[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN116568814A - Supported antibodies and uses thereof - Google Patents

Supported antibodies and uses thereof Download PDF

Info

Publication number
CN116568814A
CN116568814A CN202180074827.5A CN202180074827A CN116568814A CN 116568814 A CN116568814 A CN 116568814A CN 202180074827 A CN202180074827 A CN 202180074827A CN 116568814 A CN116568814 A CN 116568814A
Authority
CN
China
Prior art keywords
seq
amino acid
sequence
nucleotide sequence
capsid protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180074827.5A
Other languages
Chinese (zh)
Inventor
C·巴恩斯
Y·夏尔马
S·多利夫
O·弗兰科尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognate3 LLC
Original Assignee
Cognate3 LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognate3 LLC filed Critical Cognate3 LLC
Priority claimed from PCT/US2021/071400 external-priority patent/WO2022056531A1/en
Publication of CN116568814A publication Critical patent/CN116568814A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Recombinant adeno-associated virus (rAAV) compositions for expressing antibodies (e.g., anti-complement component 5 (C5) antibodies) in cells, and methods of treating disorders (e.g., disorders associated with C5 activity (e.g., paroxysmal sleep hemoglobinuria)) with the compositions are provided. Compositions, systems, and methods for preparing rAAV compositions are also provided.

Description

Supported antibodies and uses thereof
RELATED APPLICATIONS
The present application claims priority from U.S. provisional patent application Ser. No. 63/075,898, filed 9/2020, and U.S. provisional patent application Ser. No. 63/179,990, filed 26/2021, 4, the disclosures of which are hereby incorporated by reference in their entireties.
Sequence listing
The present application contains a sequence listing that has been electronically submitted in ASCII format and incorporated herein by reference in its entirety (the ASCII copy was created at 9, 8, 2021, named "404217-HMW-042wo_185407_st25.Txt" and is 252,035 bytes in size).
Background
Therapeutic antibodies represent a potent class of drugs that are highly specific for a target of interest. However, many antibodies require large individual doses and periodic administration to achieve the desired therapeutic effect. This is especially true for high concentration antibody targets found in the serum of patients. For example, anti-complement component 5 (C5) antibodies are used to treat C5 mediated diseases such as Paroxysmal Nocturnal Hemoglobinuria (PNH), neuromyelitis optica (NMOSD) spectrum disorders, and atypical hemolytic uremic syndrome (aHUS), requiring multiple large doses of antibodies due to the high abundance of C5 in serum.
The viral delivery mechanism provides an attractive alternative to traditional antibody therapy, particularly for high concentration antibody targets found in the serum of patients. In particular, a single administration of a viral vector having antibody heavy and light chain expression cassettes makes it possible to produce sustained therapeutic levels of antibodies in the serum of a subject, thus eliminating the need for continuous administration of high doses of antibodies.
Thus, there is a need in the art for improved viral vectors to efficiently and consistently express antibodies in a subject.
Disclosure of Invention
Provided herein are recombinant adeno-associated virus (rAAV) compositions for expressing antibodies (e.g., anti-complement component 5 (C5) antibodies) in cells, and methods of treating disorders (e.g., disorders associated with C5 activity (e.g., paroxysmal sleep hemoglobinuria)) with the compositions. Compositions, systems, and methods for preparing rAAV compositions are also provided.
Accordingly, in one aspect, the present disclosure provides a recombinant adeno-associated virus (rAAV) genome comprising:
(a) A first expression cassette comprising, from 5 'to 3':
a first liver-specific transcription regulatory element,
a first coding sequence encoding a first polypeptide comprising an antibody heavy chain operably linked to a first signal sequence, an
A first polyadenylation sequence; and
(b) A second expression cassette comprising, from 5 'to 3':
a second liver-specific transcription regulatory element,
a second coding sequence encoding a second polypeptide comprising an antibody light chain operably linked to a second signal sequence, an
A second polyadenylation sequence which is complementary to the first polyadenylation sequence,
wherein expression of the first coding sequence and the second coding sequence produces an antibody comprising the antibody heavy chain and the antibody light chain.
In certain embodiments, the first transcription regulatory element and/or the second transcription regulatory element comprises a promoter element selected from the group consisting of: human albumin promoter, human transthyretin (TTR) promoter, human thyroxine-binding globulin (TBG) promoter, human ApoH promoter, human SERPINA1 (hAAT) promoter and liver-specific regulatory modules thereof, such as human ApoE/C-I liver control region (HCR) 1 or 2.
In certain embodiments, the first transcription regulatory element and/or the second transcription regulatory element comprises a promoter element comprising a nucleic acid sequence at least 90% identical to a sequence selected from the group consisting of SEQ ID NOs 25, 27, 66, 68, 69, 116 and 117.
In certain embodiments, the transcriptional regulatory element comprises a nucleotide sequence that is at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 27. In certain embodiments, the transcriptional regulatory element comprises the nucleotide sequence set forth in SEQ ID NO 27. In certain embodiments, the nucleotide sequence of the transcriptional regulatory element consists of the nucleotide sequence set forth in SEQ ID NO. 27.
In certain embodiments, the transcriptional regulatory element comprises a nucleotide sequence that is at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 67. In certain embodiments, the transcriptional regulatory element comprises the nucleotide sequence set forth in SEQ ID NO. 67. In certain embodiments, the nucleotide sequence of the transcriptional regulatory element consists of the nucleotide sequence set forth in SEQ ID NO: 67.
In certain embodiments, the first expression cassette and/or the second expression cassette further comprise an intron element that is located 5 'relative to the first coding sequence and/or the second coding sequence and 3' relative to the transcriptional regulatory element.
In certain embodiments, the intron element is an exogenous intron element, optionally wherein the exogenous intron element is an SV40 intron element or a mouse adenovirus (MVM) intron element.
In certain embodiments, the SV40 intron elements comprise a nucleotide sequence that is at least 90% identical to the nucleotide sequence depicted in SEQ ID NO. 29. In certain embodiments, the SV40 intron elements comprise the nucleotide sequence depicted in SEQ ID NO. 29. In certain embodiments, the nucleotide sequence of the SV40 intron element consists of the nucleotide sequence depicted in SEQ ID NO. 29.
In certain embodiments, the MVM intron elements comprise a nucleotide sequence at least 90% identical to the nucleotide sequence depicted in SEQ ID NO. 30. In certain embodiments, the MVM intron element comprises the nucleotide sequence depicted in SEQ ID NO. 30. In certain embodiments, the nucleotide sequence of the MVM intron element consists of the nucleotide sequence depicted in SEQ ID NO. 30.
In certain embodiments, the first transcription regulatory element and the second transcription regulatory element are the same.
In certain embodiments, the first transcriptional regulatory element comprises an HCR 1 element, an hAAT promoter, and an SV40 intron element, and the second transcriptional regulatory element comprises a SERPINA1 liver-specific regulatory module, a TTR promoter, and an MVM intron element.
In certain embodiments, the first transcriptional regulatory element comprises the nucleic acid sequence of SEQ ID NO. 50 and the second transcriptional regulatory element comprises the nucleic acid sequence of SEQ ID NO. 43.
In certain embodiments, the first expression cassette and/or the second expression cassette further comprise a polyadenylation sequence 3' relative to the first coding sequence and/or the second coding sequence.
In certain embodiments, the polyadenylation sequence is an exogenous polyadenylation sequence, optionally wherein the exogenous polyadenylation sequence is an SV40 polyadenylation sequence or a Bovine Growth Hormone (BGH) polyadenylation sequence.
In certain embodiments, the SV40 polyadenylation sequence comprises a nucleotide sequence that is at least 90% identical to the nucleotide sequence depicted in SEQ ID NO. 31. In certain embodiments, the SV40 polyadenylation sequence comprises the nucleotide sequence shown in SEQ ID NO. 31. In certain embodiments, the nucleotide sequence of the SV40 polyadenylation sequence consists of the nucleotide sequence depicted in SEQ ID NO. 31.
In certain embodiments, the BGH polyadenylation sequence comprises a nucleotide sequence at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 33. In certain embodiments, the BGH polyadenylation sequence comprises the nucleotide sequence set forth in SEQ ID NO. 33. In certain embodiments, the nucleotide sequence of the BGH polyadenylation sequence consists of the nucleotide sequence set forth in SEQ ID NO. 33.
In certain embodiments, the first expression cassette and the second expression cassette comprise the same polyadenylation sequence.
In certain embodiments, the first expression cassette comprises an SV40 polyadenylation sequence. In certain embodiments, the second expression cassette comprises a BGH polyadenylation sequence.
In certain embodiments, the first polyadenylation sequence comprises the nucleic acid sequence of SEQ ID NO. 31 and the second polyadenylation sequence comprises the nucleic acid sequence of SEQ ID NO. 33.
In certain embodiments, the first expression cassette and the second expression cassette are in the same orientation in the rAAV genome. In certain embodiments, the first expression cassette and the second expression cassette are in opposite orientations in the rAAV genome.
In certain embodiments, the first expression cassette and the second expression cassette are in opposite orientations, wherein the first polyadenylation sequence and the second polyadenylation sequence are distally located in the rAAV genome.
In certain embodiments, the rAAV genome further comprises a stuffer sequence interposed between the first transcriptional regulatory element and the second transcriptional regulatory element.
In certain embodiments, the stuffer sequence comprises a β globin polyadenylation sequence. In certain embodiments, the beta globin polyadenylation sequence comprises the nucleic acid sequence of SEQ ID NO: 51.
In certain embodiments, the rAAV genome comprises, from 5 'to 3': (a) A first polyadenylation sequence comprising the nucleic acid sequence of SEQ ID NO. 33; (b) a first coding sequence; (c) A first liver-specific transcriptional regulatory element comprising a nucleic acid sequence of SEQ ID NO. 27; (d) a stuffer sequence comprising the nucleic acid sequence of SEQ ID NO. 51; (e) A second liver-specific transcriptional regulatory element comprising the nucleic acid sequence of SEQ ID NO. 67; (f) a second coding sequence; (g) A second transcribed polyadenylation sequence comprising the nucleic acid sequence of SEQ ID NO. 31.
In certain embodiments, the rAAV genome comprises, from 5 'to 3': reverse complement of the first expression cassette; a filling sequence; and a second expression cassette.
In certain embodiments, the rAAV genome comprises: (a) A first expression cassette comprising, from 5 'to 3': a nucleotide sequence at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 27, a first coding sequence, a nucleotide sequence at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 33; (b) A stuffer sequence comprising a nucleotide sequence that is at least 90% identical to the nucleotide sequence set forth in SEQ ID No. 51 or an inverse complement thereof; and (c) a second expression cassette comprising, from 5 'to 3': a nucleotide sequence which is at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 67, a second coding sequence, a nucleotide sequence which is at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 31.
In certain embodiments, the rAAV genome comprises: (a) A first expression cassette comprising, from 5 'to 3': a nucleotide sequence at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 67, a first coding sequence, a nucleotide sequence at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 31; (b) A stuffer sequence comprising a nucleotide sequence that is at least 90% identical to the nucleotide sequence set forth in SEQ ID No. 51 or an inverse complement thereof; and (c) a second expression cassette comprising, from 5 'to 3': a nucleotide sequence which is at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 27, a second coding sequence, a nucleotide sequence which is at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 33.
In certain embodiments, the rAAV genome comprises: (a) A first expression cassette comprising, from 5 'to 3': a nucleotide sequence at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 25, a nucleotide sequence at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 26, a first coding sequence, a first polyadenylation sequence; (b) A stuffer sequence comprising a nucleotide sequence that is at least 90% identical to the nucleotide sequence set forth in SEQ ID No. 51 or an inverse complement thereof; and (c) a second expression cassette comprising, from 5 'to 3': a nucleotide sequence at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 119, a nucleotide sequence at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 45, a second coding sequence, a nucleotide sequence at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 31.
In certain embodiments, the rAAV genome comprises: (a) A first expression cassette comprising, from 5 'to 3': a nucleotide sequence at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 119, a nucleotide sequence at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 45, a first coding sequence, a nucleotide sequence at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 31; (b) A stuffer sequence comprising a nucleotide sequence that is at least 90% identical to the nucleotide sequence set forth in SEQ ID No. 51 or an inverse complement thereof; and (c) a second expression cassette comprising, from 5 'to 3': a nucleotide sequence at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 25, a nucleotide sequence at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 26, a second coding sequence, a first polyadenylation sequence.
In certain embodiments, the rAAV genome comprises: (a) A first expression cassette comprising, from 5 'to 3': the nucleotide sequence shown in SEQ ID NO. 27, the first coding sequence, the nucleotide sequence shown in SEQ ID NO. 33; (b) A stuffer sequence comprising the nucleotide sequence set forth in SEQ ID No. 51 or an inverse complement thereof; and (c) a second expression cassette comprising, from 5 'to 3': the nucleotide sequence shown in SEQ ID NO. 67, the second coding sequence, the nucleotide sequence shown in SEQ ID NO. 31.
In certain embodiments, the rAAV genome comprises: (a) A first expression cassette comprising, from 5 'to 3': the nucleotide sequence shown in SEQ ID NO. 67, the first coding sequence, the nucleotide sequence shown in SEQ ID NO. 31; (b) A stuffer sequence comprising the nucleotide sequence set forth in SEQ ID No. 51 or an inverse complement thereof; and (c) a second expression cassette comprising, from 5 'to 3': the nucleotide sequence shown in SEQ ID NO. 27, the second coding sequence, the nucleotide sequence shown in SEQ ID NO. 33.
In certain embodiments, the rAAV genome comprises: (a) A first expression cassette comprising, from 5 'to 3': the nucleotide sequence shown in SEQ ID NO. 25, the nucleotide sequence shown in SEQ ID NO. 26, the first coding sequence, the first polyadenylation sequence; (b) A stuffer sequence comprising the nucleotide sequence set forth in SEQ ID No. 51 or an inverse complement thereof; and (c) a second expression cassette comprising, from 5 'to 3': the nucleotide sequence shown in SEQ ID NO. 119, the nucleotide sequence shown in SEQ ID NO. 45, the second coding sequence, the nucleotide sequence shown in SEQ ID NO. 31.
In certain embodiments, the rAAV genome comprises: (a) A first expression cassette comprising, from 5 'to 3': the nucleotide sequence shown in SEQ ID NO. 119, the nucleotide sequence shown in SEQ ID NO. 45, the first coding sequence, the nucleotide sequence shown in SEQ ID NO. 31; (b) A stuffer sequence comprising the nucleotide sequence set forth in SEQ ID No. 51 or an inverse complement thereof; and (c) a second expression cassette comprising, from 5 'to 3': the nucleotide sequence shown in SEQ ID NO. 25, the nucleotide sequence shown in SEQ ID NO. 26, the second coding sequence, the first polyadenylation sequence.
In one aspect, the disclosure provides a rAAV genome comprising a bicistronic expression cassette comprising, from 5 'to 3':
(a) A liver-specific transcriptional regulatory element; a first coding sequence encoding a first polypeptide comprising an antibody heavy chain operably linked to a first signal sequence; a ribosome-hopping sequence encoding a ribosome-hopping peptide; a second coding sequence encoding a second polypeptide comprising an antibody light chain operably linked to a second signal sequence; and polyadenylation sequences, or
(b) A liver-specific transcriptional regulatory element; a second coding sequence encoding a second polypeptide comprising an antibody light chain operably linked to a second signal sequence; a ribosome-hopping sequence encoding a ribosome-hopping peptide; a first coding sequence encoding a first polypeptide comprising an antibody heavy chain operably linked to a first signal sequence; a polyadenylation sequence which is complementary to the polyadenylation sequence,
wherein expression of the bicistronic expression cassette results in an antibody comprising the antibody heavy chain and the antibody light chain.
In certain embodiments, the transcriptional regulatory element comprises a promoter element selected from the group consisting of: human albumin promoter, human transthyretin (TTR) promoter, human thyroxine-binding globulin (TBG) promoter, human ApoH promoter, human SERPINA1 (hAAT) promoter and liver-specific regulatory modules thereof, such as human ApoE/C-I liver control region (HCR) 1 or 2.
In certain embodiments, the transcriptional regulatory element comprises a promoter element comprising a nucleic acid sequence at least 90% identical to a sequence selected from the group consisting of SEQ ID NOs 25, 27, 66, 68, 69, 116 and 117.
In certain embodiments, the transcriptional regulatory element comprises a nucleotide sequence that is at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 27. In certain embodiments, the transcriptional regulatory element comprises the nucleotide sequence set forth in SEQ ID NO 27. In certain embodiments, the nucleotide sequence of the transcriptional regulatory element consists of the nucleotide sequence set forth in SEQ ID NO. 27.
In certain embodiments, the transcriptional regulatory element comprises a nucleotide sequence that is at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 67. In certain embodiments, the transcriptional regulatory element comprises the nucleotide sequence set forth in SEQ ID NO. 67. In certain embodiments, the nucleotide sequence of the transcriptional regulatory element consists of the nucleotide sequence set forth in SEQ ID NO: 67.
In certain embodiments, the bicistronic expression cassette further comprises an intron element 5 'relative to the first coding sequence and/or the second coding sequence and 3' relative to the transcriptional regulatory element.
In certain embodiments, the intron element is an exogenous intron element, optionally wherein the exogenous intron element is an SV40 intron element or a mouse adenovirus (MVM) intron element.
In certain embodiments, the SV40 intron elements comprise a nucleotide sequence that is at least 90% identical to the nucleotide sequence depicted in SEQ ID NO. 29. In certain embodiments, the SV40 intron elements comprise the nucleotide sequence depicted in SEQ ID NO. 29. In certain embodiments, the nucleotide sequence of the SV40 intron element consists of the nucleotide sequence depicted in SEQ ID NO. 29.
In certain embodiments, the MVM intron elements comprise a nucleotide sequence at least 90% identical to the nucleotide sequence depicted in SEQ ID NO. 30. In certain embodiments, the MVM intron element comprises the nucleotide sequence depicted in SEQ ID NO. 30. In certain embodiments, the nucleotide sequence of the MVM intron element consists of the nucleotide sequence depicted in SEQ ID NO. 30.
In certain embodiments, the transcriptional regulatory element comprises:
a) HCR 1 element, hAAT promoter and SV40 intron element; or (b)
b) SERPINA1 liver-specific regulatory modules, TTR promoter, and MVM intron elements.
In certain embodiments, the transcriptional regulatory element comprises the nucleic acid sequence of SEQ ID NO. 50 or the nucleic acid sequence of SEQ ID NO. 43.
In certain embodiments, the polyadenylation sequence is an exogenous polyadenylation sequence, optionally wherein the exogenous polyadenylation sequence is an SV40 polyadenylation sequence or a Bovine Growth Hormone (BGH) polyadenylation sequence.
In certain embodiments, the SV40 polyadenylation sequence comprises a nucleotide sequence that is at least 90% identical to the nucleotide sequence depicted in SEQ ID NO. 31. In certain embodiments, the SV40 polyadenylation sequence comprises the nucleotide sequence shown in SEQ ID NO. 31. In certain embodiments, the nucleotide sequence of the SV40 polyadenylation sequence consists of the nucleotide sequence depicted in SEQ ID NO. 31.
In certain embodiments, the BGH polyadenylation sequence comprises a nucleotide sequence at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 33. In certain embodiments, the BGH polyadenylation sequence comprises the nucleotide sequence set forth in SEQ ID NO. 33. In certain embodiments, the nucleotide sequence of the BGH polyadenylation sequence consists of the nucleotide sequence set forth in SEQ ID NO. 33.
In certain embodiments, the first signal sequence and/or the second signal sequence is a naturally occurring signal sequence. In certain embodiments, the first signal sequence and/or the second signal sequence is an antibody signal sequence, optionally a human IgG2 or IgK signal sequence. In certain embodiments, the first signal sequence and/or the second signal sequence is a non-naturally occurring signal sequence. In certain embodiments, the first signal sequence and/or the second signal sequence comprises the amino acid sequence of SEQ ID NO. 80. In certain embodiments, the first signal sequence and/or the second signal sequence comprises the amino acid sequence of SEQ ID NO. 81. In certain embodiments, the first signal sequence comprises the amino acid sequence of SEQ ID NO. 80 and the second signal sequence comprises the amino acid sequence of SEQ ID NO. 81. In certain embodiments, the first coding sequence and/or the second coding sequence comprises any of the nucleic acid sequences set forth in SEQ ID NO. 23, 96, 102 or 108. In certain embodiments, the first coding sequence and/or the second coding sequence comprises any of the nucleic acid sequences set forth in SEQ ID NO. 24, 99, 105, 111 or 130. In certain embodiments, the first coding sequence comprises any of the nucleic acid sequences set forth in SEQ ID NO. 23, 96, 102 or 108 and the second coding sequence comprises any of the nucleic acid sequences set forth in SEQ ID NO. 24, 99, 105, 111 or 130.
In certain embodiments, the antibody specifically binds to complement C5.
In certain embodiments, the antibody heavy chain comprises the amino acid sequence of SEQ ID NO. 64. In certain embodiments, the antibody heavy chain comprises the amino acid sequence of SEQ ID NO. 82. In certain embodiments, the antibody light chain comprises the amino acid sequence of SEQ ID NO. 77.
In certain embodiments, the first coding sequence and/or the second coding sequence have been optimized for expression in human cells.
In certain embodiments, the first coding sequence comprises any of the nucleic acid sequences set forth in SEQ ID NOs 52, 113, 114 or 115.
In certain embodiments, the first coding sequence comprises any one of the nucleic acid sequences set forth in SEQ ID NO 83, 94, 95, 101 or 107.
In certain embodiments, the second coding sequence comprises any of the nucleic acid sequences set forth in SEQ ID NO 53, 98, 104, 110 or 131.
In certain embodiments, the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114 and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 53.
In certain embodiments, the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114 and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO: 63.
In certain embodiments, the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114 and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 98.
In certain embodiments, the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114 and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 99.
In certain embodiments, the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114 and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 100.
In certain embodiments, the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114 and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 104.
In certain embodiments, the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114 and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 105.
In certain embodiments, the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114 and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 106.
In certain embodiments, the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114 and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 110.
In certain embodiments, the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114 and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 111.
In certain embodiments, the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114 and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 112.
In certain embodiments, the rAAV genome is a single-stranded rAAV genome.
In certain embodiments, the rAAV genome is a self-complementary rAAV genome.
In certain embodiments, the rAAV genome comprises the nucleic acid sequence of SEQ ID NO. 84. In certain embodiments, the rAAV genome comprises the nucleic acid sequence of SEQ ID NO. 85. In certain embodiments, the rAAV genome comprises the nucleic acid sequence of SEQ ID NO. 86. In certain embodiments, the rAAV genome comprises the nucleic acid sequence of SEQ ID NO. 87.
In certain embodiments, the rAAV genome further comprises a 5 'inverted terminal repeat (5' itr) nucleotide sequence 5 'relative to the first polyadenylation sequence and a 3' inverted terminal repeat (3 'itr) nucleotide sequence 3' relative to the second polyadenylation sequence.
In certain embodiments, the 5'ITR nucleotide sequence is at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to the nucleotide sequence set forth in SEQ ID NO:14, and/or the 3' ITR nucleotide sequence is at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to the nucleotide sequence set forth in SEQ ID NO: 18.
In certain embodiments, the rAAV genome comprises the nucleic acid sequence of SEQ ID NO. 88. In certain embodiments, the rAAV genome comprises the nucleic acid sequence of SEQ ID NO. 89. In certain embodiments, the rAAV genome comprises the nucleic acid sequence of SEQ ID NO. 90. In certain embodiments, the rAAV genome comprises the nucleic acid sequence of SEQ ID NO. 91.
In another aspect, the present disclosure provides a recombinant adeno-associated virus (rAAV) comprising:
(a) AAV capsids, the AAV capsids comprising AAV capsid proteins; and
(b) The rAAV genome of any preceding embodiment.
In certain embodiments, the capsid protein is selected from the group consisting of: AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, and AAV9.
In certain embodiments, the AAV capsid protein comprises an amino acid sequence that is at least 95% identical to the amino acid sequence of amino acids 203-736 of SEQ ID NO. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16 or 17.
In certain embodiments, the amino acid in the capsid protein corresponding to amino acid 206 of SEQ ID NO. 16 is C; the amino acid in the capsid protein corresponding to amino acid 296 of SEQ ID NO. 16 is H; the amino acid in the capsid protein corresponding to amino acid 312 of SEQ ID NO. 16 is Q; the amino acid in the capsid protein corresponding to amino acid 346 of SEQ ID NO. 16 is A; the amino acid in the capsid protein corresponding to amino acid 464 of SEQ ID NO. 16 is N; the amino acid in the capsid protein corresponding to amino acid 468 of SEQ ID NO. 16 is S; the amino acid in the capsid protein corresponding to amino acid 501 of SEQ ID NO. 16 is I; the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 590 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is G or Y; the amino acid in the capsid protein corresponding to amino acid 681 of SEQ ID NO. 16 is M; the amino acid in the capsid protein corresponding to amino acid 687 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 690 of SEQ ID NO. 16 is K; the amino acid in the capsid protein corresponding to amino acid 706 of SEQ ID NO. 16 is C; or the amino acid in the capsid protein corresponding to amino acid 718 of SEQ ID NO. 16 is G.
In some embodiments of the present invention, in some embodiments,
(a) The amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is G and the amino acid in the capsid protein corresponding to amino acid 718 of SEQ ID NO. 16 is G;
(b) Amino acid corresponding to amino acid 296 of SEQ ID NO. 16 in the capsid protein is H, amino acid corresponding to amino acid 464 of SEQ ID NO. 16 in the capsid protein is N, amino acid corresponding to amino acid 505 of SEQ ID NO. 16 in the capsid protein is R, and amino acid corresponding to amino acid 681 of SEQ ID NO. 16 in the capsid protein is M;
(c) The amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R and the amino acid in the capsid protein corresponding to amino acid 687 of SEQ ID NO. 16 is R;
(d) The amino acid in the capsid protein corresponding to amino acid 346 of SEQ ID NO. 16 is A and the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R; or alternatively
(e) The amino acid corresponding to amino acid 501 of SEQ ID NO. 16 in the capsid protein is I, the amino acid corresponding to amino acid 505 of SEQ ID NO. 16 in the capsid protein is R, and the amino acid corresponding to amino acid 706 of SEQ ID NO. 16 in the capsid protein is C.
In certain embodiments, the capsid protein comprises the amino acid sequence of amino acids 203-736 of SEQ ID NOs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16 or 17.
In certain embodiments, the AAV capsid protein comprises an amino acid sequence at least 95% identical to the amino acid sequence of amino acids 138-736 of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16 or 17.
In certain embodiments, the amino acid in the capsid protein corresponding to amino acid 151 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 160 of SEQ ID NO. 16 is D; the amino acid in the capsid protein corresponding to amino acid 206 of SEQ ID NO. 16 is C; the amino acid in the capsid protein corresponding to amino acid 296 of SEQ ID NO. 16 is H; the amino acid in the capsid protein corresponding to amino acid 312 of SEQ ID NO. 16 is Q; the amino acid in the capsid protein corresponding to amino acid 346 of SEQ ID NO. 16 is A; the amino acid in the capsid protein corresponding to amino acid 464 of SEQ ID NO. 16 is N; the amino acid in the capsid protein corresponding to amino acid 468 of SEQ ID NO. 16 is S; the amino acid in the capsid protein corresponding to amino acid 501 of SEQ ID NO. 16 is I; the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 590 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is G or Y; the amino acid in the capsid protein corresponding to amino acid 681 of SEQ ID NO. 16 is M; the amino acid in the capsid protein corresponding to amino acid 687 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 690 of SEQ ID NO. 16 is K; the amino acid in the capsid protein corresponding to amino acid 706 of SEQ ID NO. 16 is C; or the amino acid in the capsid protein corresponding to amino acid 718 of SEQ ID NO. 16 is G.
In some embodiments of the present invention, in some embodiments,
(a) The amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is G and the amino acid in the capsid protein corresponding to amino acid 718 of SEQ ID NO. 16 is G;
(b) Amino acid corresponding to amino acid 296 of SEQ ID NO. 16 in the capsid protein is H, amino acid corresponding to amino acid 464 of SEQ ID NO. 16 in the capsid protein is N, amino acid corresponding to amino acid 505 of SEQ ID NO. 16 in the capsid protein is R, and amino acid corresponding to amino acid 681 of SEQ ID NO. 16 in the capsid protein is M;
(c) The amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R and the amino acid in the capsid protein corresponding to amino acid 687 of SEQ ID NO. 16 is R;
(d) The amino acid in the capsid protein corresponding to amino acid 346 of SEQ ID NO. 16 is A and the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R; or alternatively
(e) The amino acid corresponding to amino acid 501 of SEQ ID NO. 16 in the capsid protein is I, the amino acid corresponding to amino acid 505 of SEQ ID NO. 16 in the capsid protein is R, and the amino acid corresponding to amino acid 706 of SEQ ID NO. 16 in the capsid protein is C.
In certain embodiments, the capsid protein comprises the amino acid sequence of amino acids 138-736 of SEQ ID NOs 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16 or 17.
In certain embodiments, the AAV capsid protein comprises an amino acid sequence at least 95% identical to the amino acid sequence of amino acids 1-736 of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16 or 17.
In certain embodiments, the amino acid in the capsid protein corresponding to amino acid 2 of SEQ ID NO. 16 is T; the amino acid in the capsid protein corresponding to amino acid 65 of SEQ ID NO. 16 is I; the amino acid in the capsid protein corresponding to amino acid 68 of SEQ ID NO. 16 is V; the amino acid in the capsid protein corresponding to amino acid 77 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 119 of SEQ ID NO. 16 is L; the amino acid in the capsid protein corresponding to amino acid 151 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 160 of SEQ ID NO. 16 is D; the amino acid in the capsid protein corresponding to amino acid 206 of SEQ ID NO. 16 is C; the amino acid in the capsid protein corresponding to amino acid 296 of SEQ ID NO. 16 is H; the amino acid in the capsid protein corresponding to amino acid 312 of SEQ ID NO. 16 is Q; the amino acid in the capsid protein corresponding to amino acid 346 of SEQ ID NO. 16 is A; the amino acid in the capsid protein corresponding to amino acid 464 of SEQ ID NO. 16 is N; the amino acid in the capsid protein corresponding to amino acid 468 of SEQ ID NO. 16 is S; the amino acid in the capsid protein corresponding to amino acid 501 of SEQ ID NO. 16 is I; the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 590 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is G or Y; the amino acid in the capsid protein corresponding to amino acid 681 of SEQ ID NO. 16 is M; the amino acid in the capsid protein corresponding to amino acid 687 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 690 of SEQ ID NO. 16 is K; the amino acid in the capsid protein corresponding to amino acid 706 of SEQ ID NO. 16 is C; or the amino acid in the capsid protein corresponding to amino acid 718 of SEQ ID NO. 16 is G.
In some embodiments of the present invention, in some embodiments,
(a) The amino acid in the capsid protein corresponding to amino acid 2 of SEQ ID NO. 16 is T and the amino acid in the capsid protein corresponding to amino acid 312 of SEQ ID NO. 16 is Q;
(b) The amino acid in the capsid protein corresponding to amino acid 65 of SEQ ID NO. 16 is I and the amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is Y;
(c) The amino acid in the capsid protein corresponding to amino acid 77 of SEQ ID NO. 16 is R and the amino acid in the capsid protein corresponding to amino acid 690 of SEQ ID NO. 16 is K;
(d) The amino acid in the capsid protein corresponding to amino acid 119 of SEQ ID NO. 16 is L and the amino acid in the capsid protein corresponding to amino acid 468 of SEQ ID NO. 16 is S;
(e) The amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is G and the amino acid in the capsid protein corresponding to amino acid 718 of SEQ ID NO. 16 is G;
(f) Amino acid corresponding to amino acid 296 of SEQ ID NO. 16 in the capsid protein is H, amino acid corresponding to amino acid 464 of SEQ ID NO. 16 in the capsid protein is N, amino acid corresponding to amino acid 505 of SEQ ID NO. 16 in the capsid protein is R, and amino acid corresponding to amino acid 681 of SEQ ID NO. 16 in the capsid protein is M;
(g) The amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R and the amino acid in the capsid protein corresponding to amino acid 687 of SEQ ID NO. 16 is R;
(h) The amino acid in the capsid protein corresponding to amino acid 346 of SEQ ID NO. 16 is A and the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R; or alternatively
(i) The amino acid corresponding to amino acid 501 of SEQ ID NO. 16 in the capsid protein is I, the amino acid corresponding to amino acid 505 of SEQ ID NO. 16 in the capsid protein is R, and the amino acid corresponding to amino acid 706 of SEQ ID NO. 16 in the capsid protein is C.
In certain embodiments, the capsid protein comprises the amino acid sequence of amino acids 1-736 of SEQ ID NOs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16 or 17.
In one aspect, the present disclosure provides a polynucleotide comprising the nucleic acid sequence set forth in SEQ ID NOS.85-93.
In one aspect, the present disclosure provides a pharmaceutical composition comprising a rAAV as described above or a polynucleotide as described above.
In one aspect, the present disclosure provides a packaging system for preparing a rAAV, wherein the packaging system comprises:
(a) A first nucleotide sequence encoding one or more AAV Rep proteins;
(b) A second nucleotide sequence encoding a capsid protein of a rAAV as described above; and
(c) A third nucleotide sequence comprising a rAAV genomic sequence of a rAAV as described above.
In certain embodiments, the packaging system comprises a first vector comprising a first nucleotide sequence and a second nucleotide sequence, and a second vector comprising a third nucleotide sequence.
In certain embodiments, the packaging system further comprises a fourth nucleotide sequence comprising one or more helper virus genes. In certain embodiments, the fourth nucleotide sequence is included within the third vector. In certain embodiments, the fourth nucleotide sequence comprises one or more genes from a virus selected from the group consisting of: adenovirus, herpes virus, vaccinia virus and Cytomegalovirus (CMV).
In certain embodiments, the first vector, the second vector, and/or the third vector are plasmids.
In one aspect, the present disclosure provides a method for recombinantly producing an rAAV comprising introducing into a cell a packaging system described above under conditions whereby the rAAV is produced.
In another aspect, the disclosure provides a rAAV as described herein, a pharmaceutical composition as described herein, or a polynucleotide as described herein for use as a medicament.
In another aspect, the disclosure provides a rAAV as described above, a pharmaceutical composition as described above, or a polynucleotide as described above for use in treating a complement C5-associated disease.
In another aspect, the present disclosure provides a rAAV as described above, a pharmaceutical composition as described above, or a polynucleotide as described above for use in a method of treating a subject having a complement C5-associated disease, the method comprising administering to the subject an effective amount of the rAAV, pharmaceutical composition, or polynucleotide.
In one aspect, the present disclosure provides a method of producing an antibody in a subject, the method comprising administering to the subject a pharmaceutical composition described above.
In certain embodiments, the pharmaceutical composition is administered intravenously.
In one aspect, the present disclosure provides a method of treating a complement C5-associated disease in a subject in need thereof, the method comprising administering to the subject an effective amount of a rAAV described above, a pharmaceutical composition described above, or a polynucleotide described above.
In certain embodiments, the complement C5-associated disease is selected from the group consisting of: geographic Atrophy (GA), guillain-Barre syndrome (Guillain-Barre syndrome), myasthenia gravis, systemic Lupus Erythematosus (SLE) nephritis, proliferative nephritis, asthma, rheumatoid arthritis, sepsis, paroxysmal sleep hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), and age-related macular degeneration (AMD).
In certain embodiments, the rAAV, pharmaceutical composition, or polynucleotide is administered intravenously.
Drawings
FIG. 1 depicts a vector diagram of expression cassettes for rAAV vectors C5Ab01, C5Ab02, C5Ab03, and C5Ab 04.
Fig. 2A-2I depict graphs showing the concentration of anti-C5 antibodies in serum of NOD SCID mice receiving anti-C5 antibody expression vectors (C5 Ab02, C5Ab03, and C5Ab 04) packaged in AAVHSC13, AAVHSC15, or AAVHSC17 capsids. FIG. 2A depicts a graph showing anti-C5 antibody concentration in serum of mice receiving 1e13 vg/kg dose of vector C5Ab04 packaged in AAVHSC13 or AAVHSC17 capsids. Data from male and female mice were isolated and multiple serum samples were collected over a 23 week period. Fig. 2B depicts a graph showing the results in fig. 2A, with the Y-axis on a logarithmic scale. FIG. 2C depicts a graph showing anti-C5 antibody concentration in serum of mice receiving a 1e13 vg/kg dose of vector C5Ab02 packaged in AAVHSC17 capsid. Data from male and female mice were isolated and multiple serum samples were collected over a 16 week period. Fig. 2D depicts a graph showing the results in fig. 2C, with the Y-axis on a logarithmic scale. FIG. 2E depicts a graph showing anti-C5 antibody concentrations in serum of mice receiving 1E13 vg/kg doses of vector C5Ab02, C5Ab03, or C5Ab04 packaged in AAVHSC15 or AAVHSC17 capsids, respectively. Data from male mice are shown and multiple serum samples are collected over a 16 week period. Fig. 2F shows the results in fig. 2E depicted in a line graph format, and fig. 2G shows the results in fig. 2E depicted in a line graph format, with the Y-axis being on a logarithmic scale. FIG. 2H depicts a graph showing the concentration of anti-C5 antibodies in serum of mice receiving 5e11 vg/kg, 5e12 vg/kg, 1.4e13 vg/kg, 4.4e13 vg/kg, and 1.8e14 vg/kg of 5 doses of vector C5Ab04 packaged in AAVHSC17 capsids. Data from male mice are shown and multiple serum samples are collected over a 13 week period. Fig. 2I depicts a graph showing the results in fig. 2H, with the Y-axis on a logarithmic scale.
FIGS. 3A-3C depict graphs showing anti-C5 antibody concentration in serum of NOD SCID male mice receiving an anti-C5 antibody expression vector. The data were derived from fig. 2 above and ranked to compare vectors C5Ab02, C5Ab03 or C5Ab04 packaged in AAVHSC13, AAVHSC15 or AAVHSC17 capsids. FIG. 3A depicts a graph showing anti-C5 antibody concentration in serum of mice receiving a 1e13 vg/kg dose of vector C5Ab04 packaged in AAVHSC13 capsid. Fig. 3B depicts a graph showing anti-C5 antibody concentration in serum of mice that received a 1e13 vg/kg dose of vector C5Ab02, C5Ab03, or C5Ab04 packaged in AAVHSC15 capsids. Fig. 3C depicts a graph showing anti-C5 antibody concentration in serum of mice that received a 1e13 vg/kg dose of vector C5Ab02, C5Ab03, or C5Ab04 packaged in AAVHSC17 capsids.
Fig. 4A depicts a graph comparing predicted anti-C5 antibody concentrations in PNH patients receiving anti-C5 antibody eculizumab (eculizumab) and Lei Fuli bead mab (ravulizumab) long-term maintenance therapy with anti-C5 antibody concentrations measured in NOD SCID male and female mice using AAVHSC13 or AAVHSC17 capsids (data from fig. 2B). Fig. 4B depicts a graph comparing predicted anti-C5 antibody concentrations in PNH patients receiving anti-C5 antibodies eculizumab and Lei Fuli beadmab to anti-C5 antibody concentrations measured in NOD SCID and HuLiv mice using AAVHSC17 capsids (representative data from fig. 2A, 2I and 8B).
Figure 5 depicts a graph of% hemolysis of activated sheep Red Blood Cells (RBCs) at various concentrations of anti-C5 antibodies in an ex vivo hemolysis assay. anti-C5 control antibodies were compared to sera obtained from mice treated with AAVHSC 13-packaged C5Ab04 and AAVHSC 17-packaged C5Ab 04.
Fig. 6A depicts a plot of serum antibody concentration and fig. 6B depicts a plot of% hemolysis of activated sheep RBCs in an ex vivo hemolysis assay. Negative control mouse serum was compared to serum obtained from mice treated with AAVHSC 13-packaged C5Ab04 and AAVHSC 17-packaged C5Ab04 at 1 week, 3 weeks, 5 weeks, 7 weeks, and 9 weeks after each administration at a dose of 1e13 vgs/kg. Fig. 6C depicts a graph showing the results in fig. 6B, wherein% hemolysis is determined from serum samples obtained 19 weeks after administration and presented as a line graph. Fig. 6D depicts a graph of% hemolysis of activated sheep RBCs in an ex vivo hemolysis assay using serum obtained from mice treated with AAVHSC17 packaged C5Ab02 at a dose of 1e13 vg/kg. Fig. 6E depicts a graph of% hemolysis of activated sheep RBCs in an ex vivo hemolysis assay performed using serum obtained from mice treated with AAVHSC15 or AAVHSC17 packaged C5Ab02, C5Ab03, or C5Ab04, each at a dose of 1E13 vg/kg. FIG. 6F depicts a graph of% hemolysis of activated sheep RBC in an ex vivo hemolysis assay performed using serum obtained from mice treated with AAVHSC17 packaged C5Ab04 at doses of 5e11 vg/kg, 5e12 vg/kg, 1.4e13 vg/kg, 4.4e13 vg/kg, and 1.8e14 vg/kg. In fig. 6A-6F, data from male and female mice are isolated, and data in fig. 6E and 6F are from male mice.
Fig. 7A-7B depict graphs comparing: human C5 levels in serum of FRGKO humanized liver mice (hereinafter HuLiv, yecuris) and human C5 levels found in human serum in the background of C57Bl/6 (FRGC 57) or NOD (FRGNOD) (fig. 7A); and mouse C5 levels in serum of HuLiv mice in C57Bl6 or NOD background (fig. 7B). Frgc57_donor a represents a HuLiv mouse (n=3) with hepatocytes from patient donor a. Frgc57_donor B represents a HuLiv mouse (n=3) with hepatocytes from patient donor B. Nod_donor a represents HuLiv mice (n=9) from homologous NOD mice with hepatocytes from patient donor a.
FIG. 8A depicts a graph of serum antibody concentration of anti-C5 antibody in HuLiv mice of C5Ab04 packaged in AAVHSC17 capsids administered at a dose of 100 μg anti-C5 antibody (bio-mimetic pharmaceuticals) or 1e13 vg/kg or 1e14 vg/kg, in each case 0 week, 1 week, 3 weeks and 5 weeks after administration. In fig. 8A, PB indicates before blood drawing. Fig. 8B shows the data depicted in fig. 8A, wherein serum antibody concentrations were determined at week 11 after administration, presented as a line graph. FIG. 8C depicts a graph of% hemolysis of activated sheep RBC in an ex vivo hemolysis assay using serum obtained from mice administered 100 μg of anti-C5 antibody (bio-mimetic pharmaceutical) or a dose of 1e13 vg s/kg or 1e14 vg s/kg of C5Ab04 packaged in AAVHSC17 capsid. FIG. 8D depicts a graph showing the levels of mouse C5 detected in serum obtained from mice administered a single dose of 100 μg of anti-C5 antibody (biomimetic) or 1e13 vg/kg or 1e14 vg/kg of C5Ab04 packaged in AAVHSC17 capsid. Fig. 9A-9B depict western blots of human C5 levels in media of primary human and mouse hepatocytes transduced with C5Ab02, C5Ab03, or C5Ab04 packaged in AAVHSC15 or AAVHSC17 capsids (fig. 9A) and human IgG ELISA data (9B).
Detailed Description
Provided herein are rAAV genomes and rAAV for expressing antibodies (e.g., anti-C5 antibodies) in cells (e.g., hepatocytes), and methods of using the rAAV genomes and rAAV to treat disorders (e.g., disorders associated with C5 activity (e.g., paroxysmal sleep hemoglobinuria)). Nucleic acids, vectors, packaging systems, and methods for making rAAV are also provided.
I. Definition of the definition
As used herein, the term "recombinant adeno-associated virus" or "rAAV" refers to an AAV that includes a genome lacking functional rep and cap genes.
As used herein, the term "rAAV genome" refers to a nucleic acid molecule (e.g., DNA and/or RNA) that includes the genomic sequence of a rAAV. Those of skill in the art will appreciate that when the rAAV genome includes a transgene (e.g., an antibody heavy or light chain coding sequence operably linked to transcriptional regulatory elements), the rAAV genome may be in a sense or antisense orientation relative to the direction of transcription of the transgene.
As used herein, the term "AAV capsid protein" refers to an AAV VP1, VP2 or VP3 capsid protein.
As used herein, the "percent identity" between two nucleotide sequences or between two amino acid sequences is calculated by multiplying the number of matches between aligned pairs of sequences by 100 and dividing by the length of the aligned regions (including internal gaps). Identity scores only count perfect matches and do not take into account the degree of similarity of amino acids to each other. It should be noted that only internal gaps are included in length, and no gaps at the ends of the sequence are included.
As used herein, the term "coding sequence" refers to the portion of complementary DNA (cDNA) that encodes a polypeptide, beginning at the start codon and ending at the stop codon. Genes may have one or more coding sequences due to alternative splicing, alternative translation initiation, and changes within the population. The coding sequence may be wild-type, silenced, or intronic. Exemplary anti-C5 heavy chain coding sequences are shown in SEQ ID NOs 52 and 83. An exemplary anti-C5 light chain coding sequence is shown in SEQ ID NO. 53. The coding sequence may be codon optimized. Codon optimization may be performed to enhance expression of the coding sequence in a desired host cell (e.g., a human cell). Exemplary codon optimized anti-C5 heavy chain coding sequences are shown in SEQ ID NOs 94, 95, 101, 107, 113, 114 and 115. Exemplary codon optimized anti-C5 light chain coding sequences are shown in SEQ ID NOs 98, 104, 110 or 131.
In certain embodiments, two or more coding sequences (e.g., an antibody heavy chain coding sequence and an antibody light chain coding sequence) may be separated by a nucleotide sequence (e.g., a 2A peptide ribosome-hopping element) that encodes a peptide cleavage sequence. Exemplary 2A peptide cleavage sequences are shown in SEQ ID NO 28 or 125 (T2A peptide cleavage sequence) or 128 (P2A peptide cleavage sequence). The 2A peptide cleavage sequence may also include a furin cleavage sequence and a linker. Exemplary 2A peptide cleavage sequences having furin cleavage sequences and linkers are shown in SEQ ID NO:127 or 129.
As used herein, the term "polyadenylation sequence" refers to a DNA sequence that, when transcribed into RNA, constitutes a polyadenylation signal sequence. Polyadenylation sequences may be native or exogenous. The exogenous polyadenylation sequence may be a mammalian or viral polyadenylation sequence (e.g., bovine growth hormone polyadenylation sequence or SV40 polyadenylation sequence).
As used herein, the term "intron element" refers to a cis-acting nucleotide sequence, e.g., a DNA sequence, that modulates (e.g., controls, increases, or decreases) expression of a transgene. In certain embodiments, the intron element is a modified intron, e.g., a synthetic intron sequence. In certain embodiments, the intron element is an exogenous intron element and is derived from an intron for which the regulatable transgene is exogenous. In certain embodiments, the intron element comprises a modified splice acceptor and/or splice donor, resulting in more robust splice activity. While not wishing to be bound by theory, it is hypothesized that introns may increase transgene expression, for example, by reducing transcriptional silencing and enhancing mRNA export from the nucleus to the cytoplasm. The skilled artisan will appreciate that synthetic intron sequences may be designed to mediate RNA splicing by introducing any consensus splice motif known in the art (e.g., in Sibley et al, (2016) Nature comment: genetics, 17,407-21, incorporated herein by reference in its entirety). Exemplary intron sequences are provided in Lu et al, (2013) molecular therapy 21 (5): 954-63 and Lu et al, (2017) human Gene therapy 28 (1): 125-34, which are incorporated herein by reference in their entirety.
As used herein, the term "silenced change" refers to a change in the coding sequence of a gene (e.g., by nucleotide substitution) without changing the amino acid sequence of the polypeptide encoded by the coding sequence or the coding sequence inserted through a filler. Such silent alterations are advantageous in that they may increase the translational efficiency of the coding sequence and/or prevent recombination with the corresponding sequence of the endogenous gene when the coding sequence is transduced into a cell.
As used herein, the term "transcriptional regulatory element" or "TRE" refers to a cis-acting nucleotide sequence, e.g., a DNA sequence, that modulates (e.g., controls, increases, or decreases) transcription of an operably linked nucleotide sequence by an RNA polymerase to form an RNA molecule. TRE relies on one or more trans-acting molecules, such as transcription factors, to mediate transcription. Thus, a TRE can modulate transcription in different ways when it comes into contact with different trans-acting molecules (e.g., when it is located in different types of cells). The TRE may comprise one or more promoter elements and/or enhancer elements. Those skilled in the art will appreciate that promoter and enhancer elements in a gene may be located close together, and that the term "promoter" may refer to sequences that include promoter elements and enhancer elements. Thus, the term "promoter" does not exclude enhancer elements in a sequence. The promoter and enhancer elements need not be derived from the same gene or species, and the sequence of each promoter or enhancer element may be identical or substantially identical to the corresponding endogenous sequence in the genome.
As used herein, the term "operably linked" is used to describe a linkage between a TRE and a coding sequence to be transcribed. Typically, gene expression is under the control of a TRE that includes one or more promoter and/or enhancer elements. A coding sequence is "operably linked" to a TRE if the transcription of the coding sequence is controlled or effected by the TRE. The promoter and enhancer elements of the TRE may be any orientation and/or distance from the coding sequence so long as the desired transcriptional activity is obtained. In certain embodiments, the TRE is located upstream of the coding sequence.
In the present disclosure, a nucleotide position in an antibody coding sequence (e.g., an antibody heavy chain coding sequence or an antibody light chain coding sequence) is specified relative to a first nucleotide of a start codon. The first nucleotide of the start codon is position 1; nucleotides 5' relative to the first nucleotide of the start codon have a negative number; the nucleotide at 3' relative to the first nucleotide of the start codon has a positive number.
As used herein, the term "expression cassette" refers to a polynucleotide sequence that includes, from 5 'to 3', transcription Regulatory Elements (TREs), coding sequences encoding polypeptides, and polyadenylation sequences. In certain embodiments, an intron is present between the TRE and the coding sequence. In certain embodiments, the coding sequence encodes an antibody heavy chain or an antibody light chain.
As used herein, the term "effective amount" in the context of administration of AAV to a subject refers to the amount of AAV that achieves a desired prophylactic or therapeutic effect.
As used herein, the term "about" or "approximately" when referring to measurable values such as the expression level of an antibody (e.g., antibody heavy and antibody light chains) encompasses variations of ±20% or ±10%, of ±5%, of ±1% or of ±0.1% of a given value or range, as appropriate for performing the methods disclosed herein.
Adeno-associated virus compositions
In one aspect, provided herein are novel rAAV genomes comprising a Transcription Regulatory Element (TRE) operably linked to at least a portion of an antibody coding sequence (e.g., an anti-C5 antibody heavy chain coding sequence and/or an anti-C5 antibody light chain coding sequence). The rAAV genomes provided herein can be used for extrachromosomal expression of antibodies in cells comprising the rAAV genomes.
The rAAV genome can be used to express an antibody in any mammalian cell (e.g., a human cell). Thus, the TRE may be active in any mammalian cell (e.g., human cell). In certain embodiments, the TRE is active in a wide range of human cells. Such TREs can include constitutive promoter and/or enhancer elements comprising a Cytomegalovirus (CMV) promoter/enhancer (e.g., comprising a sequence identical to SEQ ID NO:54, 55, or 56, at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical), SV40 promoter, chicken ACTB promoter (e.g., comprising a nucleotide sequence identical to SEQ ID NO:47 or 57 at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical nucleotide sequence), jeT promoter (e.g., comprising a nucleotide sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical nucleotide sequence to SEQ ID NO: 58), smCBA promoter (e.g., comprising a nucleotide sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical nucleotide sequence to SEQ ID NO: 59), human elongation factor 1 α (1 α) promoter (e.g., comprising at least 80%, 81%, 82%, 83%, 84%, 85%, 86% or 100% amino acid sequence of SEQ ID NO:39 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical), a mouse adenovirus (MVM) intron comprising a transcription factor binding site (e.g., comprising a nucleotide sequence identical to SEQ ID NO:30 or 61, at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical nucleotide sequence), a human phosphoglycerate kinase (PGK 1) promoter, a human ubiquitin C (Ubc) promoter, a human beta actin promoter, a human neuron-specific enolase (ENO 2) promoter, a human beta-Glucuronidase (GUSB) promoter, a rabbit beta-globin element (e.g., comprising a nucleotide sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical nucleotide sequence to SEQ ID NO: 41), a human calmodulin 1 (CALM 1) promoter (e.g., comprising a nucleotide sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 92%, 94%, 96%, 97%, 96%, 99% or 100% identical to SEQ ID NO: 44%, or a methyl 2% promoter). Any of these TREs may be combined in any order to drive efficient transcription. For example, the rAAV genome can include a CMV enhancer, a CBA promoter, and a splice acceptor from exon 3 of the rabbit β -globin gene, collectively referred to as the CAG promoter (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 42). For example, the rAAV genome can include a hybrid of a CMV enhancer and a CBA promoter, followed by a splice donor and splice acceptor, collectively referred to as CASI promoter regions (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:48 or 65).
Alternatively, the TRE may be a tissue specific TRE, i.e. it is active in a specific tissue and/or organ. The tissue-specific TRE comprises one or more tissue-specific promoter and/or enhancer elements, and optionally one or more constitutive promoter and/or enhancer elements. Those of skill in the art will appreciate that tissue-specific promoter and/or enhancer elements may be isolated from genes specifically expressed in tissue by methods well known in the art.
In certain embodiments, the TRE is liver-specific (e.g., hepatocyte-specific). An exemplary liver-specific TRE may comprise one or more elements selected from the group consisting of: human albumin promoter, human transthyretin (TTR) promoter (e.g., comprising a sequence identical to SEQ ID NO:66 at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical), human APOE/C-I liver control region (HCR) 1 (e.g., comprising a nucleotide sequence identical to SEQ ID NO:25 or 68, or a liver-specific regulatory module thereof (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical), a human APOH promoter, and a human SERPINA1 (hAAT) promoter (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:71, at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%). In certain embodiments, the hAAT promoter region comprises a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID NO. 72. In certain embodiments, the liver-specific TRE comprises a TBG SERPINA7 promoter as described in Yan et al (Gene 2016) 506,289-294) (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID NO: 116). In certain embodiments, the liver-specific TRE comprises a TBG SERPINA7 promoter (e.g., comprising a nucleotide sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID NO: 117) as described in Hayashi et al (molecular endocrine (1993) 7 (8), 1049-1060). In certain embodiments, the liver-specific TRE comprises the hAAT SERPINA1 promoter (e.g., comprising a nucleotide sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID NO: 118) as described in Hafenrich et al (blood (1994) 84 (10), 3394-3404). In certain embodiments, the liver-specific TRE comprises a TTR promoter (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID NO: 119) as described in Costa et al (molecular and cellular biology (1988) 8 (1), 81-90). In certain embodiments, the liver-specific TRE comprises an ApoA2 promoter (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID NO: 120) as described in Kan et al (nucleic acids research (1999) 27 (4), 1104-1117). In certain embodiments, the liver-specific TRE comprises an albumin promoter (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID No. 121) as described in Tang et al (biomedical report (2017) 6,627-632). In certain embodiments, the liver-specific TRE comprises a modified fibrinogen promoter (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID No. 122) as described in kyrelation-Moore et al (molecular therapy (2016) 3,16006). In certain embodiments, the liver-specific TRE comprises a minimal human APOE/C-I liver control region (HCR) 1 promoter (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID NO: 123) as described in Dang et al (journal of biochemistry (1995) 270 (38), 22557-85). In certain embodiments, the liver-specific TRE comprises a human APOE/C-I liver control region (HCR) 2 promoter (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 124) as described in Allan et al (journal of biochemistry (1995) 270 (44), 26278-81). Further liver-specific promoter elements are disclosed in WO 2009/130208 and Kramer et al (molecular therapy (2003) 7,375-385), which are incorporated herein by reference in their entirety.
In certain embodiments, the rAAV genome comprises two or more TREs, optionally comprising at least one of the TREs disclosed above. Those skilled in the art will appreciate that any of these TREs may be combined in any order, and that the combination of a constitutive TRE and a tissue-specific TRE may drive efficient and tissue-specific transcription. For example, in certain embodiments, the rAAV genome comprises human HCR1 (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:25, 68, or 123) and a human EF-1 a promoter (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 39), optionally wherein the human HCR1 is 5' relative to the human EF-1 a promoter. In certain embodiments, the rAAV genome comprises a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to a sequence nucleotide set forth in SEQ ID NO. 60.
Similarly, a combination of two or more tissue-specific TREs can drive efficient and tissue-specific transcription. For example, in certain embodiments, the rAAV genome comprises human HCR1 (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:25, 68, or 123) and an hAAT promoter (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 26), optionally wherein the human HCR1 is 5' relative to the hAAT promoter. In certain embodiments, the rAAV genome comprises a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the nucleotide sequence set forth in SEQ ID NO. 27. In certain embodiments, the rAAV genome comprises a human HCR1 (e.g., comprising the nucleotide sequence set forth in SEQ ID NO: 25) and an hAAT promoter (e.g., comprising the nucleotide sequence set forth in SEQ ID NO: 26), optionally wherein the human HCR1 is at 5' relative to the hAAT promoter. In certain embodiments, the rAAV genome comprises the nucleotide sequence depicted in SEQ ID NO. 27.
In certain embodiments, the rAAV genome comprises a hAAT promoter (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 71) and a human TTR promoter (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 66), optionally wherein the liver-specific regulatory module is 5' relative to the human TTR promoter. In certain embodiments, the rAAV genome comprises a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the nucleotide sequence set forth in SEQ ID NO. 67. In certain embodiments, the rAAV genome comprises a liver-specific regulatory module comprising an hAAT promoter (e.g., comprising the nucleotide sequence set forth in SEQ ID NO: 71) and a human TTR promoter (e.g., comprising the nucleotide sequence set forth in SEQ ID NO: 66), optionally wherein the liver-specific regulatory module is 5' relative to the human TTR promoter. In certain embodiments, the rAAV genome comprises the nucleotide sequence depicted in SEQ ID NO. 67.
In certain embodiments, the rAAV genome further comprises an intron element 5' relative to at least a portion of an antibody coding sequence. Such intron elements may increase transgene expression, for example, by reducing transcriptional silencing and enhancing export of mRNA from the nucleus to the cytoplasm. In certain embodiments, the rAAV genome comprises, from 5 'to 3': TRE, intron elements, and at least a portion of an antibody coding sequence.
The intronic elements may comprise at least a portion of a natural intronic sequence of an immunoglobulin gene, or the intronic elements may be exogenous intronic elements (e.g., at least comprise intronic sequences from different species or different genes from the same species, and/or synthetic intronic sequences). In certain embodiments, the intronic element is an exogenous intronic element comprising at least a portion of an intronic sequence from a different species. In certain embodiments, the intronic element is an exogenous intronic element comprising at least a portion of an intronic sequence of a different gene from the same species. In certain embodiments, the intron element is an exogenous intron element comprising a synthetic intron sequence. In certain embodiments, the intronic elements are exogenous intronic elements comprising at least intronic sequences from different species or a combination of different genes from the same species and/or synthetic intronic sequences.
The skilled artisan will appreciate that intronic elements may be designed to mediate RNA splicing by introducing any consensus splice motif known in the art (e.g., in Sibley et al, (2016) Nature comment: genetics, 17,407-21, incorporated herein by reference in its entirety). Exemplary intron sequences are provided in Lu et al, (2013) molecular therapy 21 (5): 954-63 and Lu et al, (2017) human Gene therapy 28 (1): 125-34, which are incorporated herein by reference in their entirety.
In certain embodiments, the rAAV genome comprises exogenous intron elements. In certain embodiments, a rAAV comprises an SV40 intron element (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 29), a mouse picovirus (MVM) intron (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:30 or 61), or a synthetic intron (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 45). In certain embodiments, the rAAV genome comprises an SV40 intron element (e.g., comprising the nucleotide sequence depicted in SEQ ID NO: 29) or a mouse picornavirus (MVM) intron element (e.g., comprising the nucleotide sequences depicted in SEQ ID NO:30 and 61) or a synthetic intron (e.g., comprising the nucleotide sequence depicted in SEQ ID NO: 45).
In certain embodiments, the rAAV genome comprises, from 5 'to 3': TRE and intron elements. In certain embodiments, the combined TRE and intron element has at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to SEQ ID No. 43 or 50. In certain embodiments, the combined TRE and intron elements comprise the nucleotide sequence of SEQ ID NO. 43 or 50. In certain embodiments, the combined TRE and intron elements consist of the nucleotide sequence of SEQ ID NO. 43 or 50.
In certain embodiments, a rAAV genome disclosed herein further comprises a transcription terminator (e.g., a polyadenylation sequence). In certain embodiments, the transcription terminator is 3' relative to at least a portion of the antibody coding sequence. The transcription terminator may be any sequence effective to terminate transcription, and those skilled in the art will appreciate that such sequences may be isolated from any gene expressed in a cell in which transcription of at least a portion of the antibody coding sequence is desired. In certain embodiments, the transcription terminator comprises a polyadenylation sequence. In certain embodiments, the polyadenylation sequence is identical or substantially identical to the endogenous polyadenylation sequence of the immunoglobulin gene. In certain embodiments, the polyadenylation sequence is an exogenous polyadenylation sequence. In certain embodiments, the polyadenylation sequence is an SV40 polyadenylation sequence (e.g., comprising a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to, or complementary to, SEQ ID NO:31, 34, or 35). In certain embodiments, the polyadenylation sequence comprises the nucleotide sequence shown in SEQ ID NO. 31. In certain embodiments, the polyadenylation sequence consists of the nucleotide sequence set forth in SEQ ID NO. 31. In certain embodiments, the polyadenylation sequence is a Bovine Growth Hormone (BGH) polyadenylation sequence (e.g., comprising a nucleotide sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to, or complementary to, SEQ ID NO: 33). In certain embodiments, the polyadenylation sequence comprises the nucleotide sequence set forth in SEQ ID NO. 32. In certain embodiments, the polyadenylation sequence consists of the nucleotide sequence set forth in SEQ ID NO. 32.
In certain embodiments, the rAAV genome comprises, from 5 'to 3': TRE, intron elements, at least a portion of an antibody coding sequence, and a polyadenylation sequence. In certain embodiments, the TRE has at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity with any one of SEQ ID NOs 25-27, 36, 39, 44, 46-49, 54-60 or 65-72; the intron element has at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to SEQ ID No. 29, 30 or 61; at least a portion of the antibody coding sequence has at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to SEQ ID NOs 52, 53, 62, 63, 83, 94, 95, 97, 98, 100, 101, 103, 104, 106, 107, 109, 110, 112, 113, 114, 115, 131 and 132; and/or the polyadenylation sequence has at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to any of SEQ ID NOs 31, 33, 34 or 35.
In certain embodiments, the TRE comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 25-27, 36, 39, 42, 44, 46-49, 54-60 and 65-72; the intron elements include a nucleotide sequence selected from the group consisting of SEQ ID NOs 29, 30 and 61; at least a portion of the antibody coding sequence comprises the nucleotide sequence set forth in SEQ ID NO. 52; and/or the polyadenylation sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 31, 33, 34 and 35.
In certain embodiments, the TRE comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 25-27, 36, 39, 42, 44, 46-49, 54-60 and 65-72; the intron elements include a nucleotide sequence selected from the group consisting of SEQ ID NOs 29, 30 and 61; at least a portion of the antibody coding sequence comprises the nucleotide sequence set forth in SEQ ID NO. 53; and/or the polyadenylation sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 31, 33, 34 and 35.
In certain embodiments, the TRE comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 25-27, 36, 39, 42, 44, 46-49, 54-60 and 65-72; the intron elements include a nucleotide sequence selected from the group consisting of SEQ ID NOs 29, 30 and 61; at least a portion of the antibody coding sequence comprises the nucleotide sequence set forth in SEQ ID NO. 62; and/or the polyadenylation sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 31, 33, 34 and 35.
In certain embodiments, the TRE comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 25-27, 36, 39, 42, 44, 46-49, 54-60 and 65-72; the intron elements include a nucleotide sequence selected from the group consisting of SEQ ID NOs 29, 30 and 61; at least a portion of the antibody coding sequence comprises the nucleotide sequence set forth in SEQ ID NO. 63; and/or the polyadenylation sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 31, 33, 34 and 35.
In certain embodiments, the TRE comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 25-27, 36, 39, 42, 44, 46-49, 54-60 and 65-72; the intron elements include a nucleotide sequence selected from the group consisting of SEQ ID NOs 29, 30 and 61; at least a portion of the antibody coding sequence comprises the nucleotide sequence set forth in SEQ ID NO. 83; and/or the polyadenylation sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 31, 33, 34 and 35.
In certain embodiments, the TRE comprises or consists of the nucleotide sequence set forth in SEQ ID NO. 25, 26 or 27; the intron element comprises or consists of the nucleotide sequence shown in SEQ ID NO. 29; at least a portion of the antibody coding sequence comprises or consists of the nucleotide sequence set forth in SEQ ID NO. 52; and/or the polyadenylation sequence comprises or consists of the nucleotide sequence shown in SEQ ID NO. 33.
In certain embodiments, the TRE comprises or consists of the nucleotide sequence set forth in SEQ ID NO. 25, 26 or 27; the intron element comprises or consists of the nucleotide sequence shown in SEQ ID NO. 29; at least a portion of the antibody coding sequence comprises or consists of the nucleotide sequence set forth in SEQ ID NO. 62; and/or the polyadenylation sequence comprises or consists of the nucleotide sequence shown in SEQ ID NO. 33.
In certain embodiments, the TRE comprises or consists of the nucleotide sequence set forth in SEQ ID NO. 25, 26 or 27; the intron element comprises or consists of the nucleotide sequence shown in SEQ ID NO. 29; at least a portion of the antibody coding sequence comprises or consists of the nucleotide sequence set forth in SEQ ID NO. 83; and/or the polyadenylation sequence comprises or consists of the nucleotide sequence shown in SEQ ID NO. 33.
In certain embodiments, the TRE comprises or consists of the nucleotide sequence set forth in SEQ ID NO. 66, 67 or 71; the intron element comprises or consists of the nucleotide sequence shown in SEQ ID NO. 30 or 61; at least a portion of the antibody coding sequence comprises or consists of the nucleotide sequence set forth in SEQ ID NO. 53; and/or the polyadenylation sequence comprises or consists of the nucleotide sequence shown in SEQ ID NO. 31.
In certain embodiments, the TRE comprises or consists of the nucleotide sequence set forth in SEQ ID NO. 66, 67 or 71; the intron element comprises or consists of the nucleotide sequence shown in SEQ ID NO. 30 or 61; at least a portion of the antibody coding sequence comprises or consists of the nucleotide sequence set forth in SEQ ID NO. 63; and/or the polyadenylation sequence comprises or consists of the nucleotide sequence shown in SEQ ID NO. 31.
In certain embodiments, the rAAV genome comprises a nucleotide sequence that is at least 80% (e.g., at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.5%) identical to SEQ ID NO 88, 89, 90, or 91. In certain embodiments, the rAAV genome comprises a nucleotide sequence depicted in SEQ ID NO. 88, 89, 90, or 91. In certain embodiments, the rAAV genome consists of the nucleotide sequence depicted in SEQ ID NO 88, 89, 90 or 91.
In certain embodiments, the rAAV genome comprises a nucleotide sequence that is at least 80% (e.g., at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.5%) identical to SEQ ID No. 88. In certain embodiments, the rAAV genome comprises the nucleotide sequence depicted in SEQ ID NO. 88. In certain embodiments, the rAAV genome consists of the nucleotide sequence depicted in SEQ ID NO. 88.
In certain embodiments, the rAAV genome comprises a nucleotide sequence that is at least 80% (e.g., at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.5%) identical to SEQ ID No. 89. In certain embodiments, the rAAV genome comprises the nucleotide sequence depicted in SEQ ID NO. 89. In certain embodiments, the rAAV genome consists of the nucleotide sequence depicted in SEQ ID NO. 89.
In certain embodiments, the rAAV genome comprises a nucleotide sequence that is at least 80% (e.g., at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.5%) identical to SEQ ID NO: 90. In certain embodiments, the rAAV genome comprises the nucleotide sequence depicted in SEQ ID NO. 90. In certain embodiments, the rAAV genome consists of the nucleotide sequence depicted in SEQ ID NO. 90.
In certain embodiments, the rAAV genome comprises a nucleotide sequence that is at least 80% (e.g., at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.5%) identical to SEQ ID NO. 91. In certain embodiments, the rAAV genome comprises the nucleotide sequence depicted in SEQ ID NO. 91. In certain embodiments, the rAAV genome consists of the nucleotide sequence depicted in SEQ ID NO. 91.
In certain embodiments, the rAAV genomes disclosed herein further comprise a 5 'inverted terminal repeat (5' itr) nucleotide sequence at 5 'relative to the TRE, and a 3' inverted terminal repeat (3 'itr) nucleotide sequence at 3' relative to a polyadenylation sequence associated with the antibody light chain coding sequence. ITR sequences from any AAV serotype or variant thereof can be used in the rAAV genomes disclosed herein. The 5 'and 3' ITRs may be from AAVs of the same serotype or from AAVs of different serotypes. Exemplary ITRs for use in the rAAV genomes disclosed herein are shown in SEQ ID NOs 14, 18, 19, 20, 21 and 32 herein.
In certain embodiments, the 5'itr or 3' itr is from AAV2. In certain embodiments, both the 5'itr and the 3' itr are from AAV2. In certain embodiments, the 5'ITR nucleotide sequence has at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to SEQ ID NO:14, or the 3' ITR nucleotide sequence has at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to SEQ ID NO: 18. In certain embodiments, the 5'ITR nucleotide sequence has at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to SEQ ID NO:14, and the 3' ITR nucleotide sequence has at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to SEQ ID NO: 18. In certain embodiments, the rAAV genome comprises the nucleotide sequence depicted in SEQ ID NO. 43, the 5'ITR nucleotide sequence has the sequence of SEQ ID NO. 14, and the 3' ITR nucleotide sequence has the sequence of SEQ ID NO. 18.
In certain embodiments, the 5'itr or 3' itr is from AAV5. In certain embodiments, both the 5'itr and the 3' itr are from AAV5. In certain embodiments, the 5'ITR nucleotide sequence has at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to SEQ ID NO:20, or the 3' ITR nucleotide sequence has at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to SEQ ID NO: 21. In certain embodiments, the 5'ITR nucleotide sequence has at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to SEQ ID NO:20, and the 3' ITR nucleotide sequence has at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to SEQ ID NO: 21. In certain embodiments, the rAAV genome comprises a nucleotide sequence depicted in any one of SEQ ID NO. 43, a 5'ITR nucleotide sequence having the sequence of SEQ ID NO. 20, and a 3' ITR nucleotide sequence having the sequence of SEQ ID NO. 21.
In certain embodiments, the 5'itr nucleotide sequence and the 3' itr nucleotide sequence are substantially complementary to each other (e.g., complementary to each other except for mismatches at 1, 2, 3, 4, or 5 nucleotide positions in the 5 'or 3' itr).
In certain embodiments, the 5'ITR or 3' ITR is modified to reduce or eliminate degradation by Rep proteins ("non-cleavable ITR"). In certain embodiments, the non-cleavable ITR comprises an insertion, deletion, or substitution in the nucleotide sequence of the terminal cleavage site. Such modifications allow the formation of a self-complementary double-stranded DNA genome of AAV after replication of the rAAV genome in an infected cell. Exemplary non-cleavable ITR sequences are known in the art (see, e.g., the sequences provided in U.S. patent nos. 7,790,154 and 9,783,824, which are incorporated herein by reference in their entirety). In certain embodiments, the 5' ITR comprises a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID NO. 19. In certain embodiments, the 5' ITR consists of a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID NO. 19. In certain embodiments, the 5' ITR consists of the nucleotide sequence set forth in SEQ ID NO. 19. In certain embodiments, the 3' ITR comprises a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID NO. 32. In certain embodiments, the 5' ITR consists of a nucleotide sequence that is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID NO. 32. In certain embodiments, the 3' ITR consists of the nucleotide sequence set forth in SEQ ID NO. 32. In certain embodiments, the 5'ITR consists of the nucleotide sequence set forth in SEQ ID NO. 19 and the 3' ITR consists of the nucleotide sequence set forth in SEQ ID NO. 32. In certain embodiments, the 5'ITR consists of the nucleotide sequence set forth in SEQ ID NO. 19 and the 3' ITR consists of the nucleotide sequence set forth in SEQ ID NO. 32.
In certain embodiments, the 5' itr flanks an additional nucleotide sequence derived from a wild-type AAV2 genomic sequence. In certain embodiments, the 5' ITR flanks an additional 46bp sequence in the AAV2 genome that is adjacent to the wild-type AAV2 ITR that is derived from the wild-type AAV2 sequence. In certain embodiments, the additional 46bp sequence is 3 'relative to the 5' itr in the rAAV genome. In certain embodiments, the 46bp sequence consists of the nucleotide sequence set forth in SEQ ID NO. 74.
In certain embodiments, the 3' itr flanks an additional nucleotide sequence derived from a wild-type AAV2 genomic sequence. In certain embodiments, the 3' ITR flanks an additional 37bp sequence in the AAV2 genome that is adjacent to the wild-type AAV2 ITR that is derived from the wild-type AAV2 sequence. See, e.g., savy et al, methods of human Gene therapy (Human Gene Therapy Methods) (2017) 28 (5): 277-289, which is incorporated herein by reference in its entirety. In certain embodiments, the additional 37bp sequence is 5 'relative to the 3' itr in the rAAV genome. In certain embodiments, the 37bp sequence consists of the nucleotide sequence set forth in SEQ ID NO. 73.
In another aspect, provided herein are polynucleotides comprising a nucleic acid sequence that is at least 80% (e.g., at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) identical to a nucleic acid sequence set forth in SEQ ID No. 84, 85, 86, or 87. In certain embodiments, the polynucleotide comprises or consists of the nucleic acid sequence set forth in SEQ ID NO. 84, 85, 86 or 87.
In another aspect, provided herein are novel rAAV compositions comprising an AAV capsid protein, a rAAV genome as disclosed herein (e.g., a rAAV genome comprising transcriptional regulatory elements operably linked to antibody coding sequences (e.g., antibody heavy chain or light chain coding sequences), thereby allowing for extrachromosomal expression of an antibody in a cell transduced with AAV.
Capsid proteins from any AAV capsid known in the art may be used in the rAAV compositions disclosed herein, including but not limited to capsid proteins from AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, or AAV9 serotypes. For example, in certain embodiments, a capsid protein comprises an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to the amino acid sequence of amino acids 203-736 of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16 or 17. In certain embodiments, a capsid protein comprises an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to the amino acid sequence of amino acids 203-736 of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16 or 17, wherein: the amino acid in the capsid protein corresponding to amino acid 206 of SEQ ID NO. 16 is C; the amino acid in the capsid protein corresponding to amino acid 296 of SEQ ID NO. 16 is H; the amino acid in the capsid protein corresponding to amino acid 312 of SEQ ID NO. 16 is Q; the amino acid in the capsid protein corresponding to amino acid 346 of SEQ ID NO. 16 is A; the amino acid in the capsid protein corresponding to amino acid 464 of SEQ ID NO. 16 is N; the amino acid in the capsid protein corresponding to amino acid 468 of SEQ ID NO. 16 is S; the amino acid in the capsid protein corresponding to amino acid 501 of SEQ ID NO. 16 is I; the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 590 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is G or Y; the amino acid in the capsid protein corresponding to amino acid 681 of SEQ ID NO. 16 is M; the amino acid in the capsid protein corresponding to amino acid 687 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 690 of SEQ ID NO. 16 is K; the amino acid in the capsid protein corresponding to amino acid 706 of SEQ ID NO. 16 is C; or the amino acid in the capsid protein corresponding to amino acid 718 of SEQ ID NO. 16 is G. In certain embodiments, the amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is G and the amino acid in the capsid protein corresponding to amino acid 718 of SEQ ID NO. 16 is G. In certain embodiments, the amino acid corresponding to amino acid 296 of SEQ ID NO. 16 in the capsid protein is H, the amino acid corresponding to amino acid 464 of SEQ ID NO. 16 in the capsid protein is N, the amino acid corresponding to amino acid 505 of SEQ ID NO. 16 in the capsid protein is R, and the amino acid corresponding to amino acid 681 of SEQ ID NO. 16 in the capsid protein is M. In certain embodiments, the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R and the amino acid in the capsid protein corresponding to amino acid 687 of SEQ ID NO. 16 is R. In certain embodiments, the amino acid in the capsid protein corresponding to amino acid 346 of SEQ ID NO. 16 is A and the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R. In certain embodiments, the amino acid corresponding to amino acid 501 of SEQ ID NO. 16 in the capsid protein is I, the amino acid corresponding to amino acid 505 of SEQ ID NO. 16 in the capsid protein is R, and the amino acid corresponding to amino acid 706 of SEQ ID NO. 16 in the capsid protein is C. In certain embodiments, the capsid protein comprises the amino acid sequence of amino acids 203-736 of SEQ ID NOs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16 or 17.
For example, in certain embodiments, a capsid protein comprises an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to the amino acid sequence of amino acids 138-736 of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16 or 17. In certain embodiments, a capsid protein comprises an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to the amino acid sequence of amino acids 138-736 of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16 or 17, wherein: the amino acid in the capsid protein corresponding to amino acid 151 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 160 of SEQ ID NO. 16 is D; the amino acid in the capsid protein corresponding to amino acid 206 of SEQ ID NO. 16 is C; the amino acid in the capsid protein corresponding to amino acid 296 of SEQ ID NO. 16 is H; the amino acid in the capsid protein corresponding to amino acid 312 of SEQ ID NO. 16 is Q; the amino acid in the capsid protein corresponding to amino acid 346 of SEQ ID NO. 16 is A; the amino acid in the capsid protein corresponding to amino acid 464 of SEQ ID NO. 16 is N; the amino acid in the capsid protein corresponding to amino acid 468 of SEQ ID NO. 16 is S; the amino acid in the capsid protein corresponding to amino acid 501 of SEQ ID NO. 16 is I; the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 590 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is G or Y; the amino acid in the capsid protein corresponding to amino acid 681 of SEQ ID NO. 16 is M; the amino acid in the capsid protein corresponding to amino acid 687 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 690 of SEQ ID NO. 16 is K; the amino acid in the capsid protein corresponding to amino acid 706 of SEQ ID NO. 16 is C; or the amino acid in the capsid protein corresponding to amino acid 718 of SEQ ID NO. 16 is G. In certain embodiments, the amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is G and the amino acid in the capsid protein corresponding to amino acid 718 of SEQ ID NO. 16 is G. In certain embodiments, the amino acid corresponding to amino acid 296 of SEQ ID NO. 16 in the capsid protein is H, the amino acid corresponding to amino acid 464 of SEQ ID NO. 16 in the capsid protein is N, the amino acid corresponding to amino acid 505 of SEQ ID NO. 16 in the capsid protein is R, and the amino acid corresponding to amino acid 681 of SEQ ID NO. 16 in the capsid protein is M. In certain embodiments, the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R and the amino acid in the capsid protein corresponding to amino acid 687 of SEQ ID NO. 16 is R. In certain embodiments, the amino acid in the capsid protein corresponding to amino acid 346 of SEQ ID NO. 16 is A and the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R. In certain embodiments, the amino acid corresponding to amino acid 501 of SEQ ID NO. 16 in the capsid protein is I, the amino acid corresponding to amino acid 505 of SEQ ID NO. 16 in the capsid protein is R, and the amino acid corresponding to amino acid 706 of SEQ ID NO. 16 in the capsid protein is C. In certain embodiments, the capsid protein comprises the amino acid sequence of amino acids 138-736 of SEQ ID NOs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16 or 17.
For example, in certain embodiments, a capsid protein comprises an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to the amino acid sequence of amino acids 1-736 of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16 or 17. In certain embodiments, a capsid protein comprises an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to the amino acid sequence of amino acids 1-736 of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16 or 17, wherein: the amino acid in the capsid protein corresponding to amino acid 2 of SEQ ID NO. 16 is T; the amino acid in the capsid protein corresponding to amino acid 65 of SEQ ID NO. 16 is I; the amino acid in the capsid protein corresponding to amino acid 68 of SEQ ID NO. 16 is V; the amino acid in the capsid protein corresponding to amino acid 77 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 119 of SEQ ID NO. 16 is L; the amino acid in the capsid protein corresponding to amino acid 151 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 160 of SEQ ID NO. 16 is D; the amino acid in the capsid protein corresponding to amino acid 206 of SEQ ID NO. 16 is C; the amino acid in the capsid protein corresponding to amino acid 296 of SEQ ID NO. 16 is H; the amino acid in the capsid protein corresponding to amino acid 312 of SEQ ID NO. 16 is Q; the amino acid in the capsid protein corresponding to amino acid 346 of SEQ ID NO. 16 is A; the amino acid in the capsid protein corresponding to amino acid 464 of SEQ ID NO. 16 is N; the amino acid in the capsid protein corresponding to amino acid 468 of SEQ ID NO. 16 is S; the amino acid in the capsid protein corresponding to amino acid 501 of SEQ ID NO. 16 is I; the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 590 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is G or Y; the amino acid in the capsid protein corresponding to amino acid 681 of SEQ ID NO. 16 is M; the amino acid in the capsid protein corresponding to amino acid 687 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 690 of SEQ ID NO. 16 is K; the amino acid in the capsid protein corresponding to amino acid 706 of SEQ ID NO. 16 is C; or the amino acid in the capsid protein corresponding to amino acid 718 of SEQ ID NO. 16 is G. In certain embodiments, the amino acid in the capsid protein corresponding to amino acid 2 of SEQ ID NO. 16 is T and the amino acid in the capsid protein corresponding to amino acid 312 of SEQ ID NO. 16 is Q. In certain embodiments, the amino acid in the capsid protein corresponding to amino acid 65 of SEQ ID NO. 16 is I and the amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is Y. In certain embodiments, the amino acid in the capsid protein corresponding to amino acid 77 of SEQ ID NO. 16 is R and the amino acid in the capsid protein corresponding to amino acid 690 of SEQ ID NO. 16 is K. In certain embodiments, the amino acid in the capsid protein corresponding to amino acid 119 of SEQ ID NO. 16 is L and the amino acid in the capsid protein corresponding to amino acid 468 of SEQ ID NO. 16 is S. In certain embodiments, the amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is G and the amino acid in the capsid protein corresponding to amino acid 718 of SEQ ID NO. 16 is G. In certain embodiments, the amino acid corresponding to amino acid 296 of SEQ ID NO. 16 in the capsid protein is H, the amino acid corresponding to amino acid 464 of SEQ ID NO. 16 in the capsid protein is N, the amino acid corresponding to amino acid 505 of SEQ ID NO. 16 in the capsid protein is R, and the amino acid corresponding to amino acid 681 of SEQ ID NO. 16 in the capsid protein is M. In certain embodiments, the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R and the amino acid in the capsid protein corresponding to amino acid 687 of SEQ ID NO. 16 is R. In certain embodiments, the amino acid in the capsid protein corresponding to amino acid 346 of SEQ ID NO. 16 is A and the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R. In certain embodiments, the amino acid corresponding to amino acid 501 of SEQ ID NO. 16 in the capsid protein is I, the amino acid corresponding to amino acid 505 of SEQ ID NO. 16 in the capsid protein is R, and the amino acid corresponding to amino acid 706 of SEQ ID NO. 16 in the capsid protein is C. In certain embodiments, the capsid protein comprises the amino acid sequence of amino acids 1-736 of SEQ ID NOs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16 or 17.
In certain embodiments, the AAV capsid comprises two or more of the following: (a) A capsid protein comprising the amino acid sequence of amino acids 203-736 of SEQ ID No. 1, 2, 3, 4, 6, 7, 10, 11, 12, 13, 15, 16 or 17; (b) Amino acid sequence capsid proteins comprising amino acids 138-736 of SEQ ID NOs 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16 or 17; and (c) a capsid protein comprising the amino acid sequence of amino acids 1-736 of SEQ ID NO. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16 or 17. In certain embodiments, the AAV capsid comprises: (a) A capsid protein having an amino acid sequence consisting of amino acids 203-736 of SEQ ID No. 1, 2, 3, 4, 6, 7, 10, 11, 12, 13, 15, 16 or 17; (b) A capsid protein having an amino acid sequence consisting of amino acids 138-736 of SEQ ID No. 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16 or 17; and (c) a capsid protein having an amino acid sequence consisting of amino acids 1-736 of SEQ ID NO. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16 or 17.
In certain embodiments, the AAV capsid comprises one or more of the following: (a) A capsid protein comprising an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to the sequence of amino acids 203-736 of SEQ ID No. 8; (b) A capsid protein comprising an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to the sequence of amino acids 138-736 of SEQ ID No. 8; and (c) a capsid protein comprising an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to the sequence of amino acids 1-736 of SEQ ID NO. 8. In certain embodiments, the AAV capsid comprises one or more of the following: (a) A capsid protein comprising the amino acid sequence of amino acids 203-736 of SEQ ID NO. 8; (b) A capsid protein comprising the amino acid sequence of amino acids 138-736 of SEQ ID NO. 8; and (c) a capsid protein comprising the amino acid sequence of amino acids 1-736 of SEQ ID NO. 8. In certain embodiments, the AAV capsid comprises two or more of the following: (a) A capsid protein comprising the amino acid sequence of amino acids 203-736 of SEQ ID NO. 8; (b) A capsid protein comprising the amino acid sequence of amino acids 138-736 of SEQ ID NO. 8; and (c) a capsid protein comprising the amino acid sequence of amino acids 1-736 of SEQ ID NO. 8. In certain embodiments, the AAV capsid comprises: (a) A capsid protein having an amino acid sequence consisting of amino acids 203-736 of SEQ ID NO. 8; (b) A capsid protein having an amino acid sequence consisting of amino acids 138-736 of SEQ ID NO. 8; and (c) a capsid protein having an amino acid sequence consisting of amino acids 1-736 of SEQ ID NO. 8.
In certain embodiments, the AAV capsid comprises one or more of the following: (a) A capsid protein comprising an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to the sequence of amino acids 203-736 of SEQ ID No. 11; (b) A capsid protein comprising an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to the sequence of amino acids 138-736 of SEQ ID No. 11; and (c) a capsid protein comprising an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to the sequence of amino acids 1-736 of SEQ ID NO. 11. In certain embodiments, the AAV capsid comprises one or more of the following: (a) A capsid protein comprising the amino acid sequence of amino acids 203-736 of SEQ ID NO. 11; (b) A capsid protein comprising the amino acid sequence of amino acids 138-736 of SEQ ID NO. 11; and (c) a capsid protein comprising the amino acid sequence of amino acids 1-736 of SEQ ID NO. 11. In certain embodiments, the AAV capsid comprises two or more of the following: (a) A capsid protein comprising the amino acid sequence of amino acids 203-736 of SEQ ID NO. 11; (b) A capsid protein comprising the amino acid sequence of amino acids 138-736 of SEQ ID NO. 11; and (c) a capsid protein comprising the amino acid sequence of amino acids 1-736 of SEQ ID NO. 11. In certain embodiments, the AAV capsid comprises: (a) A capsid protein having an amino acid sequence consisting of amino acids 203-736 of SEQ ID NO. 11; (b) A capsid protein having an amino acid sequence consisting of amino acids 138-736 of SEQ ID NO. 11; and (c) a capsid protein having an amino acid sequence consisting of amino acids 1-736 of SEQ ID NO. 11.
In certain embodiments, the AAV capsid comprises one or more of the following: (a) A capsid protein comprising an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to the sequence of amino acids 203-736 of SEQ ID No. 13; (b) A capsid protein comprising an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to the sequence of amino acids 138-736 of SEQ ID No. 13; and (c) a capsid protein comprising an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to the sequence of amino acids 1-736 of SEQ ID NO. 13. In certain embodiments, the AAV capsid comprises one or more of the following: (a) A capsid protein comprising the amino acid sequence of amino acids 203-736 of SEQ ID NO. 13; (b) A capsid protein comprising the amino acid sequence of amino acids 138-736 of SEQ ID NO. 13; and (c) a capsid protein comprising the amino acid sequence of amino acids 1-736 of SEQ ID NO. 13. In certain embodiments, the AAV capsid comprises two or more of the following: (a) A capsid protein comprising the amino acid sequence of amino acids 203-736 of SEQ ID NO. 13; (b) A capsid protein comprising the amino acid sequence of amino acids 138-736 of SEQ ID NO. 13; and (c) a capsid protein comprising the amino acid sequence of amino acids 1-736 of SEQ ID NO. 13. In certain embodiments, the AAV capsid comprises: (a) A capsid protein having an amino acid sequence consisting of amino acids 203-736 of SEQ ID NO. 13; (b) A capsid protein having an amino acid sequence consisting of amino acids 138-736 of SEQ ID NO. 13; and (c) a capsid protein having an amino acid sequence consisting of amino acids 1-736 of SEQ ID NO. 13.
In certain embodiments, the AAV capsid comprises one or more of the following: (a) A capsid protein comprising an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to the sequence of amino acids 203-736 of SEQ ID No. 16; (b) A capsid protein comprising an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to the sequence of amino acids 138-736 of SEQ ID No. 16; and (c) a capsid protein comprising an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to the sequence of amino acids 1-736 of SEQ ID NO. 16. In certain embodiments, the AAV capsid comprises one or more of the following: (a) A capsid protein comprising the amino acid sequence of amino acids 203-736 of SEQ ID NO. 16; (b) A capsid protein comprising the amino acid sequence of amino acids 138-736 of SEQ ID NO. 16; and (c) a capsid protein comprising the amino acid sequence of amino acids 1-736 of SEQ ID NO. 16. In certain embodiments, the AAV capsid comprises two or more of the following: (a) A capsid protein comprising the amino acid sequence of amino acids 203-736 of SEQ ID NO. 16; (b) A capsid protein comprising the amino acid sequence of amino acids 138-736 of SEQ ID NO. 16; and (c) a capsid protein comprising the amino acid sequence of amino acids 1-736 of SEQ ID NO. 16. In certain embodiments, the AAV capsid comprises: (a) A capsid protein having an amino acid sequence consisting of amino acids 203-736 of SEQ ID NO. 16; (b) A capsid protein having an amino acid sequence consisting of amino acids 138-736 of SEQ ID NO. 16; and (c) a capsid protein having an amino acid sequence consisting of amino acids 1-736 of SEQ ID NO. 16.
The rAAV genomes of the present disclosure can be used to express any antibody heavy chain and antibody light chain known in the art. In one aspect, provided herein is a rAAV genome comprising a TRE operably linked to at least a portion of an antibody coding sequence (e.g., an antibody heavy chain coding sequence and/or an antibody light chain coding sequence). Non-limiting examples of antibodies include anti-C5 antibodies (e.g., elkuizumab, lei Fuli bead monoclonal antibody, and pamez Li Shan antibody (pozelimab)), anti-factor D antibodies (e.g., lanpalizumab (lumkuumab)), anti-mannose binding protein-related serine protease 2 (MASP-2) antibodies (e.g., nano cable Li Shan anti (narcoplimab)), anti-pancreatic schumab antibodies (e.g., ranavimab (lanadelomab)), anti-interleukin 1 beta antibodies (e.g., kanadumab), anti-interferon gamma antibodies (e.g., emalumab)), anti-PCSK 9 antibodies (e.g., eizokuumab (evaluumab) and alikuumab)), anti-factor IX and factor X antibodies (e.g., bispecific antibodies eimerizumab (icizumab)), and anti-VEGF antibodies (e.g., rannizumab).
In another aspect, the present disclosure provides a pharmaceutical composition comprising an AAV as disclosed herein and a pharmaceutically acceptable excipient, adjuvant, diluent, vehicle, or carrier, or combination thereof. A "pharmaceutically acceptable carrier" comprises any material that, when combined with the active ingredients of a composition, retains the biological activity of the ingredients and does not elicit a destructive physiological response (e.g., an undesired immune response). The pharmaceutically acceptable carrier comprises water, phosphate buffered saline, an emulsion (e.g., an oil/water emulsion), and a humectant. Compositions comprising such carriers are formulated by well known conventional methods, such as those shown below: the pharmaceutical science of Remington's Pharmaceutical Sciences, current edition, mark Publishing company of oiston, pennsylvania (Mack Publishing co., easton Pa.) 18042, usa; gennaro (2000) ", leimington: pharmaceutical science and practice (Remington: the Science and Practice of Pharmacy), "20 th edition, lipping kott. Willust. Wilkins press (lipkincott, williams, & Wilkins); pharmaceutical dosage forms and drug delivery systems (Pharmaceutical Dosage Forms and Drug Delivery Systems) (1999) H.C.Ansel et al, 7 th edition, liPing Cort Williams Wills Press; handbook of pharmaceutical excipients (2000) A.H.Kibbe et al, 3 rd edition, american society of pharmacies.
In another aspect, the present disclosure provides a pharmaceutical composition comprising an AAV as disclosed herein and a pharmaceutically acceptable excipient, adjuvant, diluent, vehicle, or carrier, or combination thereof. A "pharmaceutically acceptable carrier" comprises any material that, when combined with the active ingredients of a composition, retains the biological activity of the ingredients and does not elicit a destructive physiological response (e.g., an undesired immune response). The pharmaceutically acceptable carrier comprises water, phosphate buffered saline, an emulsion (e.g., an oil/water emulsion), and a humectant. Compositions comprising such carriers are formulated by well known conventional methods, such as those shown below: the pharmaceutical science of Remington's Pharmaceutical Sciences, current edition, mark Publishing company of oiston, pennsylvania (Mack Publishing co., easton Pa.) 18042, usa; gennaro (2000) ", leimington: pharmaceutical science and practice (Remington: the Science and Practice of Pharmacy), "20 th edition, lipping kott. Willust. Wilkins press (lipkincott, williams, & Wilkins); pharmaceutical dosage forms and drug delivery systems (Pharmaceutical Dosage Forms and Drug Delivery Systems) (1999) H.C.Ansel et al, 7 th edition, liPing Cort Williams Wills Press; handbook of pharmaceutical excipients (2000) A.H.Kibbe et al, 3 rd edition, american society of pharmacies.
III methods of use
In another aspect, the disclosure provides methods for expressing antibodies (e.g., antibody heavy and light chains) in cells. The methods generally comprise transducing a cell with a rAAV as disclosed herein. Such methods result in high levels of expression and secretion of antibodies. Thus, in certain embodiments, the methods disclosed herein involve transducing a cell with a rAAV as disclosed herein.
The methods disclosed herein can be applied to any cell (e.g., hepatocyte) where expression of an antibody is desired. Thus, in certain embodiments, the methods are applied to cells in the liver. In certain embodiments, the method is applied to hepatocytes.
The methods disclosed herein may be performed in vitro for research purposes or ex vivo or in vivo for therapeutic purposes.
In certain embodiments, the cells to be transduced are in a mammalian subject and AAV is administered to the subject in an amount effective to transduce the cells in the subject. Thus, in certain embodiments, the present disclosure provides a method of treating a subject suffering from a disease or disorder that would benefit from expression and secretion of an antibody that specifically binds to a therapeutic target, the method generally comprising administering to the subject an effective amount of a rAAV as disclosed herein. In certain embodiments, the antibody specifically binds complement C5 and the disease or disorder is associated with complement C5 activity. The subject may be a human subject or a rodent subject (e.g., a mouse) containing human hepatocytes. Suitable mouse subjects include, but are not limited to, mice into which human hepatocytes (e.g., human hepatocytes) have been implanted. Any disease or disorder associated with complement C5 activity can be treated using the methods disclosed herein. Suitable diseases or conditions include, but are not limited to, paroxysmal sleep hemoglobinuria (PNH), neuromyelitis optica (NMOSD), atypical hemolytic uremic syndrome (aHUS), myasthenia gravis, hematopoietic stem cell transplantation-graft related thrombotic microangiopathy (HSCT-TMA), complement-mediated thrombotic microangiopathy (CM-TMA), guillain-barre syndrome (Guillain-barre syndrome), amyotrophic Lateral Sclerosis (ALS), primary Progressive Multiple Sclerosis (PPMS), multifocal motor neuropathy, antibody-mediated renal rejection, C3 glomerulopathy, age-related macular degeneration (AMD), AQP4 IgG positive neuromyelitis optica, systemic lupus erythematosus, psoriasis, rheumatoid Arthritis (RA), dermatomyositis, idiopathic membranous glomerulopathy, demyelinating neuropathy, complement hyperactivation, vasculogenic thrombosis, protein loss bowel disease (cha) syndrome, geographic Atrophy (GA), asthma, hyperplasia nephritis, and sepsis.
In certain embodiments, the disclosure provides methods for treating a subject having a disease or disorder associated with complement C5 activity, the methods generally comprising administering to the subject an effective amount of a rAAV as disclosed herein. The subject may be a human subject, a non-human primate subject (e.g., cynomolgus monkey), or a rodent subject (e.g., mouse) with aberrant complement C5 activity. Any disease or disorder associated with complement C5 activity can be treated using the methods disclosed herein. Suitable diseases or conditions include, but are not limited to PNH, NMOSD, aHUS, myasthenia gravis, HSCT-TMA, CM-TMA, guillain-Barre syndrome, ALS, PPMS, multifocal motor neuropathy, antibody-mediated renal rejection, C3 glomerulopathy, AMD, AQP4 IgG positive neuromyelitis optica, systemic lupus erythematosus, psoriasis, RA, dermatomyositis, idiopathic membranous glomerulopathy, demyelinating neuropathy, CHAPLE syndrome, geographic Atrophy (GA), asthma, proliferative nephritis, and sepsis.
In certain embodiments, the foregoing methods employ a rAAV comprising an AAV capsid protein comprising the amino acid sequence of amino acids 203-736 of SEQ ID NO. 16, and a rAAV genome comprising the following genetic elements from 5 'to 3': a 5'ITR (e.g., a 5' ITR comprising the nucleotide sequence set forth in SEQ ID NO: 14), a transcriptional regulatory element (e.g., a TRE comprising the nucleotide sequence set forth in SEQ ID NO: 60), at least a portion of an antibody heavy chain coding sequence (e.g., an antibody heavy chain coding sequence comprising the nucleotide sequence set forth in SEQ ID NO:52, 62 or 83), a T2A peptide cleavage sequence (e.g., a T2A peptide cleavage sequence set forth in SEQ ID NO: 28), at least a portion of an antibody light chain coding sequence (e.g., an antibody light chain coding sequence comprising the nucleotide sequence set forth in SEQ ID NO:53 or 63), a polyadenylation sequence (e.g., an SV40 polyadenylation sequence set forth in SEQ ID NO: 31), and a 3'ITR (e.g., a 3' ITR comprising the nucleotide sequence set forth in SEQ ID NO: 18).
In certain embodiments, the foregoing methods employ a rAAV comprising an AAV capsid protein comprising the amino acid sequence of amino acids 138-736 of SEQ ID NO. 16, and a rAAV genome comprising, 5 'to 3' of the following genetic elements: a 5'ITR (e.g., a 5' ITR comprising the nucleotide sequence set forth in SEQ ID NO: 14), a transcriptional regulatory element (e.g., a TRE comprising the nucleotide sequence set forth in SEQ ID NO: 27), an intron element (e.g., an intron element comprising the nucleotide sequence set forth in SEQ ID NO: 29), at least a portion of an antibody heavy chain coding sequence (e.g., an antibody heavy chain coding sequence comprising the nucleotide sequence set forth in SEQ ID NO:52, 62 or 83), a T2A peptide cleavage sequence (e.g., a T2A peptide cleavage sequence of SEQ ID NO: 28), at least a portion of an antibody light chain coding sequence (e.g., an antibody light chain coding sequence comprising the nucleotide sequence set forth in SEQ ID NO:53 or 63), a polyadenylation sequence (e.g., SV40 polyadenylation sequence of SEQ ID NO: 31), and a 3'ITR (e.g., a 3' ITR comprising the nucleotide sequence set forth in SEQ ID NO: 18).
In certain embodiments, the foregoing methods employ a rAAV comprising an AAV capsid protein comprising the amino acid sequence of SEQ ID NO. 16, and a rAAV genome comprising, 5 'to 3' of the following genetic elements: a 5' ITR (e.g., a 5' ITR comprising the nucleotide sequence set forth in SEQ ID NO: 14), a transcriptional regulatory element (e.g., a TRE comprising the nucleotide sequence set forth in SEQ ID NO: 27), an intron element (e.g., an intron element comprising the nucleotide sequence set forth in SEQ ID NO: 29), at least a portion of an antibody heavy chain coding sequence (e.g., an antibody heavy chain coding sequence comprising the nucleotide sequence set forth in SEQ ID NO:52, 62 or 83), a polyadenylation sequence (e.g., a BGH polyadenylation sequence of SEQ ID NO: 33), a transcriptional regulatory element (e.g., a TRE comprising the nucleotide sequence set forth in SEQ ID NO: 67), an intron element (e.g., an intron element comprising the nucleotide sequence set forth in SEQ ID NO:30 or 61), at least a portion of an antibody light chain coding sequence (e.g., an antibody light chain coding sequence comprising the nucleotide sequence set forth in SEQ ID NO:53 or 63), a polyadenylation sequence (e.g., an SV40 polyadenylation sequence of SEQ ID NO: 31), and a nucleotide sequence set forth in SEQ ID NO: 3' ITR (e.g., SEQ ID NO: 18).
In certain embodiments, the foregoing methods employ a rAAV comprising an AAV capsid protein comprising the amino acid sequence of SEQ ID NO. 16, and a rAAV genome comprising, 5 'to 3' of the following genetic elements: 5'ITR (e.g., a 5' ITR comprising the nucleotide sequence set forth in SEQ ID NO: 14), a polyadenylation sequence (e.g., a BGH polyadenylation sequence set forth in SEQ ID NO: 33), at least a portion of an antibody heavy chain coding sequence (e.g., an antibody heavy chain coding sequence comprising the nucleotide sequence set forth in SEQ ID NO:52, 62 or 83), an intron element (e.g., an intron element comprising the nucleotide sequence set forth in SEQ ID NO: 29), a transcriptional regulatory element (e.g., a TRE comprising the nucleotide sequence set forth in SEQ ID NO: 27), a stuffer sequence (e.g., a stuffer comprising the nucleotide sequence set forth in SEQ ID NO: 51), a transcriptional regulatory element (e.g., a TRE comprising the nucleotide sequence set forth in SEQ ID NO: 67), an intron element (e.g., an intron element comprising the nucleotide sequence set forth in SEQ ID NO:30 or 61), at least a portion of an antibody light chain coding sequence (e.g., an antibody light chain coding sequence comprising the nucleotide sequence set forth in SEQ ID NO:53 or 63), a polyadenylation sequence (e.g., a TRE comprising the nucleotide sequence set forth in SEQ ID NO: 31), and an SV 3 'nucleotide sequence set forth in SEQ ID NO:18, e.g., an SV 3' nucleotide sequence set forth in the SEQ ID NO: 13.
In certain embodiments, the foregoing methods employ a rAAV comprising an AAV capsid protein comprising the amino acid sequence of amino acids 203-736 of SEQ ID NO. 13, and a rAAV genome comprising, 5 'to 3' of the following genetic elements: a 5'ITR (e.g., a 5' ITR comprising the nucleotide sequence set forth in SEQ ID NO: 14), a transcriptional regulatory element (e.g., a TRE comprising the nucleotide sequence set forth in SEQ ID NO: 60), at least a portion of an antibody heavy chain coding sequence (e.g., an antibody heavy chain coding sequence comprising the nucleotide sequence set forth in SEQ ID NO:52, 62 or 83), a T2A peptide cleavage sequence (e.g., a T2A peptide cleavage sequence set forth in SEQ ID NO: 28), at least a portion of an antibody light chain coding sequence (e.g., an antibody light chain coding sequence comprising the nucleotide sequence set forth in SEQ ID NO:53 or 63), a polyadenylation sequence (e.g., an SV40 polyadenylation sequence set forth in SEQ ID NO: 31), and a 3'ITR (e.g., a 3' ITR comprising the nucleotide sequence set forth in SEQ ID NO: 18).
In certain embodiments, the foregoing methods employ a rAAV comprising an AAV capsid protein comprising the amino acid sequence of amino acids 138-736 of SEQ ID NO. 13, and a rAAV genome comprising, 5 'to 3' of the following genetic elements: a 5'ITR (e.g., a 5' ITR comprising the nucleotide sequence set forth in SEQ ID NO: 14), a transcriptional regulatory element (e.g., a TRE comprising the nucleotide sequence set forth in SEQ ID NO: 27), an intron element (e.g., an intron element comprising the nucleotide sequence set forth in SEQ ID NO: 29), at least a portion of an antibody heavy chain coding sequence (e.g., an antibody heavy chain coding sequence comprising the nucleotide sequence set forth in SEQ ID NO:52, 62 or 83), a T2A peptide cleavage sequence (e.g., a T2A peptide cleavage sequence of SEQ ID NO: 28), at least a portion of an antibody light chain coding sequence (e.g., an antibody light chain coding sequence comprising the nucleotide sequence set forth in SEQ ID NO:53 or 63), a polyadenylation sequence (e.g., SV40 polyadenylation sequence of SEQ ID NO: 31), and a 3'ITR (e.g., a 3' ITR comprising the nucleotide sequence set forth in SEQ ID NO: 18).
In certain embodiments, the foregoing methods employ a rAAV comprising an AAV capsid protein comprising the amino acid sequence of SEQ ID NO. 13, and a rAAV genome comprising, 5 'to 3' of the following genetic elements: a 5' ITR (e.g., a 5' ITR comprising the nucleotide sequence set forth in SEQ ID NO: 14), a transcriptional regulatory element (e.g., a TRE comprising the nucleotide sequence set forth in SEQ ID NO: 27), an intron element (e.g., an intron element comprising the nucleotide sequence set forth in SEQ ID NO: 29), at least a portion of an antibody heavy chain coding sequence (e.g., an antibody heavy chain coding sequence comprising the nucleotide sequence set forth in SEQ ID NO:52, 62 or 83), a polyadenylation sequence (e.g., a BGH polyadenylation sequence of SEQ ID NO: 33), a transcriptional regulatory element (e.g., a TRE comprising the nucleotide sequence set forth in SEQ ID NO: 67), an intron element (e.g., an intron element comprising the nucleotide sequence set forth in SEQ ID NO:30 or 61), at least a portion of an antibody light chain coding sequence (e.g., an antibody light chain coding sequence comprising the nucleotide sequence set forth in SEQ ID NO:53 or 63), a polyadenylation sequence (e.g., an SV40 polyadenylation sequence of SEQ ID NO: 31), and a nucleotide sequence set forth in SEQ ID NO: 3' ITR (e.g., SEQ ID NO: 18).
In certain embodiments, the foregoing methods employ a rAAV comprising an AAV capsid protein comprising the amino acid sequence of SEQ ID NO. 13, and a rAAV genome comprising, 5 'to 3' of the following genetic elements: 5'ITR (e.g., a 5' ITR comprising the nucleotide sequence set forth in SEQ ID NO: 14), a polyadenylation sequence (e.g., a BGH polyadenylation sequence set forth in SEQ ID NO: 33), at least a portion of an antibody heavy chain coding sequence (e.g., an antibody heavy chain coding sequence comprising the nucleotide sequence set forth in SEQ ID NO:52, 62 or 83), an intron element (e.g., an intron element comprising the nucleotide sequence set forth in SEQ ID NO: 29), a transcriptional regulatory element (e.g., a TRE comprising the nucleotide sequence set forth in SEQ ID NO: 27), a stuffer sequence (e.g., a stuffer comprising the nucleotide sequence set forth in SEQ ID NO: 51), a transcriptional regulatory element (e.g., a TRE comprising the nucleotide sequence set forth in SEQ ID NO: 67), an intron element (e.g., an intron element comprising the nucleotide sequence set forth in SEQ ID NO:30 or 61), at least a portion of an antibody light chain coding sequence (e.g., an antibody light chain coding sequence comprising the nucleotide sequence set forth in SEQ ID NO:53 or 63), a polyadenylation sequence (e.g., a TRE comprising the nucleotide sequence set forth in SEQ ID NO: 31), and an SV 3 'nucleotide sequence set forth in SEQ ID NO:18, e.g., an SV 3' nucleotide sequence set forth in the SEQ ID NO: 13.
The methods disclosed herein are particularly advantageous because they are capable of efficiently expressing antibodies in vivo and secreting into the serum of a subject. In certain embodiments, the serum concentration of the antibody is at least about 100 μg/mL, at least about 500 μg/mL, at least about 1000 μg/mL, at least about 1500 μg/mL, at least about 2000 μg/mL, at least about 2500 μg/mL, at least about 3000 μg/mL, at least about 3500 μg/mL, at least about 4000 μg/mL, at least about 4500 μg/mL, at least about 5000 μg/mL, at least about 7500 μg/mL, at least about 10000 μg/mL, at least about 15000 μg/mL, at least about 20000 μg/mL, at least about 25000 μg/mL, at least about 30000 μg/mL, at least about 35000 μg/mL, at least about 40000 μg/mL, at least about 45000 μg/mL, at least about 50000 μg/mL, at least about 60000 μg/mL, at least about 70000 μg/mL, at least about 80000 μg/mL, at least about 90000 μg/mL, or at least about 100000 μg/mL. Any method of determining the expression level or serum concentration of an antibody may be used, including but not limited to ELISA, western blot, immunostaining, and mass spectrometry. In certain embodiments, the serum concentration of the antibody is determined using an anti-human IgG ELISA.
In certain embodiments, transducing cells with an AAV composition disclosed herein can be performed as provided herein or by any transduction method known to one of skill in the art. In certain embodiments, the cells may be at 50,000;100,000;150,000;200,000;250,000;300,000;350,000;400,000;450,000; or a multiplicity of infection (MOI) of 500,000 or any MOI that provides optimal transduction of cells is contacted with AAV.
AAV compositions disclosed herein may be administered to a subject by any suitable route, including but not limited to intravenous, intraperitoneal, subcutaneous, intramuscular, intranasal, topical, or intradermal routes. In certain embodiments, the compositions are formulated for administration by intravenous injection or subcutaneous injection.
AAV packaging system
In another aspect, the present disclosure provides packaging systems for recombinantly producing a recombinant adeno-associated virus (rAAV) as disclosed herein. Such packaging systems generally comprise: a first nucleotide encoding one or more AAV Rep proteins; a second nucleotide encoding a capsid protein of any AAV of the AAVs as disclosed herein; and a third nucleotide sequence comprising any of the rAAV genomes as disclosed herein, wherein the packaging system is operable in a cell to enclose the rAAV genome in a capsid to form an AAV.
In certain embodiments, the packaging system comprises a first vector comprising a first nucleotide sequence encoding one or more AAV Rep proteins and a second nucleotide sequence encoding an AAV capsid protein, and a second vector comprising a third nucleotide sequence comprising a rAAV genome. As used in the context of packaging systems as described herein, "vector" refers to a nucleic acid molecule (e.g., plasmid, virus, cosmid, artificial chromosome, etc.) that is a vehicle for introducing nucleic acid into cells.
Any AAV Rep protein may be used in the packaging systems disclosed herein. In certain embodiments of the packaging system, the Rep nucleotide sequence encodes an AAV2 Rep protein. Suitable AAV2 Rep proteins include, but are not limited to, rep 78/68 or Rep 68/52. In certain embodiments of the packaging system, the nucleotide sequence encoding an AAV2 Rep protein comprises a nucleotide sequence encoding a protein having a minimal percent sequence identity to the AAV2 Rep amino acid sequence of SEQ ID No. 22, wherein the minimal percent sequence identity across the length of the amino acid sequence of the AAV2 Rep protein is at least 70% (e.g., at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100%). In certain embodiments of the packaging system, the AAV2 Rep protein has the amino acid sequence depicted in SEQ ID NO. 22.
In certain embodiments of the packaging system, the packaging system further comprises a fourth nucleotide sequence comprising one or more helper virus genes. In certain embodiments of the packaging system, the packaging system further comprises a third vector, e.g., a helper vector, comprising a fourth nucleotide sequence comprising one or more helper genes. The third vector may be a separate third vector, integrated with the first vector, or integrated with the second vector.
In certain embodiments of the packaging system, the helper virus is selected from the group consisting of: adenoviruses, herpesviruses (including Herpes Simplex Virus (HSV)), poxviruses (e.g., vaccinia virus), cytomegalovirus (CMV), and baculoviruses. In certain packaging system embodiments wherein the helper virus is an adenovirus, the adenovirus genome comprises one or more adenovirus RNA genes selected from the group consisting of: el, E2, E4 and VA. In certain packaging system embodiments in which the helper virus is HSV, the HSV genome comprises one or more of the HSV genes selected from the group consisting of: UL5/8/52, ICPO, ICP4, ICP22 and UL30/UL42.
In certain embodiments of the packaging system, the first vector, the second vector, and/or the third vector are contained within one or more plasmids. In certain embodiments, the first vector and the third vector are contained within a first plasmid. In certain embodiments, the second vector and the third vector are contained within a second plasmid.
In certain embodiments of the packaging system, the first, second, and/or third vectors are contained within one or more recombinant helper viruses. In certain embodiments, the first vector and the third vector are contained within a recombinant helper virus. In certain embodiments, the second vector and the third vector are contained within a recombinant helper virus.
In another aspect, the disclosure provides a method for recombinant production of AAV as described herein, wherein the method comprises transfecting or transducing a cell with a packaging system as described herein under conditions operable to encapsulate a rAAV genome in a capsid to form a rAAV as described herein. Exemplary methods for recombinant production of a rAAV comprise transient transfection (e.g., with one or more transfection plasmids containing a first vector and a second vector and optionally a third vector as described herein), viral infection (e.g., with one or more recombinant helper viruses, such as adenovirus, poxvirus (e.g., vaccinia virus), herpes virus (including HSV, cytomegalovirus, or baculovirus, containing a first vector and a second vector and optionally a third vector as described herein), and transfection or infection of a stable producer cell line (e.g., with a stable producer cell, such as a mammalian or insect cell, containing a Rep nucleotide sequence encoding one or more AAV Rep proteins and/or a Cap nucleotide sequence encoding one or more AAV capsid proteins as described herein), and wherein the rAAV genome as described herein is delivered in plasmid or recombinant helper virus form.
Accordingly, the present disclosure provides a packaging system for preparing a recombinant AAV (rAAV), wherein the packaging system comprises a first nucleotide sequence encoding one or more AAV Rep proteins; a second nucleotide sequence encoding a capsid protein of any one of the AAV described herein; a third nucleotide sequence comprising a rAAV genomic sequence of any one of the AAV described herein; and optionally a fourth nucleotide sequence comprising one or more helper virus genes.
V. examples
The following examples demonstrate the efficient expression of antibodies (e.g., anti-C5 antibodies) in a subject using rAAV vectors as disclosed herein. These examples are provided by way of illustration and not by way of limitation.
Example 1: anti-complement C5 antibody rAAV vector
The present example provides anti-C5 antibody expression vectors C5Ab01, C5Ab02, C5Ab03, and C5Ab04 for expressing an anti-C5 antibody in cells transduced with the vectors (e.g., human cells or mouse cells).
a)C5Ab01
As shown in fig. 1, the anti-C5 antibody vector C5Ab01 comprises the following genetic elements from 5 'to 3': a transcriptional regulatory element comprising an EF1 a promoter; a coding sequence encoding a human IgG2 (P1) signal sequence linked to an anti-C5 antibody Heavy Chain (HC); a nucleic acid sequence encoding a 2A ribosome-skipping peptide; a coding sequence encoding an igκ (P2) signal sequence linked to an anti-C5 antibody Light Chain (LC); and SV40 late polyadenylation sequences (LPA). The nucleic acid sequences of these elements are shown in table 1. This vector is capable of expressing an anti-C5 antibody in a cell (e.g., a human cell or a mouse cell) into which the vector is transduced.
b)C5Ab02
As shown in fig. 1, the anti-C5 antibody vector C5Ab02 comprises the following genetic elements from 5 'to 3': transcriptional regulatory elements including a liver-specific LP1 promoter; a coding sequence encoding a human IgG2 (P1) signal sequence linked to an anti-C5 antibody Heavy Chain (HC); a nucleic acid sequence encoding a 2A ribosome-skipping peptide; a coding sequence encoding an igκ (P2) signal sequence linked to an anti-C5 antibody Light Chain (LC); and SV40 late polyadenylation sequences (LPA). The sequences of these elements are shown in table 1. This vector is capable of expressing an anti-C5 antibody in a cell (e.g., a human cell or a mouse cell) into which the vector is transduced.
c)C5Ab03
As shown in fig. 1, the anti-C5 antibody vector C5Ab03 comprises the following genetic elements from 5 'to 3': transcriptional regulatory elements including a liver-specific LP1 promoter; a coding sequence encoding a human IgG2 (P1) signal sequence linked to an anti-C5 antibody Heavy Chain (HC); bovine growth hormone polyadenylation signal (bGHpA); transcriptional regulatory elements including a liver-specific DnG promoter; a coding sequence encoding an igκ (P2) signal sequence linked to an anti-C5 antibody Light Chain (LC); and SV40 late polyadenylation sequences (LPA). The sequences of these elements are shown in table 1. This vector is capable of expressing an anti-C5 antibody in a cell (e.g., a human cell or a mouse cell) into which the vector is transduced.
d)C5Ab04
As shown in fig. 1, the anti-C5 antibody vector C5Ab04 comprises the following genetic elements from 5 'to 3': bovine growth hormone polyadenylation signal (bGHpA); anti-C5 antibody heavy chain coding sequences; a coding sequence encoding an anti-C5 antibody Heavy Chain (HC) linked to a human IgG2 (P1) signal sequence; transcriptional regulatory elements including a liver-specific LP1 promoter; a filling sequence; transcriptional regulatory elements including a liver-specific DnG promoter; a coding sequence encoding an igκ (P2) signal sequence linked to an anti-C5 antibody Light Chain (LC); and SV40 late polyadenylation sequences (LPA). The sequences of these elements are shown in table 1. This vector is capable of expressing an anti-C5 antibody in a cell (e.g., a human cell or a mouse cell) into which the vector is transduced.
Table 1: genetic elements in anti-C5 antibody expression vectors C5Ab01, C5Ab02, C5Ab03 and C5Ab04
Vectors disclosed herein can be packaged in AAV capsids, including but not limited to AAVHSC5, AAVHSC7, AAVHSC8, AAVHSC13, AAVHSC15, or AAVHSC17 capsids.
Example 2: expression of anti-C5 antibodies in mouse models
Abnormal or excessive activity of complement component C5 is associated with several diseases, including paroxysmal sleep hemoglobinuria (PNH), neuromyelitis optica spectrum disorders (NMOSD), and atypical hemolytic uremic syndrome (aHUS). anti-C5 monoclonal antibodies have been shown to be effective in treating these diseases, but patients often require multiple large doses of antibodies to obtain therapeutic benefit. This is due in part to the high concentration of C5 protein in the patient's serum. Thus, high levels of anti-C5 antibody binding and elimination of sufficient C5 are required to produce the desired therapeutic effect. These problems can be overcome if the patient is able to express his own anti-C5 antibody.
To investigate whether a sufficiently high level of anti-C5 antibody could be expressed in organisms, AAV vectors for expressing the anti-C5 antibody from mouse liver were administered to NOD SCID mice. Four separate experiments were performed, test vectors C5Ab02, C5Ab03, and C5Ab04 (described above) packaged in each of AAVHSC13, AAVHSC15, and AAVHSC 17.
Human IgG ELISA protocol
To assess serum human IgG concentration (μg/mL) in the following experiments, simpleStep from Abcam was usedA kit. Briefly, an antibody mixture is prepared by diluting the capture and detection antibodies in an antibody diluent CP. To prepare 3mL of an antibody mixture, 300. Mu.L of 10X capture antibody and 300. Mu.L of 10X detection antibody were combined with2.4mL antibody diluent CP combination. Standards were then prepared at the point of use by serial dilution. The human IgG protein provided in the kit was used for positive control serial dilutions.
For analysis, all reagents were brought to room temperature prior to use. All samples or standards of 50 μl were added to the appropriate wells of the microwell plate. Then 50 μl of the antibody mixture was added to each well. The plates were then sealed and incubated at room temperature for 40 minutes on a plate shaker set at 400 rpm. Each well was then washed with 3X 350. Mu.L of 1 Xwashing buffer PT. After the last wash, the plate was inverted and blotted with a clean paper towel to remove excess liquid. Then 100. Mu.L of TMB developing solution was added to each well and incubated in the dark for about 5 minutes on a plate shaker set at 400 rpm. The optimal incubation time may vary between 5 minutes and 20 minutes. To each well 100 μl of stop solution was added. The plates were shaken on a plate shaker for 1 minute to mix. The Optical Density (OD) was then read at 450 nm. This is the endpoint reading.
Results
In the first experiment, mice received a 1e13 vg/kg dose of vector C5Ab04 packaged in AAVHSC13 or AAVHSC17 capsids. Serum samples were collected after 1 week, 3 weeks, 5 weeks, 7 weeks, 9 weeks, 11 weeks, 15 weeks, 19 weeks and 23 weeks. Serum samples were tested for human IgG concentration (μg/mL) as a reading of anti-C5 antibody levels. Female mice are poor models of AAV-mediated gene transfer, thus segregating data between male and female mice. As shown in fig. 2A, mice that received C5Ab04 packaged in AAVHSC13 or AAVHSC17 capsids showed elevated levels of anti-C5 antibodies over time. Fig. 2B shows the results in fig. 2A, with the Y-axis on a logarithmic scale. In fig. 2A-2B, n=2-3 mice/group.
In a second experiment, mice received a dose of 1e13 vgs/kg of vector C5Ab02 packaged in AAVHSC17 capsid. Data from male and female mice were isolated and multiple serum samples were collected over a 16 week period. Serum samples were tested for human IgG concentration (μg/mL) as a reading of anti-C5 antibody levels. As shown in fig. 2C, mice that received vector C5Ab02 packaged in AAVHSC17 capsids showed elevated levels of anti-C5 antibodies over time. Fig. 2D shows the results in fig. 2C, with the Y-axis on a logarithmic scale. In fig. 2C-2D, n=3 mice/group.
In a third experiment, mice received 1e13 vg/kg dose of vector C5Ab02, C5Ab03, or C5Ab04 packaged in AAVHSC15 or AAVHSC17 capsids, respectively. Data from male mice are shown and multiple serum samples are collected over a 16 week period. Serum samples were tested for human IgG concentration (μg/mL) as a reading of anti-C5 antibody levels. As shown in fig. 2E, mice that received any of the vectors C5Ab02, C5Ab03, or C5Ab04 packaged in AAVHSC15 or AAVHSC17 capsids showed elevated levels of anti-C5 antibodies over time. Fig. 2F and 2G (logarithmic scale on Y-axis) show the results in fig. 2E, presented in line graph format. In figure 2E-2g, n=3 male mice/group.
In a fourth experiment, mice received 5 doses of 5e11 vg/kg, 5e12 vg/kg, 1.4e13 vg/kg, 4.4e13 vg/kg, and 1.8e14 vg/kg of vector C5Ab04 packaged in AAVHSC17 capsid. Data from male mice are shown and multiple serum samples are collected over a 13 week period. Serum samples were tested for human IgG concentration (μg/mL) as a reading of anti-C5 antibody levels. As shown in the dose-response data of fig. 2H, mice that received vector C5Ab04 packaged in AAVHSC17 capsids showed elevated anti-C5 antibody levels over time. Furthermore, increasing the dosage of AAVHSC17 resulted in a corresponding increase in the concentration of anti-C5 antibody, with dosages of 1.4e13 vg/kg, 4.4e13 vg/kg, and 1.8e14 vg/kg achieving the mg concentration of antibody. Fig. 2I shows the results in fig. 2H presented in line graph format with the Y-axis on a logarithmic scale. In fig. 2E-2I, n=3 male mice/group.
The above data were reorganized to compare the efficacy of each vector packaged in each AAVHSC13, AAVHSC15 or AAVHSC 17. As shown in fig. 3A-3C, C5Ab04 consistently produced higher concentrations of anti-C5 antibodies over time. Furthermore, AAVHSC17 capsids consistently produced higher concentrations of anti-C5 antibodies over time. The combination of C5Ab04 packaged in AAVHSC17 capsid produced the highest concentration of anti-C5 antibody 15 weeks after delivery to mice, approximately 2000 μg/mL.
The above data are also used to predict whether the concentration of anti-C5 antibody achieved is consistent with known therapeutic anti-C5 antibodies administered directly to the patient (i.e., not expressed from a vector in the patient). Based on C for the treatment of PNH max 、C Cereal grain And dosing schedule data, pharmacokinetic modeling of commercially available eculizumab and Lei Fuli bead mab. The standard deviation range is based on the coefficient of variation and the number of patients used for these studies (dashed lines in fig. 4A and 4B). This modeling data was compared to the data from the in vivo mouse experiments described above for AAVHSC13 and AAVHSC17 packaging vectors from the first experiment. Comparison shows that the therapeutic methods described herein can achieve clinically effective levels of the known anti-C5 antibodies Lei Fuli bead mab and eculizumab (fig. 4A). The modeling data were also compared with data from the in vivo mouse experiments described above (first experiment: "NOD-SCID,1E+13vg/kg"; and fourth experiment: "NOD-SCID 1.8E+14vg/kg") and with data from the HuLiv mouse experiment (example 4) below for C5Ab04 packaged in AAVHSC17 capsid (FIG. 4B).
Example 3: in vitro analysis of anti-C5 antibodies expressed in mouse models
Paroxysmal sleep hemoglobinuria (PNH) is characterized by destruction of erythrocytes (hemolytic anemia), blood clots (thrombus), and impaired bone marrow function. To determine whether the expressed anti-C5 antibodies were effective in reducing hemolytic anemia, PNH ex vivo hemolysis assays were performed. Human serum containing human C5 was mixed with serum obtained from NOD SCID mice treated with AAVHSC17 packaged C5Ab04 and activated sheep Red Blood Cells (RBCs). The% hemolysis was compared to a control anti-C5 biomimetic antibody. As shown in fig. 5, serum obtained from NOD SCID mice treated with AAVHSC 13-packaged C5Ab04 or AAVHSC 17-packaged C5Ab04 was able to inhibit hemolysis to a greater extent than the biomimetic control anti-C5 antibody.
Similar ex vivo hemolysis assays were performed comparing sera obtained from NOD SCID mice treated with 1e13 vg/kg dose of AAVHSC13 packaged C5Ab04 or AAVHSC17 packaged C5Ab04 with negative control mouse sera (from the experiment in fig. 2A). Data from male and female mice were isolated and multiple serum samples were collected over a 9 week period after treatment. Human IgG concentrations (μg/mL) were measured in serum samples as a read of anti-C5 antibody levels, and increased anti-C5 antibody levels over time were confirmed in mice treated with C5Ab04 packaged in AAVHSC13 or AAVHSC17 capsids (fig. 6A). The data presented in fig. 6A is a subset of the data presented in fig. 2A and 2B. Serum obtained from mice treated with C5Ab04 packaged in AAVHSC13 or AAVHSC17 capsids was able to inhibit haemolysis (fig. 6B). Fig. 6C shows the results in fig. 6B, wherein% hemolysis was determined from serum samples obtained 19 weeks after administration and presented in line graphs. In fig. 6A-6C, n=3 mice/group.
In a second experiment, an ex vivo hemolysis assay was performed comparing serum obtained from NOD SCID mice treated with C5Ab02 packaged with AAVHSC17 at a dose of 1e13 vg/kg with negative control mouse serum (as in fig. 2C). Data from male and female mice were isolated and multiple serum samples were collected over a 16 week period after treatment. As shown in fig. 6D, serum obtained from treated NOD SCID mice was able to inhibit hemolysis. In fig. 6D, n=3 mice/group.
In a third experiment, an ex vivo hemolysis assay was performed comparing serum obtained from male NOD SCID mice treated with 1E13 vg/kg dose of AAVHSC15 or AAVHSC17 packaged C5Ab02, C5Ab03 or C5Ab04 with negative control mouse serum (as in fig. 2E). Multiple serum samples were collected over a period of 16 weeks after treatment. As shown in fig. 6E, serum obtained from treated NOD SCID mice was able to inhibit hemolysis. In fig. 6E, n=3 mice/group.
In a fourth experiment, an ex vivo hemolysis assay was performed comparing serum obtained from male NOD SCID mice treated with C5Ab04 packaged with AAVHSC17 at a dose of 5e11 vg/kg, 5e12 vg/kg, 1.4e13 vg/kg, 4.4e13 vg/kg, or 1.8e14 vg/kg with negative control mouse serum (as in fig. 2H). Multiple serum samples were collected over a period of 16 weeks after treatment. As shown in fig. 6F, serum obtained from treated NOD SCID mice was able to inhibit hemolysis in a rAAV dose-dependent manner. In fig. 6F, n=3 mice/group.
Hemolysis assay protocol
The hemolysis assay mentioned above was performed using the following protocol. Gelatin fluxolone buffer (Gelatin Veronal buffer, GVBS, sigma, catalog No. G6514) was mixed with mouse serum in 96-well V-bottom plates in each well (with and without EDTA). 10% normal human serum (NHS, sigma, catalog number H4522) was then added to all wells. The plates were then incubated at 37℃for 30 minutes. 1mL of antibody-sensitized sheep red blood cells (Complement Technology, cat# B200, B201 and B202) were then added to each well and shaken for about 30 minutes. The plates were then centrifuged at 1000g for 5 minutes. The supernatant was moved to a new plate and read at 540nm and 615 nm. The 615nm value was then subtracted from the 540nm value to obtain the final reading. In all reported% hemolysis values, all samples, including% hemolysis of buffer only formulation or AAVHSC treated samples, were reported after normalization with 100% erythrocyte lysis control.
Example 4: generation and characterization of HuLiv mouse model
To evaluate the functional activity and durability of the therapeutic methods described herein, the general term in the context of C57Bl/6 is usedFah of knockout mice -/- Rag2 -/- Il2rg -/- Mice were used as a liver humanization model. Mice are immunodeficient and lack the tyrosine catabolic enzyme fumarylacetoacetate hydrolase (Fah). Ablation of mouse hepatocytes was induced by extraction of the protective drug 2- (2-nitro-4-trifluoromethylbenzoyl) -1, 3-cyclohexanedione (NTBC). The mice are then transplanted with human hepatocytes and adenovirus expressing urokinase is administered to enhance reconstitution of the human hepatocytes. With an appropriate CuRx TM Nitisinone (20-0026) and a prophylactic treatment (20-0037) regimen of SMX/TMP antibiotics maintained transplantation throughout the life of the animals. The obtained HuLiv mouse is used for liver>70% of human hepatocytes are reconstituted. These HuLiv mice are further described in the following: azuma et al (Nature Biotechnology 25 (8): 903-910 (2007)).
As shown in fig. 7A and 7B, huLiv mice produced human C5 levels comparable to human serum, while producing less mouse C5. This HuLiv model allows for examination of human hepatocytes in vivo for the expression of anti-C5 antibodies and the durability of anti-C5 antibodies in the presence of human C5.
HuLiv mice (n=2) were administered a single dose of 100 μg of control anti-C5 biomimetic antibody or 1e13 vg/kg or 1e14 vg/kg of C5Ab04 packaged in AAVHSC17 capsids. Serum antibody concentrations were measured at week 1, week 3, week 5, week 7, week 9 and week 11. As shown in fig. 8A, administration of C5Ab04 packaged in AAVHSC17 capsids to HuLiv mice resulted in substantially higher concentrations of anti-C5 antibodies for weeks 1, 3, and 5 compared to direct administration of control anti-C5 antibodies. Fig. 8B shows the results in fig. 8A, wherein serum antibody concentrations were determined 11 weeks after administration and presented in line plots with the Y-axis on a logarithmic scale. The ex vivo hemolysis assay was performed using the same methods as described above comparing serum obtained from HuLiv mice treated with C5Ab04 packaged in AAVHSC17 capsids at a dose of 1e13 vg/kg or 1e14 vg/kg with serum obtained from HuLiv mice administered with control anti-C5 antibodies (bio-mimetic pharmaceuticals). Serum samples were collected over a period of 11 weeks after treatment. As shown in fig. 8C, serum obtained from treated HuLiv mice was able to inhibit hemolysis. Mice treated with 1e13 vg/kg or 1e14 vg/kg dose of C5Ab04 packaged in AAVHSC17 capsid showed about 80% protection from hemolysis in an ex vivo hemolysis assay. Up to about 20% of background residual hemolysis can be explained by the presence of mouse complement proteins prepared from a residual population of C57Bl/6 hepatocytes in Huliv mice. Fig. 8D shows mouse C5 levels detected in serum obtained from treated HuLiv mice via enzyme-linked immunosorbent assay.
Example 5: primary hepatocyte screening assay
To rapidly test optimized rAAV vectors, cell line-based assays were developed to assess antibody production and secretion. Human primary hepatocytes were selected as the closest match to in vivo experiments. Spreadable human hepatocytes (catalog number HUCPG) and spreadable C57BL/6 mouse hepatocytes (catalog number MBCP 01) from Lonza were used.
Approximately 500,000 human hepatocytes or 250,000 mouse hepatocytes were plated and then incubated with about 300,000MOI AAVHSC15 or AAVHSC17 packaged C5Ab02, C5Ab03, or C5Ab 04. Media was then collected on day 7 after virus addition and analyzed by western blot and human IgG ELISA. As shown in fig. 9A and 9B, a large number of levels of anti-C5 antibodies were detected.
***
The present invention should not be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.
All references (e.g., publications or patents or patent applications) cited herein are hereby incorporated by reference in their entirety and for all purposes to the same extent as if each individual reference (e.g., publication or patent application) was specifically and individually indicated to be incorporated by reference in its entirety for all purposes. Other embodiments are within the following claims.
Sequence listing
<110> homologous pharmaceutical Co (HOMOLOGY MEDICINES, INC.)
<120> vectorized antibodies and uses thereof
<130> 404217-HMW-042WO (185407)
<150> US 63/075,898
<151> 2020-09-09
<150> US 63/179,990
<151> 2021-04-26
<160> 132
<170> PatentIn version 3.5
<210> 1
<211> 736
<212> PRT
<213> artificial sequence
<220>
<223> adeno-associated virus
<400> 1
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro
20 25 30
Lys Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly
145 150 155 160
Lys Ser Gly Ala Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro
180 185 190
Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn
260 265 270
Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp
370 375 380
Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu
405 410 415
Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser
435 440 445
Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser
450 455 460
Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro
465 470 475 480
Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn
485 490 495
Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn
500 505 510
Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys
515 520 525
Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly
530 535 540
Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile
545 550 555 560
Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser
565 570 575
Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln Ala Gln
580 585 590
Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met
625 630 635 640
Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn
690 695 700
Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val
705 710 715 720
Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 2
<211> 736
<212> PRT
<213> artificial sequence
<220>
<223> adeno-associated virus
<400> 2
Met Thr Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro
20 25 30
Lys Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly
145 150 155 160
Lys Ser Gly Ala Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro
180 185 190
Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn
260 265 270
Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Gln Leu Asn Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp
370 375 380
Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu
405 410 415
Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser
435 440 445
Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser
450 455 460
Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro
465 470 475 480
Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn
485 490 495
Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn
500 505 510
Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys
515 520 525
Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly
530 535 540
Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile
545 550 555 560
Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser
565 570 575
Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln Ala Gln
580 585 590
Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met
625 630 635 640
Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn
690 695 700
Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val
705 710 715 720
Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 3
<211> 736
<212> PRT
<213> artificial sequence
<220>
<223> adeno-associated virus
<400> 3
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro
20 25 30
Lys Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly
145 150 155 160
Lys Ser Gly Ala Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro
180 185 190
Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn
260 265 270
Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp
370 375 380
Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu
405 410 415
Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser
435 440 445
Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser
450 455 460
Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro
465 470 475 480
Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn
485 490 495
Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn
500 505 510
Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys
515 520 525
Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly
530 535 540
Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile
545 550 555 560
Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser
565 570 575
Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln Ala Gln
580 585 590
Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Gly Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met
625 630 635 640
Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn
690 695 700
Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Gly Gly Val
705 710 715 720
Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 4
<211> 736
<212> PRT
<213> artificial sequence
<220>
<223> adeno-associated virus
<400> 4
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro
20 25 30
Lys Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Ile Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly
145 150 155 160
Lys Ser Gly Ala Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro
180 185 190
Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn
260 265 270
Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp
370 375 380
Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu
405 410 415
Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser
435 440 445
Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser
450 455 460
Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro
465 470 475 480
Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn
485 490 495
Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn
500 505 510
Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys
515 520 525
Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly
530 535 540
Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile
545 550 555 560
Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser
565 570 575
Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln Ala Gln
580 585 590
Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Tyr Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met
625 630 635 640
Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn
690 695 700
Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val
705 710 715 720
Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 5
<211> 736
<212> PRT
<213> artificial sequence
<220>
<223> adeno-associated virus
<400> 5
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro
20 25 30
Lys Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Asp
145 150 155 160
Lys Ser Gly Ala Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro
180 185 190
Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn
260 265 270
Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp
370 375 380
Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu
405 410 415
Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser
435 440 445
Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser
450 455 460
Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro
465 470 475 480
Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn
485 490 495
Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn
500 505 510
Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys
515 520 525
Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly
530 535 540
Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile
545 550 555 560
Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser
565 570 575
Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln Ala Gln
580 585 590
Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met
625 630 635 640
Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn
690 695 700
Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val
705 710 715 720
Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 6
<211> 736
<212> PRT
<213> artificial sequence
<220>
<223> adeno-associated virus
<400> 6
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro
20 25 30
Lys Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Leu Gln Ala Lys Lys Arg Leu Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly
145 150 155 160
Lys Ser Gly Ala Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro
180 185 190
Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn
260 265 270
Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp
370 375 380
Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu
405 410 415
Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser
435 440 445
Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser
450 455 460
Val Ala Gly Ser Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro
465 470 475 480
Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn
485 490 495
Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn
500 505 510
Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys
515 520 525
Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly
530 535 540
Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile
545 550 555 560
Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser
565 570 575
Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln Ala Gln
580 585 590
Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met
625 630 635 640
Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn
690 695 700
Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val
705 710 715 720
Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 7
<211> 736
<212> PRT
<213> artificial sequence
<220>
<223> adeno-associated virus
<400> 7
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro
20 25 30
Lys Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly
145 150 155 160
Lys Ser Gly Ala Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro
180 185 190
Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn
260 265 270
Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp
370 375 380
Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu
405 410 415
Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser
435 440 445
Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser
450 455 460
Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro
465 470 475 480
Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn
485 490 495
Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn
500 505 510
Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys
515 520 525
Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly
530 535 540
Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile
545 550 555 560
Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser
565 570 575
Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Arg Ala Gln
580 585 590
Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met
625 630 635 640
Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn
690 695 700
Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val
705 710 715 720
Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 8
<211> 736
<212> PRT
<213> artificial sequence
<220>
<223> adeno-associated virus
<400> 8
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro
20 25 30
Lys Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Val Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly
145 150 155 160
Lys Ser Gly Ala Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro
180 185 190
Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn
260 265 270
Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp
370 375 380
Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu
405 410 415
Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser
435 440 445
Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser
450 455 460
Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro
465 470 475 480
Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn
485 490 495
Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn
500 505 510
Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys
515 520 525
Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly
530 535 540
Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile
545 550 555 560
Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser
565 570 575
Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln Ala Gln
580 585 590
Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met
625 630 635 640
Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn
690 695 700
Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val
705 710 715 720
Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 9
<211> 736
<212> PRT
<213> artificial sequence
<220>
<223> adeno-associated virus
<400> 9
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro
20 25 30
Lys Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Arg Glu Pro Asp Ser Ser Ala Gly Ile Gly
145 150 155 160
Lys Ser Gly Ala Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro
180 185 190
Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn
260 265 270
Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp
370 375 380
Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu
405 410 415
Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser
435 440 445
Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser
450 455 460
Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro
465 470 475 480
Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn
485 490 495
Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn
500 505 510
Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys
515 520 525
Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly
530 535 540
Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile
545 550 555 560
Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser
565 570 575
Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln Ala Gln
580 585 590
Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met
625 630 635 640
Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn
690 695 700
Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val
705 710 715 720
Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 10
<211> 736
<212> PRT
<213> artificial sequence
<220>
<223> adeno-associated virus
<400> 10
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro
20 25 30
Lys Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly
145 150 155 160
Lys Ser Gly Ala Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro
180 185 190
Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Cys Gly Gly
195 200 205
Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn
260 265 270
Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp
370 375 380
Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu
405 410 415
Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser
435 440 445
Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser
450 455 460
Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro
465 470 475 480
Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn
485 490 495
Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn
500 505 510
Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys
515 520 525
Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly
530 535 540
Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile
545 550 555 560
Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser
565 570 575
Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln Ala Gln
580 585 590
Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met
625 630 635 640
Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn
690 695 700
Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val
705 710 715 720
Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 11
<211> 736
<212> PRT
<213> artificial sequence
<220>
<223> adeno-associated virus
<400> 11
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro
20 25 30
Lys Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Arg Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly
145 150 155 160
Lys Ser Gly Ala Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro
180 185 190
Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn
260 265 270
Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp
370 375 380
Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu
405 410 415
Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser
435 440 445
Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser
450 455 460
Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro
465 470 475 480
Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn
485 490 495
Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn
500 505 510
Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys
515 520 525
Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly
530 535 540
Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile
545 550 555 560
Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser
565 570 575
Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln Ala Gln
580 585 590
Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met
625 630 635 640
Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Lys Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn
690 695 700
Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val
705 710 715 720
Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 12
<211> 736
<212> PRT
<213> artificial sequence
<220>
<223> adeno-associated virus
<400> 12
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro
20 25 30
Lys Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly
145 150 155 160
Lys Ser Gly Ala Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro
180 185 190
Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn
260 265 270
Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro His Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp
370 375 380
Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu
405 410 415
Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser
435 440 445
Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Asn
450 455 460
Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro
465 470 475 480
Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn
485 490 495
Asn Asn Ser Glu Phe Ala Trp Pro Arg Ala Ser Ser Trp Ala Leu Asn
500 505 510
Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys
515 520 525
Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly
530 535 540
Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile
545 550 555 560
Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser
565 570 575
Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln Ala Gln
580 585 590
Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met
625 630 635 640
Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Met Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn
690 695 700
Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val
705 710 715 720
Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 13
<211> 736
<212> PRT
<213> artificial sequence
<220>
<223> adeno-associated virus
<400> 13
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro
20 25 30
Lys Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly
145 150 155 160
Lys Ser Gly Ala Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro
180 185 190
Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn
260 265 270
Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp
370 375 380
Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu
405 410 415
Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser
435 440 445
Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser
450 455 460
Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro
465 470 475 480
Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn
485 490 495
Asn Asn Ser Glu Phe Ala Trp Pro Arg Ala Ser Ser Trp Ala Leu Asn
500 505 510
Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys
515 520 525
Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly
530 535 540
Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile
545 550 555 560
Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser
565 570 575
Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln Ala Gln
580 585 590
Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met
625 630 635 640
Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn
690 695 700
Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val
705 710 715 720
Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 14
<211> 145
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 14
ttggccactc cctctctgcg cgctcgctcg ctcactgagg ccgggcgacc aaaggtcgcc 60
cgacgcccgg gctttgcccg ggcggcctca gtgagcgagc gagcgcgcag agagggagtg 120
gccaactcca tcactagggg ttcct 145
<210> 15
<211> 736
<212> PRT
<213> artificial sequence
<220>
<223> adeno-associated virus
<400> 15
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro
20 25 30
Lys Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly
145 150 155 160
Lys Ser Gly Ala Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro
180 185 190
Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn
260 265 270
Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp
370 375 380
Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu
405 410 415
Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser
435 440 445
Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser
450 455 460
Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro
465 470 475 480
Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn
485 490 495
Asn Asn Ser Glu Phe Ala Trp Pro Arg Ala Ser Ser Trp Ala Leu Asn
500 505 510
Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys
515 520 525
Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly
530 535 540
Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile
545 550 555 560
Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser
565 570 575
Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln Ala Gln
580 585 590
Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met
625 630 635 640
Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Arg Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn
690 695 700
Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val
705 710 715 720
Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 16
<211> 736
<212> PRT
<213> artificial sequence
<220>
<223> adeno-associated virus
<400> 16
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro
20 25 30
Lys Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly
145 150 155 160
Lys Ser Gly Ala Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro
180 185 190
Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn
260 265 270
Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Val Gln Val Phe Ala Asp Ser Asp Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp
370 375 380
Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu
405 410 415
Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser
435 440 445
Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser
450 455 460
Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro
465 470 475 480
Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn
485 490 495
Asn Asn Ser Glu Phe Ala Trp Pro Arg Ala Ser Ser Trp Ala Leu Asn
500 505 510
Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys
515 520 525
Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly
530 535 540
Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile
545 550 555 560
Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser
565 570 575
Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln Ala Gln
580 585 590
Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met
625 630 635 640
Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn
690 695 700
Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val
705 710 715 720
Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 17
<211> 736
<212> PRT
<213> artificial sequence
<220>
<223> adeno-associated virus
<400> 17
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
1 5 10 15
Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro
20 25 30
Lys Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly
145 150 155 160
Lys Ser Gly Ala Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro
180 185 190
Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly
195 200 205
Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn
260 265 270
Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg
275 280 285
Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn
290 295 300
Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile
305 310 315 320
Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn
325 330 335
Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu
340 345 350
Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro
355 360 365
Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp
370 375 380
Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe
385 390 395 400
Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu
405 410 415
Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420 425 430
Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser
435 440 445
Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser
450 455 460
Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro
465 470 475 480
Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn
485 490 495
Asn Asn Ser Glu Ile Ala Trp Pro Arg Ala Ser Ser Trp Ala Leu Asn
500 505 510
Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys
515 520 525
Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly
530 535 540
Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile
545 550 555 560
Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser
565 570 575
Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln Ala Gln
580 585 590
Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln
595 600 605
Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His
610 615 620
Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met
625 630 635 640
Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala
645 650 655
Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr
660 665 670
Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685
Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn
690 695 700
Tyr Cys Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val
705 710 715 720
Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735
<210> 18
<211> 145
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 18
aggaacccct agtgatggag ttggccactc cctctctgcg cgctcgctcg ctcactgagg 60
ccgggcgacc aaaggtcgcc cgacgcccgg gctttgcccg ggcggcctca gtgagcgagc 120
gagcgcgcag agagggagtg gccaa 145
<210> 19
<211> 106
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 19
ctgcgcgctc gctcgctcac tgaggccgcc cgggcaaagc ccgggcgtcg ggcgaccttt 60
ggtcgcccgg cctcagtgag cgagcgagcg cgcagagagg gagtgg 106
<210> 20
<211> 167
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 20
ctctcccccc tgtcgcgttc gctcgctcgc tggctcgttt gggggggtgg cagctcaaag 60
agctgccaga cgacggccct ctggccgtcg cccccccaaa cgagccagcg agcgagcgaa 120
cgcgacaggg gggagagtgc cacactctca agcaaggggg ttttgta 167
<210> 21
<211> 167
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 21
tacaaaacct ccttgcttga gagtgtggca ctctcccccc tgtcgcgttc gctcgctcgc 60
tggctcgttt gggggggtgg cagctcaaag agctgccaga cgacggccct ctggccgtcg 120
cccccccaaa cgagccagcg agcgagcgaa cgcgacaggg gggagag 167
<210> 22
<211> 621
<212> PRT
<213> adeno-associated Virus 2
<400> 22
Met Pro Gly Phe Tyr Glu Ile Val Ile Lys Val Pro Ser Asp Leu Asp
1 5 10 15
Glu His Leu Pro Gly Ile Ser Asp Ser Phe Val Asn Trp Val Ala Glu
20 25 30
Lys Glu Trp Glu Leu Pro Pro Asp Ser Asp Met Asp Leu Asn Leu Ile
35 40 45
Glu Gln Ala Pro Leu Thr Val Ala Glu Lys Leu Gln Arg Asp Phe Leu
50 55 60
Thr Glu Trp Arg Arg Val Ser Lys Ala Pro Glu Ala Leu Phe Phe Val
65 70 75 80
Gln Phe Glu Lys Gly Glu Ser Tyr Phe His Met His Val Leu Val Glu
85 90 95
Thr Thr Gly Val Lys Ser Met Val Leu Gly Arg Phe Leu Ser Gln Ile
100 105 110
Arg Glu Lys Leu Ile Gln Arg Ile Tyr Arg Gly Ile Glu Pro Thr Leu
115 120 125
Pro Asn Trp Phe Ala Val Thr Lys Thr Arg Asn Gly Ala Gly Gly Gly
130 135 140
Asn Lys Val Val Asp Glu Cys Tyr Ile Pro Asn Tyr Leu Leu Pro Lys
145 150 155 160
Thr Gln Pro Glu Leu Gln Trp Ala Trp Thr Asn Met Glu Gln Tyr Leu
165 170 175
Ser Ala Cys Leu Asn Leu Thr Glu Arg Lys Arg Leu Val Ala Gln His
180 185 190
Leu Thr His Val Ser Gln Thr Gln Glu Gln Asn Lys Glu Asn Gln Asn
195 200 205
Pro Asn Ser Asp Ala Pro Val Ile Arg Ser Lys Thr Ser Ala Arg Tyr
210 215 220
Met Glu Leu Val Gly Trp Leu Val Asp Lys Gly Ile Thr Ser Glu Lys
225 230 235 240
Gln Trp Ile Gln Glu Asp Gln Ala Ser Tyr Ile Ser Phe Asn Ala Ala
245 250 255
Ser Asn Ser Arg Ser Gln Ile Lys Ala Ala Leu Asp Asn Ala Gly Lys
260 265 270
Ile Met Ser Leu Thr Lys Thr Ala Pro Asp Tyr Leu Val Gly Gln Gln
275 280 285
Pro Val Glu Asp Ile Ser Ser Asn Arg Ile Tyr Lys Ile Leu Glu Leu
290 295 300
Asn Gly Tyr Asp Pro Gln Tyr Ala Ala Ser Val Phe Leu Gly Trp Ala
305 310 315 320
Thr Lys Lys Phe Gly Lys Arg Asn Thr Ile Trp Leu Phe Gly Pro Ala
325 330 335
Thr Thr Gly Lys Thr Asn Ile Ala Glu Ala Ile Ala His Thr Val Pro
340 345 350
Phe Tyr Gly Cys Val Asn Trp Thr Asn Glu Asn Phe Pro Phe Asn Asp
355 360 365
Cys Val Asp Lys Met Val Ile Trp Trp Glu Glu Gly Lys Met Thr Ala
370 375 380
Lys Val Val Glu Ser Ala Lys Ala Ile Leu Gly Gly Ser Lys Val Arg
385 390 395 400
Val Asp Gln Lys Cys Lys Ser Ser Ala Gln Ile Asp Pro Thr Pro Val
405 410 415
Ile Val Thr Ser Asn Thr Asn Met Cys Ala Val Ile Asp Gly Asn Ser
420 425 430
Thr Thr Phe Glu His Gln Gln Pro Leu Gln Asp Arg Met Phe Lys Phe
435 440 445
Glu Leu Thr Arg Arg Leu Asp His Asp Phe Gly Lys Val Thr Lys Gln
450 455 460
Glu Val Lys Asp Phe Phe Arg Trp Ala Lys Asp His Val Val Glu Val
465 470 475 480
Glu His Glu Phe Tyr Val Lys Lys Gly Gly Ala Lys Lys Arg Pro Ala
485 490 495
Pro Ser Asp Ala Asp Ile Ser Glu Pro Lys Arg Val Arg Glu Ser Val
500 505 510
Ala Gln Pro Ser Thr Ser Asp Ala Glu Ala Ser Ile Asn Tyr Ala Asp
515 520 525
Arg Tyr Gln Asn Lys Cys Ser Arg His Val Gly Met Asn Leu Met Leu
530 535 540
Phe Pro Cys Arg Gln Cys Glu Arg Met Asn Gln Asn Ser Asn Ile Cys
545 550 555 560
Phe Thr His Gly Gln Lys Asp Cys Leu Glu Cys Phe Pro Val Ser Glu
565 570 575
Ser Gln Pro Val Ser Val Val Lys Lys Ala Tyr Gln Lys Leu Cys Tyr
580 585 590
Ile His His Ile Met Gly Lys Val Pro Asp Ala Cys Thr Ala Cys Asp
595 600 605
Leu Val Asn Val Asp Leu Asp Asp Cys Ile Phe Glu Gln
610 615 620
<210> 23
<211> 57
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 23
atgggctggt cctgcatcat cctgttcctg gtggccaccg ccacaggcgt gcacagc 57
<210> 24
<211> 66
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 24
atggacatga gggtccctgc tcagctgctg gggctcctgc tgctctggct cagcggtgcc 60
agatgt 66
<210> 25
<211> 192
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 25
ccctaaaatg ggcaaacatt gcaagcagca aacagcaaac acacagccct ccctgcctgc 60
tgaccttgga gctggggcag aggtcagaga cctctctggg cccatgccac ctccaacatc 120
cactcgaccc cttggaattt cggtggagag gagcagaggt tgtcctggcg tggtttaggt 180
agtgtgagag gg 192
<210> 26
<211> 255
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 26
aatgactcct ttcggtaagt gcagtggaag ctgtacactg cccaggcaaa gcgtccgggc 60
agcgtaggcg ggcgactcag atcccagcca gtggacttag cccctgtttg ctcctccgat 120
aactggggtg accttggtta atattcacca gcagcctccc ccgttgcccc tctggatcca 180
ctgcttaaat acggacgagg acagggccct gtctcctcag cttcaggcac caccactgac 240
ctgggacagt gaatc 255
<210> 27
<211> 448
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 27
ccctaaaatg ggcaaacatt gcaagcagca aacagcaaac acacagccct ccctgcctgc 60
tgaccttgga gctggggcag aggtcagaga cctctctggg cccatgccac ctccaacatc 120
cactcgaccc cttggaattt cggtggagag gagcagaggt tgtcctggcg tggtttaggt 180
agtgtgagag gggaatgact cctttcggta agtgcagtgg aagctgtaca ctgcccaggc 240
aaagcgtccg ggcagcgtag gcgggcgact cagatcccag ccagtggact tagcccctgt 300
ttgctcctcc gataactggg gtgaccttgg ttaatattca ccagcagcct cccccgttgc 360
ccctctggat ccactgctta aatacggacg aggacagggc cctgtctcct cagcttcagg 420
caccaccact gacctgggac agtgaatc 448
<210> 28
<211> 54
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 28
gaaggcagag gcagcctgct gacctgcggc gacgtcgaag agaaccccgg ccct 54
<210> 29
<211> 93
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 29
ctctaaggta aatataaaat ttttaagtgt ataatgtgtt aaactactga ttctaattgt 60
ttctctcttt tagattccaa cctttggaac tga 93
<210> 30
<211> 92
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 30
aagaggtaag ggtttaaggg atggttggtt ggtggggtat taatgtttaa ttacctggag 60
cacctgcctg aaatcacttt ttttcaggtt gg 92
<210> 31
<211> 198
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 31
gatccagaca tgataagata cattgatgag tttggacaaa ccacaactag aatgcagtga 60
aaaaaatgct ttatttgtga aatttgtgat gctattgctt tatttgtaac cattataagc 120
tgcaataaac aagttaacaa caacaattgc attcatttta tgtttcaggt tcagggggag 180
gtgtgggagg ttttttaa 198
<210> 32
<211> 143
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 32
aggaacccct agtgatggag ttggccactc cctctctgcg cgctcgctcg ctcactgagg 60
ccgggcgacc aaaggtcgcc cgacgcccgg gctttgcccg ggcggcctca gtgagcgagc 120
gagcgcgcag agagggagtg gcc 143
<210> 33
<211> 171
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 33
ctgtgccttc tagttgccag ccatctgttg tttgcccctc ccccgtgcct tccttgaccc 60
tggaaggtgc cactcccact gtcctttcct aataaaatga ggaaattgca tcgcattgtc 120
tgagtaggtg tcattctatt ctggggggtg gggtggggca ggacagcaag g 171
<210> 34
<211> 122
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 34
aacttgttta ttgcagctta taatggttac aaataaagca atagcatcac aaatttcaca 60
aataaagcat ttttttcact gcattctagt tgtggtttgt ccaaactcat caatgtatct 120
ta 122
<210> 35
<211> 133
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 35
tgctttattt gtgaaatttg tgatgctatt gctttatttg taaccattat aagctgcaat 60
aaacaagtta acaacaacaa ttgcattcat tttatgtttc aggttcaggg ggaggtgtgg 120
gaggtttttt aaa 133
<210> 36
<211> 1676
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 36
ggcattgatt attgactagt tattaatagt aatcaattac ggggtcatta gttcatagcc 60
catatatgga gttccgcgtt acataactta cggtaaatgg cccgcctggc tgaccgccca 120
acgacccccg cccattgacg tcaataatga cgtatgttcc catagtaacg ccaataggga 180
ctttccattg acgtcaatgg gtggagtatt tacggtaaac tgcccacttg gcagtacatc 240
aagtgtatca tatgccaagt ccgcccccta ttgacgtcaa tgacggtaaa tggcccgcct 300
ggcattatgc ccagtacatg accttacggg actttcctac ttggcagtac atctacgtat 360
tagtcatcgc tattaccatg gtcgaggtga gccccacgtt ctgcttcact ctccccatct 420
cccccccctc cccaccccca attttgtatt tatttatttt ttaattattt tgtgcagcga 480
tgggggcggg gggggggggg gggcgcgcgc caggcggggc ggggcggggc gaggggcggg 540
gcggggcgag gcggagaggt gcggcggcag ccaatcagag cggcgcgctc cgaaagtttc 600
cttttatggc gaggcggcgg cggcggcggc cctataaaaa gcgaagcgcg cggcgggcgg 660
gagtcgctgc gcgctgcctt cgccccgtgc cccgctccgc cgccgcctcg cgccgcccgc 720
cccggctctg actgaccgcg ttactcccac aggtgagcgg gcgggacggc ccttctcctc 780
cgggctgtaa ttagcgcttg gtttaatgac ggcttgtttc ttttctgtgg ctgcgtgaaa 840
gccttgaggg gctccgggag ggccctttgt gcggggggag cggctcgggg ggtgcgtgcg 900
tgtgtgtgtg cgtggggagc gccgcgtgcg gctccgcgct gcccggcggc tgtgagcgct 960
gcgggcgcgg cgcggggctt tgtgcgctcc gcagtgtgcg cgaggggagc gcggccgggg 1020
gcggtgcccc gcggtgcggg gggggctgcg aggggaacaa aggctgcgtg cggggtgtgt 1080
gcgtgggggg gtgagcaggg ggtgtgggcg cgtcggtcgg gctgcaaccc cccctgcacc 1140
cccctccccg agttgctgag cacggcccgg cttcgggtgc ggggctccgt acggggcgtg 1200
gcgcggggct cgccgtgccg ggcggggggt ggcggcaggt gggggtgccg ggcggggcgg 1260
ggccgcctcg ggccggggag ggctcggggg aggggcgcgg cggcccccgg agcgccggcg 1320
gctgtcgagg cgcggcgagc cgcagccatt gccttttatg gtaatcgtgc gagagggcgc 1380
agggacttcc tttgtcccaa atctgtgcgg agccgaaatc tgggaggcgc cgccgcaccc 1440
cctctagcgg gcgcggggcg aagcggtgcg gcgccggcag gaaggaaatg ggcggggagg 1500
gccttcgtgc gtcgccgcgc cgccgtcccc ttctccctct ccagcctcgg ggctgtccgc 1560
ggggggacgg ctgccttcgg gggggacggg gcagggcggg gttcggcttc tggcgtgtga 1620
ccggcggctc tagagcctct gctaaccatg ttcatgcctt cttctttttc ctacag 1676
<210> 37
<211> 12
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 37
agaaagagaa ga 12
<210> 38
<211> 12
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 38
agaagaaaga ga 12
<210> 39
<211> 1168
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 39
cgtgaggctc cggtgcccgt cagtgggcag agcgcacatc gcccacagtc cccgagaagt 60
tggggggagg ggtcggcaat tgaaccggtg cctagagaag gtggcgcggg gtaaactggg 120
aaagtgatgt cgtgtactgg ctccgccttt ttcccgaggg tgggggagaa ccgtatataa 180
gtgcagtagt cgccgtgaac gttctttttc gcaacgggtt tgccgccaga acacaggtaa 240
gtgccgtgtg tggttcccgc gggcctggcc tctttacggg ttatggccct tgcgtgcctt 300
gaattacttc cacctggctc cagtacgtga ttcttgatcc cgagctggag ccaggggcgg 360
gccttgcgct ttaggagccc cttcgcctcg tgcttgagtt gaggcctggc ctgggcgctg 420
gggccgccgc gtgcgaatct ggtggcacct tcgcgcctgt ctcgctgctt tcgataagtc 480
tctagccatt taaaattttt gatgacctgc tgcgacgctt tttttctggc aagatagtct 540
tgtaaatgcg ggccaggatc tgcacactgg tatttcggtt tttggggccg cgggcggcga 600
cggggcccgt gcgtcccagc gcacatgttc ggcgaggcgg ggcctgcgag cgcggccacc 660
gagaatcgga cgggggtagt ctcaagctgg ccggcctgct ctggtgcctg gcctcgcgcc 720
gccgtgtatc gccccgccct gggcggcaag gctggcccgg tcggcaccag ttgcgtgagc 780
ggaaagatgg ccgcttcccg gccctgctcc agggggctca aaatggagga cgcggcgctc 840
gggagagcgg gcgggtgagt cacccacaca aaggaaaggg gcctttccgt cctcagccgt 900
cgcttcatgt gactccacgg agtaccgggc gccgtccagg cacctcgatt agttctggag 960
cttttggagt acgtcgtctt taggttgggg ggaggggttt tatgcgatgg agtttcccca 1020
cactgagtgg gtggagactg aagttaggcc agcttggcac ttgatgtaat tctccttgga 1080
atttgccctt tttgagtttg gatcttggtt cattctcaag cctcagacag tggttcaaag 1140
tttttttctt ccatttcagg tgtcgtga 1168
<210> 40
<211> 72
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 40
agatctggca gcggagaggg cagaggaagt cttctaacat gcggtgacgt ggaggagaat 60
cccggcccta gg 72
<210> 41
<211> 95
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 41
cctctgctaa ccatgttcat gccttcttct ttttcctaca gctcctgggc aacgtgctgg 60
ttattgtgct gtctcatcat tttggcaaag aattc 95
<210> 42
<211> 1873
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 42
gatcttcaat attggccatt agccatatta ttcattggtt atatagcata aatcaatatt 60
ggctattggc cattgcatac gttgtatcta tatcataata tgtacattta tattggctca 120
tgtccaatat gaccgccatg ttggcattga ttattgacta gttattaata gtaatcaatt 180
acggggtcat tagttcatag cccatatatg gagttccgcg ttacataact tacggtaaat 240
ggcccgcctg gctgaccgcc caacgacccc cgcccattga cgtcaataat gacgtatgtt 300
cccatagtaa cgccaatagg gactttccat tgacgtcaat gggtggagta tttacggtaa 360
actgcccact tggcagtaca tcaagtgtat catatgccaa gtccgccccc tattgacgtc 420
aatgacggta aatggcccgc ctggcattat gcccagtaca tgaccttacg ggactttcct 480
acttggcagt acatctacgt attagtcatc gctattacca tggtcgaggt gagccccacg 540
ttctgcttca ctctccccat ctcccccccc tccccacccc caattttgta tttatttatt 600
ttttaattat tttgtgcagc gatgggggcg gggggggggg gggggcgcgc gccaggcggg 660
gcggggcggg gcgaggggcg gggcggggcg aggcggagag gtgcggcggc agccaatcag 720
agcggcgcgc tccgaaagtt tccttttatg gcgaggcggc ggcggcggcg gccctataaa 780
aagcgaagcg cgcggcgggc gggagtcgct gcgacgctgc cttcgccccg tgccccgctc 840
cgccgccgcc tcgcgccgcc cgccccggct ctgactgacc gcgttactcc cacaggtgag 900
cgggcgggac ggcccttctc ctccgggctg taattagcgc ttggtttaat gacggcttgt 960
ttcttttctg tggctgcgtg aaagccttga ggggctccgg gagggccctt tgtgcggggg 1020
ggagcggctc ggggggtgcg tgcgtgtgtg tgtgcgtggg gagcgccgcg tgcggcccgc 1080
gctgcccggc ggctgtgagc gctgcgggcg cggcgcgggg ctttgtgcgc tccgcagtgt 1140
gcgcgagggg agcgcggccg ggggcggtgc cccgcggtgc ggggggggct gcgaggggaa 1200
caaaggctgc gtgcggggtg tgtgcgtggg ggggtgagca gggggtgtgg gcgcggcggt 1260
cgggctgtaa cccccccctg cacccccctc cccgagttgc tgagcacggc ccggcttcgg 1320
gtgcggggct ccgtacgggg cgtggcgcgg ggctcgccgt gccgggcggg gggtggcggc 1380
aggtgggggt gccgggcggg gcggggccgc ctcgggccgg ggagggctcg ggggaggggc 1440
gcggcggccc ccggagcgcc ggcggctgtc gaggcgcggc gagccgcagc cattgccttt 1500
tatggtaatc gtgcgagagg gcgcagggac ttcctttgtc ccaaatctgt gcggagccga 1560
aatctgggag gcgccgccgc accccctcta gcgggcgcgg ggcgaagcgg tgcggcgccg 1620
gcaggaagga aatgggcggg gagggccttc gtgcgtcgcc gcgccgccgt ccccttctcc 1680
ctctccagcc tcggggctgt ccgcgggggg acggctgcct tcggggggga cggggcaggg 1740
cggggttcgg cttctggcgt gtgaccggcg gctctagagc ctctgctaac catgttcatg 1800
ccttcttctt tttcctacag ctcctgggca acgtgctggt tattgtgctg tctcatcatt 1860
ttggcaaaga att 1873
<210> 43
<211> 370
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 43
gggggaggct gctggtgaat attaaccaag gtcaccccag ttatcggagg agcaaacagg 60
ggctaagtcc acctcgagcc atggcgatgc tctaatctct ctagacaagg ttcatatttg 120
tatgggttac ttattctctc tttgttgact aagtcaataa tcagaatcag caggtttgca 180
gtcagattgg cagggataag cagcctagct caggagaagt gagtataaaa gccccaggct 240
gggagcagcc atcagctagc gccggcaaga ggtaagggtt taagggatgg ttggttggtg 300
gggtattaat gtttaattac ctggagcacc tgcctgaaat cacttttttt caggttggac 360
cggtgccacc 370
<210> 44
<211> 913
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 44
ggcatcctaa aaaatattca gtggaaacgt aaaaacatta aagactgatt aaacatcgca 60
gcatgacaca gatttagcaa ctgagcataa ataatttgac tcggatactg ctccaaaatc 120
cgaagaggac caatttcttc caggaggaca actacctcgt cctctgcaga cccctctcct 180
cggcagctga aggagtgtgg ccaatctgcc tccacctccc cgcggacccc ctactctcag 240
gacctcctgc agcaccccaa actggaagtg gccgctgcag acccaaggac gaggggcacg 300
cgggagccgg cagccctagt ggagcggttg gagatgttga ggtgggaggg tcacccaggt 360
ggggtgaggc tggggtaggt agcggagtga acggcttccg aagctctggg ccgcccccag 420
gttggactaa gcaggcgctc tgtcttcgcc cccgcccagg gtgggcgtct cctgaggact 480
ccccgccaca cctgacccga gaccgcgcgc ccagcctaga acgcttcccc gacccagcgt 540
agggccgccg cgactggcgg gcgagggtcg gcgggaggcc tggcgaaccc gggggcggga 600
ccaggcgggc aaggcccggc tgccgcagcg ccgctctgcg cgaggcggct ccgccgcggc 660
ggagggatac ggcgcaccat atatatatcg cggggcgcag actcgcgctc cggcagtggt 720
gctgggagtg tcgtggacgc cgtgccgtta ctcgtagtca ggcggcggcg caggcggcgg 780
cggcggcata gcgcacagcg cgccttagca gcagcagcag cagcagcggc atcggaggta 840
cccccgccgt cgcagccccc gcgctggtgc agccaccctc gctccctctg ctcttcctcc 900
cttcgctcgc acc 913
<210> 45
<211> 137
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 45
aggtaagtat caaggttaca agacaggttt aaggagacca atagaaactg ggcttgtcga 60
gacagagaag actcttgcgt ttctgatagg cacctattgg tcttactgac atccactttg 120
cctttctctc cacaggt 137
<210> 46
<211> 380
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 46
ggcattgatt attgactagt tattaatagt aatcaattac ggggtcatta gttcatagcc 60
catatatgga gttccgcgtt acataactta cggtaaatgg cccgcctggc tgaccgccca 120
acgacccccg cccattgacg tcaataatga cgtatgttcc catagtaacg ccaataggga 180
ctttccattg acgtcaatgg gtggagtatt tacggtaaac tgcccacttg gcagtacatc 240
aagtgtatca tatgccaagt ccgcccccta ttgacgtcaa tgacggtaaa tggcccgcct 300
ggcattatgc ccagtacatg accttacggg actttcctac ttggcagtac atctacgtat 360
tagtcatcgc tattaccatg 380
<210> 47
<211> 1246
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 47
tcgaggtgag ccccacgttc tgcttcactc tccccatctc ccccccctcc ccacccccaa 60
ttttgtattt atttattttt taattatttt gtgcagcgat gggggcgggg gggggggggg 120
ggcgcgcgcc aggcggggcg gggcggggcg aggggcgggg cggggcgagg cggagaggtg 180
cggcggcagc caatcagagc ggcgcgctcc gaaagtttcc ttttatggcg aggcggcggc 240
ggcggcggcc ctataaaaag cgaagcgcgc ggcgggcggg agtcgctgcg cgctgccttc 300
gccccgtgcc ccgctccgcc gccgcctcgc gccgcccgcc ccggctctga ctgaccgcgt 360
tactcccaca ggtgagcggg cgggacggcc cttctcctcc gggctgtaat tagcgcttgg 420
tttaatgacg gcttgtttct tttctgtggc tgcgtgaaag ccttgagggg ctccgggagg 480
gccctttgtg cggggggagc ggctcggggg gtgcgtgcgt gtgtgtgtgc gtggggagcg 540
ccgcgtgcgg ctccgcgctg cccggcggct gtgagcgctg cgggcgcggc gcggggcttt 600
gtgcgctccg cagtgtgcgc gaggggagcg cggccggggg cggtgccccg cggtgcgggg 660
ggggctgcga ggggaacaaa ggctgcgtgc ggggtgtgtg cgtggggggg tgagcagggg 720
gtgtgggcgc gtcggtcggg ctgcaacccc ccctgcaccc ccctccccga gttgctgagc 780
acggcccggc ttcgggtgcg gggctccgta cggggcgtgg cgcggggctc gccgtgccgg 840
gcggggggtg gcggcaggtg ggggtgccgg gcggggcggg gccgcctcgg gccggggagg 900
gctcggggga ggggcgcggc ggcccccgga gcgccggcgg ctgtcgaggc gcggcgagcc 960
gcagccattg ccttttatgg taatcgtgcg agagggcgca gggacttcct ttgtcccaaa 1020
tctgtgcgga gccgaaatct gggaggcgcc gccgcacccc ctctagcggg cgcggggcga 1080
agcggtgcgg cgccggcagg aaggaaatgg gcggggaggg ccttcgtgcg tcgccgcgcc 1140
gccgtcccct tctccctctc cagcctcggg gctgtccgcg gggggacggc tgccttcggg 1200
ggggacgggg cagggcgggg ttcggcttct ggcgtgtgac cggcgg 1246
<210> 48
<211> 1061
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 48
tagggaggtc ctgcacgtta cataacttac ggtaaatggc ccgcctggct gaccgcccaa 60
cgacccccgc ccattgacgt caataatgac gtatgttccc atagtaacgc caatagggac 120
tttccattga cgtcaatggg tggagtattt acggtaaact gcccacttgg cagtacatca 180
agtgtatcat atgccaagta cgccccctat tgacgtcaat gacggtaaat ggcccgcctg 240
gcattatgcc cagtacatga ccttatggga ctttcctact tggcagtaca tctacgtatt 300
agtcatcgct attaccatgg tcgaggtgag ccccacgttc tgcttcactc tccccatctc 360
ccccccctcc ccacccccaa ttttgtattt atttattttt taattatttt gtgcagcgat 420
gggggcgggg gggggggggg gcgcgcgcca ggcggggcgg ggcggggcga ggggcggggc 480
ggggcgaggc ggagaggtgc ggcggcagcc aatcagagcg gcgcgctccg aaagtttcct 540
tttatggcga ggcggcggcg gcggcggccc tataaaaagc gaagcgcgcg gcgggcggga 600
gtcgctgcgc gctgccttcg ccccgtgccc cgctccgccg ccgcctcgcg ccgcccgccc 660
cggctctgac tgaccgcgtt actaaaacag gtaagtccgg cctccgcgcc gggttttggc 720
gcctcccgcg ggcgcccccc tcctcacggc gagcgctgcc acgtcagacg aagggcgcag 780
cgagcgtcct gatccttccg cccggacgct caggacagcg gcccgctgct cataagactc 840
ggccttagaa ccccagtatc agcagaagga cattttagga cgggacttgg gtgactctag 900
ggcactggtt ttctttccag agagcggaac aggcgaggaa aagtagtccc ttctcggcga 960
ttctgcggag ggatctccgt ggggcggtga acgccgatga tgcctctact aaccatgttc 1020
atgttttctt tttttttcta caggtcctgg gtgacgaaca g 1061
<210> 49
<211> 953
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 49
aattcggtac cctagttatt aatagtaatc aattacgggg tcattagttc atagcccata 60
tatggagttc cgcgttacat aacttacggt aaatggcccg cctggctgac cgcccaacga 120
cccccgccca ttgacgtcaa taatgacgta tgttcccata gtaacgccaa tagggacttt 180
ccattgacgt caatgggtgg actatttacg gtaaactgcc cacttggcag tacatcaagt 240
gtatcatatg ccaagtacgc cccctattga cgtcaatgac ggtaaatggc ccgcctggca 300
ttatgcccag tacatgacct tatgggactt tcctacttgg cagtacatct acgtattagt 360
catcgctatt accatggtcg aggtgagccc cacgttctgc ttcactctcc ccatctcccc 420
cccctcccca cccccaattt tgtatttatt tattttttaa ttattttgtg cagcgatggg 480
ggcggggggg gggggggggc gcgcgccagg cggggcgggg cggggcgagg ggcggggcgg 540
ggcgaggcgg agaggtgcgg cggcagccaa tcagagcggc gcgctccgaa agtttccttt 600
tatggcgagg cggcggcggc ggcggcccta taaaaagcga agcgcgcggc gggcgggagt 660
cgctgcgacg ctgccttcgc cccgtgcccc gctccgccgc cgcctcgcgc cgcccgcccc 720
ggctctgact gaccgcgtta ctcccacagg tgagcgggcg ggacggccct tctcctccgg 780
gctgtaatta gcgcttggtt taatgacggc ttgtttcttt tctgtggctg cgtgaaagcc 840
ttgaggggct ccgggagcta gagcctctgc taaccatgtt catgccttct tctttttcct 900
acagctcctg ggcaacgtgc tggttattgt gctgtctcat cattttggca aag 953
<210> 50
<211> 541
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 50
ccctaaaatg ggcaaacatt gcaagcagca aacagcaaac acacagccct ccctgcctgc 60
tgaccttgga gctggggcag aggtcagaga cctctctggg cccatgccac ctccaacatc 120
cactcgaccc cttggaattt cggtggagag gagcagaggt tgtcctggcg tggtttaggt 180
agtgtgagag gggaatgact cctttcggta agtgcagtgg aagctgtaca ctgcccaggc 240
aaagcgtccg ggcagcgtag gcgggcgact cagatcccag ccagtggact tagcccctgt 300
ttgctcctcc gataactggg gtgaccttgg ttaatattca ccagcagcct cccccgttgc 360
ccctctggat ccactgctta aatacggacg aggacagggc cctgtctcct cagcttcagg 420
caccaccact gacctgggac agtgaatcct ctaaggtaaa tataaaattt ttaagtgtat 480
aatgtgttaa actactgatt ctaattgttt ctctctttta gattccaacc tttggaactg 540
a 541
<210> 51
<211> 612
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 51
gccccctttt gcatccagtt tattcctaca tttgtcacac tgttaacagc ccaccccttc 60
caatgagacc agtggtatca gtgagttgtg gagatcagga aaagggctca agagaaaggc 120
agtcaaagcc ctttttctgt ccctgtccca gctgctttaa taagatctcc ataagagaag 180
agggacagct atgactggga gtagtcagga gaggaggaaa aatctggcta gtaaaacatg 240
taaggaaaat tttagggatg ttaaagaaaa aaataacaca aaacaaaata taaaaaaaat 300
ctaacctcaa gtcaaggctt ttctatggaa taaggaatgg acagcagggg gctgtttcat 360
atactgatga cctctttata gccaaccttt gttcatggca gccagcatat gggcatatgt 420
tgccaaactc taaaccaaat actcattctg atgttttaaa tgatttgccc tcccatatgt 480
ccttccgagt gagagacaca aaaaattcca acacactatt gcaatgaaaa taaatttcct 540
ttattagcca gaagtcagat gctcaagggg cttcatgatg tccccataat ttttggcaga 600
gggaaaaaga tc 612
<210> 52
<211> 1347
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 52
caagtgcagc tggttcaaag cggagccgaa gtgaaaaagc ccggagctag cgtgaaggtg 60
tcctgcaagg ccagcggcca catcttcagc aactactgga tccagtgggt gcggcaggcc 120
cctggccaag gcctggaatg gatgggcgag atcctgccag gatctggcca caccgagtac 180
acagagaact tcaaggatag agtgaccatg accagagata cctccacaag caccgtgtac 240
atggaactga gcagcctgag aagcgaggac acagctgtgt actactgcgc cagatacttt 300
tttggctcat cccctaactg gtacttcgac gtgtggggcc aaggcaccct tgtcaccgtc 360
agcagcgcca gtactaaggg acccagcgtg ttcccactgg ccccatgcag cagaagcaca 420
tctgaaagca cagccgccct gggttgtctg gtcaaagact acttccccga acccgtgaca 480
gtgagctgga acagcggcgc cctgacaagc ggcgtgcaca ccttcccagc cgtgctgcag 540
agctctggcc tgtattctct gagtagcgtg gtcaccgttc ctagctccaa cttcggcaca 600
cagacctaca cctgtaatgt ggaccacaag cctagcaaca ccaaagtgga taagaccgtt 660
gagagaaagt gctgcgtgga atgcccacca tgtccagctc caccagtcgc cggcccttct 720
gttttcctgt tcccaccaaa gcccaaagac accctgatga tcagccggac ccctgaagtg 780
acatgtgtgg tggtggatgt gtcccaggag gatcctgagg tgcagtttaa ttggtacgtt 840
gacggagtgg aagttcataa tgccaagacc aaaccccgcg aggaacagtt taacagcacc 900
taccgggtgg tgtccgtgct gacagtgctg caccaggact ggctgaacgg caaagagtac 960
aagtgcaagg tgtctaacaa gggcctgcct agcagcatcg agaagaccat ctcaaaggcc 1020
aagggccagc ccagagagcc ccaagtctat acactgcctc cttctcaaga agaaatgaca 1080
aagaaccaag tgtctctgac ctgcctggtg aagggcttct accccagcga catcgccgtc 1140
gaatgggaga gcaacggaca gcctgaaaac aactacaaga cgacccctcc agtgctggac 1200
agcgatggca gcttcttcct gtattcacgg ctgaccgtgg acaagagccg atggcaagag 1260
ggcaacgtgt ttagctgcag cgtgctccac gaagccctgc acagccacta cacccagaag 1320
tccctgagcc tgtctctggg aaaataa 1347
<210> 53
<211> 642
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 53
gatatccaga tgacccagtc tccatctagc ctgtccgcca gcgtgggcga cagagtgacc 60
atcacctgcg gcgccagcga gaacatctat ggcgctctga actggtacca gcagaaacct 120
ggcaaggccc ctaagctgct gatctacggc gccaccaacc tggccgatgg cgtgcctagt 180
agattcagcg gatctggcag cggcacagac ttcaccctga ccatcagcag cctgcaacct 240
gaggactttg ccacatacta ctgccagaac gtgctgaata cacctctgac attcggccaa 300
ggaaccaaag tggaaatcaa gcggaccgtg gccgctccta gcgtgttcat cttccctcct 360
tccgatgaac aactgaagag cggaaccgcc tctgtggtgt gcctgctgaa caacttctac 420
cctagagagg ccaaggtgca gtggaaggtc gacaacgccc tgcagagcgg caacagccag 480
gagagcgtga cggaacagga cagcaaggac agcacctaca gcctgagctc cacccttaca 540
ctgtctaaag ccgactacga gaagcacaag gtgtacgcct gtgaagtgac acaccagggc 600
ctgagcagcc ctgtgaccaa gtcttttaac cggggcgagt gc 642
<210> 54
<211> 173
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 54
actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 60
aaaatcaacg ggactttcca aaatgtcgta ataaccccgc cccgttgacg caaatgggcg 120
gtaggcgtgt acggtgggag gtctatataa gcagagctcg tttagtgaac cgt 173
<210> 55
<211> 100
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 55
ccaaaatcaa cgggactttc caaaatgtcg taataacccc gccccgttga cgcaaatggg 60
cggtaggcgt gtacggtggg aggtctatat aagcagagct 100
<210> 56
<211> 380
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 56
ggcattgatt attgactagt tattaatagt aatcaattac ggggtcatta gttcatagcc 60
catatatgga gttccgcgtt acataactta cggtaaatgg cccgcctggc tgaccgccca 120
acgacccccg cccattgacg tcaataatga cgtatgttcc catagtaacg ccaataggga 180
ctttccattg acgtcaatgg gtggagtatt tacggtaaac tgcccacttg gcagtacatc 240
aagtgtatca tatgccaagt ccgcccccta ttgacgtcaa tgacggtaaa tggcccgcct 300
ggcattatgc ccagtacatg accttacggg actttcctac ttggcagtac atctacgtat 360
tagtcatcgc tattaccatg 380
<210> 57
<211> 1246
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 57
tcgaggtgag ccccacgttc tgcttcactc tccccatctc ccccccctcc ccacccccaa 60
ttttgtattt atttattttt taattatttt gtgcagcgat gggggcgggg gggggggggg 120
ggcgcgcgcc aggcggggcg gggcggggcg aggggcgggg cggggcgagg cggagaggtg 180
cggcggcagc caatcagagc ggcgcgctcc gaaagtttcc ttttatggcg aggcggcggc 240
ggcggcggcc ctataaaaag cgaagcgcgc ggcgggcggg agtcgctgcg cgctgccttc 300
gccccgtgcc ccgctccgcc gccgcctcgc gccgcccgcc ccggctctga ctgaccgcgt 360
tactcccaca ggtgagcggg cgggacggcc cttctcctcc gggctgtaat tagcgcttgg 420
tttaatgacg gcttgtttct tttctgtggc tgcgtgaaag ccttgagggg ctccgggagg 480
gccctttgtg cggggggagc ggctcggggg gtgcgtgcgt gtgtgtgtgc gtggggagcg 540
ccgcgtgcgg ctccgcgctg cccggcggct gtgagcgctg cgggcgcggc gcggggcttt 600
gtgcgctccg cagtgtgcgc gaggggagcg cggccggggg cggtgccccg cggtgcgggg 660
ggggctgcga ggggaacaaa ggctgcgtgc ggggtgtgtg cgtggggggg tgagcagggg 720
gtgtgggcgc gtcggtcggg ctgcaacccc ccctgcaccc ccctccccga gttgctgagc 780
acggcccggc ttcgggtgcg gggctccgta cggggcgtgg cgcggggctc gccgtgccgg 840
gcggggggtg gcggcaggtg ggggtgccgg gcggggcggg gccgcctcgg gccggggagg 900
gctcggggga ggggcgcggc ggcccccgga gcgccggcgg ctgtcgaggc gcggcgagcc 960
gcagccattg ccttttatgg taatcgtgcg agagggcgca gggacttcct ttgtcccaaa 1020
tctgtgcgga gccgaaatct gggaggcgcc gccgcacccc ctctagcggg cgcggggcga 1080
agcggtgcgg cgccggcagg aaggaaatgg gcggggaggg ccttcgtgcg tcgccgcgcc 1140
gccgtcccct tctccctctc cagcctcggg gctgtccgcg gggggacggc tgccttcggg 1200
ggggacgggg cagggcgggg ttcggcttct ggcgtgtgac cggcgg 1246
<210> 58
<211> 201
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 58
gaattcgggc ggagttaggg cggagccaat cagcgtgcgc cgttccgaaa gttgcctttt 60
atggctgggc ggagaatggg cggtgaacgc cgatgattat ataaggacgc gccgggtgtg 120
gcacagctag ttccgtcgca gccgggattt gggtcgcggt tcttgtttgt ggatccctgt 180
gatcgtgatc atcacttgtg a 201
<210> 59
<211> 953
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 59
aattcggtac cctagttatt aatagtaatc aattacgggg tcattagttc atagcccata 60
tatggagttc cgcgttacat aacttacggt aaatggcccg cctggctgac cgcccaacga 120
cccccgccca ttgacgtcaa taatgacgta tgttcccata gtaacgccaa tagggacttt 180
ccattgacgt caatgggtgg actatttacg gtaaactgcc cacttggcag tacatcaagt 240
gtatcatatg ccaagtacgc cccctattga cgtcaatgac ggtaaatggc ccgcctggca 300
ttatgcccag tacatgacct tatgggactt tcctacttgg cagtacatct acgtattagt 360
catcgctatt accatggtcg aggtgagccc cacgttctgc ttcactctcc ccatctcccc 420
cccctcccca cccccaattt tgtatttatt tattttttaa ttattttgtg cagcgatggg 480
ggcggggggg gggggggggc gcgcgccagg cggggcgggg cggggcgagg ggcggggcgg 540
ggcgaggcgg agaggtgcgg cggcagccaa tcagagcggc gcgctccgaa agtttccttt 600
tatggcgagg cggcggcggc ggcggcccta taaaaagcga agcgcgcggc gggcgggagt 660
cgctgcgacg ctgccttcgc cccgtgcccc gctccgccgc cgcctcgcgc cgcccgcccc 720
ggctctgact gaccgcgtta ctcccacagg tgagcgggcg ggacggccct tctcctccgg 780
gctgtaatta gcgcttggtt taatgacggc ttgtttcttt tctgtggctg cgtgaaagcc 840
ttgaggggct ccgggagcta gagcctctgc taaccatgtt catgccttct tctttttcct 900
acagctcctg ggcaacgtgc tggttattgt gctgtctcat cattttggca aag 953
<210> 60
<211> 1766
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 60
gtaaatttta tggaatgtga atcataattc aatttttcaa catgcgttag gagggacatt 60
tcaaactctt ttttacccta gactttccta ccatcaccca gagtatccag ccaggagggg 120
aggggctaga gacaccagaa gtttagcagg gaggagggcg tagggattcg gggaatgaag 180
ggatgggatt cagactaggg ccaggaccca gggatggaga gaaagagatg agagtggttt 240
gggggcttgg tgacttagag aacagagctg caggctcaga ggcacacagg agtttctggg 300
ctcaccctgc ccccttccaa cccctcagtt cccatcctcc agcagctgtt tgtgtgctgc 360
ctctgaagtc cacactgaac aaacttcagc ctactcatgt ccctaaaatg ggcaaacatt 420
gcaagcagca aacagcaaac acacagccct ccctgcctgc tgaccttgga gctggggcag 480
aggtcagaga cctctctggg cccatgccac ctccaacatc cactcgaccc cttggaattt 540
cggtggagag gagcagaggt tgtcctggcg tggtttaggt agtgtgagag ggcttaagcg 600
tgaggctccg gtgcccgtca gtgggcagag cgcacatcgc ccacagtccc cgagaagttg 660
gggggagggg tcggcaattg aaccggtgcc tagagaaggt ggcgcggggt aaactgggaa 720
agtgatgtcg tgtactggct ccgccttttt cccgagggtg ggggagaacc gtatataagt 780
gcagtagtcg ccgtgaacgt tctttttcgc aacgggtttg ccgccagaac acaggtaagt 840
gccgtgtgtg gttcccgcgg gcctggcctc tttacgggtt atggcccttg cgtgccttga 900
attacttcca cctggctcca gtacgtgatt cttgatcccg agctggagcc aggggcgggc 960
cttgcgcttt aggagcccct tcgcctcgtg cttgagttga ggcctggcct gggcgctggg 1020
gccgccgcgt gcgaatctgg tggcaccttc gcgcctgtct cgctgctttc gataagtctc 1080
tagccattta aaatttttga tgacctgctg cgacgctttt tttctggcaa gatagtcttg 1140
taaatgcggg ccaggatctg cacactggta tttcggtttt tggggccgcg ggcggcgacg 1200
gggcccgtgc gtcccagcgc acatgttcgg cgaggcgggg cctgcgagcg cggccaccga 1260
gaatcggacg ggggtagtct caagctggcc ggcctgctct ggtgcctggc ctcgcgccgc 1320
cgtgtatcgc cccgccctgg gcggcaaggc tggcccggtc ggcaccagtt gcgtgagcgg 1380
aaagatggcc gcttcccggc cctgctccag ggggctcaaa atggaggacg cggcgctcgg 1440
gagagcgggc gggtgagtca cccacacaaa ggaaaggggc ctttccgtcc tcagccgtcg 1500
cttcatgtga ctccacggag taccgggcgc cgtccaggca cctcgattag ttctggagct 1560
tttggagtac gtcgtcttta ggttgggggg aggggtttta tgcgatggag tttccccaca 1620
ctgagtgggt ggagactgaa gttaggccag cttggcactt gatgtaattc tccttggaat 1680
ttgccctttt tgagtttgga tcttggttca ttctcaagcc tcagacagtg gttcaaagtt 1740
tttttcttcc atttcaggtg tcgtga 1766
<210> 61
<211> 82
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 61
gtaagggttt aagggatggt tggttggtgg ggtattaatg tttaattacc tggagcacct 60
gcctgaaatc actttttttc ag 82
<210> 62
<211> 1404
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 62
atgggctggt cctgcatcat cctgttcctg gtggccaccg ccacaggcgt gcacagccaa 60
gtgcagctgg ttcaaagcgg agccgaagtg aaaaagcccg gagctagcgt gaaggtgtcc 120
tgcaaggcca gcggccacat cttcagcaac tactggatcc agtgggtgcg gcaggcccct 180
ggccaaggcc tggaatggat gggcgagatc ctgccaggat ctggccacac cgagtacaca 240
gagaacttca aggatagagt gaccatgacc agagatacct ccacaagcac cgtgtacatg 300
gaactgagca gcctgagaag cgaggacaca gctgtgtact actgcgccag atactttttt 360
ggctcatccc ctaactggta cttcgacgtg tggggccaag gcacccttgt caccgtcagc 420
agcgccagta ctaagggacc cagcgtgttc ccactggccc catgcagcag aagcacatct 480
gaaagcacag ccgccctggg ttgtctggtc aaagactact tccccgaacc cgtgacagtg 540
agctggaaca gcggcgccct gacaagcggc gtgcacacct tcccagccgt gctgcagagc 600
tctggcctgt attctctgag tagcgtggtc accgttccta gctccaactt cggcacacag 660
acctacacct gtaatgtgga ccacaagcct agcaacacca aagtggataa gaccgttgag 720
agaaagtgct gcgtggaatg cccaccatgt ccagctccac cagtcgccgg cccttctgtt 780
ttcctgttcc caccaaagcc caaagacacc ctgatgatca gccggacccc tgaagtgaca 840
tgtgtggtgg tggatgtgtc ccaggaggat cctgaggtgc agtttaattg gtacgttgac 900
ggagtggaag ttcataatgc caagaccaaa ccccgcgagg aacagtttaa cagcacctac 960
cgggtggtgt ccgtgctgac agtgctgcac caggactggc tgaacggcaa agagtacaag 1020
tgcaaggtgt ctaacaaggg cctgcctagc agcatcgaga agaccatctc aaaggccaag 1080
ggccagccca gagagcccca agtctataca ctgcctcctt ctcaagaaga aatgacaaag 1140
aaccaagtgt ctctgacctg cctggtgaag ggcttctacc ccagcgacat cgccgtcgaa 1200
tgggagagca acggacagcc tgaaaacaac tacaagacga cccctccagt gctggacagc 1260
gatggcagct tcttcctgta ttcacggctg accgtggaca agagccgatg gcaagagggc 1320
aacgtgttta gctgcagcgt gctccacgaa gccctgcaca gccactacac ccagaagtcc 1380
ctgagcctgt ctctgggaaa ataa 1404
<210> 63
<211> 708
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 63
atggacatga gggtccctgc tcagctgctg gggctcctgc tgctctggct cagcggtgcc 60
agatgtgata tccagatgac ccagtctcca tctagcctgt ccgccagcgt gggcgacaga 120
gtgaccatca cctgcggcgc cagcgagaac atctatggcg ctctgaactg gtaccagcag 180
aaacctggca aggcccctaa gctgctgatc tacggcgcca ccaacctggc cgatggcgtg 240
cctagtagat tcagcggatc tggcagcggc acagacttca ccctgaccat cagcagcctg 300
caacctgagg actttgccac atactactgc cagaacgtgc tgaatacacc tctgacattc 360
ggccaaggaa ccaaagtgga aatcaagcgg accgtggccg ctcctagcgt gttcatcttc 420
cctccttccg atgaacaact gaagagcgga accgcctctg tggtgtgcct gctgaacaac 480
ttctacccta gagaggccaa ggtgcagtgg aaggtcgaca acgccctgca gagcggcaac 540
agccaggaga gcgtgacgga acaggacagc aaggacagca cctacagcct gagctccacc 600
cttacactgt ctaaagccga ctacgagaag cacaaggtgt acgcctgtga agtgacacac 660
cagggcctga gcagccctgt gaccaagtct tttaaccggg gcgagtgc 708
<210> 64
<211> 448
<212> PRT
<213> artificial sequence
<220>
<223> synthetic polypeptide
<400> 64
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly His Ile Phe Ser Asn Tyr
20 25 30
Trp Ile Gln Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45
Gly Glu Ile Leu Pro Gly Ser Gly His Thr Glu Tyr Thr Glu Asn Phe
50 55 60
Lys Asp Arg Val Thr Met Thr Arg Asp Thr Ser Thr Ser Thr Val Tyr
65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Tyr Phe Phe Gly Ser Ser Pro Asn Trp Tyr Phe Asp Val Trp
100 105 110
Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro
115 120 125
Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr
130 135 140
Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr
145 150 155 160
Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro
165 170 175
Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr
180 185 190
Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp
195 200 205
His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys
210 215 220
Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser
225 230 235 240
Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg
245 250 255
Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro
260 265 270
Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala
275 280 285
Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val
290 295 300
Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr
305 310 315 320
Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr
325 330 335
Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu
340 345 350
Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys
355 360 365
Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser
370 375 380
Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp
385 390 395 400
Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser
405 410 415
Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Leu His Glu Ala
420 425 430
Leu His Ser His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys
435 440 445
<210> 65
<211> 1061
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 65
tagggaggtc ctgcacgtta cataacttac ggtaaatggc ccgcctggct gaccgcccaa 60
cgacccccgc ccattgacgt caataatgac gtatgttccc atagtaacgc caatagggac 120
tttccattga cgtcaatggg tggagtattt acggtaaact gcccacttgg cagtacatca 180
agtgtatcat atgccaagta cgccccctat tgacgtcaat gacggtaaat ggcccgcctg 240
gcattatgcc cagtacatga ccttatggga ctttcctact tggcagtaca tctacgtatt 300
agtcatcgct attaccatgg tcgaggtgag ccccacgttc tgcttcactc tccccatctc 360
ccccccctcc ccacccccaa ttttgtattt atttattttt taattatttt gtgcagcgat 420
gggggcgggg gggggggggg gcgcgcgcca ggcggggcgg ggcggggcga ggggcggggc 480
ggggcgaggc ggagaggtgc ggcggcagcc aatcagagcg gcgcgctccg aaagtttcct 540
tttatggcga ggcggcggcg gcggcggccc tataaaaagc gaagcgcgcg gcgggcggga 600
gtcgctgcgc gctgccttcg ccccgtgccc cgctccgccg ccgcctcgcg ccgcccgccc 660
cggctctgac tgaccgcgtt actaaaacag gtaagtccgg cctccgcgcc gggttttggc 720
gcctcccgcg ggcgcccccc tcctcacggc gagcgctgcc acgtcagacg aagggcgcag 780
cgagcgtcct gatccttccg cccggacgct caggacagcg gcccgctgct cataagactc 840
ggccttagaa ccccagtatc agcagaagga cattttagga cgggacttgg gtgactctag 900
ggcactggtt ttctttccag agagcggaac aggcgaggaa aagtagtccc ttctcggcga 960
ttctgcggag ggatctccgt ggggcggtga acgccgatga tgcctctact aaccatgttc 1020
atgttttctt tttttttcta caggtcctgg gtgacgaaca g 1061
<210> 66
<211> 170
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 66
cgatgctcta atctctctag acaaggttca tatttgtatg ggttacttat tctctctttg 60
ttgactaagt caataatcag aatcagcagg tttgcagtca gattggcagg gataagcagc 120
ctagctcagg agaagtgagt ataaaagccc caggctggga gcagccatca 170
<210> 67
<211> 254
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 67
gggggaggct gctggtgaat attaaccaag gtcaccccag ttatcggagg agcaaacagg 60
ggctaagtcc acctcgagcc atggcgatgc tctaatctct ctagacaagg ttcatatttg 120
tatgggttac ttattctctc tttgttgact aagtcaataa tcagaatcag caggtttgca 180
gtcagattgg cagggataag cagcctagct caggagaagt gagtataaaa gccccaggct 240
gggagcagcc atca 254
<210> 68
<211> 592
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 68
gtaaatttta tggaatgtga atcataattc aatttttcaa catgcgttag gagggacatt 60
tcaaactctt ttttacccta gactttccta ccatcaccca gagtatccag ccaggagggg 120
aggggctaga gacaccagaa gtttagcagg gaggagggcg tagggattcg gggaatgaag 180
ggatgggatt cagactaggg ccaggaccca gggatggaga gaaagagatg agagtggttt 240
gggggcttgg tgacttagag aacagagctg caggctcaga ggcacacagg agtttctggg 300
ctcaccctgc ccccttccaa cccctcagtt cccatcctcc agcagctgtt tgtgtgctgc 360
ctctgaagtc cacactgaac aaacttcagc ctactcatgt ccctaaaatg ggcaaacatt 420
gcaagcagca aacagcaaac acacagccct ccctgcctgc tgaccttgga gctggggcag 480
aggtcagaga cctctctggg cccatgccac ctccaacatc cactcgaccc cttggaattt 540
cggtggagag gagcagaggt tgtcctggcg tggtttaggt agtgtgagag gg 592
<210> 69
<211> 205
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 69
aatgactcct ttcggtaagt gcagtggaag ctgtacactg cccaggcaaa gcgtccgggc 60
agcgtaggcg ggcgactcag atcccagcca gtggacttag cccctgtttg ctcctccgat 120
aactggggtg accttggtta atattcacca gcagcctccc ccgttgcccc tctggatcca 180
ctgcttaaat acggacgagg acagg 205
<210> 70
<211> 423
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 70
gctctaaccc actctgatct cccagggcgg cagtaagtct tcagcatcag gcattttggg 60
gtgactcagt aaatggtaga tcttgctacc agtggaacag ccactaagga ttctgcagtg 120
agagcagagg gccagctaag tggtactctc ccagagactg tctgactcac gccaccccct 180
ccaccttgga cacaggacgc tgtggtttct gagccaggta caatgactcc tttcggtaag 240
tgcagtggaa gctgtacact gcccaggcaa agcgtccggg cagcgtaggc gggcgactca 300
gatcccagcc agtggactta gcccctgttt gctcctccga taactggggt gaccttggtt 360
aatattcacc agcagcctcc cccgttgccc ctctggatcc actgcttaaa tacggacgag 420
gac 423
<210> 71
<211> 72
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 71
gggggaggct gctggtgaat attaaccaag gtcaccccag ttatcggagg agcaaacagg 60
ggctaagtcc ac 72
<210> 72
<211> 913
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 72
tagggaggtc ctgcacagaa ggggaggagg gggcagcagc tgtctgacca ctgttggtct 60
tgcaacttgt gtccccaggt taatttttaa aaagcagtca aaagtccaag tggcccttgg 120
cagcatttac tctctctgtt tgctctggtt aataatctca ggagcacaaa cattcctgga 180
ggcaggagaa gaaatcaaca tcctggactt atcctctggg cctctcccca cccccaggat 240
tgtaactgaa atgcttcact ggtgctcctt ttgttttaag gcattggatc ttcatagcta 300
ctgatcgtgc ccaagcacac agtatctgca gcaaccactt aggcctccag gaatgtggtg 360
accattgacc ctaattcatt ccccttcatg gatcctatgt aaccatcctc caaaaagagc 420
tttcgcaaac tcaaataaac acaggaaagg aagaccttct tatctttgag agtatatgtt 480
tagccctata gctctaaccc actctgatct cccagggcgg cagtaagtct tcagcatcag 540
gcattttggg gtgactcagt aaatggtaga tcttgctacc agtggaacag ccactaagga 600
ttctgcagtg agagcagagg gccagctaag tggtactctc ccagagactg tctgactcac 660
gccaccccct ccaccttgga cacaggacgc tgtggtttct gagccaggta caatgactcc 720
tttcggtaag tgcagtggaa gctgtacact gcccaggcaa agcgtccggg cagcgtaggc 780
gggcgactca gatcccagcc agtggactta gcccctgttt gctcctccga taactggggt 840
gaccttggtt aatattcacc agcagcctcc cccgttgccc ctctggatcc actgcttaaa 900
tacggacgag gac 913
<210> 73
<211> 37
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 73
gtagataagt agcatggcgg gttaatcatt aactaca 37
<210> 74
<211> 46
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 74
ggaggggtgg agtcgtgacg tgaattacgt catagggtta gggagg 46
<210> 75
<211> 182
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 75
gtagataagt agcatggcgg gttaatcatt aactacaagg aacccctagt gatggagttg 60
gccactccct ctctgcgcgc tcgctcgctc actgaggccg ggcgaccaaa ggtcgcccga 120
cgcccgggct ttgcccgggc ggcctcagtg agcgagcgag cgcgcagaga gggagtggcc 180
aa 182
<210> 76
<211> 191
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 76
ttggccactc cctctctgcg cgctcgctcg ctcactgagg ccgggcgacc aaaggtcgcc 60
cgacgcccgg gctttgcccg ggcggcctca gtgagcgagc gagcgcgcag agagggagtg 120
gccaactcca tcactagggg ttcctggagg ggtggagtcg tgacgtgaat tacgtcatag 180
ggttagggag g 191
<210> 77
<211> 214
<212> PRT
<213> artificial sequence
<220>
<223> synthetic polypeptide
<400> 77
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Gly Ala Ser Glu Asn Ile Tyr Gly Ala
20 25 30
Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45
Tyr Gly Ala Thr Asn Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Val Leu Asn Thr Pro Leu
85 90 95
Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala
100 105 110
Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly
115 120 125
Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala
130 135 140
Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln
145 150 155 160
Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser
165 170 175
Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr
180 185 190
Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser
195 200 205
Phe Asn Arg Gly Glu Cys
210
<210> 78
<211> 467
<212> PRT
<213> artificial sequence
<220>
<223> synthetic polypeptide
<400> 78
Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly
1 5 10 15
Val His Ser Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys
20 25 30
Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly His Ile Phe
35 40 45
Ser Asn Tyr Trp Ile Gln Trp Val Arg Gln Ala Pro Gly Gln Gly Leu
50 55 60
Glu Trp Met Gly Glu Ile Leu Pro Gly Ser Gly His Thr Glu Tyr Thr
65 70 75 80
Glu Asn Phe Lys Asp Arg Val Thr Met Thr Arg Asp Thr Ser Thr Ser
85 90 95
Thr Val Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val
100 105 110
Tyr Tyr Cys Ala Arg Tyr Phe Phe Gly Ser Ser Pro Asn Trp Tyr Phe
115 120 125
Asp Val Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr
130 135 140
Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser
145 150 155 160
Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu
165 170 175
Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His
180 185 190
Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser
195 200 205
Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys
210 215 220
Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu
225 230 235 240
Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala
245 250 255
Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met
260 265 270
Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln
275 280 285
Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val
290 295 300
His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr
305 310 315 320
Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly
325 330 335
Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile
340 345 350
Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
355 360 365
Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser
370 375 380
Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu
385 390 395 400
Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
405 410 415
Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val
420 425 430
Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Leu
435 440 445
His Glu Ala Leu His Ser His Tyr Thr Gln Lys Ser Leu Ser Leu Ser
450 455 460
Leu Gly Lys
465
<210> 79
<211> 236
<212> PRT
<213> artificial sequence
<220>
<223> synthetic polypeptide
<400> 79
Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp
1 5 10 15
Leu Ser Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
20 25 30
Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Gly Ala Ser
35 40 45
Glu Asn Ile Tyr Gly Ala Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys
50 55 60
Ala Pro Lys Leu Leu Ile Tyr Gly Ala Thr Asn Leu Ala Asp Gly Val
65 70 75 80
Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
85 90 95
Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Asn
100 105 110
Val Leu Asn Thr Pro Leu Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
115 120 125
Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
130 135 140
Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
145 150 155 160
Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu
165 170 175
Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp
180 185 190
Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr
195 200 205
Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
210 215 220
Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
225 230 235
<210> 80
<211> 19
<212> PRT
<213> artificial sequence
<220>
<223> synthetic polypeptide
<400> 80
Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly
1 5 10 15
Val His Ser
<210> 81
<211> 22
<212> PRT
<213> artificial sequence
<220>
<223> synthetic polypeptide
<400> 81
Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp
1 5 10 15
Leu Ser Gly Ala Arg Cys
20
<210> 82
<211> 448
<212> PRT
<213> artificial sequence
<220>
<223> synthetic polypeptide
<400> 82
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ile Phe Ser Asn Tyr
20 25 30
Trp Ile Gln Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45
Gly Glu Ile Leu Pro Gly Ser Gly Ser Thr Glu Tyr Thr Glu Asn Phe
50 55 60
Lys Asp Arg Val Thr Met Thr Arg Asp Thr Ser Thr Ser Thr Val Tyr
65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Tyr Phe Phe Gly Ser Ser Pro Asn Trp Tyr Phe Asp Val Trp
100 105 110
Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro
115 120 125
Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr
130 135 140
Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr
145 150 155 160
Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro
165 170 175
Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr
180 185 190
Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp
195 200 205
His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys
210 215 220
Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser
225 230 235 240
Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg
245 250 255
Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro
260 265 270
Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala
275 280 285
Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val
290 295 300
Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr
305 310 315 320
Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr
325 330 335
Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu
340 345 350
Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys
355 360 365
Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser
370 375 380
Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp
385 390 395 400
Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser
405 410 415
Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala
420 425 430
Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys
435 440 445
<210> 83
<211> 1344
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 83
caagtgcagc tggttcaaag cggagccgaa gtgaaaaagc ccggagctag cgtgaaggtg 60
tcctgcaagg ccagcggcta tatcttcagc aactactgga tccagtgggt gcggcaggcc 120
cctggccaag gcctggaatg gatgggcgag atcctgccag gatctggctc taccgagtac 180
acagagaact tcaaggatag agtgaccatg accagagata cctccacaag caccgtgtac 240
atggaactga gcagcctgag aagcgaggac acagctgtgt actactgcgc cagatacttt 300
tttggctcat cccctaactg gtacttcgac gtgtggggcc aaggcaccct tgtcaccgtc 360
agcagcgcca gtactaaggg acccagcgtg ttcccactgg ccccatgcag cagaagcaca 420
tctgaaagca cagccgccct gggttgtctg gtcaaagact acttccccga acccgtgaca 480
gtgagctgga acagcggcgc cctgacaagc ggcgtgcaca ccttcccagc cgtgctgcag 540
agctctggcc tgtattctct gagtagcgtg gtcaccgttc ctagctccaa cttcggcaca 600
cagacctaca cctgtaatgt ggaccacaag cctagcaaca ccaaagtgga taagaccgtt 660
gagagaaagt gctgcgtgga atgcccacca tgtccagctc caccagtcgc cggcccttct 720
gttttcctgt tcccaccaaa gcccaaagac accctgatga tcagccggac ccctgaagtg 780
acatgtgtgg tggtggatgt gtcccaggag gatcctgagg tgcagtttaa ttggtacgtt 840
gacggagtgg aagttcataa tgccaagacc aaaccccgcg aggaacagtt taacagcacc 900
taccgggtgg tgtccgtgct gacagtgctg caccaggact ggctgaacgg caaagagtac 960
aagtgcaagg tgtctaacaa gggcctgcct agcagcatcg agaagaccat ctcaaaggcc 1020
aagggccagc ccagagagcc ccaagtctat acactgcctc cttctcaaga agaaatgaca 1080
aagaaccaag tgtctctgac ctgcctggtg aagggcttct accccagcga catcgccgtc 1140
gaatgggaga gcaacggaca gcctgaaaac aactacaaga cgacccctcc agtgctggac 1200
agcgatggca gcttcttcct gtattcacgg ctgaccgtgg acaagagccg atggcaagag 1260
ggcaacgtgt ttagctgcag cgtgatgcac gaagccctgc acaaccacta cacccagaag 1320
tccctgagcc tgtctctggg aaaa 1344
<210> 84
<211> 4181
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 84
gtaaatttta tggaatgtga atcataattc aatttttcaa catgcgttag gagggacatt 60
tcaaactctt ttttacccta gactttccta ccatcaccca gagtatccag ccaggagggg 120
aggggctaga gacaccagaa gtttagcagg gaggagggcg tagggattcg gggaatgaag 180
ggatgggatt cagactaggg ccaggaccca gggatggaga gaaagagatg agagtggttt 240
gggggcttgg tgacttagag aacagagctg caggctcaga ggcacacagg agtttctggg 300
ctcaccctgc ccccttccaa cccctcagtt cccatcctcc agcagctgtt tgtgtgctgc 360
ctctgaagtc cacactgaac aaacttcagc ctactcatgt ccctaaaatg ggcaaacatt 420
gcaagcagca aacagcaaac acacagccct ccctgcctgc tgaccttgga gctggggcag 480
aggtcagaga cctctctggg cccatgccac ctccaacatc cactcgaccc cttggaattt 540
cggtggagag gagcagaggt tgtcctggcg tggtttaggt agtgtgagag ggcttaagcg 600
tgaggctccg gtgcccgtca gtgggcagag cgcacatcgc ccacagtccc cgagaagttg 660
gggggagggg tcggcaattg aaccggtgcc tagagaaggt ggcgcggggt aaactgggaa 720
agtgatgtcg tgtactggct ccgccttttt cccgagggtg ggggagaacc gtatataagt 780
gcagtagtcg ccgtgaacgt tctttttcgc aacgggtttg ccgccagaac acaggtaagt 840
gccgtgtgtg gttcccgcgg gcctggcctc tttacgggtt atggcccttg cgtgccttga 900
attacttcca cctggctcca gtacgtgatt cttgatcccg agctggagcc aggggcgggc 960
cttgcgcttt aggagcccct tcgcctcgtg cttgagttga ggcctggcct gggcgctggg 1020
gccgccgcgt gcgaatctgg tggcaccttc gcgcctgtct cgctgctttc gataagtctc 1080
tagccattta aaatttttga tgacctgctg cgacgctttt tttctggcaa gatagtcttg 1140
taaatgcggg ccaggatctg cacactggta tttcggtttt tggggccgcg ggcggcgacg 1200
gggcccgtgc gtcccagcgc acatgttcgg cgaggcgggg cctgcgagcg cggccaccga 1260
gaatcggacg ggggtagtct caagctggcc ggcctgctct ggtgcctggc ctcgcgccgc 1320
cgtgtatcgc cccgccctgg gcggcaaggc tggcccggtc ggcaccagtt gcgtgagcgg 1380
aaagatggcc gcttcccggc cctgctccag ggggctcaaa atggaggacg cggcgctcgg 1440
gagagcgggc gggtgagtca cccacacaaa ggaaaggggc ctttccgtcc tcagccgtcg 1500
cttcatgtga ctccacggag taccgggcgc cgtccaggca cctcgattag ttctggagct 1560
tttggagtac gtcgtcttta ggttgggggg aggggtttta tgcgatggag tttccccaca 1620
ctgagtgggt ggagactgaa gttaggccag cttggcactt gatgtaattc tccttggaat 1680
ttgccctttt tgagtttgga tcttggttca ttctcaagcc tcagacagtg gttcaaagtt 1740
tttttcttcc atttcaggtg tcgtgaacta gtgccaccat gggctggtcc tgcatcatcc 1800
tgttcctggt ggccaccgcc acaggcgtgc acagccaagt gcagctggtt caaagcggag 1860
ccgaagtgaa aaagcccgga gctagcgtga aggtgtcctg caaggccagc ggccacatct 1920
tcagcaacta ctggatccag tgggtgcggc aggcccctgg ccaaggcctg gaatggatgg 1980
gcgagatcct gccaggatct ggccacaccg agtacacaga gaacttcaag gatagagtga 2040
ccatgaccag agatacctcc acaagcaccg tgtacatgga actgagcagc ctgagaagcg 2100
aggacacagc tgtgtactac tgcgccagat acttttttgg ctcatcccct aactggtact 2160
tcgacgtgtg gggccaaggc acccttgtca ccgtcagcag cgccagtact aagggaccca 2220
gcgtgttccc actggcccca tgcagcagaa gcacatctga aagcacagcc gccctgggtt 2280
gtctggtcaa agactacttc cccgaacccg tgacagtgag ctggaacagc ggcgccctga 2340
caagcggcgt gcacaccttc ccagccgtgc tgcagagctc tggcctgtat tctctgagta 2400
gcgtggtcac cgttcctagc tccaacttcg gcacacagac ctacacctgt aatgtggacc 2460
acaagcctag caacaccaaa gtggataaga ccgttgagag aaagtgctgc gtggaatgcc 2520
caccatgtcc agctccacca gtcgccggcc cttctgtttt cctgttccca ccaaagccca 2580
aagacaccct gatgatcagc cggacccctg aagtgacatg tgtggtggtg gatgtgtccc 2640
aggaggatcc tgaggtgcag tttaattggt acgttgacgg agtggaagtt cataatgcca 2700
agaccaaacc ccgcgaggaa cagtttaaca gcacctaccg ggtggtgtcc gtgctgacag 2760
tgctgcacca ggactggctg aacggcaaag agtacaagtg caaggtgtct aacaagggcc 2820
tgcctagcag catcgagaag accatctcaa aggccaaggg ccagcccaga gagccccaag 2880
tctatacact gcctccttct caagaagaaa tgacaaagaa ccaagtgtct ctgacctgcc 2940
tggtgaaggg cttctacccc agcgacatcg ccgtcgaatg ggagagcaac ggacagcctg 3000
aaaacaacta caagacgacc cctccagtgc tggacagcga tggcagcttc ttcctgtatt 3060
cacggctgac cgtggacaag agccgatggc aagagggcaa cgtgtttagc tgcagcgtgc 3120
tccacgaagc cctgcacagc cactacaccc agaagtccct gagcctgtct ctgggaaaaa 3180
gaaagagaag aggcagcgga gaaggcagag gcagcctgct gacctgcggc gacgtcgaag 3240
agaaccccgg ccctatggac atgagggtcc ctgctcagct gctggggctc ctgctgctct 3300
ggctcagcgg tgccagatgt gatatccaga tgacccagtc tccatctagc ctgtccgcca 3360
gcgtgggcga cagagtgacc atcacctgcg gcgccagcga gaacatctat ggcgctctga 3420
actggtacca gcagaaacct ggcaaggccc ctaagctgct gatctacggc gccaccaacc 3480
tggccgatgg cgtgcctagt agattcagcg gatctggcag cggcacagac ttcaccctga 3540
ccatcagcag cctgcaacct gaggactttg ccacatacta ctgccagaac gtgctgaata 3600
cacctctgac attcggccaa ggaaccaaag tggaaatcaa gcggaccgtg gccgctccta 3660
gcgtgttcat cttccctcct tccgatgaac aactgaagag cggaaccgcc tctgtggtgt 3720
gcctgctgaa caacttctac cctagagagg ccaaggtgca gtggaaggtc gacaacgccc 3780
tgcagagcgg caacagccag gagagcgtga cggaacagga cagcaaggac agcacctaca 3840
gcctgagctc cacccttaca ctgtctaaag ccgactacga gaagcacaag gtgtacgcct 3900
gtgaagtgac acaccagggc ctgagcagcc ctgtgaccaa gtcttttaac cggggcgagt 3960
gctgaattcg aatcgtacct agggatccag acatgataag atacattgat gagtttggac 4020
aaaccacaac tagaatgcag tgaaaaaaat gctttatttg tgaaatttgt gatgctattg 4080
ctttatttgt aaccattata agctgcaata aacaagttaa caacaacaat tgcattcatt 4140
ttatgtttca ggttcagggg gaggtgtggg aggtttttta a 4181
<210> 85
<211> 2956
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 85
ccctaaaatg ggcaaacatt gcaagcagca aacagcaaac acacagccct ccctgcctgc 60
tgaccttgga gctggggcag aggtcagaga cctctctggg cccatgccac ctccaacatc 120
cactcgaccc cttggaattt cggtggagag gagcagaggt tgtcctggcg tggtttaggt 180
agtgtgagag gggaatgact cctttcggta agtgcagtgg aagctgtaca ctgcccaggc 240
aaagcgtccg ggcagcgtag gcgggcgact cagatcccag ccagtggact tagcccctgt 300
ttgctcctcc gataactggg gtgaccttgg ttaatattca ccagcagcct cccccgttgc 360
ccctctggat ccactgctta aatacggacg aggacagggc cctgtctcct cagcttcagg 420
caccaccact gacctgggac agtgaatcct ctaaggtaaa tataaaattt ttaagtgtat 480
aatgtgttaa actactgatt ctaattgttt ctctctttta gattccaacc tttggaactg 540
aactagtgcc accatgggct ggtcctgcat catcctgttc ctggtggcca ccgccacagg 600
cgtgcacagc caagtgcagc tggttcaaag cggagccgaa gtgaaaaagc ccggagctag 660
cgtgaaggtg tcctgcaagg ccagcggcca catcttcagc aactactgga tccagtgggt 720
gcggcaggcc cctggccaag gcctggaatg gatgggcgag atcctgccag gatctggcca 780
caccgagtac acagagaact tcaaggatag agtgaccatg accagagata cctccacaag 840
caccgtgtac atggaactga gcagcctgag aagcgaggac acagctgtgt actactgcgc 900
cagatacttt tttggctcat cccctaactg gtacttcgac gtgtggggcc aaggcaccct 960
tgtcaccgtc agcagcgcca gtactaaggg acccagcgtg ttcccactgg ccccatgcag 1020
cagaagcaca tctgaaagca cagccgccct gggttgtctg gtcaaagact acttccccga 1080
acccgtgaca gtgagctgga acagcggcgc cctgacaagc ggcgtgcaca ccttcccagc 1140
cgtgctgcag agctctggcc tgtattctct gagtagcgtg gtcaccgttc ctagctccaa 1200
cttcggcaca cagacctaca cctgtaatgt ggaccacaag cctagcaaca ccaaagtgga 1260
taagaccgtt gagagaaagt gctgcgtgga atgcccacca tgtccagctc caccagtcgc 1320
cggcccttct gttttcctgt tcccaccaaa gcccaaagac accctgatga tcagccggac 1380
ccctgaagtg acatgtgtgg tggtggatgt gtcccaggag gatcctgagg tgcagtttaa 1440
ttggtacgtt gacggagtgg aagttcataa tgccaagacc aaaccccgcg aggaacagtt 1500
taacagcacc taccgggtgg tgtccgtgct gacagtgctg caccaggact ggctgaacgg 1560
caaagagtac aagtgcaagg tgtctaacaa gggcctgcct agcagcatcg agaagaccat 1620
ctcaaaggcc aagggccagc ccagagagcc ccaagtctat acactgcctc cttctcaaga 1680
agaaatgaca aagaaccaag tgtctctgac ctgcctggtg aagggcttct accccagcga 1740
catcgccgtc gaatgggaga gcaacggaca gcctgaaaac aactacaaga cgacccctcc 1800
agtgctggac agcgatggca gcttcttcct gtattcacgg ctgaccgtgg acaagagccg 1860
atggcaagag ggcaacgtgt ttagctgcag cgtgctccac gaagccctgc acagccacta 1920
cacccagaag tccctgagcc tgtctctggg aaaaagaaag agaagaggca gcggagaagg 1980
cagaggcagc ctgctgacct gcggcgacgt cgaagagaac cccggcccta tggacatgag 2040
ggtccctgct cagctgctgg ggctcctgct gctctggctc agcggtgcca gatgtgatat 2100
ccagatgacc cagtctccat ctagcctgtc cgccagcgtg ggcgacagag tgaccatcac 2160
ctgcggcgcc agcgagaaca tctatggcgc tctgaactgg taccagcaga aacctggcaa 2220
ggcccctaag ctgctgatct acggcgccac caacctggcc gatggcgtgc ctagtagatt 2280
cagcggatct ggcagcggca cagacttcac cctgaccatc agcagcctgc aacctgagga 2340
ctttgccaca tactactgcc agaacgtgct gaatacacct ctgacattcg gccaaggaac 2400
caaagtggaa atcaagcgga ccgtggccgc tcctagcgtg ttcatcttcc ctccttccga 2460
tgaacaactg aagagcggaa ccgcctctgt ggtgtgcctg ctgaacaact tctaccctag 2520
agaggccaag gtgcagtgga aggtcgacaa cgccctgcag agcggcaaca gccaggagag 2580
cgtgacggaa caggacagca aggacagcac ctacagcctg agctccaccc ttacactgtc 2640
taaagccgac tacgagaagc acaaggtgta cgcctgtgaa gtgacacacc agggcctgag 2700
cagccctgtg accaagtctt ttaaccgggg cgagtgctga attcgaatcg tacctaggga 2760
tccagacatg ataagataca ttgatgagtt tggacaaacc acaactagaa tgcagtgaaa 2820
aaaatgcttt atttgtgaaa tttgtgatgc tattgcttta tttgtaacca ttataagctg 2880
caataaacaa gttaacaaca acaattgcat tcattttatg tttcaggttc agggggaggt 2940
gtgggaggtt ttttaa 2956
<210> 86
<211> 3445
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 86
ccctaaaatg ggcaaacatt gcaagcagca aacagcaaac acacagccct ccctgcctgc 60
tgaccttgga gctggggcag aggtcagaga cctctctggg cccatgccac ctccaacatc 120
cactcgaccc cttggaattt cggtggagag gagcagaggt tgtcctggcg tggtttaggt 180
agtgtgagag gggaatgact cctttcggta agtgcagtgg aagctgtaca ctgcccaggc 240
aaagcgtccg ggcagcgtag gcgggcgact cagatcccag ccagtggact tagcccctgt 300
ttgctcctcc gataactggg gtgaccttgg ttaatattca ccagcagcct cccccgttgc 360
ccctctggat ccactgctta aatacggacg aggacagggc cctgtctcct cagcttcagg 420
caccaccact gacctgggac agtgaatcct ctaaggtaaa tataaaattt ttaagtgtat 480
aatgtgttaa actactgatt ctaattgttt ctctctttta gattccaacc tttggaactg 540
aactagtgcc accatgggct ggtcctgcat catcctgttc ctggtggcca ccgccacagg 600
cgtgcacagc caagtgcagc tggttcaaag cggagccgaa gtgaaaaagc ccggagctag 660
cgtgaaggtg tcctgcaagg ccagcggcca catcttcagc aactactgga tccagtgggt 720
gcggcaggcc cctggccaag gcctggaatg gatgggcgag atcctgccag gatctggcca 780
caccgagtac acagagaact tcaaggatag agtgaccatg accagagata cctccacaag 840
caccgtgtac atggaactga gcagcctgag aagcgaggac acagctgtgt actactgcgc 900
cagatacttt tttggctcat cccctaactg gtacttcgac gtgtggggcc aaggcaccct 960
tgtcaccgtc agcagcgcca gtactaaggg acccagcgtg ttcccactgg ccccatgcag 1020
cagaagcaca tctgaaagca cagccgccct gggttgtctg gtcaaagact acttccccga 1080
acccgtgaca gtgagctgga acagcggcgc cctgacaagc ggcgtgcaca ccttcccagc 1140
cgtgctgcag agctctggcc tgtattctct gagtagcgtg gtcaccgttc ctagctccaa 1200
cttcggcaca cagacctaca cctgtaatgt ggaccacaag cctagcaaca ccaaagtgga 1260
taagaccgtt gagagaaagt gctgcgtgga atgcccacca tgtccagctc caccagtcgc 1320
cggcccttct gttttcctgt tcccaccaaa gcccaaagac accctgatga tcagccggac 1380
ccctgaagtg acatgtgtgg tggtggatgt gtcccaggag gatcctgagg tgcagtttaa 1440
ttggtacgtt gacggagtgg aagttcataa tgccaagacc aaaccccgcg aggaacagtt 1500
taacagcacc taccgggtgg tgtccgtgct gacagtgctg caccaggact ggctgaacgg 1560
caaagagtac aagtgcaagg tgtctaacaa gggcctgcct agcagcatcg agaagaccat 1620
ctcaaaggcc aagggccagc ccagagagcc ccaagtctat acactgcctc cttctcaaga 1680
agaaatgaca aagaaccaag tgtctctgac ctgcctggtg aagggcttct accccagcga 1740
catcgccgtc gaatgggaga gcaacggaca gcctgaaaac aactacaaga cgacccctcc 1800
agtgctggac agcgatggca gcttcttcct gtattcacgg ctgaccgtgg acaagagccg 1860
atggcaagag ggcaacgtgt ttagctgcag cgtgctccac gaagccctgc acagccacta 1920
cacccagaag tccctgagcc tgtctctggg aaaataaaac gttcctcgag gctgtgcctt 1980
ctagttgcca gccatctgtt gtttgcccct cccccgtgcc ttccttgacc ctggaaggtg 2040
ccactcccac tgtcctttcc taataaaatg aggaaattgc atcgcattgt ctgagtaggt 2100
gtcattctat tctggggggt ggggtggggc aggacagcaa ggtccggagg gggaggctgc 2160
tggtgaatat taaccaaggt caccccagtt atcggaggag caaacagggg ctaagtccac 2220
ctcgagccat ggcgatgctc taatctctct agacaaggtt catatttgta tgggttactt 2280
attctctctt tgttgactaa gtcaataatc agaatcagca ggtttgcagt cagattggca 2340
gggataagca gcctagctca ggagaagtga gtataaaagc cccaggctgg gagcagccat 2400
cagctagcgc cggcaagagg taagggttta agggatggtt ggttggtggg gtattaatgt 2460
ttaattacct ggagcacctg cctgaaatca ctttttttca ggttggaccg gtgccaccat 2520
ggacatgagg gtccctgctc agctgctggg gctcctgctg ctctggctca gcggtgccag 2580
atgtgatatc cagatgaccc agtctccatc tagcctgtcc gccagcgtgg gcgacagagt 2640
gaccatcacc tgcggcgcca gcgagaacat ctatggcgct ctgaactggt accagcagaa 2700
acctggcaag gcccctaagc tgctgatcta cggcgccacc aacctggccg atggcgtgcc 2760
tagtagattc agcggatctg gcagcggcac agacttcacc ctgaccatca gcagcctgca 2820
acctgaggac tttgccacat actactgcca gaacgtgctg aatacacctc tgacattcgg 2880
ccaaggaacc aaagtggaaa tcaagcggac cgtggccgct cctagcgtgt tcatcttccc 2940
tccttccgat gaacaactga agagcggaac cgcctctgtg gtgtgcctgc tgaacaactt 3000
ctaccctaga gaggccaagg tgcagtggaa ggtcgacaac gccctgcaga gcggcaacag 3060
ccaggagagc gtgacggaac aggacagcaa ggacagcacc tacagcctga gctccaccct 3120
tacactgtct aaagccgact acgagaagca caaggtgtac gcctgtgaag tgacacacca 3180
gggcctgagc agccctgtga ccaagtcttt taaccggggc gagtgctgaa ttcgaatcgt 3240
acctagggat ccagacatga taagatacat tgatgagttt ggacaaacca caactagaat 3300
gcagtgaaaa aaatgcttta tttgtgaaat ttgtgatgct attgctttat ttgtaaccat 3360
tataagctgc aataaacaag ttaacaacaa caattgcatt cattttatgt ttcaggttca 3420
gggggaggtg tgggaggttt tttaa 3445
<210> 87
<211> 4075
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 87
ccttgctgtc ctgccccacc ccacccccca gaatagaatg acacctactc agacaatgcg 60
atgcaatttc ctcattttat taggaaagga cagtgggagt ggcaccttcc agggtcaagg 120
aaggcacggg ggaggggcaa acaacagatg gctggcaact agaaggcaca gcctcgagga 180
acgttttatt ttcccagaga caggctcagg gacttctggg tgtagtggct gtgcagggct 240
tcgtggagca cgctgcagct aaacacgttg ccctcttgcc atcggctctt gtccacggtc 300
agccgtgaat acaggaagaa gctgccatcg ctgtccagca ctggaggggt cgtcttgtag 360
ttgttttcag gctgtccgtt gctctcccat tcgacggcga tgtcgctggg gtagaagccc 420
ttcaccaggc aggtcagaga cacttggttc tttgtcattt cttcttgaga aggaggcagt 480
gtatagactt ggggctctct gggctggccc ttggcctttg agatggtctt ctcgatgctg 540
ctaggcaggc ccttgttaga caccttgcac ttgtactctt tgccgttcag ccagtcctgg 600
tgcagcactg tcagcacgga caccacccgg taggtgctgt taaactgttc ctcgcggggt 660
ttggtcttgg cattatgaac ttccactccg tcaacgtacc aattaaactg cacctcagga 720
tcctcctggg acacatccac caccacacat gtcacttcag gggtccggct gatcatcagg 780
gtgtctttgg gctttggtgg gaacaggaaa acagaagggc cggcgactgg tggagctgga 840
catggtgggc attccacgca gcactttctc tcaacggtct tatccacttt ggtgttgcta 900
ggcttgtggt ccacattaca ggtgtaggtc tgtgtgccga agttggagct aggaacggtg 960
accacgctac tcagagaata caggccagag ctctgcagca cggctgggaa ggtgtgcacg 1020
ccgcttgtca gggcgccgct gttccagctc actgtcacgg gttcggggaa gtagtctttg 1080
accagacaac ccagggcggc tgtgctttca gatgtgcttc tgctgcatgg ggccagtggg 1140
aacacgctgg gtcccttagt actggcgctg ctgacggtga caagggtgcc ttggccccac 1200
acgtcgaagt accagttagg ggatgagcca aaaaagtatc tggcgcagta gtacacagct 1260
gtgtcctcgc ttctcaggct gctcagttcc atgtacacgg tgcttgtgga ggtatctctg 1320
gtcatggtca ctctatcctt gaagttctct gtgtactcgg tgtggccaga tcctggcagg 1380
atctcgccca tccattccag gccttggcca ggggcctgcc gcacccactg gatccagtag 1440
ttgctgaaga tgtggccgct ggccttgcag gacaccttca cgctagctcc gggctttttc 1500
acttcggctc cgctttgaac cagctgcact tggctgtgca cgcctgtggc ggtggccacc 1560
aggaacagga tgatgcagga ccagcccatg gtggcactag ttcagttcca aaggttggaa 1620
tctaaaagag agaaacaatt agaatcagta gtttaacaca ttatacactt aaaaatttta 1680
tatttacctt agaggattca ctgtcccagg tcagtggtgg tgcctgaagc tgaggagaca 1740
gggccctgtc ctcgtccgta tttaagcagt ggatccagag gggcaacggg ggaggctgct 1800
ggtgaatatt aaccaaggtc accccagtta tcggaggagc aaacaggggc taagtccact 1860
ggctgggatc tgagtcgccc gcctacgctg cccggacgct ttgcctgggc agtgtacagc 1920
ttccactgca cttaccgaaa ggagtcattc ccctctcaca ctacctaaac cacgccagga 1980
caacctctgc tcctctccac cgaaattcca aggggtcgag tggatgttgg aggtggcatg 2040
ggcccagaga ggtctctgac ctctgcccca gctccaaggt cagcaggcag ggagggctgt 2100
gtgtttgctg tttgctgctt gcaatgtttg cccattttag ggccgcggca cgtgcttaag 2160
gccccctttt gcatccagtt tattcctaca tttgtcacac tgttaacagc ccaccccttc 2220
caatgagacc agtggtatca gtgagttgtg gagatcagga aaagggctca agagaaaggc 2280
agtcaaagcc ctttttctgt ccctgtccca gctgctttaa taagatctcc ataagagaag 2340
agggacagct atgactggga gtagtcagga gaggaggaaa aatctggcta gtaaaacatg 2400
taaggaaaat tttagggatg ttaaagaaaa aaataacaca aaacaaaata taaaaaaaat 2460
ctaacctcaa gtcaaggctt ttctatggaa taaggaatgg acagcagggg gctgtttcat 2520
atactgatga cctctttata gccaaccttt gttcatggca gccagcatat gggcatatgt 2580
tgccaaactc taaaccaaat actcattctg atgttttaaa tgatttgccc tcccatatgt 2640
ccttccgagt gagagacaca aaaaattcca acacactatt gcaatgaaaa taaatttcct 2700
ttattagcca gaagtcagat gctcaagggg cttcatgatg tccccataat ttttggcaga 2760
gggaaaaaga tctccggagg gggaggctgc tggtgaatat taaccaaggt caccccagtt 2820
atcggaggag caaacagggg ctaagtccac ctcgagccat ggcgatgctc taatctctct 2880
agacaaggtt catatttgta tgggttactt attctctctt tgttgactaa gtcaataatc 2940
agaatcagca ggtttgcagt cagattggca gggataagca gcctagctca ggagaagtga 3000
gtataaaagc cccaggctgg gagcagccat cagctagcgc cggcaagagg taagggttta 3060
agggatggtt ggttggtggg gtattaatgt ttaattacct ggagcacctg cctgaaatca 3120
ctttttttca ggttggaccg gtgccaccat ggacatgagg gtccctgctc agctgctggg 3180
gctcctgctg ctctggctca gcggtgccag atgtgatatc cagatgaccc agtctccatc 3240
tagcctgtcc gccagcgtgg gcgacagagt gaccatcacc tgcggcgcca gcgagaacat 3300
ctatggcgct ctgaactggt accagcagaa acctggcaag gcccctaagc tgctgatcta 3360
cggcgccacc aacctggccg atggcgtgcc tagtagattc agcggatctg gcagcggcac 3420
agacttcacc ctgaccatca gcagcctgca acctgaggac tttgccacat actactgcca 3480
gaacgtgctg aatacacctc tgacattcgg ccaaggaacc aaagtggaaa tcaagcggac 3540
cgtggccgct cctagcgtgt tcatcttccc tccttccgat gaacaactga agagcggaac 3600
cgcctctgtg gtgtgcctgc tgaacaactt ctaccctaga gaggccaagg tgcagtggaa 3660
ggtcgacaac gccctgcaga gcggcaacag ccaggagagc gtgacggaac aggacagcaa 3720
ggacagcacc tacagcctga gctccaccct tacactgtct aaagccgact acgagaagca 3780
caaggtgtac gcctgtgaag tgacacacca gggcctgagc agccctgtga ccaagtcttt 3840
taaccggggc gagtgctgaa ttcgaatcgt acctagggat ccagacatga taagatacat 3900
tgatgagttt ggacaaacca caactagaat gcagtgaaaa aaatgcttta tttgtgaaat 3960
ttgtgatgct attgctttat ttgtaaccat tataagctgc aataaacaag ttaacaacaa 4020
caattgcatt cattttatgt ttcaggttca gggggaggtg tgggaggttt tttaa 4075
<210> 88
<211> 4588
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 88
ttggccactc cctctctgcg cgctcgctcg ctcactgagg ccgggcgacc aaaggtcgcc 60
cgacgcccgg gctttgcccg ggcggcctca gtgagcgagc gagcgcgcag agagggagtg 120
gccaactcca tcactagggg ttcctggagg ggtggagtcg tgacgtgaat tacgtcatag 180
ggttagggag gtcctgcata tgcggccgcg taaattttat ggaatgtgaa tcataattca 240
atttttcaac atgcgttagg agggacattt caaactcttt tttaccctag actttcctac 300
catcacccag agtatccagc caggagggga ggggctagag acaccagaag tttagcaggg 360
aggagggcgt agggattcgg ggaatgaagg gatgggattc agactagggc caggacccag 420
ggatggagag aaagagatga gagtggtttg ggggcttggt gacttagaga acagagctgc 480
aggctcagag gcacacagga gtttctgggc tcaccctgcc cccttccaac ccctcagttc 540
ccatcctcca gcagctgttt gtgtgctgcc tctgaagtcc acactgaaca aacttcagcc 600
tactcatgtc cctaaaatgg gcaaacattg caagcagcaa acagcaaaca cacagccctc 660
cctgcctgct gaccttggag ctggggcaga ggtcagagac ctctctgggc ccatgccacc 720
tccaacatcc actcgacccc ttggaatttc ggtggagagg agcagaggtt gtcctggcgt 780
ggtttaggta gtgtgagagg gcttaagcgt gaggctccgg tgcccgtcag tgggcagagc 840
gcacatcgcc cacagtcccc gagaagttgg ggggaggggt cggcaattga accggtgcct 900
agagaaggtg gcgcggggta aactgggaaa gtgatgtcgt gtactggctc cgcctttttc 960
ccgagggtgg gggagaaccg tatataagtg cagtagtcgc cgtgaacgtt ctttttcgca 1020
acgggtttgc cgccagaaca caggtaagtg ccgtgtgtgg ttcccgcggg cctggcctct 1080
ttacgggtta tggcccttgc gtgccttgaa ttacttccac ctggctccag tacgtgattc 1140
ttgatcccga gctggagcca ggggcgggcc ttgcgcttta ggagcccctt cgcctcgtgc 1200
ttgagttgag gcctggcctg ggcgctgggg ccgccgcgtg cgaatctggt ggcaccttcg 1260
cgcctgtctc gctgctttcg ataagtctct agccatttaa aatttttgat gacctgctgc 1320
gacgcttttt ttctggcaag atagtcttgt aaatgcgggc caggatctgc acactggtat 1380
ttcggttttt ggggccgcgg gcggcgacgg ggcccgtgcg tcccagcgca catgttcggc 1440
gaggcggggc ctgcgagcgc ggccaccgag aatcggacgg gggtagtctc aagctggccg 1500
gcctgctctg gtgcctggcc tcgcgccgcc gtgtatcgcc ccgccctggg cggcaaggct 1560
ggcccggtcg gcaccagttg cgtgagcgga aagatggccg cttcccggcc ctgctccagg 1620
gggctcaaaa tggaggacgc ggcgctcggg agagcgggcg ggtgagtcac ccacacaaag 1680
gaaaggggcc tttccgtcct cagccgtcgc ttcatgtgac tccacggagt accgggcgcc 1740
gtccaggcac ctcgattagt tctggagctt ttggagtacg tcgtctttag gttgggggga 1800
ggggttttat gcgatggagt ttccccacac tgagtgggtg gagactgaag ttaggccagc 1860
ttggcacttg atgtaattct ccttggaatt tgcccttttt gagtttggat cttggttcat 1920
tctcaagcct cagacagtgg ttcaaagttt ttttcttcca tttcaggtgt cgtgaactag 1980
tgccaccatg ggctggtcct gcatcatcct gttcctggtg gccaccgcca caggcgtgca 2040
cagccaagtg cagctggttc aaagcggagc cgaagtgaaa aagcccggag ctagcgtgaa 2100
ggtgtcctgc aaggccagcg gccacatctt cagcaactac tggatccagt gggtgcggca 2160
ggcccctggc caaggcctgg aatggatggg cgagatcctg ccaggatctg gccacaccga 2220
gtacacagag aacttcaagg atagagtgac catgaccaga gatacctcca caagcaccgt 2280
gtacatggaa ctgagcagcc tgagaagcga ggacacagct gtgtactact gcgccagata 2340
cttttttggc tcatccccta actggtactt cgacgtgtgg ggccaaggca cccttgtcac 2400
cgtcagcagc gccagtacta agggacccag cgtgttccca ctggccccat gcagcagaag 2460
cacatctgaa agcacagccg ccctgggttg tctggtcaaa gactacttcc ccgaacccgt 2520
gacagtgagc tggaacagcg gcgccctgac aagcggcgtg cacaccttcc cagccgtgct 2580
gcagagctct ggcctgtatt ctctgagtag cgtggtcacc gttcctagct ccaacttcgg 2640
cacacagacc tacacctgta atgtggacca caagcctagc aacaccaaag tggataagac 2700
cgttgagaga aagtgctgcg tggaatgccc accatgtcca gctccaccag tcgccggccc 2760
ttctgttttc ctgttcccac caaagcccaa agacaccctg atgatcagcc ggacccctga 2820
agtgacatgt gtggtggtgg atgtgtccca ggaggatcct gaggtgcagt ttaattggta 2880
cgttgacgga gtggaagttc ataatgccaa gaccaaaccc cgcgaggaac agtttaacag 2940
cacctaccgg gtggtgtccg tgctgacagt gctgcaccag gactggctga acggcaaaga 3000
gtacaagtgc aaggtgtcta acaagggcct gcctagcagc atcgagaaga ccatctcaaa 3060
ggccaagggc cagcccagag agccccaagt ctatacactg cctccttctc aagaagaaat 3120
gacaaagaac caagtgtctc tgacctgcct ggtgaagggc ttctacccca gcgacatcgc 3180
cgtcgaatgg gagagcaacg gacagcctga aaacaactac aagacgaccc ctccagtgct 3240
ggacagcgat ggcagcttct tcctgtattc acggctgacc gtggacaaga gccgatggca 3300
agagggcaac gtgtttagct gcagcgtgct ccacgaagcc ctgcacagcc actacaccca 3360
gaagtccctg agcctgtctc tgggaaaaag aaagagaaga ggcagcggag aaggcagagg 3420
cagcctgctg acctgcggcg acgtcgaaga gaaccccggc cctatggaca tgagggtccc 3480
tgctcagctg ctggggctcc tgctgctctg gctcagcggt gccagatgtg atatccagat 3540
gacccagtct ccatctagcc tgtccgccag cgtgggcgac agagtgacca tcacctgcgg 3600
cgccagcgag aacatctatg gcgctctgaa ctggtaccag cagaaacctg gcaaggcccc 3660
taagctgctg atctacggcg ccaccaacct ggccgatggc gtgcctagta gattcagcgg 3720
atctggcagc ggcacagact tcaccctgac catcagcagc ctgcaacctg aggactttgc 3780
cacatactac tgccagaacg tgctgaatac acctctgaca ttcggccaag gaaccaaagt 3840
ggaaatcaag cggaccgtgg ccgctcctag cgtgttcatc ttccctcctt ccgatgaaca 3900
actgaagagc ggaaccgcct ctgtggtgtg cctgctgaac aacttctacc ctagagaggc 3960
caaggtgcag tggaaggtcg acaacgccct gcagagcggc aacagccagg agagcgtgac 4020
ggaacaggac agcaaggaca gcacctacag cctgagctcc acccttacac tgtctaaagc 4080
cgactacgag aagcacaagg tgtacgcctg tgaagtgaca caccagggcc tgagcagccc 4140
tgtgaccaag tcttttaacc ggggcgagtg ctgaattcga atcgtaccta gggatccaga 4200
catgataaga tacattgatg agtttggaca aaccacaact agaatgcagt gaaaaaaatg 4260
ctttatttgt gaaatttgtg atgctattgc tttatttgta accattataa gctgcaataa 4320
acaagttaac aacaacaatt gcattcattt tatgtttcag gttcaggggg aggtgtggga 4380
ggttttttaa gcttgtttaa acgtacgtag ataagtagca tggcgggtta atcattaact 4440
acaaggaacc cctagtgatg gagttggcca ctccctctct gcgcgctcgc tcgctcactg 4500
aggccgggcg accaaaggtc gcccgacgcc cgggctttgc ccgggcggcc tcagtgagcg 4560
agcgagcgcg cagagaggga gtggccaa 4588
<210> 89
<211> 3375
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 89
ttggccactc cctctctgcg cgctcgctcg ctcactgagg ccgggcgacc aaaggtcgcc 60
cgacgcccgg gctttgcccg ggcggcctca gtgagcgagc gagcgcgcag agagggagtg 120
gccaactcca tcactagggg ttcctggagg ggtggagtcg tgacgtgaat tacgtcatag 180
ggttagggag gtcctgcata tgcggccgca cgtgccgcgg ccctaaaatg ggcaaacatt 240
gcaagcagca aacagcaaac acacagccct ccctgcctgc tgaccttgga gctggggcag 300
aggtcagaga cctctctggg cccatgccac ctccaacatc cactcgaccc cttggaattt 360
cggtggagag gagcagaggt tgtcctggcg tggtttaggt agtgtgagag gggaatgact 420
cctttcggta agtgcagtgg aagctgtaca ctgcccaggc aaagcgtccg ggcagcgtag 480
gcgggcgact cagatcccag ccagtggact tagcccctgt ttgctcctcc gataactggg 540
gtgaccttgg ttaatattca ccagcagcct cccccgttgc ccctctggat ccactgctta 600
aatacggacg aggacagggc cctgtctcct cagcttcagg caccaccact gacctgggac 660
agtgaatcct ctaaggtaaa tataaaattt ttaagtgtat aatgtgttaa actactgatt 720
ctaattgttt ctctctttta gattccaacc tttggaactg aactagtgcc accatgggct 780
ggtcctgcat catcctgttc ctggtggcca ccgccacagg cgtgcacagc caagtgcagc 840
tggttcaaag cggagccgaa gtgaaaaagc ccggagctag cgtgaaggtg tcctgcaagg 900
ccagcggcca catcttcagc aactactgga tccagtgggt gcggcaggcc cctggccaag 960
gcctggaatg gatgggcgag atcctgccag gatctggcca caccgagtac acagagaact 1020
tcaaggatag agtgaccatg accagagata cctccacaag caccgtgtac atggaactga 1080
gcagcctgag aagcgaggac acagctgtgt actactgcgc cagatacttt tttggctcat 1140
cccctaactg gtacttcgac gtgtggggcc aaggcaccct tgtcaccgtc agcagcgcca 1200
gtactaaggg acccagcgtg ttcccactgg ccccatgcag cagaagcaca tctgaaagca 1260
cagccgccct gggttgtctg gtcaaagact acttccccga acccgtgaca gtgagctgga 1320
acagcggcgc cctgacaagc ggcgtgcaca ccttcccagc cgtgctgcag agctctggcc 1380
tgtattctct gagtagcgtg gtcaccgttc ctagctccaa cttcggcaca cagacctaca 1440
cctgtaatgt ggaccacaag cctagcaaca ccaaagtgga taagaccgtt gagagaaagt 1500
gctgcgtgga atgcccacca tgtccagctc caccagtcgc cggcccttct gttttcctgt 1560
tcccaccaaa gcccaaagac accctgatga tcagccggac ccctgaagtg acatgtgtgg 1620
tggtggatgt gtcccaggag gatcctgagg tgcagtttaa ttggtacgtt gacggagtgg 1680
aagttcataa tgccaagacc aaaccccgcg aggaacagtt taacagcacc taccgggtgg 1740
tgtccgtgct gacagtgctg caccaggact ggctgaacgg caaagagtac aagtgcaagg 1800
tgtctaacaa gggcctgcct agcagcatcg agaagaccat ctcaaaggcc aagggccagc 1860
ccagagagcc ccaagtctat acactgcctc cttctcaaga agaaatgaca aagaaccaag 1920
tgtctctgac ctgcctggtg aagggcttct accccagcga catcgccgtc gaatgggaga 1980
gcaacggaca gcctgaaaac aactacaaga cgacccctcc agtgctggac agcgatggca 2040
gcttcttcct gtattcacgg ctgaccgtgg acaagagccg atggcaagag ggcaacgtgt 2100
ttagctgcag cgtgctccac gaagccctgc acagccacta cacccagaag tccctgagcc 2160
tgtctctggg aaaaagaaag agaagaggca gcggagaagg cagaggcagc ctgctgacct 2220
gcggcgacgt cgaagagaac cccggcccta tggacatgag ggtccctgct cagctgctgg 2280
ggctcctgct gctctggctc agcggtgcca gatgtgatat ccagatgacc cagtctccat 2340
ctagcctgtc cgccagcgtg ggcgacagag tgaccatcac ctgcggcgcc agcgagaaca 2400
tctatggcgc tctgaactgg taccagcaga aacctggcaa ggcccctaag ctgctgatct 2460
acggcgccac caacctggcc gatggcgtgc ctagtagatt cagcggatct ggcagcggca 2520
cagacttcac cctgaccatc agcagcctgc aacctgagga ctttgccaca tactactgcc 2580
agaacgtgct gaatacacct ctgacattcg gccaaggaac caaagtggaa atcaagcgga 2640
ccgtggccgc tcctagcgtg ttcatcttcc ctccttccga tgaacaactg aagagcggaa 2700
ccgcctctgt ggtgtgcctg ctgaacaact tctaccctag agaggccaag gtgcagtgga 2760
aggtcgacaa cgccctgcag agcggcaaca gccaggagag cgtgacggaa caggacagca 2820
aggacagcac ctacagcctg agctccaccc ttacactgtc taaagccgac tacgagaagc 2880
acaaggtgta cgcctgtgaa gtgacacacc agggcctgag cagccctgtg accaagtctt 2940
ttaaccgggg cgagtgctga attcgaatcg tacctaggga tccagacatg ataagataca 3000
ttgatgagtt tggacaaacc acaactagaa tgcagtgaaa aaaatgcttt atttgtgaaa 3060
tttgtgatgc tattgcttta tttgtaacca ttataagctg caataaacaa gttaacaaca 3120
acaattgcat tcattttatg tttcaggttc agggggaggt gtgggaggtt ttttaacctg 3180
caggtctaga tacgtagata agtagcatgg cgggttaatc attaactaca aggaacccct 3240
agtgatggag ttggccactc cctctctgcg cgctcgctcg ctcactgagg ccgggcgacc 3300
aaaggtcgcc cgacgcccgg gctttgcccg ggcggcctca gtgagcgagc gagcgcgcag 3360
agagggagtg gccaa 3375
<210> 90
<211> 3863
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 90
ttggccactc cctctctgcg cgctcgctcg ctcactgagg ccgggcgacc aaaggtcgcc 60
cgacgcccgg gctttgcccg ggcggcctca gtgagcgagc gagcgcgcag agagggagtg 120
gccaactcca tcactagggg ttcctggagg ggtggagtcg tgacgtgaat tacgtcatag 180
ggttagggag gtcctgcata tgcggccgca cgtgccgcgg ccctaaaatg ggcaaacatt 240
gcaagcagca aacagcaaac acacagccct ccctgcctgc tgaccttgga gctggggcag 300
aggtcagaga cctctctggg cccatgccac ctccaacatc cactcgaccc cttggaattt 360
cggtggagag gagcagaggt tgtcctggcg tggtttaggt agtgtgagag gggaatgact 420
cctttcggta agtgcagtgg aagctgtaca ctgcccaggc aaagcgtccg ggcagcgtag 480
gcgggcgact cagatcccag ccagtggact tagcccctgt ttgctcctcc gataactggg 540
gtgaccttgg ttaatattca ccagcagcct cccccgttgc ccctctggat ccactgctta 600
aatacggacg aggacagggc cctgtctcct cagcttcagg caccaccact gacctgggac 660
agtgaatcct ctaaggtaaa tataaaattt ttaagtgtat aatgtgttaa actactgatt 720
ctaattgttt ctctctttta gattccaacc tttggaactg aactagtgcc accatgggct 780
ggtcctgcat catcctgttc ctggtggcca ccgccacagg cgtgcacagc caagtgcagc 840
tggttcaaag cggagccgaa gtgaaaaagc ccggagctag cgtgaaggtg tcctgcaagg 900
ccagcggcca catcttcagc aactactgga tccagtgggt gcggcaggcc cctggccaag 960
gcctggaatg gatgggcgag atcctgccag gatctggcca caccgagtac acagagaact 1020
tcaaggatag agtgaccatg accagagata cctccacaag caccgtgtac atggaactga 1080
gcagcctgag aagcgaggac acagctgtgt actactgcgc cagatacttt tttggctcat 1140
cccctaactg gtacttcgac gtgtggggcc aaggcaccct tgtcaccgtc agcagcgcca 1200
gtactaaggg acccagcgtg ttcccactgg ccccatgcag cagaagcaca tctgaaagca 1260
cagccgccct gggttgtctg gtcaaagact acttccccga acccgtgaca gtgagctgga 1320
acagcggcgc cctgacaagc ggcgtgcaca ccttcccagc cgtgctgcag agctctggcc 1380
tgtattctct gagtagcgtg gtcaccgttc ctagctccaa cttcggcaca cagacctaca 1440
cctgtaatgt ggaccacaag cctagcaaca ccaaagtgga taagaccgtt gagagaaagt 1500
gctgcgtgga atgcccacca tgtccagctc caccagtcgc cggcccttct gttttcctgt 1560
tcccaccaaa gcccaaagac accctgatga tcagccggac ccctgaagtg acatgtgtgg 1620
tggtggatgt gtcccaggag gatcctgagg tgcagtttaa ttggtacgtt gacggagtgg 1680
aagttcataa tgccaagacc aaaccccgcg aggaacagtt taacagcacc taccgggtgg 1740
tgtccgtgct gacagtgctg caccaggact ggctgaacgg caaagagtac aagtgcaagg 1800
tgtctaacaa gggcctgcct agcagcatcg agaagaccat ctcaaaggcc aagggccagc 1860
ccagagagcc ccaagtctat acactgcctc cttctcaaga agaaatgaca aagaaccaag 1920
tgtctctgac ctgcctggtg aagggcttct accccagcga catcgccgtc gaatgggaga 1980
gcaacggaca gcctgaaaac aactacaaga cgacccctcc agtgctggac agcgatggca 2040
gcttcttcct gtattcacgg ctgaccgtgg acaagagccg atggcaagag ggcaacgtgt 2100
ttagctgcag cgtgctccac gaagccctgc acagccacta cacccagaag tccctgagcc 2160
tgtctctggg aaaataaaac gttcctcgag gctgtgcctt ctagttgcca gccatctgtt 2220
gtttgcccct cccccgtgcc ttccttgacc ctggaaggtg ccactcccac tgtcctttcc 2280
taataaaatg aggaaattgc atcgcattgt ctgagtaggt gtcattctat tctggggggt 2340
ggggtggggc aggacagcaa ggtccggagg gggaggctgc tggtgaatat taaccaaggt 2400
caccccagtt atcggaggag caaacagggg ctaagtccac ctcgagccat ggcgatgctc 2460
taatctctct agacaaggtt catatttgta tgggttactt attctctctt tgttgactaa 2520
gtcaataatc agaatcagca ggtttgcagt cagattggca gggataagca gcctagctca 2580
ggagaagtga gtataaaagc cccaggctgg gagcagccat cagctagcgc cggcaagagg 2640
taagggttta agggatggtt ggttggtggg gtattaatgt ttaattacct ggagcacctg 2700
cctgaaatca ctttttttca ggttggaccg gtgccaccat ggacatgagg gtccctgctc 2760
agctgctggg gctcctgctg ctctggctca gcggtgccag atgtgatatc cagatgaccc 2820
agtctccatc tagcctgtcc gccagcgtgg gcgacagagt gaccatcacc tgcggcgcca 2880
gcgagaacat ctatggcgct ctgaactggt accagcagaa acctggcaag gcccctaagc 2940
tgctgatcta cggcgccacc aacctggccg atggcgtgcc tagtagattc agcggatctg 3000
gcagcggcac agacttcacc ctgaccatca gcagcctgca acctgaggac tttgccacat 3060
actactgcca gaacgtgctg aatacacctc tgacattcgg ccaaggaacc aaagtggaaa 3120
tcaagcggac cgtggccgct cctagcgtgt tcatcttccc tccttccgat gaacaactga 3180
agagcggaac cgcctctgtg gtgtgcctgc tgaacaactt ctaccctaga gaggccaagg 3240
tgcagtggaa ggtcgacaac gccctgcaga gcggcaacag ccaggagagc gtgacggaac 3300
aggacagcaa ggacagcacc tacagcctga gctccaccct tacactgtct aaagccgact 3360
acgagaagca caaggtgtac gcctgtgaag tgacacacca gggcctgagc agccctgtga 3420
ccaagtcttt taaccggggc gagtgctgaa ttcgaatcgt acctagggat ccagacatga 3480
taagatacat tgatgagttt ggacaaacca caactagaat gcagtgaaaa aaatgcttta 3540
tttgtgaaat ttgtgatgct attgctttat ttgtaaccat tataagctgc aataaacaag 3600
ttaacaacaa caattgcatt cattttatgt ttcaggttca gggggaggtg tgggaggttt 3660
tttaagcttg tttaaacgta cgtagataag tagcatggcg ggttaatcat taactacaag 3720
gaacccctag tgatggagtt ggccactccc tctctgcgcg ctcgctcgct cactgaggcc 3780
gggcgaccaa aggtcgcccg acgcccgggc tttgcccggg cggcctcagt gagcgagcga 3840
gcgcgcagag agggagtggc caa 3863
<210> 91
<211> 4573
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 91
ttggccactc cctctctgcg cgctcgctcg ctcactgagg ccgggcgacc aaaggtcgcc 60
cgacgcccgg gctttgcccg ggcggcctca gtgagcgagc gagcgcgcag agagggagtg 120
gccaactcca tcactagggg ttcctggagg ggtggagtcg tgacgtgaat tacgtcatag 180
ggttagggag gtcctgcata tgcggccgcg tcatagggtt agggaggtcc tgcacacgtg 240
acgcgtcctt gctgtcctgc cccaccccac cccccagaat agaatgacac ctactcagac 300
aatgcgatgc aatttcctca ttttattagg aaaggacagt gggagtggca ccttccaggg 360
tcaaggaagg cacgggggag gggcaaacaa cagatggctg gcaactagaa ggcacagcct 420
cgaggaacgt tttattttcc cagagacagg ctcagggact tctgggtgta gtggctgtgc 480
agggcttcgt ggagcacgct gcagctaaac acgttgccct cttgccatcg gctcttgtcc 540
acggtcagcc gtgaatacag gaagaagctg ccatcgctgt ccagcactgg aggggtcgtc 600
ttgtagttgt tttcaggctg tccgttgctc tcccattcga cggcgatgtc gctggggtag 660
aagcccttca ccaggcaggt cagagacact tggttctttg tcatttcttc ttgagaagga 720
ggcagtgtat agacttgggg ctctctgggc tggcccttgg cctttgagat ggtcttctcg 780
atgctgctag gcaggccctt gttagacacc ttgcacttgt actctttgcc gttcagccag 840
tcctggtgca gcactgtcag cacggacacc acccggtagg tgctgttaaa ctgttcctcg 900
cggggtttgg tcttggcatt atgaacttcc actccgtcaa cgtaccaatt aaactgcacc 960
tcaggatcct cctgggacac atccaccacc acacatgtca cttcaggggt ccggctgatc 1020
atcagggtgt ctttgggctt tggtgggaac aggaaaacag aagggccggc gactggtgga 1080
gctggacatg gtgggcattc cacgcagcac tttctctcaa cggtcttatc cactttggtg 1140
ttgctaggct tgtggtccac attacaggtg taggtctgtg tgccgaagtt ggagctagga 1200
acggtgacca cgctactcag agaatacagg ccagagctct gcagcacggc tgggaaggtg 1260
tgcacgccgc ttgtcagggc gccgctgttc cagctcactg tcacgggttc ggggaagtag 1320
tctttgacca gacaacccag ggcggctgtg ctttcagatg tgcttctgct gcatggggcc 1380
agtgggaaca cgctgggtcc cttagtactg gcgctgctga cggtgacaag ggtgccttgg 1440
ccccacacgt cgaagtacca gttaggggat gagccaaaaa agtatctggc gcagtagtac 1500
acagctgtgt cctcgcttct caggctgctc agttccatgt acacggtgct tgtggaggta 1560
tctctggtca tggtcactct atccttgaag ttctctgtgt actcggtgtg gccagatcct 1620
ggcaggatct cgcccatcca ttccaggcct tggccagggg cctgccgcac ccactggatc 1680
cagtagttgc tgaagatgtg gccgctggcc ttgcaggaca ccttcacgct agctccgggc 1740
tttttcactt cggctccgct ttgaaccagc tgcacttggc tgtgcacgcc tgtggcggtg 1800
gccaccagga acaggatgat gcaggaccag cccatggtgg cactagttca gttccaaagg 1860
ttggaatcta aaagagagaa acaattagaa tcagtagttt aacacattat acacttaaaa 1920
attttatatt taccttagag gattcactgt cccaggtcag tggtggtgcc tgaagctgag 1980
gagacagggc cctgtcctcg tccgtattta agcagtggat ccagaggggc aacgggggag 2040
gctgctggtg aatattaacc aaggtcaccc cagttatcgg aggagcaaac aggggctaag 2100
tccactggct gggatctgag tcgcccgcct acgctgcccg gacgctttgc ctgggcagtg 2160
tacagcttcc actgcactta ccgaaaggag tcattcccct ctcacactac ctaaaccacg 2220
ccaggacaac ctctgctcct ctccaccgaa attccaaggg gtcgagtgga tgttggaggt 2280
ggcatgggcc cagagaggtc tctgacctct gccccagctc caaggtcagc aggcagggag 2340
ggctgtgtgt ttgctgtttg ctgcttgcaa tgtttgccca ttttagggcc gcggcacgtg 2400
cttaaggccc ccttttgcat ccagtttatt cctacatttg tcacactgtt aacagcccac 2460
cccttccaat gagaccagtg gtatcagtga gttgtggaga tcaggaaaag ggctcaagag 2520
aaaggcagtc aaagcccttt ttctgtccct gtcccagctg ctttaataag atctccataa 2580
gagaagaggg acagctatga ctgggagtag tcaggagagg aggaaaaatc tggctagtaa 2640
aacatgtaag gaaaatttta gggatgttaa agaaaaaaat aacacaaaac aaaatataaa 2700
aaaaatctaa cctcaagtca aggcttttct atggaataag gaatggacag cagggggctg 2760
tttcatatac tgatgacctc tttatagcca acctttgttc atggcagcca gcatatgggc 2820
atatgttgcc aaactctaaa ccaaatactc attctgatgt tttaaatgat ttgccctccc 2880
atatgtcctt ccgagtgaga gacacaaaaa attccaacac actattgcaa tgaaaataaa 2940
tttcctttat tagccagaag tcagatgctc aaggggcttc atgatgtccc cataattttt 3000
ggcagaggga aaaagatctc cggaggggga ggctgctggt gaatattaac caaggtcacc 3060
ccagttatcg gaggagcaaa caggggctaa gtccacctcg agccatggcg atgctctaat 3120
ctctctagac aaggttcata tttgtatggg ttacttattc tctctttgtt gactaagtca 3180
ataatcagaa tcagcaggtt tgcagtcaga ttggcaggga taagcagcct agctcaggag 3240
aagtgagtat aaaagcccca ggctgggagc agccatcagc tagcgccggc aagaggtaag 3300
ggtttaaggg atggttggtt ggtggggtat taatgtttaa ttacctggag cacctgcctg 3360
aaatcacttt ttttcaggtt ggaccggtgc caccatggac atgagggtcc ctgctcagct 3420
gctggggctc ctgctgctct ggctcagcgg tgccagatgt gatatccaga tgacccagtc 3480
tccatctagc ctgtccgcca gcgtgggcga cagagtgacc atcacctgcg gcgccagcga 3540
gaacatctat ggcgctctga actggtacca gcagaaacct ggcaaggccc ctaagctgct 3600
gatctacggc gccaccaacc tggccgatgg cgtgcctagt agattcagcg gatctggcag 3660
cggcacagac ttcaccctga ccatcagcag cctgcaacct gaggactttg ccacatacta 3720
ctgccagaac gtgctgaata cacctctgac attcggccaa ggaaccaaag tggaaatcaa 3780
gcggaccgtg gccgctccta gcgtgttcat cttccctcct tccgatgaac aactgaagag 3840
cggaaccgcc tctgtggtgt gcctgctgaa caacttctac cctagagagg ccaaggtgca 3900
gtggaaggtc gacaacgccc tgcagagcgg caacagccag gagagcgtga cggaacagga 3960
cagcaaggac agcacctaca gcctgagctc cacccttaca ctgtctaaag ccgactacga 4020
gaagcacaag gtgtacgcct gtgaagtgac acaccagggc ctgagcagcc ctgtgaccaa 4080
gtcttttaac cggggcgagt gctgaattcg aatcgtacct agggatccag acatgataag 4140
atacattgat gagtttggac aaaccacaac tagaatgcag tgaaaaaaat gctttatttg 4200
tgaaatttgt gatgctattg ctttatttgt aaccattata agctgcaata aacaagttaa 4260
caacaacaat tgcattcatt ttatgtttca ggttcagggg gaggtgtggg aggtttttta 4320
agcttgttta aacgtacgta gataagtagc atggcgggtt aatcattaac tacacctgca 4380
ggtctagata cgtagataag tagcatggcg ggttaatcat taactacaag gaacccctag 4440
tgatggagtt ggccactccc tctctgcgcg ctcgctcgct cactgaggcc gggcgaccaa 4500
aggtcgcccg acgcccgggc tttgcccggg cggcctcagt gagcgagcga gcgcgcagag 4560
agggagtggc caa 4573
<210> 92
<211> 2142
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 92
ccctaaaatg ggcaaacatt gcaagcagca aacagcaaac acacagccct ccctgcctgc 60
tgaccttgga gctggggcag aggtcagaga cctctctggg cccatgccac ctccaacatc 120
cactcgaccc cttggaattt cggtggagag gagcagaggt tgtcctggcg tggtttaggt 180
agtgtgagag gggaatgact cctttcggta agtgcagtgg aagctgtaca ctgcccaggc 240
aaagcgtccg ggcagcgtag gcgggcgact cagatcccag ccagtggact tagcccctgt 300
ttgctcctcc gataactggg gtgaccttgg ttaatattca ccagcagcct cccccgttgc 360
ccctctggat ccactgctta aatacggacg aggacagggc cctgtctcct cagcttcagg 420
caccaccact gacctgggac agtgaatcct ctaaggtaaa tataaaattt ttaagtgtat 480
aatgtgttaa actactgatt ctaattgttt ctctctttta gattccaacc tttggaactg 540
aactagtgcc accatgggct ggtcctgcat catcctgttc ctggtggcca ccgccacagg 600
cgtgcacagc caagtgcagc tggttcaaag cggagccgaa gtgaaaaagc ccggagctag 660
cgtgaaggtg tcctgcaagg ccagcggcca catcttcagc aactactgga tccagtgggt 720
gcggcaggcc cctggccaag gcctggaatg gatgggcgag atcctgccag gatctggcca 780
caccgagtac acagagaact tcaaggatag agtgaccatg accagagata cctccacaag 840
caccgtgtac atggaactga gcagcctgag aagcgaggac acagctgtgt actactgcgc 900
cagatacttt tttggctcat cccctaactg gtacttcgac gtgtggggcc aaggcaccct 960
tgtcaccgtc agcagcgcca gtactaaggg acccagcgtg ttcccactgg ccccatgcag 1020
cagaagcaca tctgaaagca cagccgccct gggttgtctg gtcaaagact acttccccga 1080
acccgtgaca gtgagctgga acagcggcgc cctgacaagc ggcgtgcaca ccttcccagc 1140
cgtgctgcag agctctggcc tgtattctct gagtagcgtg gtcaccgttc ctagctccaa 1200
cttcggcaca cagacctaca cctgtaatgt ggaccacaag cctagcaaca ccaaagtgga 1260
taagaccgtt gagagaaagt gctgcgtgga atgcccacca tgtccagctc caccagtcgc 1320
cggcccttct gttttcctgt tcccaccaaa gcccaaagac accctgatga tcagccggac 1380
ccctgaagtg acatgtgtgg tggtggatgt gtcccaggag gatcctgagg tgcagtttaa 1440
ttggtacgtt gacggagtgg aagttcataa tgccaagacc aaaccccgcg aggaacagtt 1500
taacagcacc taccgggtgg tgtccgtgct gacagtgctg caccaggact ggctgaacgg 1560
caaagagtac aagtgcaagg tgtctaacaa gggcctgcct agcagcatcg agaagaccat 1620
ctcaaaggcc aagggccagc ccagagagcc ccaagtctat acactgcctc cttctcaaga 1680
agaaatgaca aagaaccaag tgtctctgac ctgcctggtg aagggcttct accccagcga 1740
catcgccgtc gaatgggaga gcaacggaca gcctgaaaac aactacaaga cgacccctcc 1800
agtgctggac agcgatggca gcttcttcct gtattcacgg ctgaccgtgg acaagagccg 1860
atggcaagag ggcaacgtgt ttagctgcag cgtgctccac gaagccctgc acagccacta 1920
cacccagaag tccctgagcc tgtctctggg aaaataaaac gttcctcgag gctgtgcctt 1980
ctagttgcca gccatctgtt gtttgcccct cccccgtgcc ttccttgacc ctggaaggtg 2040
ccactcccac tgtcctttcc taataaaatg aggaaattgc atcgcattgt ctgagtaggt 2100
gtcattctat tctggggggt ggggtggggc aggacagcaa gg 2142
<210> 93
<211> 1297
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 93
gggggaggct gctggtgaat attaaccaag gtcaccccag ttatcggagg agcaaacagg 60
ggctaagtcc acctcgagcc atggcgatgc tctaatctct ctagacaagg ttcatatttg 120
tatgggttac ttattctctc tttgttgact aagtcaataa tcagaatcag caggtttgca 180
gtcagattgg cagggataag cagcctagct caggagaagt gagtataaaa gccccaggct 240
gggagcagcc atcagctagc gccggcaaga ggtaagggtt taagggatgg ttggttggtg 300
gggtattaat gtttaattac ctggagcacc tgcctgaaat cacttttttt caggttggac 360
cggtgccacc atggacatga gggtccctgc tcagctgctg gggctcctgc tgctctggct 420
cagcggtgcc agatgtgata tccagatgac ccagtctcca tctagcctgt ccgccagcgt 480
gggcgacaga gtgaccatca cctgcggcgc cagcgagaac atctatggcg ctctgaactg 540
gtaccagcag aaacctggca aggcccctaa gctgctgatc tacggcgcca ccaacctggc 600
cgatggcgtg cctagtagat tcagcggatc tggcagcggc acagacttca ccctgaccat 660
cagcagcctg caacctgagg actttgccac atactactgc cagaacgtgc tgaatacacc 720
tctgacattc ggccaaggaa ccaaagtgga aatcaagcgg accgtggccg ctcctagcgt 780
gttcatcttc cctccttccg atgaacaact gaagagcgga accgcctctg tggtgtgcct 840
gctgaacaac ttctacccta gagaggccaa ggtgcagtgg aaggtcgaca acgccctgca 900
gagcggcaac agccaggaga gcgtgacgga acaggacagc aaggacagca cctacagcct 960
gagctccacc cttacactgt ctaaagccga ctacgagaag cacaaggtgt acgcctgtga 1020
agtgacacac cagggcctga gcagccctgt gaccaagtct tttaaccggg gcgagtgctg 1080
aattcgaatc gtacctaggg atccagacat gataagatac attgatgagt ttggacaaac 1140
cacaactaga atgcagtgaa aaaaatgctt tatttgtgaa atttgtgatg ctattgcttt 1200
atttgtaacc attataagct gcaataaaca agttaacaac aacaattgca ttcattttat 1260
gtttcaggtt cagggggagg tgtgggaggt tttttaa 1297
<210> 94
<211> 1344
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 94
caagtgcagc tggttcaaag cggagccgaa gtgaaaaagc ccggagctag cgtgaaggtg 60
tcctgcaagg ccagcggcta tatcttcagc aactactgga tccagtgggt gcggcaggcc 120
cctggccaag gcctggaatg gatgggcgag atcctgccag gatctggctc taccgagtac 180
acagagaact tcaaggatag agtgaccatg accagagata cctccacaag caccgtgtac 240
atggaactga gcagcctgag aagcgaggac acagctgtgt actactgcgc cagatacttt 300
tttggctcat cccctaactg gtacttcgac gtgtggggcc aaggcaccct tgtcaccgtc 360
agcagcgcca gtactaaggg acccagcgtg ttcccactgg ccccatgcag cagaagcaca 420
tctgaaagca cagccgccct gggttgtctg gtcaaagact acttccccga acccgtgaca 480
gtgagctgga acagcggcgc cctgacaagc ggcgtgcaca ccttcccagc cgtgctgcag 540
agctctggcc tgtattctct gagtagcgtg gtcaccgttc ctagctccaa cttcggcaca 600
cagacctaca cctgtaatgt ggaccacaag cctagcaaca ccaaagtgga taagaccgtt 660
gagagaaagt gctgcgtgga atgcccacca tgtccagctc caccagtcgc cggcccttct 720
gttttcctgt tcccaccaaa gcccaaagac accctgatga tcagccggac ccctgaagtg 780
acatgtgtgg tggtggatgt gtcccaggag gatcctgagg tgcagtttaa ttggtacgtt 840
gacggagtgg aagttcataa tgccaagacc aaaccccgcg aggaacagtt taacagcacc 900
taccgggtgg tgtccgtgct gacagtgctg caccaggact ggctgaacgg caaagagtac 960
aagtgcaagg tgtctaacaa gggcctgcct agcagcatcg agaagaccat ctcaaaggcc 1020
aagggccagc ccagagagcc ccaagtctat acactgcctc cttctcaaga agaaatgaca 1080
aagaaccaag tgtctctgac ctgcctggtg aagggcttct accccagcga catcgccgtc 1140
gaatgggaga gcaacggaca gcctgaaaac aactacaaga cgacccctcc agtgctggac 1200
agcgatggca gcttcttcct gtattcacgg ctgaccgtgg acaagagccg atggcaagag 1260
ggcaacgtgt ttagctgcag cgtgatgcac gaagccctgc acaaccacta cacccagaag 1320
tccctgagcc tgtctctggg aaaa 1344
<210> 95
<211> 1344
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 95
caagtacagc ttgtacaaag tggcgctgaa gtaaaaaagc caggggcttc agtgaaagtg 60
tcctgcaagg cctcgggcta catcttctcc aactactgga tccagtgggt gcgccaggcc 120
ccgggccaag ggctggagtg gatgggagag attttacctg gcagtggctc cacagagtac 180
acagagaact tcaaggacag agtcaccatg acccgggaca ccagcacatc aactgtctac 240
atggagctga gctccctccg atcagaagac acagctgtct actactgtgc ccgctacttc 300
tttggcagca gccccaattg gtattttgat gtgtggggcc aaggcacctt ggtcaccgtc 360
tcctcagcat caacaaaagg tccttctgtc ttccccctgg ccccctgcag ccgcagcaca 420
tcagaatcca cagcagccct gggctgcctg gtaaaagact acttcccaga acctgtcact 480
gtctcctgga acagtggagc cctgacatct ggtgtccaca ccttccctgc tgtcctccag 540
agctctggcc tctacagcct ctcctcagtg gtcacagttc catcctccaa ctttggcaca 600
cagacctaca cctgcaatgt ggaccacaag ccttccaaca ccaaggtgga caagactgta 660
gagaggaagt gctgtgtgga atgcccaccc tgcccagctc cacctgttgc tgggccttct 720
gtcttcctct tccctccaaa gcccaaagac accctcatga tcagccgcac cccagaagtg 780
acctgtgtgg tggtggatgt ctcccaggaa gaccctgagg tgcagttcaa ctggtatgta 840
gatggtgttg aagttcataa tgccaagacc aagccccggg aggagcagtt caacagcacc 900
tacagagtgg tgtctgtgct gacagtgctg caccaggact ggctgaatgg aaaagaatac 960
aagtgcaaag tttccaacaa gggcctgcct tcctccattg agaagaccat ctccaaagcc 1020
aagggacagc cccgggagcc ccaagtctac acacttcctc cttctcaaga agaaatgaca 1080
aagaaccaag tgtctctgac ctgcctggtg aagggcttct acccaagtga cattgctgta 1140
gaatgggaga gcaatggaca gcctgaaaac aactacaaaa cgaccccacc tgtgctggac 1200
tctgatggca gcttcttctt gtattcacgc ctgactgtgg acaagagccg ctggcaagaa 1260
ggaaatgtat tttcctgctc tgtgatgcat gaggccctgc acaatcacta cacccagaag 1320
tcactcagcc tctctctggg aaaa 1344
<210> 96
<211> 57
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 96
atgggctgga gctgcatcat cctcttcctg gtggccacgg ccacaggtgt ccacagc 57
<210> 97
<211> 1401
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 97
atgggctgga gctgcatcat cctcttcctg gtggccacgg ccacaggtgt ccacagccaa 60
gtacagcttg tacaaagtgg cgctgaagta aaaaagccag gggcttcagt gaaagtgtcc 120
tgcaaggcct cgggctacat cttctccaac tactggatcc agtgggtgcg ccaggccccg 180
ggccaagggc tggagtggat gggagagatt ttacctggca gtggctccac agagtacaca 240
gagaacttca aggacagagt caccatgacc cgggacacca gcacatcaac tgtctacatg 300
gagctgagct ccctccgatc agaagacaca gctgtctact actgtgcccg ctacttcttt 360
ggcagcagcc ccaattggta ttttgatgtg tggggccaag gcaccttggt caccgtctcc 420
tcagcatcaa caaaaggtcc ttctgtcttc cccctggccc cctgcagccg cagcacatca 480
gaatccacag cagccctggg ctgcctggta aaagactact tcccagaacc tgtcactgtc 540
tcctggaaca gtggagccct gacatctggt gtccacacct tccctgctgt cctccagagc 600
tctggcctct acagcctctc ctcagtggtc acagttccat cctccaactt tggcacacag 660
acctacacct gcaatgtgga ccacaagcct tccaacacca aggtggacaa gactgtagag 720
aggaagtgct gtgtggaatg cccaccctgc ccagctccac ctgttgctgg gccttctgtc 780
ttcctcttcc ctccaaagcc caaagacacc ctcatgatca gccgcacccc agaagtgacc 840
tgtgtggtgg tggatgtctc ccaggaagac cctgaggtgc agttcaactg gtatgtagat 900
ggtgttgaag ttcataatgc caagaccaag ccccgggagg agcagttcaa cagcacctac 960
agagtggtgt ctgtgctgac agtgctgcac caggactggc tgaatggaaa agaatacaag 1020
tgcaaagttt ccaacaaggg cctgccttcc tccattgaga agaccatctc caaagccaag 1080
ggacagcccc gggagcccca agtctacaca cttcctcctt ctcaagaaga aatgacaaag 1140
aaccaagtgt ctctgacctg cctggtgaag ggcttctacc caagtgacat tgctgtagaa 1200
tgggagagca atggacagcc tgaaaacaac tacaaaacga ccccacctgt gctggactct 1260
gatggcagct tcttcttgta ttcacgcctg actgtggaca agagccgctg gcaagaagga 1320
aatgtatttt cctgctctgt gatgcatgag gccctgcaca atcactacac ccagaagtca 1380
ctcagcctct ctctgggaaa a 1401
<210> 98
<211> 642
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 98
gacatccaga tgacacagag cccttccagc ctctctgcct cggtggggga cagagtcacc 60
atcacctgtg gggcctcgga gaacatctat ggtgctctga actggtacca gcagaaacct 120
gggaaggccc ccaagctgct catctatggg gccaccaacc tggctgatgg tgtgccctcg 180
cgcttctctg gatctggaag tggcacagac ttcaccctca ccatctccag cctgcaacct 240
gaggactttg ccacctacta ctgccagaat gtgctgaaca cacccctcac ttttggacaa 300
gggaccaaag tagaaatcaa gaggacagtg gcggcgccca gtgtcttcat cttccctcca 360
agcgatgaac aactaaagtc tggaacagcc tcggtggtct gcctgctgaa caacttctac 420
ccaagagagg ccaaggtgca gtggaaagtt gataatgccc tgcagagtgg aaacagccag 480
gagagtgtca ctgaacaaga cagcaaggac agcacctaca gcctcagcag caccctcact 540
ttatcaaaag ctgactatga gaagcacaaa gtttatgcct gtgaagtaac tcaccagggc 600
ctcagctccc ctgtcaccaa gtccttcaac cgtggggagt gt 642
<210> 99
<211> 66
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 99
atggacatga gagttcctgc acagctgctg gggctcctgc tgctctggct ctctggtgcc 60
cgctgt 66
<210> 100
<211> 708
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 100
atggacatga gagttcctgc acagctgctg gggctcctgc tgctctggct ctctggtgcc 60
cgctgtgaca tccagatgac acagagccct tccagcctct ctgcctcggt gggggacaga 120
gtcaccatca cctgtggggc ctcggagaac atctatggtg ctctgaactg gtaccagcag 180
aaacctggga aggcccccaa gctgctcatc tatggggcca ccaacctggc tgatggtgtg 240
ccctcgcgct tctctggatc tggaagtggc acagacttca ccctcaccat ctccagcctg 300
caacctgagg actttgccac ctactactgc cagaatgtgc tgaacacacc cctcactttt 360
ggacaaggga ccaaagtaga aatcaagagg acagtggcgg cgcccagtgt cttcatcttc 420
cctccaagcg atgaacaact aaagtctgga acagcctcgg tggtctgcct gctgaacaac 480
ttctacccaa gagaggccaa ggtgcagtgg aaagttgata atgccctgca gagtggaaac 540
agccaggaga gtgtcactga acaagacagc aaggacagca cctacagcct cagcagcacc 600
ctcactttat caaaagctga ctatgagaag cacaaagttt atgcctgtga agtaactcac 660
cagggcctca gctcccctgt caccaagtcc ttcaaccgtg gggagtgt 708
<210> 101
<211> 1344
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 101
caagtgcagc tggttcaaag tggggctgaa gtaaaaaagc ctggggcttc tgtgaaggtg 60
tcctgcaagg cctcgggcta catcttctcc aactactgga tccagtgggt ccggcaggcc 120
cctgggcaag gcctggagtg gatgggagag attcttcctg gaagtggatc cacagagtac 180
acagaaaact tcaaggacag agtcaccatg accagggaca cctccacatc cacggtgtac 240
atggaacttt ccagcctgag atctgaggac actgctgtct actactgtgc ccgctacttc 300
tttggcagca gccccaattg gtattttgat gtctggggcc aagggacctt ggtcactgtc 360
tcctcagcat ccacaaaagg accctcagtc ttccctctgg ccccctgctc ccgctccaca 420
tcagaaagca cagctgccct gggttgtctt gtaaaagatt attttccaga acctgtcact 480
gtgtcctgga acagtggggc cctgacttca ggagtccaca ccttcccagc tgtgctgcag 540
agcagtggcc tctattcttt atcatctgtg gtcactgttc cttccagcaa ctttggcaca 600
cagacctaca cctgtaatgt ggaccacaaa ccttccaaca caaaagtgga caaaactgtt 660
gaaagaaaat gctgtgtgga atgtccaccc tgccctgctc caccagttgc tgggcccagt 720
gtcttcctct tccctcccaa gcccaaggac accctcatga tcagccgcac cccagaagtg 780
acctgtgtgg tggtggatgt ttctcaagaa gatcctgagg tgcagtttaa ttggtatgtc 840
gatggtgttg aagttcataa tgccaagaca aaaccccggg aggagcagtt taacagcacc 900
tacagagttg tttctgtcct cactgtgctg caccaggact ggctgaatgg aaaagaatat 960
aaatgcaaag tgagcaacaa aggcctgccc agcagcattg agaagaccat ctcaaaggcc 1020
aagggccagc cccgggagcc ccaagtatat actcttccac ccagccaaga agaaatgaca 1080
aagaaccaag tatctctcac ctgcctggtg aaaggatttt atccttctga tattgctgta 1140
gaatgggaga gtaatggaca gccagaaaac aactacaaga cgacgccgcc ggtgctggac 1200
agtgatggca gcttcttcct ctattcacgc ctcactgtgg acaagagccg ctggcaagaa 1260
ggaaatgtct tctcctgctc tgtcatgcat gaagccctgc acaaccacta cacacagaag 1320
tccctgagcc tctccctggg gaag 1344
<210> 102
<211> 57
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 102
atgggctgga gctgcatcat cctcttcctg gtggccacag ccacaggtgt ccacagc 57
<210> 103
<211> 1401
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 103
atgggctgga gctgcatcat cctcttcctg gtggccacag ccacaggtgt ccacagccaa 60
gtgcagctgg ttcaaagtgg ggctgaagta aaaaagcctg gggcttctgt gaaggtgtcc 120
tgcaaggcct cgggctacat cttctccaac tactggatcc agtgggtccg gcaggcccct 180
gggcaaggcc tggagtggat gggagagatt cttcctggaa gtggatccac agagtacaca 240
gaaaacttca aggacagagt caccatgacc agggacacct ccacatccac ggtgtacatg 300
gaactttcca gcctgagatc tgaggacact gctgtctact actgtgcccg ctacttcttt 360
ggcagcagcc ccaattggta ttttgatgtc tggggccaag ggaccttggt cactgtctcc 420
tcagcatcca caaaaggacc ctcagtcttc cctctggccc cctgctcccg ctccacatca 480
gaaagcacag ctgccctggg ttgtcttgta aaagattatt ttccagaacc tgtcactgtg 540
tcctggaaca gtggggccct gacttcagga gtccacacct tcccagctgt gctgcagagc 600
agtggcctct attctttatc atctgtggtc actgttcctt ccagcaactt tggcacacag 660
acctacacct gtaatgtgga ccacaaacct tccaacacaa aagtggacaa aactgttgaa 720
agaaaatgct gtgtggaatg tccaccctgc cctgctccac cagttgctgg gcccagtgtc 780
ttcctcttcc ctcccaagcc caaggacacc ctcatgatca gccgcacccc agaagtgacc 840
tgtgtggtgg tggatgtttc tcaagaagat cctgaggtgc agtttaattg gtatgtcgat 900
ggtgttgaag ttcataatgc caagacaaaa ccccgggagg agcagtttaa cagcacctac 960
agagttgttt ctgtcctcac tgtgctgcac caggactggc tgaatggaaa agaatataaa 1020
tgcaaagtga gcaacaaagg cctgcccagc agcattgaga agaccatctc aaaggccaag 1080
ggccagcccc gggagcccca agtatatact cttccaccca gccaagaaga aatgacaaag 1140
aaccaagtat ctctcacctg cctggtgaaa ggattttatc cttctgatat tgctgtagaa 1200
tgggagagta atggacagcc agaaaacaac tacaagacga cgccgccggt gctggacagt 1260
gatggcagct tcttcctcta ttcacgcctc actgtggaca agagccgctg gcaagaagga 1320
aatgtcttct cctgctctgt catgcatgaa gccctgcaca accactacac acagaagtcc 1380
ctgagcctct ccctggggaa g 1401
<210> 104
<211> 642
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 104
gatatccaga tgacacagag ccccagctcc ttatcagcct cggtggggga cagggtcacc 60
atcacctgtg gggcctcgga gaacatctat ggggctctga actggtacca gcagaaacca 120
gggaaggccc ccaagctgct gatctatggg gccaccaacc tggctgatgg ggtgccttca 180
cgcttctctg gcagtggcag tggaactgac ttcaccctga ccatcagcag cttacaacca 240
gaggattttg ccacctacta ctgccagaat gtcctcaaca cacctctcac ttttggacaa 300
ggaaccaaag tggaaatcaa gagaacagtg gctgcaccca gtgtgttcat cttcccacca 360
agcgatgaac aactaaagag tggaacagca tctgtggtgt gcctgctcaa caacttctac 420
ccaagagagg ccaaggtgca gtggaaggtt gacaatgccc tgcagagtgg aaacagtcaa 480
gaatctgtca ctgaacaaga cagcaaggac agcacctaca gcctgagctc caccttaact 540
ttatcaaaag ctgactatga gaagcacaag gtctatgcct gtgaagtgac acaccagggc 600
ctctccagcc ctgtcaccaa atcttttaac agaggagaat gt 642
<210> 105
<211> 66
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 105
atggacatga gagtccctgc acagctgctg gggctcctgc tgctctggct ctctggggcc 60
cgctgt 66
<210> 106
<211> 708
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 106
atggacatga gagtccctgc acagctgctg gggctcctgc tgctctggct ctctggggcc 60
cgctgtgata tccagatgac acagagcccc agctccttat cagcctcggt gggggacagg 120
gtcaccatca cctgtggggc ctcggagaac atctatgggg ctctgaactg gtaccagcag 180
aaaccaggga aggcccccaa gctgctgatc tatggggcca ccaacctggc tgatggggtg 240
ccttcacgct tctctggcag tggcagtgga actgacttca ccctgaccat cagcagctta 300
caaccagagg attttgccac ctactactgc cagaatgtcc tcaacacacc tctcactttt 360
ggacaaggaa ccaaagtgga aatcaagaga acagtggctg cacccagtgt gttcatcttc 420
ccaccaagcg atgaacaact aaagagtgga acagcatctg tggtgtgcct gctcaacaac 480
ttctacccaa gagaggccaa ggtgcagtgg aaggttgaca atgccctgca gagtggaaac 540
agtcaagaat ctgtcactga acaagacagc aaggacagca cctacagcct gagctccacc 600
ttaactttat caaaagctga ctatgagaag cacaaggtct atgcctgtga agtgacacac 660
cagggcctct ccagccctgt caccaaatct tttaacagag gagaatgt 708
<210> 107
<211> 1344
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 107
caagtgcaat tggtccagtc aggtgcagag gttaagaagc ctggggcatc tgttaaggtt 60
tcctgcaagg catcaggtta cattttcagc aactactgga ttcaatgggt gaggcaggca 120
ccaggtcaag gattggaatg gatgggggaa atactgcctg ggtcaggatc cacagagtac 180
acagagaact tcaaagatag ggtcaccatg actagagaca catctactag cactgtttac 240
atggagctca gtagccttag gtcagaagac actgctgtct actactgtgc cagatatttc 300
tttggcagca gccctaattg gtactttgat gtatggggcc agggcaccct ggtgactgtg 360
agcagtgctt ccacaaaggg cccatcagtc ttcccattgg caccttgtag caggagcact 420
tcagagagca cagctgcact gggttgcttg gtgaaggact acttcccaga accagtgaca 480
gtgtcctgga acagtggtgc acttacatca ggagtgcaca ccttccctgc agtactccaa 540
tcaagtggcc tttacagcct ctccagcgtt gtcacagtcc cctcatctaa ctttggaact 600
cagacctata cctgtaatgt ggaccacaag ccttccaaca ccaaagtgga caagacagta 660
gaaaggaaat gctgtgtgga gtgcccaccg tgcccagccc caccagttgc aggcccaagt 720
gtgttcctct tcccccccaa gcccaaagac accctgatga tcagtaggac ccctgaggtg 780
acctgtgttg tggtggatgt gagccaggag gatcctgagg tgcagtttaa ttggtacgtt 840
gacggagtgg aagttcataa tgccaaaact aagcctaggg aggagcagtt caatagcacc 900
tacagggtgg tgtctgttct tacagtcctg caccaagact ggctgaatgg caaagaatac 960
aagtgcaaag tcagcaacaa ggggctgcct agctctattg agaagaccat cagcaaagcc 1020
aaaggacagc ctagagaacc ccaggtgtat accttgcctc cctcccaaga agagatgacc 1080
aagaaccaag tgagcctgac ttgccttgtg aagggcttct acccttcaga tatagctgtt 1140
gagtgggaga gcaatggcca gccagaaaac aactacaaaa ccaccccacc tgtattggat 1200
agtgatggaa gctttttctt gtacagcagg ctgactgttg ataagagcag gtggcaggag 1260
ggcaatgtgt tcagttgttc tgtgatgcat gaggccctgc acaatcacta cacccagaag 1320
agtctgtccc tttctctggg caag 1344
<210> 108
<211> 57
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 108
atgggctggt catgtatcat cctgttcctg gtagccactg ccacaggggt tcatagc 57
<210> 109
<211> 1401
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 109
atgggctggt catgtatcat cctgttcctg gtagccactg ccacaggggt tcatagccaa 60
gtgcaattgg tccagtcagg tgcagaggtt aagaagcctg gggcatctgt taaggtttcc 120
tgcaaggcat caggttacat tttcagcaac tactggattc aatgggtgag gcaggcacca 180
ggtcaaggat tggaatggat gggggaaata ctgcctgggt caggatccac agagtacaca 240
gagaacttca aagatagggt caccatgact agagacacat ctactagcac tgtttacatg 300
gagctcagta gccttaggtc agaagacact gctgtctact actgtgccag atatttcttt 360
ggcagcagcc ctaattggta ctttgatgta tggggccagg gcaccctggt gactgtgagc 420
agtgcttcca caaagggccc atcagtcttc ccattggcac cttgtagcag gagcacttca 480
gagagcacag ctgcactggg ttgcttggtg aaggactact tcccagaacc agtgacagtg 540
tcctggaaca gtggtgcact tacatcagga gtgcacacct tccctgcagt actccaatca 600
agtggccttt acagcctctc cagcgttgtc acagtcccct catctaactt tggaactcag 660
acctatacct gtaatgtgga ccacaagcct tccaacacca aagtggacaa gacagtagaa 720
aggaaatgct gtgtggagtg cccaccgtgc ccagccccac cagttgcagg cccaagtgtg 780
ttcctcttcc cccccaagcc caaagacacc ctgatgatca gtaggacccc tgaggtgacc 840
tgtgttgtgg tggatgtgag ccaggaggat cctgaggtgc agtttaattg gtacgttgac 900
ggagtggaag ttcataatgc caaaactaag cctagggagg agcagttcaa tagcacctac 960
agggtggtgt ctgttcttac agtcctgcac caagactggc tgaatggcaa agaatacaag 1020
tgcaaagtca gcaacaaggg gctgcctagc tctattgaga agaccatcag caaagccaaa 1080
ggacagccta gagaacccca ggtgtatacc ttgcctccct cccaagaaga gatgaccaag 1140
aaccaagtga gcctgacttg ccttgtgaag ggcttctacc cttcagatat agctgttgag 1200
tgggagagca atggccagcc agaaaacaac tacaaaacca ccccacctgt attggatagt 1260
gatggaagct ttttcttgta cagcaggctg actgttgata agagcaggtg gcaggagggc 1320
aatgtgttca gttgttctgt gatgcatgag gccctgcaca atcactacac ccagaagagt 1380
ctgtcccttt ctctgggcaa g 1401
<210> 110
<211> 642
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 110
gatatccaga tgacccagag ccccagctcc ctgtctgcat ctgtaggtga cagggtcacc 60
attacctgtg gagcatcaga aaacatctat ggggccttga actggtatca gcagaagcca 120
ggcaaagccc caaagctgtt gatatatggt gccaccaact tggcagatgg tgtgccaagc 180
agattcagtg gatcaggcag tggcacagat ttcacactga ccattagcag cctgcaacct 240
gaagactttg ctacctacta ctgccagaat gttctgaaca cccccctgac ctttggccag 300
ggcaccaagg tggagatcaa gaggactgtt gctgcccctt ctgtattcat cttcccaccc 360
agtgatgagc aattgaagtc aggcactgca tcagtggtgt gtcttcttaa caacttctac 420
cccagagagg ccaaggtaca atggaaggtt gacaatgcac ttcagagtgg aaacagccag 480
gagtcagtca ctgaacagga cagcaaggat agcacataca gcctgtctag caccctgact 540
ctgagcaagg ctgactatga gaagcataag gtgtatgcct gtgaggttac ccaccaggga 600
ctgagcagcc ctgtgacaaa aagcttcaat aggggggagt gc 642
<210> 111
<211> 66
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 111
atggacatga gggtgccagc acagctgctg ggcctcctgc tgctgtggct gagtggtgca 60
agatgt 66
<210> 112
<211> 708
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 112
atggacatga gggtgccagc acagctgctg ggcctcctgc tgctgtggct gagtggtgca 60
agatgtgata tccagatgac ccagagcccc agctccctgt ctgcatctgt aggtgacagg 120
gtcaccatta cctgtggagc atcagaaaac atctatgggg ccttgaactg gtatcagcag 180
aagccaggca aagccccaaa gctgttgata tatggtgcca ccaacttggc agatggtgtg 240
ccaagcagat tcagtggatc aggcagtggc acagatttca cactgaccat tagcagcctg 300
caacctgaag actttgctac ctactactgc cagaatgttc tgaacacccc cctgaccttt 360
ggccagggca ccaaggtgga gatcaagagg actgttgctg ccccttctgt attcatcttc 420
ccacccagtg atgagcaatt gaagtcaggc actgcatcag tggtgtgtct tcttaacaac 480
ttctacccca gagaggccaa ggtacaatgg aaggttgaca atgcacttca gagtggaaac 540
agccaggagt cagtcactga acaggacagc aaggatagca catacagcct gtctagcacc 600
ctgactctga gcaaggctga ctatgagaag cataaggtgt atgcctgtga ggttacccac 660
cagggactga gcagccctgt gacaaaaagc ttcaataggg gggagtgc 708
<210> 113
<211> 1344
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 113
caagtacagc ttgtacaaag tggcgctgaa gtaaaaaagc caggggcttc agtgaaagtg 60
tcctgcaagg cctcgggcca catcttctcc aactactgga tccagtgggt gcgccaggcc 120
ccgggccaag ggctggagtg gatgggagag attttacctg gcagtggcca cacagagtac 180
acagagaact tcaaggacag agtcaccatg acccgggaca ccagcacatc aactgtctac 240
atggagctga gctccctccg atcagaagac acagctgtct actactgtgc ccgctacttc 300
tttggcagca gccccaattg gtattttgat gtgtggggcc aaggcacctt ggtcaccgtc 360
tcctcagcat caacaaaagg tccttctgtc ttccccctgg ccccctgcag ccgcagcaca 420
tcagaatcca cagcagccct gggctgcctg gtaaaagact acttcccaga acctgtcact 480
gtctcctgga acagtggagc cctgacatct ggtgtccaca ccttccctgc tgtcctccag 540
agctctggcc tctacagcct ctcctcagtg gtcacagttc catcctccaa ctttggcaca 600
cagacctaca cctgcaatgt ggaccacaag ccttccaaca ccaaggtgga caagactgta 660
gagaggaagt gctgtgtgga atgcccaccc tgcccagctc cacctgttgc tgggccttct 720
gtcttcctct tccctccaaa gcccaaagac accctcatga tcagccgcac cccagaagtg 780
acctgtgtgg tggtggatgt ctcccaggaa gaccctgagg tgcagttcaa ctggtatgta 840
gatggtgttg aagttcataa tgccaagacc aagccccggg aggagcagtt caacagcacc 900
tacagagtgg tgtctgtgct gacagtgctg caccaggact ggctgaatgg aaaagaatac 960
aagtgcaaag tttccaacaa gggcctgcct tcctccattg agaagaccat ctccaaagcc 1020
aagggacagc cccgggagcc ccaagtctac acacttcctc cttctcaaga agaaatgaca 1080
aagaaccaag tgtctctgac ctgcctggtg aagggcttct acccaagtga cattgctgta 1140
gaatgggaga gcaatggaca gcctgaaaac aactacaaaa cgaccccacc tgtgctggac 1200
tctgatggca gcttcttctt gtattcacgc ctgactgtgg acaagagccg ctggcaagaa 1260
ggaaatgtat tttcctgctc tgtgctccat gaggccctgc acagccacta cacccagaag 1320
tcactcagcc tctctctggg aaaa 1344
<210> 114
<211> 1344
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 114
caagtgcagc tggttcaaag tggggctgaa gtaaaaaagc ctggggcttc tgtgaaggtg 60
tcctgcaagg cctcgggcca catcttctcc aactactgga tccagtgggt ccggcaggcc 120
cctgggcaag gcctggagtg gatgggagag attcttcctg gaagtggaca cacagagtac 180
acagaaaact tcaaggacag agtcaccatg accagggaca cctccacatc cacggtgtac 240
atggaacttt ccagcctgag atctgaggac actgctgtct actactgtgc ccgctacttc 300
tttggcagca gccccaattg gtattttgat gtctggggcc aagggacctt ggtcactgtc 360
tcctcagcat ccacaaaagg accctcagtc ttccctctgg ccccctgctc ccgctccaca 420
tcagaaagca cagctgccct gggttgtctt gtaaaagatt attttccaga acctgtcact 480
gtgtcctgga acagtggggc cctgacttca ggagtccaca ccttcccagc tgtgctgcag 540
agcagtggcc tctattcttt atcatctgtg gtcactgttc cttccagcaa ctttggcaca 600
cagacctaca cctgtaatgt ggaccacaaa ccttccaaca caaaagtgga caaaactgtt 660
gaaagaaaat gctgtgtgga atgtccaccc tgccctgctc caccagttgc tgggcccagt 720
gtcttcctct tccctcccaa gcccaaggac accctcatga tcagccgcac cccagaagtg 780
acctgtgtgg tggtggatgt ttctcaagaa gatcctgagg tgcagtttaa ttggtatgtc 840
gatggtgttg aagttcataa tgccaagaca aaaccccggg aggagcagtt taacagcacc 900
tacagagttg tttctgtcct cactgtgctg caccaggact ggctgaatgg aaaagaatat 960
aaatgcaaag tgagcaacaa aggcctgccc agcagcattg agaagaccat ctcaaaggcc 1020
aagggccagc cccgggagcc ccaagtatat actcttccac ccagccaaga agaaatgaca 1080
aagaaccaag tatctctcac ctgcctggtg aaaggatttt atccttctga tattgctgta 1140
gaatgggaga gtaatggaca gccagaaaac aactacaaga cgacgccgcc ggtgctggac 1200
agtgatggca gcttcttcct ctattcacgc ctcactgtgg acaagagccg ctggcaagaa 1260
ggaaatgtct tctcctgctc tgtcctccat gaagccctgc acagccacta cacacagaag 1320
tccctgagcc tctccctggg gaag 1344
<210> 115
<211> 1344
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 115
caagtgcaat tggtccagtc aggtgcagag gttaagaagc ctggggcatc tgttaaggtt 60
tcctgcaagg catcaggtca cattttcagc aactactgga ttcaatgggt gaggcaggca 120
ccaggtcaag gattggaatg gatgggggaa atactgcctg ggtcaggaca cacagagtac 180
acagagaact tcaaagatag ggtcaccatg actagagaca catctactag cactgtttac 240
atggagctca gtagccttag gtcagaagac actgctgtct actactgtgc cagatatttc 300
tttggcagca gccctaattg gtactttgat gtatggggcc agggcaccct ggtgactgtg 360
agcagtgctt ccacaaaggg cccatcagtc ttcccattgg caccttgtag caggagcact 420
tcagagagca cagctgcact gggttgcttg gtgaaggact acttcccaga accagtgaca 480
gtgtcctgga acagtggtgc acttacatca ggagtgcaca ccttccctgc agtactccaa 540
tcaagtggcc tttacagcct ctccagcgtt gtcacagtcc cctcatctaa ctttggaact 600
cagacctata cctgtaatgt ggaccacaag ccttccaaca ccaaagtgga caagacagta 660
gaaaggaaat gctgtgtgga gtgcccaccg tgcccagccc caccagttgc aggcccaagt 720
gtgttcctct tcccccccaa gcccaaagac accctgatga tcagtaggac ccctgaggtg 780
acctgtgttg tggtggatgt gagccaggag gatcctgagg tgcagtttaa ttggtacgtt 840
gacggagtgg aagttcataa tgccaaaact aagcctaggg aggagcagtt caatagcacc 900
tacagggtgg tgtctgttct tacagtcctg caccaagact ggctgaatgg caaagaatac 960
aagtgcaaag tcagcaacaa ggggctgcct agctctattg agaagaccat cagcaaagcc 1020
aaaggacagc ctagagaacc ccaggtgtat accttgcctc cctcccaaga agagatgacc 1080
aagaaccaag tgagcctgac ttgccttgtg aagggcttct acccttcaga tatagctgtt 1140
gagtgggaga gcaatggcca gccagaaaac aactacaaaa ccaccccacc tgtattggat 1200
agtgatggaa gctttttctt gtacagcagg ctgactgttg ataagagcag gtggcaggag 1260
ggcaatgtgt tcagttgttc tgtgctccat gaggccctgc acagccacta cacccagaag 1320
agtctgtccc tttctctggg caag 1344
<210> 116
<211> 410
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 116
tgcatgtata atttctacag aacctattag aaaggatcac ccagcctctg cttttgtaca 60
actttccctt aaaaaactgc caattccact gctgtttggc ccaatagtga gaactttttc 120
ctgctgcctc ttggtgcttt tgcctatggc ccctattctg cctgctgaag acactcttgc 180
cagcatggac ttaaacccct ccagctctga caatcctctt tctcttttgt tttacatgaa 240
gggtctggca gccaaagcaa tcactcaaag ttcaaacctt atcatttttt gctttgttcc 300
tcttggcctt ggttttgtac atcagctttg aaaataccat cccagggtta atgctggggt 360
taatttataa ctaagagtgc tctagttttg caatacagga catgctataa 410
<210> 117
<211> 222
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 117
ctttctcttt tgttttacat gaagggtctg gcagccaaag caatcactca aagttcaaac 60
cttatcattt tttgctttgt tcctcttggc cttggttttg tacatcagct ttgaaaatac 120
catcccaggg ttaatgctgg ggttaattta taactaagag tgctctagtt ttgcaataca 180
ggacatgcta taaaaatgga aagatgttgc tttctgagag at 222
<210> 118
<211> 402
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 118
accagtggaa cagccactaa ggattctgca gtgagagcag agggccagct aagtggtact 60
ctcccagaga ctgtctgact cacgccaccc cctccacctt ggacacagga cgctgtggtt 120
tctgagccag gtacaatgac tcctttcggt aagtgcagtg gaagctgtac actgcccagg 180
caaagcgtcc gggcagcgta ggcgggcgac tcagatccca gccagtggac ttagcccctg 240
tttgctcctc cgataactgg ggtgaccttg gttaatattc accagcagcc tcccccgttg 300
cccctctgga tccactgctt aaatacggac gaggacaggg ccctgtctcc tcagcttcag 360
gcaccaccac tgacctggga cagtgaatcg taagtatgcc tt 402
<210> 119
<211> 202
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 119
acctattaag aatatttcat agaacgaatg ttccgatgct ctaatctctc tagacaaggt 60
tcatatttgt atgggttact tattctctct ttgttgacta agtcaataat cagaatcagc 120
aggtttgcag tcagattggc agggataagc agcctagctc aggagaagtg agtataaaag 180
ccccaggctg ggagcagcca tc 202
<210> 120
<211> 392
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 120
ttctgatatc tatttaactg atttcaccca aatgctttga acctgggaat gtacctctcc 60
ccctccccca cccccaacag gagtgagaca agggccaggg ctattgcccc tgctgactca 120
atattggcta atcactgcct agaactgata aggtgatcaa atgaccaggt gccttcaacc 180
tttaccctgg tagaagcctc ttattcacct cttttcctgc cagagccctc cattgggagg 240
ggacgggcgg aagctgtttt ctgaatttgt tttactgggg gtagggtatg ttcagtgatc 300
gtccctgtca cctgacaggg ggtgggtaaa cagacaggta tatagcccct tcctctccag 360
ccagggcagg cacagacacc aaggacagag ac 392
<210> 121
<211> 210
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 121
agttccagat ggtaaatata cacaagggat ttagtcaaac aattttttgg caagaatatt 60
atgaattttg taatcggttg gcagccaatg aaatacaaag atgagtctag ttaataatct 120
acaattattg gttaaagaag tatattagtg ctaatttccc tccgtttgtc ctagcttttc 180
tcttctgtca accccacacg cctttggcac 210
<210> 122
<211> 113
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 122
tgttgcttaa atgtttgttg actaagtcaa taatcagaat cagcaaatta aatatttaac 60
taaggaaact aggcaaggtt catatttatt cctagcagag gactcagata taa 113
<210> 123
<211> 325
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 123
ctgcaggctc agaggcacac aggagtttct gggctcaccc tgcccccttc caacccctca 60
gttcccatcc tccagcagct gtttgtgtgc tgcctctgaa gtccacactg aacaaacttc 120
agcctactca tgtccctaaa atgggcaaac attgcaagca gcaaacagca aacacacagc 180
cctccctgcc tgctgacctt ggagctgggg cagaggtcag agacctctct gggcccatgc 240
cacctccaac atccactcga ccccttggaa tttcggtgga gaggagcaga ggttgtcctg 300
gcgtggttta ggtagtgtga gaggg 325
<210> 124
<211> 299
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 124
gtttttgggc ccgccctgcc cccttccgac ctcttagttc ctatcctcca gcagctgttt 60
gtgtgctgcc tctgaagtcc accctgaatg accttcagcc tgttcccgtc cctgatatgg 120
gcaaacattg caagcagcaa acagcaaaca catagccctc cctgcgtgct gaccttggag 180
ctgcggcaga ggtcagagac ctctcagggc ccataccact tccaacatcc ccttgatctc 240
ttggattttg gtggagaggg gcagaggttg tcctggcctg gttaggtagt gtgagaggg 299
<210> 125
<211> 54
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 125
gaaggcagag gcagcctgct gacctgtgga gatgtggaag agaacccagg ccct 54
<210> 126
<211> 9
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 126
ggctctgga 9
<210> 127
<211> 75
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 127
agaaagagaa gaggctctgg agaaggcaga ggcagcctgc tgacctgtgg agatgtggaa 60
gagaacccag gccct 75
<210> 128
<211> 57
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 128
gctactaact tcagcctgct gaagcaggct ggagatgtgg aggagaaccc tggacct 57
<210> 129
<211> 78
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 129
agaaagagaa gaggctctgg agctactaac ttcagcctgc tgaagcaggc tggagatgtg 60
gaggagaacc ctggacct 78
<210> 130
<211> 66
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 130
atggacatga gggtgccagc acagctgctg ggcctcctgc tgctgtggct gagtggtgca 60
aggtgt 66
<210> 131
<211> 642
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 131
gatatccaga tgacccagag ccccagctcc ctgtctgcat ctgtaggtga cagggtcacc 60
attacctgtg gagcatcaga aaacatctat ggggccttga actggtatca gcagaagcca 120
ggtaaagccc caaagctgtt gatatatggt gccaccaact tggcagatgg tgtgccaagc 180
agattcagtg gatcaggcag tggcacagat ttcacactga ccattagcag cctgcaacct 240
gaagactttg ctacctacta ctgccagaat gttctgaaca cccccctgac ctttggccag 300
ggcaccaagg tggagatcaa gaggactgtt gctgcccctt ctgtattcat cttcccaccc 360
agtgatgagc aattgaagtc aggcactgca tcagtggtgt gtcttcttaa caacttctac 420
cccagagagg ccaaggtaca atggaaggtt gacaatgcac ttcagagtgg aaacagccag 480
gagtcagtca ctgaacagga cagcaaggat agcacataca gcctgtctag caccctgact 540
ctgagcaagg ctgactatga gaagcataag gtgtatgcct gtgaggttac ccaccaggga 600
ctgagcagcc ctgtgacaaa aagcttcaat aggggggagt gc 642
<210> 132
<211> 708
<212> DNA
<213> artificial sequence
<220>
<223> synthetic nucleic acid
<400> 132
atggacatga gggtgccagc acagctgctg ggcctcctgc tgctgtggct gagtggtgca 60
aggtgtgata tccagatgac ccagagcccc agctccctgt ctgcatctgt aggtgacagg 120
gtcaccatta cctgtggagc atcagaaaac atctatgggg ccttgaactg gtatcagcag 180
aagccaggta aagccccaaa gctgttgata tatggtgcca ccaacttggc agatggtgtg 240
ccaagcagat tcagtggatc aggcagtggc acagatttca cactgaccat tagcagcctg 300
caacctgaag actttgctac ctactactgc cagaatgttc tgaacacccc cctgaccttt 360
ggccagggca ccaaggtgga gatcaagagg actgttgctg ccccttctgt attcatcttc 420
ccacccagtg atgagcaatt gaagtcaggc actgcatcag tggtgtgtct tcttaacaac 480
ttctacccca gagaggccaa ggtacaatgg aaggttgaca atgcacttca gagtggaaac 540
agccaggagt cagtcactga acaggacagc aaggatagca catacagcct gtctagcacc 600
ctgactctga gcaaggctga ctatgagaag cataaggtgt atgcctgtga ggttacccac 660
cagggactga gcagccctgt gacaaaaagc ttcaataggg gggagtgc 708

Claims (145)

1. A recombinant adeno-associated virus (rAAV) genome, the rAAV genome comprising:
(a) A first expression cassette comprising, from 5 'to 3':
a first liver-specific transcription regulatory element,
a first coding sequence encoding a first polypeptide comprising an antibody heavy chain operably linked to a first signal sequence, an
A first polyadenylation sequence; and
(b) A second expression cassette comprising, from 5 'to 3':
a second liver-specific transcription regulatory element,
a second coding sequence encoding a second polypeptide comprising an antibody light chain operably linked to a second signal sequence, an
A second polyadenylation sequence which is complementary to the first polyadenylation sequence,
wherein expression of the first coding sequence and the second coding sequence produces an antibody comprising the antibody heavy chain and the antibody light chain.
2. The rAAV genome of claim 1, wherein the first transcriptional regulatory element and/or the second transcriptional regulatory element comprises a promoter element selected from the group consisting of: human albumin promoter, human transthyretin (TTR) promoter, human thyroxine-binding globulin (TBG) promoter, human ApoH promoter, human SERPINA1 (hAAT) promoter and liver-specific regulatory modules thereof, such as human ApoE/C-I liver control region (HCR) 1 or 2.
3. The rAAV genome of claim 1 or 2, wherein the first transcription regulatory element and/or the second transcription regulatory element comprises a promoter element comprising a nucleic acid sequence that is at least 90% identical to a sequence selected from the group consisting of SEQ ID NOs 25, 27, 66, 68, 69, 116 and 117.
4. A rAAV genome according to any one of claims 1 to 3, wherein the transcriptional regulatory element comprises a nucleotide sequence that is at least 90% identical to the nucleotide sequence set forth in SEQ ID No. 27.
5. The rAAV genome according to any one of claims 1 to 4, wherein the transcriptional regulatory element comprises the nucleotide sequence set forth in SEQ ID No. 27.
6. The rAAV genome according to any one of claims 1 to 5, wherein the nucleotide sequence of the transcriptional regulatory element consists of the nucleotide sequence set forth in SEQ ID No. 27.
7. A rAAV genome according to any one of claims 1 to 3, wherein the transcriptional regulatory element comprises a nucleotide sequence that is at least 90% identical to the nucleotide sequence set forth in SEQ ID No. 67.
8. The rAAV genome of any one of claims 1-4, wherein the transcriptional regulatory element comprises the nucleotide sequence set forth in SEQ ID No. 67.
9. The rAAV genome according to any one of claims 1 to 5, wherein the nucleotide sequence of the transcriptional regulatory element consists of the nucleotide sequence set forth in SEQ ID No. 67.
10. The rAAV genome of any one of claims 1-9, wherein the first expression cassette and/or the second expression cassette further comprises an intron element that is located 5 'relative to the first coding sequence and/or the second coding sequence and 3' relative to the transcriptional regulatory element.
11. The rAAV genome of claim 10, wherein the intronic element is an exogenous intronic element, optionally wherein the exogenous intronic element is an SV40 intronic element or a mouse picovirus (MVM) intronic element.
12. The rAAV genome of claim 11, wherein the SV40 intron element comprises a nucleotide sequence that is at least 90% identical to the nucleotide sequence shown in SEQ ID No. 29.
13. The rAAV genome of claim 11 or 12, wherein the SV40 intron element comprises the nucleotide sequence shown in SEQ ID No. 29.
14. The rAAV genome according to any one of claims 11 to 13, wherein the nucleotide sequence of the SV40 intron element consists of the nucleotide sequence shown in SEQ ID No. 29.
15. The rAAV genome of any one of claims 11-14, wherein the MVM intron element comprises a nucleotide sequence that is at least 90% identical to the nucleotide sequence set forth in SEQ ID No. 30.
16. The rAAV genome of any one of claims 11-14, wherein the MVM intron element comprises the nucleotide sequence set forth in SEQ ID No. 30.
17. The rAAV genome of any one of claims 11-16, wherein the nucleotide sequence of the MVM intron element consists of the nucleotide sequence set forth in SEQ ID No. 30.
18. The rAAV genome of any one of claims 1-17, wherein the first transcriptional regulatory element and the second transcriptional regulatory element are the same.
19. The rAAV genome of any one of claims 1-18, wherein the first transcriptional regulatory element comprises an HCR 1 element, an hAAT promoter, and an SV40 intron element, and the second transcriptional regulatory element comprises a SERPINA1 liver-specific regulatory module, a TTR promoter, and an MVM intron element.
20. The rAAV genome of any one of claims 1-19, wherein the first transcriptional regulatory element comprises a nucleic acid sequence of SEQ ID No. 50 and the second transcriptional regulatory element comprises a nucleic acid sequence of SEQ ID No. 43.
21. The rAAV genome of any one of claims 1-20, wherein the first expression cassette and/or the second expression cassette further comprises a polyadenylation sequence 3' relative to the first coding sequence and/or the second coding sequence.
22. The rAAV genome of claim 21, wherein the polyadenylation sequence is an exogenous polyadenylation sequence, optionally wherein the exogenous polyadenylation sequence is an SV40 polyadenylation sequence or a Bovine Growth Hormone (BGH) polyadenylation sequence.
23. The rAAV genome of claim 22, wherein the SV40 polyadenylation sequence comprises a nucleotide sequence that is at least 90% identical to the nucleotide sequence shown in SEQ ID No. 31.
24. The rAAV genome of claim 22 or 23, wherein the SV40 polyadenylation sequence comprises the nucleotide sequence shown in SEQ ID No. 31.
25. The rAAV genome of any one of claims 22-24, wherein the nucleotide sequence of the SV40 polyadenylation sequence consists of the nucleotide sequence shown in SEQ ID No. 31.
26. The rAAV genome of any one of claims 22-25, wherein the BGH polyadenylation sequence comprises a nucleotide sequence that is at least 90% identical to the nucleotide sequence set forth in SEQ ID No. 33.
27. The rAAV genome of any one of claims 22-26, wherein the BGH polyadenylation sequence comprises the nucleotide sequence set forth in SEQ ID No. 33.
28. The rAAV genome of any one of claims 22-27, wherein the nucleotide sequence of the BGH polyadenylation sequence consists of the nucleotide sequence set forth in SEQ ID No. 33.
29. The rAAV genome of any one of claims 21-28, wherein the first expression cassette and the second expression cassette comprise the same polyadenylation sequence.
30. The rAAV genome of any one of claims 21-29, wherein the first expression cassette comprises the SV40 polyadenylation sequence.
31. The rAAV genome of any one of claims 21-30, wherein the second expression cassette comprises the BGH polyadenylation sequence.
32. The rAAV genome of any one of claims 21-31, wherein the first polyadenylation sequence comprises the nucleic acid sequence of SEQ ID No. 31 and the second polyadenylation sequence comprises the nucleic acid sequence of SEQ ID No. 33.
33. The rAAV genome of any one of claims 1-32, wherein the first expression cassette and the second expression cassette are in the same orientation in the rAAV genome.
34. The rAAV genome of any one of claims 1-32, wherein the first expression cassette and the second expression cassette are in opposite orientations in the rAAV genome.
35. The rAAV genome of any one of the preceding claims, wherein the first expression cassette and the second expression cassette are in opposite orientations, the first polyadenylation sequence and the second polyadenylation sequence being distally located in the rAAV genome.
36. The rAAV genome of claim 35, wherein the rAAV genome further comprises a stuffer sequence interposed between the first transcriptional regulatory element and the second transcriptional regulatory element.
37. The rAAV genome of claim 36, wherein the stuffer sequence comprises a β -globin polyadenylation sequence.
38. The rAAV genome of claim 37, wherein the beta globin polyadenylation sequence comprises the nucleic acid sequence of SEQ ID No. 51.
39. The rAAV genome of claim 35, wherein the rAAV genome comprises, from 5 'to 3':
(a) The first polyadenylation sequence comprising the nucleic acid sequence of SEQ ID NO. 33;
(b) The first coding sequence;
(c) The first liver-specific transcription regulatory element comprising the nucleic acid sequence of SEQ ID NO. 27;
(d) A stuffer sequence comprising the nucleic acid sequence of SEQ ID NO. 51;
(e) Said second liver-specific transcriptional regulatory element comprising the nucleic acid sequence of SEQ ID NO. 67;
(f) The second coding sequence; and
(g) The second transcribed polyadenylation sequence comprising the nucleic acid sequence of SEQ ID NO. 31.
40. The rAAV genome of claim 35, wherein the rAAV genome comprises, from 5 'to 3': a reverse complement of the first expression cassette; a filling sequence; and the second expression cassette.
41. The rAAV genome according to claim 40, wherein:
(a) The first expression cassette comprises, from 5 'to 3':
a nucleotide sequence which is at least 90% identical to the nucleotide sequence shown in SEQ ID NO. 27,
the first code sequence is used to encode a first code sequence,
a nucleotide sequence at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 33;
(b) The stuffer sequence comprises a nucleotide sequence that is at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 51 or an inverse complement thereof; and
(c) The second expression cassette comprises, from 5 'to 3':
a nucleotide sequence which is at least 90% identical to the nucleotide sequence shown in SEQ ID NO. 67,
The second code sequence is used to encode a second code sequence,
a nucleotide sequence which is at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 31.
42. The rAAV genome according to claim 40, wherein:
(a) The first expression cassette comprises, from 5 'to 3':
a nucleotide sequence which is at least 90% identical to the nucleotide sequence shown in SEQ ID NO. 67,
the first code sequence is used to encode a first code sequence,
a nucleotide sequence which is at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 31;
(b) The stuffer sequence comprises a nucleotide sequence that is at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 51 or an inverse complement thereof; and
(c) The second expression cassette comprises, from 5 'to 3':
a nucleotide sequence which is at least 90% identical to the nucleotide sequence shown in SEQ ID NO. 27,
the second code sequence is used to encode a second code sequence,
a nucleotide sequence which is at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 33.
43. The rAAV genome according to claim 40, wherein:
(a) The first expression cassette comprises, from 5 'to 3':
a nucleotide sequence which is at least 90% identical to the nucleotide sequence shown in SEQ ID NO. 25,
a nucleotide sequence which is at least 90% identical to the nucleotide sequence shown in SEQ ID NO. 26,
The first code sequence is used to encode a first code sequence,
the first polyadenylation sequence;
(b) The stuffer sequence comprises a nucleotide sequence that is at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 51 or an inverse complement thereof; and
(c) The second expression cassette comprises, from 5 'to 3':
a nucleotide sequence which is at least 90% identical to the nucleotide sequence shown in SEQ ID NO. 119,
a nucleotide sequence which is at least 90% identical to the nucleotide sequence shown in SEQ ID NO. 45,
the second code sequence is used to encode a second code sequence,
a nucleotide sequence which is at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 31.
44. The rAAV genome according to claim 40, wherein:
(a) The first expression cassette comprises, from 5 'to 3':
a nucleotide sequence which is at least 90% identical to the nucleotide sequence shown in SEQ ID NO. 119,
a nucleotide sequence which is at least 90% identical to the nucleotide sequence shown in SEQ ID NO. 45,
the first code sequence is used to encode a first code sequence,
a nucleotide sequence which is at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 31;
(b) The stuffer sequence comprises a nucleotide sequence that is at least 90% identical to the nucleotide sequence set forth in SEQ ID NO. 51 or an inverse complement thereof; and
(c) The second expression cassette comprises, from 5 'to 3':
A nucleotide sequence which is at least 90% identical to the nucleotide sequence shown in SEQ ID NO. 25,
a nucleotide sequence which is at least 90% identical to the nucleotide sequence shown in SEQ ID NO. 26,
the second code sequence is used to encode a second code sequence,
the first polyadenylation sequence.
45. The rAAV genome according to claim 40, wherein:
(a) The first expression cassette comprises, from 5 'to 3':
the nucleotide sequence shown in SEQ ID NO. 27,
the first code sequence is used to encode a first code sequence,
the nucleotide sequence shown in SEQ ID NO. 33;
(b) The stuffer sequence comprises the nucleotide sequence set forth in SEQ ID NO. 51 or an inverse complement thereof; and
(c) The second expression cassette comprises, from 5 'to 3':
the nucleotide sequence shown in SEQ ID NO. 67,
the second code sequence is used to encode a second code sequence,
the nucleotide sequence shown in SEQ ID NO. 31.
46. The rAAV genome according to claim 40, wherein:
(a) The first expression cassette comprises, from 5 'to 3':
the nucleotide sequence shown in SEQ ID NO. 67,
the first code sequence is used to encode a first code sequence,
the nucleotide sequence shown in SEQ ID NO. 31;
(b) The stuffer sequence comprises the nucleotide sequence set forth in SEQ ID NO. 51 or an inverse complement thereof; and
(c) The second expression cassette comprises, from 5 'to 3':
The nucleotide sequence shown in SEQ ID NO. 27,
the second code sequence is used to encode a second code sequence,
the nucleotide sequence shown in SEQ ID NO. 33.
47. The rAAV genome according to claim 40, wherein:
(a) The first expression cassette comprises, from 5 'to 3':
the nucleotide sequence shown in SEQ ID NO. 25,
the nucleotide sequence shown in SEQ ID NO. 26,
the first code sequence is used to encode a first code sequence,
the first polyadenylation sequence;
(b) The stuffer sequence comprises the nucleotide sequence set forth in SEQ ID NO. 51 or an inverse complement thereof; and
(c) The second expression cassette comprises, from 5 'to 3':
the nucleotide sequence shown in SEQ ID NO. 119,
the nucleotide sequence shown in SEQ ID NO. 45,
the second code sequence is used to encode a second code sequence,
the nucleotide sequence shown in SEQ ID NO. 31.
48. The rAAV genome according to claim 40, wherein:
(a) The first expression cassette comprises, from 5 'to 3':
the nucleotide sequence shown in SEQ ID NO. 119,
the nucleotide sequence shown in SEQ ID NO. 45,
the first code sequence is used to encode a first code sequence,
the nucleotide sequence shown in SEQ ID NO. 31;
(b) The stuffer sequence comprises the nucleotide sequence set forth in SEQ ID NO. 51 or an inverse complement thereof; and
(c) The second expression cassette comprises, from 5 'to 3':
The nucleotide sequence shown in SEQ ID NO. 25,
the nucleotide sequence shown in SEQ ID NO. 26,
the second code sequence is used to encode a second code sequence,
the first polyadenylation sequence.
49. A rAAV genome comprising a bicistronic expression cassette comprising, from 5 'to 3':
(a) A liver-specific transcriptional regulatory element; a first coding sequence encoding a first polypeptide comprising an antibody heavy chain operably linked to a first signal sequence; a ribosome-hopping sequence encoding a ribosome-hopping peptide; a second coding sequence encoding a second polypeptide comprising an antibody light chain operably linked to a second signal sequence; a polyadenylation sequence; or (b)
(b) A liver-specific transcriptional regulatory element; a second coding sequence encoding a second polypeptide comprising an antibody light chain operably linked to a second signal sequence; a ribosome-hopping sequence encoding a ribosome-hopping peptide; a first coding sequence encoding a first polypeptide comprising an antibody heavy chain operably linked to a first signal sequence; a polyadenylation sequence which is complementary to the polyadenylation sequence,
Wherein expression of the bicistronic expression cassette results in an antibody comprising the antibody heavy chain and the antibody light chain.
50. The rAAV genome of claim 49, wherein the transcriptional regulatory element comprises a promoter element selected from the group consisting of: human albumin promoter, human transthyretin (TTR) promoter, human thyroxine-binding globulin (TBG) promoter, human ApoH promoter, human SERPINA1 (hAAT) promoter and liver-specific regulatory modules thereof, such as human ApoE/C-I liver control region (HCR) 1 or 2.
51. The rAAV genome of claim 49 or 50, wherein the transcriptional regulatory element comprises a promoter element comprising a nucleic acid sequence that is at least 90% identical to a sequence selected from the group consisting of SEQ ID NOs 25, 27, 66, 68, 69, 116 and 117.
52. The rAAV genome of any one of claims 49-51, wherein the transcriptional regulatory element comprises a nucleotide sequence that is at least 90% identical to the nucleotide sequence set forth in SEQ ID No. 27.
53. The rAAV genome of any one of claims 49-52, wherein the transcriptional regulatory element comprises the nucleotide sequence set forth in SEQ ID No. 27.
54. The rAAV genome according to any one of claims 49 to 53, wherein the nucleotide sequence of the transcriptional regulatory element consists of the nucleotide sequence set forth in SEQ ID No. 27.
55. The rAAV genome of claim 49 or 50, wherein the transcriptional regulatory element comprises a nucleotide sequence that is at least 90% identical to the nucleotide sequence set forth in SEQ ID No. 67.
56. The rAAV genome of claim 55, wherein the transcriptional regulatory element comprises the nucleotide sequence set forth in SEQ ID No. 67.
57. The rAAV genome according to claim 55, wherein the nucleotide sequence of the transcriptional regulatory element consists of the nucleotide sequence set forth in SEQ ID No. 67.
58. The rAAV genome of any one of claims 49-57, wherein the bicistronic expression cassette further comprises an intron element 5 'to the first coding sequence and/or the second coding sequence and 3' to the transcriptional regulatory element.
59. The rAAV genome of claim 58, wherein the intronic element is an exogenous intronic element, optionally wherein the exogenous intronic element is an SV40 intronic element or a mouse picornavirus (MVM) intronic element.
60. The rAAV genome of claim 59, wherein the SV40 intron elements comprise a nucleotide sequence that is at least 90% identical to the nucleotide sequence depicted in SEQ ID NO. 29.
61. The rAAV genome of claim 59 or 60, wherein the SV40 intron element comprises the nucleotide sequence shown in SEQ ID No. 29.
62. The rAAV genome of any one of claims 59 to 61, wherein the nucleotide sequence of the SV40 intron element consists of the nucleotide sequence shown in SEQ ID No. 29.
63. The rAAV genome of claim 59, wherein the MVM intron element comprises a nucleotide sequence at least 90% identical to the nucleotide sequence depicted in SEQ ID NO. 30.
64. The rAAV genome of claim 59, wherein the MVM intron element comprises the nucleotide sequence depicted in SEQ ID NO. 30.
65. The rAAV genome of claim 59, wherein the nucleotide sequence of the MVM intron element consists of the nucleotide sequence depicted in SEQ ID NO. 30.
66. The rAAV genome of any one of claims 49-65, wherein the transcriptional regulatory element comprises:
(a) HCR 1 element, hAAT promoter and SV40 intron element; or (b)
(b) SERPINA1 liver-specific regulatory modules, TTR promoter, and MVM intron elements.
67. The rAAV genome of any one of claims 49-66, wherein the transcriptional regulatory element comprises a nucleic acid sequence of SEQ ID No. 50 or a nucleic acid sequence of SEQ ID No. 43.
68. The rAAV genome of any one of claims 49-67, wherein the polyadenylation sequence is an exogenous polyadenylation sequence, optionally wherein the exogenous polyadenylation sequence is an SV40 polyadenylation sequence or a Bovine Growth Hormone (BGH) polyadenylation sequence.
69. The rAAV genome of claim 68, wherein the SV40 polyadenylation sequence comprises a nucleotide sequence that is at least 90% identical to the nucleotide sequence shown in SEQ ID No. 31.
70. The rAAV genome of claim 68 or 69, wherein the SV40 polyadenylation sequence comprises the nucleotide sequence shown in SEQ ID No. 31.
71. The rAAV genome according to any one of claims 68 to 70, wherein the nucleotide sequence of the SV40 polyadenylation sequence consists of the nucleotide sequence shown in SEQ ID No. 31.
72. The rAAV genome of any one of claims 68-71, wherein the BGH polyadenylation sequence comprises a nucleotide sequence that is at least 90% identical to the nucleotide sequence set forth in SEQ ID No. 33.
73. The rAAV genome of any one of claims 68-72, wherein the BGH polyadenylation sequence comprises the nucleotide sequence set forth in SEQ ID No. 33.
74. The rAAV genome according to any of claims 68-73, wherein the nucleotide sequence of the BGH polyadenylation sequence consists of the nucleotide sequence set forth in SEQ ID No. 33.
75. The rAAV genome of any one of claims 1-74, wherein the first signal sequence and/or the second signal sequence is a naturally occurring signal sequence.
76. The rAAV genome of any one of claims 1-74, wherein the first signal sequence and/or the second signal sequence is an antibody signal sequence, optionally a human IgG2 or IgK signal sequence.
77. The rAAV genome of any one of claims 1-74, wherein the first signal sequence and/or the second signal sequence is a non-naturally occurring signal sequence.
78. The rAAV genome of any one of claims 1-74, wherein the first signal sequence and/or the second signal sequence comprises the amino acid sequence of SEQ ID No. 80.
79. The rAAV genome of any one of claims 1-74, wherein the first signal sequence and/or the second signal sequence comprises the amino acid sequence of SEQ ID No. 81.
80. The rAAV genome of any one of claims 1-79, wherein the first signal sequence comprises the amino acid sequence of SEQ ID No. 80 and the second signal sequence comprises the amino acid sequence of SEQ ID No. 81.
81. The rAAV genome of any one of claims 1-80, wherein the first coding sequence and/or the second coding sequence comprises any one of the nucleic acid sequences set forth in SEQ ID NOs 23, 96, 102, or 108.
82. The rAAV genome of any one of claims 1-80, wherein the first coding sequence and/or the second coding sequence comprises any one of the nucleic acid sequences set forth in SEQ ID NOs 24, 99, 105, 111, or 130.
83. The rAAV genome of any one of claims 1-82, wherein the first coding sequence comprises any one of the nucleic acid sequences set forth in SEQ ID NOs 23, 96, 102, or 108 and the second coding sequence comprises any one of the nucleic acid sequences set forth in SEQ ID NOs 24, 99, 105, 111, or 130.
84. The rAAV genome of any one of claims 1-83, wherein the antibody specifically binds to complement C5.
85. The rAAV genome of any one of claims 1-84, wherein the antibody heavy chain comprises the amino acid sequence of SEQ ID No. 64.
86. The rAAV genome of any one of claims 1-84, wherein the antibody heavy chain comprises the amino acid sequence of SEQ ID No. 82.
87. The rAAV genome of any one of claims 1-84, wherein the antibody light chain comprises the amino acid sequence of SEQ ID No. 77.
88. The rAAV genome of any one of claims 1-84, wherein the first coding sequence and/or the second coding sequence has been optimized for expression in a human cell.
89. The rAAV genome of any one of claims 1-84, wherein the first coding sequence comprises any one of the nucleic acid sequences set forth in SEQ ID NOs 52, 113, 114, or 115.
90. The rAAV genome of any one of claims 1-84, wherein the first coding sequence comprises any one of the nucleic acid sequences set forth in SEQ ID NOs 83, 94, 95, 101, or 107.
91. The rAAV genome of any one of claims 1-84, wherein the second coding sequence comprises any one of the nucleic acid sequences set forth in SEQ ID NOs 53, 98, 104, 110, or 131.
92. The rAAV genome of any one of claims 1-91, wherein the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114, and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 53.
93. The rAAV genome of any one of claims 1-91, wherein the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114, and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 63.
94. The rAAV genome of any one of claims 1-91, wherein the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114, and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 98.
95. The rAAV genome of any one of claims 1-91, wherein the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114, and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 99.
96. The rAAV genome of any one of claims 1-91, wherein the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114, and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 100.
97. The rAAV genome of any one of claims 1-91, wherein the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114, and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 104.
98. The rAAV genome of any one of claims 1-91, wherein the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114, and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 105.
99. The rAAV genome of any one of claims 1-91, wherein the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114, and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 106.
100. The rAAV genome of any one of claims 1-91, wherein the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114, and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 110.
101. The rAAV genome of any one of claims 1-91, wherein the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114, and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 111.
102. The rAAV genome of any one of claims 1-91, wherein the first coding sequence comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs 52, 62, 83, 94, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114, and 115, and the second coding sequence comprises the nucleotide sequence set forth in SEQ ID NO 112.
103. The rAAV genome of any one of claims 1-102, wherein the rAAV genome is a single-stranded rAAV genome.
104. The rAAV genome of any one of claims 1-103, wherein the rAAV genome is a self-complementing rAAV genome.
105. The rAAV genome of any one of claims 1-104, wherein the rAAV genome comprises a nucleic acid sequence of SEQ ID No. 84.
106. The rAAV genome of any one of claims 1-104, wherein the rAAV genome comprises the nucleic acid sequence of SEQ ID NO: 85.
107. The rAAV genome of any one of claims 1-104, wherein the rAAV genome comprises the nucleic acid sequence of SEQ ID No. 86.
108. The rAAV genome of any one of claims 1-104, wherein the rAAV genome comprises the nucleic acid sequence of SEQ ID No. 87.
109. The rAAV genome of any one of claims 1-108, wherein the rAAV genome further comprises a 5 'inverted terminal repeat (5' itr) nucleotide sequence 5 'relative to the first polyadenylation sequence and a 3' inverted terminal repeat (3 'itr) nucleotide sequence 3' relative to the second polyadenylation sequence.
110. The rAAV genome of claim 109, wherein the 5'itr nucleotide sequence is at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the nucleotide sequence set forth in SEQ ID NO:14 and/or the 3' itr nucleotide sequence is at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the nucleotide sequence set forth in SEQ ID NO: 18.
111. The rAAV genome of any one of claims 1-110, wherein the rAAV genome comprises the nucleic acid sequence of SEQ ID No. 88.
112. The rAAV genome of any one of claims 1-110, wherein the rAAV genome comprises the nucleic acid sequence of SEQ ID No. 89.
113. The rAAV genome of any one of claims 1-110, wherein the rAAV genome comprises the nucleic acid sequence of SEQ ID No. 90.
114. The rAAV genome of any one of claims 1-110, wherein the rAAV genome comprises a nucleic acid sequence of SEQ ID No. 91.
115. A recombinant adeno-associated virus (rAAV), comprising:
(a) AAV capsids, the AAV capsids comprising AAV capsid proteins; and
(b) The rAAV genome of any one of the preceding claims.
116. The rAAV of claim 115, wherein the capsid protein is selected from the group consisting of: AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, and AAV9.
117. The rAAV of claim 115 or 116, wherein the AAV capsid protein comprises an amino acid sequence at least 95% identical to amino acid sequence of amino acids 203-736 of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, or 17.
118. The rAAV of any one of claims 115-117, wherein: the amino acid in the capsid protein corresponding to amino acid 206 of SEQ ID NO. 16 is C; the amino acid in the capsid protein corresponding to amino acid 296 of SEQ ID NO. 16 is H; the amino acid in the capsid protein corresponding to amino acid 312 of SEQ ID NO. 16 is Q; the amino acid in the capsid protein corresponding to amino acid 346 of SEQ ID NO. 16 is A; the amino acid in the capsid protein corresponding to amino acid 464 of SEQ ID NO. 16 is N; the amino acid in the capsid protein corresponding to amino acid 468 of SEQ ID NO. 16 is S; the amino acid in the capsid protein corresponding to amino acid 501 of SEQ ID NO. 16 is I; the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 590 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is G or Y; the amino acid in the capsid protein corresponding to amino acid 681 of SEQ ID NO. 16 is M; the amino acid in the capsid protein corresponding to amino acid 687 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 690 of SEQ ID NO. 16 is K; the amino acid in the capsid protein corresponding to amino acid 706 of SEQ ID NO. 16 is C; or the amino acid in the capsid protein corresponding to amino acid 718 of SEQ ID NO. 16 is G.
119. The rAAV of claim 118, wherein:
(a) The amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is G and the amino acid in the capsid protein corresponding to amino acid 718 of SEQ ID NO. 16 is G;
(b) Amino acid corresponding to amino acid 296 of SEQ ID NO. 16 in the capsid protein is H, amino acid corresponding to amino acid 464 of SEQ ID NO. 16 in the capsid protein is N, amino acid corresponding to amino acid 505 of SEQ ID NO. 16 in the capsid protein is R, and amino acid corresponding to amino acid 681 of SEQ ID NO. 16 in the capsid protein is M;
(c) The amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R and the amino acid in the capsid protein corresponding to amino acid 687 of SEQ ID NO. 16 is R;
(d) The amino acid in the capsid protein corresponding to amino acid 346 of SEQ ID NO. 16 is A and the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R; or alternatively
(e) The amino acid corresponding to amino acid 501 of SEQ ID NO. 16 in the capsid protein is I, the amino acid corresponding to amino acid 505 of SEQ ID NO. 16 in the capsid protein is R, and the amino acid corresponding to amino acid 706 of SEQ ID NO. 16 in the capsid protein is C.
120. The rAAV of claim 118, wherein the capsid protein comprises the amino acid sequence of amino acids 203-736 of SEQ ID NOs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, or 17.
121. The rAAV of any one of claims 115-120, wherein the AAV capsid protein comprises an amino acid sequence that is at least 95% identical to amino acid sequence of amino acids 138-736 of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, or 17.
122. The rAAV of claim 121, wherein: the amino acid in the capsid protein corresponding to amino acid 151 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 160 of SEQ ID NO. 16 is D; the amino acid in the capsid protein corresponding to amino acid 206 of SEQ ID NO. 16 is C; the amino acid in the capsid protein corresponding to amino acid 296 of SEQ ID NO. 16 is H; the amino acid in the capsid protein corresponding to amino acid 312 of SEQ ID NO. 16 is Q; the amino acid in the capsid protein corresponding to amino acid 346 of SEQ ID NO. 16 is A; the amino acid in the capsid protein corresponding to amino acid 464 of SEQ ID NO. 16 is N; the amino acid in the capsid protein corresponding to amino acid 468 of SEQ ID NO. 16 is S; the amino acid in the capsid protein corresponding to amino acid 501 of SEQ ID NO. 16 is I; the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 590 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is G or Y; the amino acid in the capsid protein corresponding to amino acid 681 of SEQ ID NO. 16 is M; the amino acid in the capsid protein corresponding to amino acid 687 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 690 of SEQ ID NO. 16 is K; the amino acid in the capsid protein corresponding to amino acid 706 of SEQ ID NO. 16 is C; or the amino acid in the capsid protein corresponding to amino acid 718 of SEQ ID NO. 16 is G.
123. The rAAV of claim 122, wherein:
(a) The amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is G and the amino acid in the capsid protein corresponding to amino acid 718 of SEQ ID NO. 16 is G;
(b) Amino acid corresponding to amino acid 296 of SEQ ID NO. 16 in the capsid protein is H, amino acid corresponding to amino acid 464 of SEQ ID NO. 16 in the capsid protein is N, amino acid corresponding to amino acid 505 of SEQ ID NO. 16 in the capsid protein is R, and amino acid corresponding to amino acid 681 of SEQ ID NO. 16 in the capsid protein is M;
(c) The amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R and the amino acid in the capsid protein corresponding to amino acid 687 of SEQ ID NO. 16 is R;
(d) The amino acid in the capsid protein corresponding to amino acid 346 of SEQ ID NO. 16 is A and the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R; or alternatively
(e) The amino acid corresponding to amino acid 501 of SEQ ID NO. 16 in the capsid protein is I, the amino acid corresponding to amino acid 505 of SEQ ID NO. 16 in the capsid protein is R, and the amino acid corresponding to amino acid 706 of SEQ ID NO. 16 in the capsid protein is C.
124. The rAAV of claim 122, wherein the capsid protein comprises the amino acid sequence of amino acids 138-736 of SEQ ID NOs 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, or 17.
125. The rAAV of any one of claims 115-124, wherein the AAV capsid protein comprises an amino acid sequence that is at least 95% identical to amino acid sequence of amino acids 1-736 of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, or 17.
126. The rAAV of claim 125, wherein: the amino acid in the capsid protein corresponding to amino acid 2 of SEQ ID NO. 16 is T; the amino acid in the capsid protein corresponding to amino acid 65 of SEQ ID NO. 16 is I; the amino acid in the capsid protein corresponding to amino acid 68 of SEQ ID NO. 16 is V; the amino acid in the capsid protein corresponding to amino acid 77 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 119 of SEQ ID NO. 16 is L; the amino acid in the capsid protein corresponding to amino acid 151 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 160 of SEQ ID NO. 16 is D; the amino acid in the capsid protein corresponding to amino acid 206 of SEQ ID NO. 16 is C; the amino acid in the capsid protein corresponding to amino acid 296 of SEQ ID NO. 16 is H; the amino acid in the capsid protein corresponding to amino acid 312 of SEQ ID NO. 16 is Q; the amino acid in the capsid protein corresponding to amino acid 346 of SEQ ID NO. 16 is A; the amino acid in the capsid protein corresponding to amino acid 464 of SEQ ID NO. 16 is N; the amino acid in the capsid protein corresponding to amino acid 468 of SEQ ID NO. 16 is S; the amino acid in the capsid protein corresponding to amino acid 501 of SEQ ID NO. 16 is I; the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 590 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is G or Y; the amino acid in the capsid protein corresponding to amino acid 681 of SEQ ID NO. 16 is M; the amino acid in the capsid protein corresponding to amino acid 687 of SEQ ID NO. 16 is R; the amino acid in the capsid protein corresponding to amino acid 690 of SEQ ID NO. 16 is K; the amino acid in the capsid protein corresponding to amino acid 706 of SEQ ID NO. 16 is C; or the amino acid in the capsid protein corresponding to amino acid 718 of SEQ ID NO. 16 is G.
127. The rAAV of claim 126, wherein:
(a) The amino acid in the capsid protein corresponding to amino acid 2 of SEQ ID NO. 16 is T and the amino acid in the capsid protein corresponding to amino acid 312 of SEQ ID NO. 16 is Q;
(b) The amino acid in the capsid protein corresponding to amino acid 65 of SEQ ID NO. 16 is I and the amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is Y;
(c) The amino acid in the capsid protein corresponding to amino acid 77 of SEQ ID NO. 16 is R and the amino acid in the capsid protein corresponding to amino acid 690 of SEQ ID NO. 16 is K;
(d) The amino acid in the capsid protein corresponding to amino acid 119 of SEQ ID NO. 16 is L and the amino acid in the capsid protein corresponding to amino acid 468 of SEQ ID NO. 16 is S;
(e) The amino acid in the capsid protein corresponding to amino acid 626 of SEQ ID NO. 16 is G and the amino acid in the capsid protein corresponding to amino acid 718 of SEQ ID NO. 16 is G;
(f) Amino acid corresponding to amino acid 296 of SEQ ID NO. 16 in the capsid protein is H, amino acid corresponding to amino acid 464 of SEQ ID NO. 16 in the capsid protein is N, amino acid corresponding to amino acid 505 of SEQ ID NO. 16 in the capsid protein is R, and amino acid corresponding to amino acid 681 of SEQ ID NO. 16 in the capsid protein is M;
(g) The amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R and the amino acid in the capsid protein corresponding to amino acid 687 of SEQ ID NO. 16 is R;
(h) The amino acid in the capsid protein corresponding to amino acid 346 of SEQ ID NO. 16 is A and the amino acid in the capsid protein corresponding to amino acid 505 of SEQ ID NO. 16 is R; or alternatively
(i) The amino acid corresponding to amino acid 501 of SEQ ID NO. 16 in the capsid protein is I, the amino acid corresponding to amino acid 505 of SEQ ID NO. 16 in the capsid protein is R, and the amino acid corresponding to amino acid 706 of SEQ ID NO. 16 in the capsid protein is C.
128. The rAAV of claim 127, wherein the capsid protein comprises the amino acid sequence of amino acids 1-736 of SEQ ID NOs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, or 17.
129. A polynucleotide comprising the nucleic acid sequence set forth in SEQ ID NO. 85-93.
130. A pharmaceutical composition comprising a rAAV according to any one of claims 115 to 128 or the polynucleotide of claim 129.
131. A packaging system for preparing a rAAV, wherein the packaging system comprises:
(a) A first nucleotide sequence encoding one or more AAV Rep proteins;
(b) A second nucleotide sequence encoding a capsid protein of a rAAV according to any one of claims 115 to 128; and
(c) A third nucleotide sequence comprising the rAAV genomic sequence of the rAAV of any one of claims 1 to 114.
132. The packaging system of claim 131, wherein the packaging system comprises a first vector comprising the first nucleotide sequence and the second nucleotide sequence, and a second vector comprising the third nucleotide sequence.
133. The packaging system of claim 131 or 132, further comprising a fourth nucleotide sequence comprising one or more helper virus genes.
134. The packaging system of claim 133, wherein the fourth nucleotide sequence is included within a third vector.
135. The packaging system of claim 133 or 134, wherein the fourth nucleotide sequence comprises one or more genes from a virus selected from the group consisting of: adenovirus, herpes virus, vaccinia virus and Cytomegalovirus (CMV).
136. The packaging system of any one of claims 131-135, wherein the first, second, and/or third vector is a plasmid.
137. A method for recombinantly producing a rAAV, the method comprising introducing the packaging system of any one of claims 131 to 135 into a cell under conditions whereby the rAAV is produced.
138. The rAAV of any one of claims 115-138, the pharmaceutical composition of claim 130, or the polynucleotide of claim 129 for use as a medicament.
139. The rAAV of any one of claims 115-138, the pharmaceutical composition of claim 130, or the polynucleotide of claim 129 for use in treating a complement C5-associated disease.
140. The rAAV of any one of claims 115-138, the pharmaceutical composition of claim 130, or the polynucleotide of claim 129 for use in a method of treating a subject having a complement C5-associated disease, the method comprising administering to the subject an effective amount of the rAAV, the pharmaceutical composition, or the polynucleotide.
141. A method of producing an antibody in a subject, the method comprising administering to the subject a pharmaceutical composition according to claim 130.
142. The method of claim 141, wherein the pharmaceutical composition is administered intravenously.
143. A method of treating a complement C5-associated disease in a subject in need thereof, the method comprising administering to the subject an effective amount of the rAAV of any one of claims 115-128, the pharmaceutical composition of claim 130, or the polynucleotide of claim 129.
144. The method of claim 143, wherein the complement C5-associated disease is selected from the group consisting of: geographic Atrophy (GA), gillan-barre syndrome, myasthenia gravis, systemic Lupus Erythematosus (SLE) nephritis, proliferative nephritis, asthma, rheumatoid arthritis, sepsis, paroxysmal sleep hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), and age-related macular degeneration (AMD).
145. The method of claim 143 or 144, wherein the rAAV, the pharmaceutical composition, or the polynucleotide is administered intravenously.
CN202180074827.5A 2020-09-09 2021-09-09 Supported antibodies and uses thereof Pending CN116568814A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US63/075,898 2020-09-09
US202163179990P 2021-04-26 2021-04-26
US63/179,990 2021-04-26
PCT/US2021/071400 WO2022056531A1 (en) 2020-09-09 2021-09-09 Vectorized antibodies and uses thereof

Publications (1)

Publication Number Publication Date
CN116568814A true CN116568814A (en) 2023-08-08

Family

ID=87488413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180074827.5A Pending CN116568814A (en) 2020-09-09 2021-09-09 Supported antibodies and uses thereof

Country Status (1)

Country Link
CN (1) CN116568814A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116983434A (en) * 2023-09-28 2023-11-03 康霖生物科技(杭州)有限公司 Nucleic acid constructs for gene therapy and uses thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116983434A (en) * 2023-09-28 2023-11-03 康霖生物科技(杭州)有限公司 Nucleic acid constructs for gene therapy and uses thereof
CN116983434B (en) * 2023-09-28 2024-03-15 康霖生物科技(杭州)有限公司 Nucleic acid constructs for gene therapy and uses thereof

Similar Documents

Publication Publication Date Title
AU2022203494B2 (en) Adeno-Associated Virus Variant Capsids And Use For Inhibiting Angiogenesis
AU2018211212B2 (en) Treatment of amd using AAV sFlt-1
KR102636351B1 (en) Highly active regulatory element
KR20220012231A (en) Fully-Human Post-Translational Modified Antibody Therapeutics
KR102585324B1 (en) Adeno-Associated Virus (AAV) Delivery of Anti-FAM19A5 Antibody
KR20210132684A (en) Compositions and methods for treating Vietti&#39;s dysplasia
KR20230093437A (en) Vectorized anti-TNF-α antibodies for ocular indications
CN116568814A (en) Supported antibodies and uses thereof
TW202237644A (en) Anti-vegf antibody constructs and related methods for treating vestibular schwannoma associated symptoms
US20020173477A1 (en) ANTI-IgE gene therapy
KR20230082623A (en) Vectorized Antibodies and Uses Thereof
TW202241943A (en) Tau-specific antibody gene therapy compositions, methods and uses thereof
CN113874512A (en) Compositions and methods for inducing hair cell differentiation
KR20230119116A (en) Methods of Suppressing the Immune Response to a Vector-Delivered Therapeutic Protein
US20230374546A1 (en) Bidirectional dual promoter expression vectors and uses thereof
CN117836420A (en) Recombinant TERT-encoding viral genome and vector
CN117813321A (en) Retinal disorders
WO2023178171A2 (en) Cassettes of anti-complement component 3 antibody, vectorization and theraputic application
KR20240005950A (en) vector system
WO2024192389A2 (en) Treatment of dry age-related macular degeneration
CN116568283A (en) anti-VEGF antibody constructs and related methods for treating symptoms associated with vestibular schwannoma
KR20240023126A (en) retinal disorders
KR20240023127A (en) retinal disorders
CN116457373A (en) Supported TNF-alpha antagonists for ocular indications
CN114107313A (en) Transgenic expression cassettes for the treatment of multiple sclerosis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination