efficiency of troubleshooting robot failures.
上述,本发明实施例通过利用机器人的功能系统来采集机器人基础功能元件的状态数据和运行数据,并实时对状态数据和运行数据进行分析,确定机器人是否发生故障。当确定机器人发生故障时,则功能系统生成包括有告警码的告警信息,并将告警信息发送至主控模块,再由主控模块将告警信息通过后台消息中心上传至运维平台,由运维平台根据告警信息生成相对应的故障内容信息后,将告警信息以及故障内容信息发送至目标地址。运维人员通过在目标地址查看故障内容信息即可快速定位和排查机器人发生的故障,提高对机器人的故障进行排查的准确率以及效率,解决了现有技术中机器人的故障排查过程存在着效率低下以及准确低下的技术问题。As mentioned above, the embodiment of the present invention uses the robot's functional system to collect the status data and operating data of the basic functional components of the robot, and analyzes the status data and operating data in real time to determine whether the robot has malfunctioned. When it is determined that the robot is faulty, the functional system generates alarm information including an alarm code and sends the alarm information to the main control module. The main control module then uploads the alarm information to the operation and maintenance platform through the background message center. After the platform generates corresponding fault content information based on the alarm information, it sends the alarm information and fault content information to the target address. Operation and maintenance personnel can quickly locate and troubleshoot the robot's fault by viewing the fault content information at the target address, improving the accuracy and efficiency of troubleshooting the robot's fault, and solving the inefficiency of the robot's troubleshooting process in the existing technology. and technical issues with poor accuracy.
如图3所示,图3为本发明实施例提供的一种故障自动识别方法的结构示意图,图3提供的一种故障自动识别方法是对上述故障自动识别方法的具体化,方法包括:As shown in Figure 3, Figure 3 is a schematic structural diagram of an automatic fault identification method provided by an embodiment of the present invention. The automatic fault identification method provided in Figure 3 is a embodiment of the above automatic fault identification method. The method includes:
步骤201、采集机器人基础功能元件的状态数据以及运行数据。Step 201: Collect status data and operating data of the basic functional components of the robot.
步骤202、获取相对应的故障发生条件,每个功能系统具有相对应的故障发生条件。Step 202: Obtain corresponding fault occurrence conditions. Each functional system has corresponding fault occurrence conditions.
在本实施例中,各个功能系统在采集到基础功能元件的状态数据以及运行数据后,会获取相对应的故障发生条件,其中每个功能系统都具有相对应的故障发生条件,故障发生条件即为告警触发条件。例如,由于DCU系统包括电源模块和电机模块,电源模块包括BMS和电池,电机模块包括电机。因此与DCU系统相对应的故障发生条件包括用于判断BMS是否发生故障的条件、用于判断电池是否发生故障的条件以及用于判断电机是否发生故障的条件等。一个实施例中,用户可以将与每个功能系统具有相对应的故障发生条件预先存储在每个功能系统中。In this embodiment, after each functional system collects the status data and operating data of the basic functional components, it will obtain the corresponding fault occurrence conditions, where each functional system has corresponding fault occurrence conditions, and the fault occurrence conditions are Trigger conditions for alarms. For example, since the DCU system includes a power module and a motor module, the power module includes a BMS and a battery, and the motor module includes a motor. Therefore, the fault occurrence conditions corresponding to the DCU system include conditions for judging whether the BMS fails, conditions for judging whether the battery fails, conditions for judging whether the motor fails, etc. In one embodiment, the user can pre-store the fault occurrence conditions corresponding to each functional system in each functional system.
步骤203、实时确定状态数据和运行数据是否满足相对应的故障发生条件,一种故障对应一种故障发生条件。Step 203: Determine in real time whether the status data and operating data meet the corresponding fault occurrence conditions. One fault corresponds to one fault occurrence condition.
每个功能系统在获取到相对应的故障发生条件后,会实时确定状态数据和运行数据是否满足相对应的故障发生条件,其中一种故障对应一种故障发生条件。示例性的,每个功能系统中都包括有故障判断单元,故障判断单元可以通过软件和/或硬件的方式实现。故障判断单元用于确定状态数据和运行数据是否满足相对应的故障发生条件。一个实施例中,故障发生条件为数据的计算结果是否满足条件的表达式,表示式由标识符和运算符组成,故障判断单元对接收到的状态数据以及运行数据进行匹配计算,如果计算后结果满足条件,则表示出现故障,表达式可灵活性根据不同类型设备、模块和场景的需求进行设置。例如,当机器人的急停按钮被按下后,时间过去1分钟、5分钟、30分钟和1小时机器人无法移动,导致机器人无法执行任务,业务无法处理,此时用户可以在导航系统中设置相应的故障发生条件来判断机器人是否无法移动。又或是,当网络正常状态时,用户可远程控制机器人执行任务,而当网络信号异常且网络异常时间超出阈值时,机器人可能存在故障,此时用户可以在通信系统中设置相应的故障发生条件来判断机器人的网络是否正常。After each functional system obtains the corresponding fault occurrence conditions, it will determine in real time whether the status data and operating data meet the corresponding fault occurrence conditions. One type of fault corresponds to one type of fault occurrence condition. For example, each functional system includes a fault judgment unit, which can be implemented in software and/or hardware. The fault judgment unit is used to determine whether the status data and operating data meet the corresponding fault occurrence conditions. In one embodiment, the fault occurrence condition is an expression indicating whether the calculation result of the data satisfies the condition. The expression consists of an identifier and an operator. The fault judgment unit performs matching calculation on the received status data and operating data. If the calculated result If the conditions are met, it means a fault has occurred. The expression can be flexibly set according to the needs of different types of equipment, modules and scenarios. For example, after the emergency stop button of the robot is pressed, the robot cannot move after 1 minute, 5 minutes, 30 minutes and 1 hour, resulting in the robot being unable to perform tasks and the business being unable to be processed. At this time, the user can set the corresponding settings in the navigation system. The fault occurrence conditions are used to determine whether the robot cannot move. Or, when the network is normal, the user can remotely control the robot to perform tasks. However, when the network signal is abnormal and the network abnormal time exceeds the threshold, the robot may have a fault. At this time, the user can set the corresponding fault conditions in the communication system. To determine whether the robot's network is normal.
步骤204、当满足故障发生条件时,确定机器人发生故障。Step 204: When the fault occurrence conditions are met, it is determined that the robot has failed.
步骤205、当确定机器人发生故障时,生成告警信息,告警信息中包括告警码,一个告警码对应一种故障;机器人至少包括一个功能系统,告警码的码值范围根据功能系统进行划分,且功能系统的故障相对应的告警码位于与功能系统相对应的码值范围内,告警码中不同的码段包括有故障的位置信息、故障的属性信息以及故障的类型信息。Step 205: When it is determined that a fault occurs on the robot, alarm information is generated. The alarm information includes an alarm code, and one alarm code corresponds to one fault; the robot includes at least one functional system, and the code value range of the alarm code is divided according to the functional system, and the function The alarm code corresponding to the system fault is located in the code value range corresponding to the functional system. Different code segments in the alarm code include fault location information, fault attribute information, and fault type information.
当功能系统中的故障判断单元确定机器人发生故障时,会生成告警信息,告警信息中包括有告警码。本实施例中,机器人至少包括一个功能系统,告警码的码值范围根据功能系统进行划分,且功能系统的故障相对应的告警码位于与功能系统相对应的码值范围内,例如导航系统的码值范围为50XXXX~59XXXX、DCU系统的码值范围为60XXXX~69XXXX、通信系统的码值范围为70XXXX~79XXXX以及人机系统的码值范围为80XXXX~89XXXX等。另外,告警码中不同的码段包括有故障的位置信息、故障的属性信息以及故障的类型信息。例如,假设告警码中的码段为AABBCC,其中第一个码段AA包括有故障的位置信息,例如故障在哪个功能系统或功能系统中的哪个模块;第二个码段BB包括有故障的属性信息,例如故障是属于电流故障、电压故障还是传感器故障等;第三个CC包括有故障的类型信息,例如是电流欠压还是电流过压等。一个实施例中,AA为60时,对应的位置为电池。BB为10时,对应的属性为电压,BB为11时,对应的属性为温度,BB为12时,对应的属性为电流。CC为01时,对应的类型为偏大,CC为02时,对应的类型为偏小。例如对于DCU系统,当电源的电压发生故障,此时生成的告警码为6010xx-6010xx,例如电池电压过压故障的告警码为601001,电池电压欠压的告警码为601002。对于电池温度故障,此时生成的告警码为6011xx-6011xx,电池温度过高的生告警码为601101,电池温度过低的告警码为601102。对于电池电流故障,告警码为6012xx-6012xx,例如电池电流过大的告警码为601201。另外,当DCU系统中的电机模块发生故障时,AA为61表示左电机,AA为62表示右电机,BB为13表示通信故障,BB14表示过载故障。如左电机通信异常的告警码为611300,右电机通信异常的告警码为621300,如左电机过载故障的告警码为611400,右电机过载故障的告警码为621400等。When the fault judgment unit in the functional system determines that the robot has failed, an alarm message will be generated, and the alarm message includes an alarm code. In this embodiment, the robot includes at least one functional system. The code value range of the alarm code is divided according to the functional system, and the alarm code corresponding to the fault of the functional system is located in the code value range corresponding to the functional system, such as the navigation system. The code value range is 50XXXX~59XXXX, the code value range of the DCU system is 60XXXX~69XXXX, the code value range of the communication system is 70XXXX~79XXXX, and the code value range of the human-machine system is 80XXXX~89XXXX, etc. In addition, different code segments in the alarm code include fault location information, fault attribute information, and fault type information. For example, assume that the code segment in the alarm code is AABBCC. The first code segment AA includes the fault location information, such as which functional system or module in the functional system the fault is in; the second code segment BB includes the faulty location information. Attribute information, such as whether the fault is a current fault, voltage fault, or sensor fault, etc.; the third CC includes fault type information, such as current undervoltage or current overvoltage, etc. In one embodiment, when AA is 60, the corresponding position is the battery. When BB is 10, the corresponding attribute is voltage, when BB is 11, the corresponding attribute is temperature, and when BB is 12, the corresponding attribute is current. When CC is 01, the corresponding type is larger; when CC is 02, the corresponding type is smaller. For example, in the DCU system, when the power supply voltage fails, the alarm codes generated at this time are 6010xx-6010xx. For example, the alarm code for battery overvoltage fault is 601001, and the alarm code for battery undervoltage is 601002. For battery temperature faults, the alarm codes generated at this time are 6011xx-6011xx, the alarm code generated when the battery temperature is too high is 601101, and the alarm code generated when the battery temperature is too low is 601102. For battery current faults, the alarm codes are 6012xx-6012xx. For example, the alarm code for excessive battery current is 601201. In addition, when the motor module in the DCU system fails, AA is 61 for the left motor, AA for 62 represents the right motor, BB for 13 represents a communication failure, and BB14 represents an overload fault. For example, the alarm code for left motor communication abnormality is 611300, and the alarm code for right motor communication abnormality is 621300. For example, the alarm code for left motor overload fault is 611400, and the alarm code for right motor overload fault is 621400, etc.
另外,在本实施例中,告警信息中还包括故障发生时间以及故障等级,故障等级预先根据故障对机器人的影响进行划分。示例性的,可以将故障等级划分为一级等级、二级等级以及三级等级,其中一级等级为导致机器人无法运行和作业的故障,重要程度最高;二级等级为有限影响机器人运行和作业的故障,重要程度中等;三级等级为不影响机器人运行的故障,重要程度低。一个实施例中,可以将电源模块、电机模块以及传感器模块的故障相对应的故障等级设置为一级等级。可理解,故障等级的划分可根据实际需要进行设置,在本实施例中不进行具体限定。In addition, in this embodiment, the alarm information also includes the fault occurrence time and the fault level, and the fault levels are divided in advance according to the impact of the fault on the robot. For example, fault levels can be divided into first-level, second-level and third-level levels. The first-level level is the fault that causes the robot to be unable to operate and work, which is the most important; the second-level level is the fault that has limited impact on the robot's operation and work. The faults are of medium importance; the level three faults are faults that do not affect the operation of the robot and are of low importance. In one embodiment, the fault level corresponding to the fault of the power module, the motor module and the sensor module can be set to the first level. It can be understood that the classification of fault levels can be set according to actual needs, and is not specifically limited in this embodiment.
步骤206、将告警信息发送至主控模块,以使主控模块将各个功能系统的告警信息进行汇总后通过后台消息中心上传至运维平台,由运维平台根据预设规则对告警码进行解析,确定与告警码相对应的故障内容信息后,根据告警信息中的故障等级确定相对应的目标地址,并将告警信息以及故障内容信息发送至相对应的目标地址。Step 206: Send the alarm information to the main control module, so that the main control module summarizes the alarm information of each functional system and uploads it to the operation and maintenance platform through the background message center. The operation and maintenance platform parses the alarm code according to preset rules. , after determining the fault content information corresponding to the alarm code, determine the corresponding target address according to the fault level in the alarm information, and send the alarm information and fault content information to the corresponding target address.
功能系统在生成告警信息后,会进一步将信息发送至主控模块,由主控模块将各个功能系统的告警信息进行汇总后,通过后台消息中心上传至运维平台。在另一个实施例中,机器人的各个功能系统的资源之间是相互关联的,当其中某个功能系统发生异常后,和它关联的功能系统也会产生异常,从而产生一系列的告警信息,并上报给主控模块进行处理。After the functional system generates alarm information, it will further send the information to the main control module. The main control module summarizes the alarm information of each functional system and uploads it to the operation and maintenance platform through the background message center. In another embodiment, the resources of each functional system of the robot are interrelated. When an abnormality occurs in one of the functional systems, the functional system associated with it will also generate an abnormality, thereby generating a series of alarm information. And report it to the main control module for processing.
运维平台在接收到告警信息后,首先会从告警信息中解析出告警码以及故障等级,并根据预设规则对告警码进行解析后,生成相对应的故障内容信息,之后进一步根据故障等级确定相对应的目标地址。一个实施例中,当故障等级为一级故障时,目标地址可以是运维人员的手机短信账号、运维人员的邮箱账号、运维人员的的聊天软件账号以及监控中心;当故障为二级故障时,目标地址可以是运维人员的手机短信账号、运维人员的的聊天软件账号以及监控中心;当故障为三级故障时,消目标地址可以是运维人员的邮箱账号。其中手机短信账号和聊天软件账号适用于紧急以及对响应性要求高的故障,而邮箱账号适用于非紧急的故障。After receiving the alarm information, the operation and maintenance platform will first parse the alarm code and fault level from the alarm information, and after parsing the alarm code according to the preset rules, generate the corresponding fault content information, and then further determine according to the fault level. The corresponding target address. In one embodiment, when the fault level is a level one fault, the target address may be the operation and maintenance personnel's mobile phone SMS account, the operation and maintenance personnel's email account, the operation and maintenance personnel's chat software account and the monitoring center; when the fault level is a level two fault, When a fault occurs, the target address can be the SMS account of the operation and maintenance personnel, the chat software account of the operation and maintenance personnel, and the monitoring center; when the fault is a level three fault, the target address can be the email account of the operation and maintenance personnel. Among them, mobile phone SMS accounts and chat software accounts are suitable for emergencies and faults that require high responsiveness, while email accounts are suitable for non-urgent faults.
在确定出目标地址后,运维平台则将告警信息以及故障内容信息发送至相对应的目标地址中,运维人员通过在目标地址查看故障内容信息即可快速定位和排查机器人发生的故障,其具体过程如图4所示。After determining the target address, the operation and maintenance platform will send the alarm information and fault content information to the corresponding target address. The operation and maintenance personnel can quickly locate and troubleshoot the fault of the robot by viewing the fault content information at the target address. The specific process is shown in Figure 4.
在上述实施例的基础上,还包括:On the basis of the above embodiments, it also includes:
步骤207、接收故障拓展指令,对故障发生条件以及告警码进行拓展。Step 207: Receive the fault expansion instruction and expand the fault occurrence conditions and alarm codes.
一个实施例中,由于业务系统日益复杂,在有新增故障的情况下,用户还可以进一步对每个功能系统中的故障发生条件以及告警码进行扩展。具体的,用户可以向功能系统发送故障拓展指令的方式对故障发生条件以及告警码进行拓展。功能系统在接收到故障拓展指令后,即可根据用户的输入对故障发生条件以及告警码进行拓展。可理解,用户在功能系统中拓展了故障发生条件以及告警码后,还需要进一步在运维平台中添加相应的规则,以使运维平台能够解析出与告警码相对应的故障内容信息。In one embodiment, as the business system becomes increasingly complex, when a new fault occurs, the user can further expand the fault occurrence conditions and alarm codes in each functional system. Specifically, the user can extend the fault occurrence conditions and alarm codes by sending fault expansion instructions to the functional system. After receiving the fault expansion instruction, the functional system can expand the fault occurrence conditions and alarm codes based on the user's input. It is understandable that after users expand the fault occurrence conditions and alarm codes in the functional system, they need to further add corresponding rules to the operation and maintenance platform so that the operation and maintenance platform can parse the fault content information corresponding to the alarm code.
在上述实施例的基础上,在确定机器人发生故障后,还包括:Based on the above embodiment, after it is determined that the robot is faulty, it also includes:
步骤208、将故障和距离当前预设时长内已发生的历史故障进行分析,判断是否触发新的故障。Step 208: Analyze the fault and historical faults that have occurred within the current preset time period to determine whether a new fault is triggered.
一个实施例中,功能系统若确定出机器人发生故障后,功能系统还会将机器人当前发生的故障和距离当前预设时长内已发生的历史故障进行分析,从而确定是否触发新的故障。其中,预设时长可根据实际需要进行设置,例如可以将预设时长设置为5分钟或者10分钟等,在本实施例中不对预设时长的具体数值进行限定。示例性的,若DCU系统十分钟前发生了电源电压欠压故障,十分钟后又发生了电机过载故障,则DCU系统则会进一步分析电源电压欠压故障以及电机过载故障两者是否会触发新的故障。一个实施例中,在分析是否触发新的故障时,可利用预先训练好的神经网络来进行预测。In one embodiment, if the functional system determines that a fault has occurred on the robot, the functional system will also analyze the current fault of the robot and the historical faults that have occurred within the current preset time period to determine whether to trigger a new fault. The preset duration can be set according to actual needs. For example, the preset duration can be set to 5 minutes or 10 minutes. In this embodiment, the specific value of the preset duration is not limited. For example, if a power supply undervoltage fault occurred in the DCU system ten minutes ago and a motor overload fault occurred ten minutes later, the DCU system will further analyze whether the power supply undervoltage fault and the motor overload fault will trigger a new fault. failure. In one embodiment, when analyzing whether a new fault is triggered, a pre-trained neural network can be used to make predictions.
上述,本发明实施例通过利用机器人的功能系统来采集机器人基础功能元件的状态数据和运行数据,并实时对状态数据和运行数据进行分析,确定机器人是否发生故障。当确定机器人发生故障时,则功能系统生成包括有告警码以及故障等级的告警信息,并将告警信息发送至主控模块,再由主控模块将告警信息通过后台消息中心上传至运维平台,由运维平台根据告警信息生成相对应的故障内容信息后,根据故障等级确定相对应的目标地址,并将告警信息以及故障内容信息发送至相对应的目标地址。运维人员通过在相对应的目标地址查看故障内容信息即可快速定位和排查机器人发生的故障,提高对机器人的故障进行排查的准确率以及效率,解决了现有技术中机器人的故障排查过程存在着效率低下以及准确低下的技术问题。As mentioned above, the embodiment of the present invention uses the robot's functional system to collect the status data and operating data of the basic functional components of the robot, and analyzes the status data and operating data in real time to determine whether the robot has malfunctioned. When it is determined that the robot has failed, the functional system generates alarm information including an alarm code and fault level, and sends the alarm information to the main control module. The main control module then uploads the alarm information to the operation and maintenance platform through the background message center. After the operation and maintenance platform generates the corresponding fault content information based on the alarm information, the corresponding target address is determined according to the fault level, and the alarm information and fault content information are sent to the corresponding target address. Operation and maintenance personnel can quickly locate and troubleshoot robot faults by viewing the fault content information at the corresponding target address, improve the accuracy and efficiency of troubleshooting robot faults, and solve the problems in the robot troubleshooting process in the existing technology. technical problems of low efficiency and low accuracy.
如图5所示,图5为本发明实施例提供的一种故障自动识别装置的结构示意图,如图5所示,装置适用于机器人的功能系统,功能系统预先对机器人的功能对电路模块进行划分得到,装置包括:As shown in Figure 5, Figure 5 is a schematic structural diagram of an automatic fault identification device provided by an embodiment of the present invention. As shown in Figure 5, the device is suitable for the functional system of the robot. The functional system performs pre-processing of the function of the robot on the circuit module. Divided, the devices include:
数据采集模块301,用于采集机器人基础功能元件的状态数据以及运行数据;The data collection module 301 is used to collect status data and operating data of the basic functional components of the robot;
故障分析模块302,用于实时对状态数据和运行数据进行分析,确定机器人是否发生故障;The fault analysis module 302 is used to analyze status data and operating data in real time to determine whether the robot has failed;
信息生成模块303,用于当确定机器人发生故障时,生成告警信息,告警信息中包括告警码,一个告警码对应一种故障,且告警码中不同的码段包括有故障不同维度的信息;The information generation module 303 is used to generate alarm information when it is determined that the robot is faulty. The alarm information includes an alarm code. One alarm code corresponds to a fault, and different code segments in the alarm code include information about different dimensions of the fault;
信息上报模块304,用于将告警信息发送至主控模块,以使主控模块将各个功能系统的告警信息进行汇总后通过后台消息中心上传至运维平台,由运维平台根据预设规则对告警码进行解析,确定与告警码相对应的故障内容信息后,将告警信息以及故障内容信息发送至目标地址。The information reporting module 304 is used to send alarm information to the main control module, so that the main control module can summarize the alarm information of each functional system and upload it to the operation and maintenance platform through the background message center, and the operation and maintenance platform will report the alarm information according to the preset rules. After parsing the alarm code and determining the fault content information corresponding to the alarm code, the alarm information and fault content information are sent to the target address.
在上述实施例的基础上,机器人至少包括一个功能系统,告警码的码值范围根据功能系统进行划分,且功能系统的故障相对应的告警码位于与功能系统相对应的码值范围内,告警码中不同的码段包括有故障的位置信息、故障的属性信息以及故障的类型信息。On the basis of the above embodiments, the robot includes at least one functional system. The code value range of the alarm code is divided according to the functional system, and the alarm code corresponding to the fault of the functional system is located within the code value range corresponding to the functional system. Different code segments in the code include fault location information, fault attribute information and fault type information.
在上述实施例的基础上,告警信息中还包括故障发生时间以及故障等级,故障等级预先根据故障对机器人的影响进行划分。Based on the above embodiment, the alarm information also includes the fault occurrence time and fault level, and the fault level is divided in advance according to the impact of the fault on the robot.
在上述实施例的基础上,信息上报模块304具体用于将告警信息发送至主控模块,以使主控模块将各个功能系统的告警信息进行汇总后通过后台消息中心上传至运维平台,由运维平台根据预设规则对告警码进行解析,确定与告警码相对应的故障内容信息后,根据告警信息中的故障等级确定相对应的目标地址,并将告警信息以及故障内容信息发送至相对应的目标地址。Based on the above embodiment, the information reporting module 304 is specifically used to send alarm information to the main control module, so that the main control module summarizes the alarm information of each functional system and uploads it to the operation and maintenance platform through the background message center. The operation and maintenance platform parses the alarm code according to the preset rules, determines the fault content information corresponding to the alarm code, determines the corresponding target address according to the fault level in the alarm information, and sends the alarm information and fault content information to the relevant The corresponding target address.
在上述实施例的基础上,故障分析模块302包括:Based on the above embodiments, the fault analysis module 302 includes:
条件获取单元,用于获取相对应的故障发生条件,每个功能系统具有相对应的故障发生条件;The condition acquisition unit is used to obtain the corresponding fault occurrence conditions. Each functional system has corresponding fault occurrence conditions;
故障判断单元,用于实时确定状态数据和运行数据是否满足相对应的故障发生条件,一种故障对应一种故障发生条件;The fault judgment unit is used to determine in real time whether the status data and operating data meet the corresponding fault occurrence conditions. One fault corresponds to one fault occurrence condition;
故障确定单元,用于当满足故障发生条件时,确定机器人发生故障。A fault determination unit is used to determine that a fault occurs on the robot when the fault occurrence conditions are met.
在上述实施例的基础上,还包括:On the basis of the above embodiments, it also includes:
故障拓展模块,用于接收故障拓展指令,对故障发生条件以及告警码进行拓展。The fault expansion module is used to receive fault expansion instructions and expand the fault occurrence conditions and alarm codes.
在上述实施例的基础上,还包括:On the basis of the above embodiments, it also includes:
故障触发模块,用于将故障和距离当前预设时长内已发生的历史故障进行分析,判断是否触发新的故障。The fault trigger module is used to analyze faults and historical faults that have occurred within the current preset time period to determine whether to trigger a new fault.
本发明实施例提供的故障自动识别装置包含在故障自动识别设备中,且可用于执行上述实施例中提供的故障自动识别方法,具备相应的功能和有益效果。The automatic fault identification device provided by the embodiment of the present invention is included in the automatic fault identification equipment, and can be used to execute the automatic fault identification method provided in the above embodiment, and has corresponding functions and beneficial effects.
值得注意的是,上述故障自动识别装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本发明的保护范围。It is worth noting that in the above-mentioned embodiment of the automatic fault identification device, the various units and modules included are only divided according to functional logic, but are not limited to the above-mentioned divisions, as long as the corresponding functions can be realized; in addition, The specific names of each functional unit are only for the convenience of distinguishing each other and are not used to limit the scope of the present invention.
本实施例还提供了一种故障自动识别设备,如图6所示,故障自动识别设备40包括处理器400以及存储器401;This embodiment also provides an automatic fault identification device. As shown in Figure 6, the automatic fault identification device 40 includes a processor 400 and a memory 401;
存储器401用于存储计算机程序402,并将计算机程序402传输给处理器400;The memory 401 is used to store the computer program 402 and transmit the computer program 402 to the processor 400;
处理器400用于根据计算机程序402中的指令执行上述的一种故障自动识别方法实施例中的步骤。The processor 400 is configured to execute the steps in the above embodiment of an automatic fault identification method according to instructions in the computer program 402 .
示例性的,计算机程序402可以被分割成一个或多个模块/单元,一个或者多个模块/单元被存储在存储器401中,并由处理器400执行,以完成本申请。一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序402在故障自动识别设备40中的执行过程。For example, the computer program 402 can be divided into one or more modules/units, and one or more modules/units are stored in the memory 401 and executed by the processor 400 to complete the present application. One or more modules/units may be a series of computer program instruction segments capable of completing specific functions. The instruction segments are used to describe the execution process of the computer program 402 in the automatic fault identification device 40 .
故障自动识别设备40可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。故障自动识别设备40可包括,但不仅限于,处理器400、存储器401。本领域技术人员可以理解,图6仅仅是故障自动识别设备40的示例,并不构成对故障自动识别设备40的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如故障自动识别设备40还可以包括输入输出设备、网络接入设备、总线等。The automatic fault identification device 40 can be a computing device such as a desktop computer, a notebook, a handheld computer, a cloud server, etc. The automatic fault identification device 40 may include, but is not limited to, a processor 400 and a memory 401 . Those skilled in the art can understand that FIG. 6 is only an example of the automatic fault identification device 40 and does not constitute a limitation on the automatic fault identification device 40. It may include more or fewer components than shown in the figure, or combine certain components. Or different components, for example, the automatic fault identification device 40 may also include input and output devices, network access devices, buses, etc.
所称处理器400可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。The processor 400 may be a central processing unit (CPU), or other general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), Ready-made field-programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc. A general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
存储器401可以是故障自动识别设备40的内部存储单元,例如故障自动识别设备40的硬盘或内存。存储器401也可以是故障自动识别设备40的外部存储设备,例如故障自动识别设备40上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(SecureDigital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器401还可以既包括故障自动识别设备40的内部存储单元也包括外部存储设备。存储器401用于存储计算机程序以及故障自动识别设备40所需的其他程序和数据。存储器401还可以用于暂时地存储已经输出或者将要输出的数据。The memory 401 may be an internal storage unit of the automatic fault identification device 40 , such as a hard disk or memory of the automatic fault identification device 40 . The memory 401 can also be an external storage device of the automatic fault identification device 40, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (SD) card, or a flash memory equipped on the automatic fault identification device 40. Flash Card, etc. Further, the memory 401 may also include both an internal storage unit of the automatic fault identification device 40 and an external storage device. The memory 401 is used to store computer programs and other programs and data required by the automatic fault identification device 40 . The memory 401 can also be used to temporarily store data that has been output or is to be output.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that for the convenience and simplicity of description, the specific working processes of the systems, devices and units described above can be referred to the corresponding processes in the foregoing method embodiments, and will not be described again here.
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided in this application, it should be understood that the disclosed systems, devices and methods can be implemented in other ways. For example, the device embodiments described above are only illustrative. For example, the division of units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented. On the other hand, the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。A unit described as a separate component may or may not be physically separate. A component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in various embodiments of the present invention can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit. The above integrated units can be implemented in the form of hardware or software functional units.
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储计算机程序的介质。Integrated units may be stored in a computer-readable storage medium if they are implemented in the form of software functional units and sold or used as independent products. Based on this understanding, the technical solution of the present invention is essentially or contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods of various embodiments of the present invention. The aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store computer programs. .
本发明实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种故障自动识别方法,该方法包括以下步骤:Embodiments of the present invention also provide a storage medium containing computer-executable instructions. When executed by a computer processor, the computer-executable instructions are used to perform an automatic fault identification method. The method includes the following steps:
采集机器人基础功能元件的状态数据以及运行数据;Collect status data and operating data of the basic functional components of the robot;
实时对状态数据和运行数据进行分析,确定机器人是否发生故障;Analyze status data and operating data in real time to determine whether the robot has malfunctioned;
当确定机器人发生故障时,生成告警信息,告警信息中包括告警码,一个告警码对应一种故障,且告警码中不同的码段包括有故障不同维度的信息;When it is determined that the robot is faulty, alarm information is generated. The alarm information includes an alarm code. One alarm code corresponds to a fault, and different code segments in the alarm code include information about different dimensions of the fault;
将告警信息发送至主控模块,以使主控模块将各个功能系统的告警信息进行汇总后通过后台消息中心上传至运维平台,由运维平台根据预设规则对告警码进行解析,确定与告警码相对应的故障内容信息后,将告警信息以及故障内容信息发送至目标地址。Send the alarm information to the main control module, so that the main control module summarizes the alarm information of each functional system and uploads it to the operation and maintenance platform through the background message center. The operation and maintenance platform parses the alarm code according to the preset rules and determines the corresponding After receiving the fault content information corresponding to the alarm code, the alarm information and fault content information are sent to the target address.
注意,上述仅为本发明实施例的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明实施例不限于这里的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明实施例的保护范围。因此,虽然通过以上实施例对本发明实施例进行了较为详细的说明,但是本发明实施例不仅仅限于以上实施例,在不脱离本发明实施例构思的情况下,还可以包括更多其他等效实施例,而本发明实施例的范围由所附的权利要求范围决定。Note that the above are only the preferred embodiments and the technical principles used in the embodiments of the present invention. Those skilled in the art will understand that the embodiments of the present invention are not limited to the specific embodiments here. Various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the protection scope of the embodiments of the present invention. Therefore, although the embodiments of the present invention have been described in detail through the above embodiments, the embodiments of the present invention are not limited to the above embodiments, and may also include more other equivalents without departing from the concept of the embodiments of the present invention. embodiments, and the scope of the embodiments of the present invention is determined by the scope of the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310748370.2A CN116749162B (en) | 2023-06-21 | 2023-06-21 | A method, device, equipment and storage medium for automatic fault identification |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310748370.2A CN116749162B (en) | 2023-06-21 | 2023-06-21 | A method, device, equipment and storage medium for automatic fault identification |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116749162A true CN116749162A (en) | 2023-09-15 |
CN116749162B CN116749162B (en) | 2025-02-11 |
Family
ID=87952931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310748370.2A Active CN116749162B (en) | 2023-06-21 | 2023-06-21 | A method, device, equipment and storage medium for automatic fault identification |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116749162B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106331782A (en) * | 2016-10-13 | 2017-01-11 | 广东赛特斯信息科技有限公司 | IPTV digital management system |
CN111761576A (en) * | 2020-06-15 | 2020-10-13 | 上海高仙自动化科技发展有限公司 | Health monitoring method and system, intelligent robot and readable storage medium |
WO2021008414A1 (en) * | 2019-07-17 | 2021-01-21 | 深圳市智物联网络有限公司 | Alarm method for internet of things device, and related apparatus |
CN114237196A (en) * | 2021-11-15 | 2022-03-25 | 北京云迹科技股份有限公司 | Split robot fault processing method and device, terminal equipment and medium |
CN114338347A (en) * | 2021-12-06 | 2022-04-12 | 南昌华勤电子科技有限公司 | Ampere platform-based fault information out-of-band acquisition method and device |
CN116009506A (en) * | 2022-11-28 | 2023-04-25 | 广州赛特智能科技有限公司 | Operation and maintenance information processing method and related device |
-
2023
- 2023-06-21 CN CN202310748370.2A patent/CN116749162B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106331782A (en) * | 2016-10-13 | 2017-01-11 | 广东赛特斯信息科技有限公司 | IPTV digital management system |
WO2021008414A1 (en) * | 2019-07-17 | 2021-01-21 | 深圳市智物联网络有限公司 | Alarm method for internet of things device, and related apparatus |
CN111761576A (en) * | 2020-06-15 | 2020-10-13 | 上海高仙自动化科技发展有限公司 | Health monitoring method and system, intelligent robot and readable storage medium |
CN114237196A (en) * | 2021-11-15 | 2022-03-25 | 北京云迹科技股份有限公司 | Split robot fault processing method and device, terminal equipment and medium |
CN114338347A (en) * | 2021-12-06 | 2022-04-12 | 南昌华勤电子科技有限公司 | Ampere platform-based fault information out-of-band acquisition method and device |
CN116009506A (en) * | 2022-11-28 | 2023-04-25 | 广州赛特智能科技有限公司 | Operation and maintenance information processing method and related device |
Also Published As
Publication number | Publication date |
---|---|
CN116749162B (en) | 2025-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11657309B2 (en) | Behavior analysis and visualization for a computer infrastructure | |
CN112882796B (en) | Abnormal root cause analysis method and device and storage medium | |
EP3557819A1 (en) | Server failure detection method and system | |
US11348023B2 (en) | Identifying locations and causes of network faults | |
CN111983383A (en) | Power system fault first-aid repair method and system | |
CN112395156A (en) | Fault warning method and device, storage medium and electronic equipment | |
CN108989124A (en) | Network failure finds method, electronic device and computer readable storage medium | |
CN114173370B (en) | Fault location method, device, equipment and storage medium | |
CN113505044B (en) | Database warning method, device, equipment and storage medium | |
CN113300918A (en) | Fault detection method of intelligent lamp pole, terminal device and storage medium | |
CN111611097A (en) | Fault detection method, device, equipment and storage medium | |
CN108248641A (en) | A kind of urban track traffic data processing method and device | |
CN106706000B (en) | Theodolite intelligent network monitoring method and system | |
CN116749162A (en) | Automatic fault identification method, device, equipment and storage medium | |
KR101288535B1 (en) | Method for monitoring communication system and apparatus therefor | |
CN108449212B (en) | MAS message transmission method based on event association | |
CN113487182B (en) | Device health state evaluation method, device, computer device and medium | |
CN105892387B (en) | Device and method for automatic reporting of hidden dangers in computer room based on cross-platform multi-point data acquisition MPCA model | |
CN111846095B (en) | Fault detection device, electric power-assisted vehicle and fault detection method | |
CN115223344A (en) | Monitoring and alarming method and device for meter equipment, electronic equipment and storage medium | |
CN115934453A (en) | Troubleshooting method, troubleshooting device and storage medium | |
CN113918430A (en) | Server hardware running state determination method, related device and program product | |
CN114693051A (en) | On-duty monitoring method, system, equipment and medium for swapping station | |
CN115372752A (en) | Fault detection method, device, electronic equipment and storage medium | |
CN107872349B (en) | Real-time snapshot statistical method and device and readable storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |