CN116309798A - 一种无人机成像定位方法 - Google Patents
一种无人机成像定位方法 Download PDFInfo
- Publication number
- CN116309798A CN116309798A CN202310081307.8A CN202310081307A CN116309798A CN 116309798 A CN116309798 A CN 116309798A CN 202310081307 A CN202310081307 A CN 202310081307A CN 116309798 A CN116309798 A CN 116309798A
- Authority
- CN
- China
- Prior art keywords
- coordinate system
- image
- aerial vehicle
- unmanned aerial
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000003384 imaging method Methods 0.000 title claims abstract description 23
- 239000011159 matrix material Substances 0.000 claims description 24
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 238000013519 translation Methods 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 claims description 8
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 15
- 230000009466 transformation Effects 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012612 static experiment Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mathematical Physics (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computer Networks & Wireless Communication (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Navigation (AREA)
Abstract
本发明公开了一种无人机成像定位方法,包括以下步骤,步骤一:确定无人机上陀螺仪的偏航角、俯仰角以及横滚角的实际意义;步骤二:建立图像定位所需要的坐标系;步骤三:根据图像建立图像像素坐标系和图像物理坐标系,计算目标点实际位置在相机坐标系内的三维坐标;步骤四:将相机坐标系转换为无人机地理坐标系;步骤五:将无人机地理坐标系转换为大地直角坐标系;步骤六:将大地直角坐标系转换为GPS坐标系,本发明的有益效果:根据目标定位过程中目标点、像点和测量点的几何关系,利用Matlab算法计算出目标点的经纬度和高度,从而实现目标定位,有利于无人机目标定位成像的精度的提高。
Description
技术领域
本发明涉及无人机成像定位技术领域,具体是一种无人机成像定位方法。
背景技术
无人机地面目标成像技术是现代先进的远程定位技术,在军事及民事领域都得到了广泛应用,其主要包括目标探测识别、目标定位等技术关键点。其中,目标定位技术的精度很大程度上决定了无人机目标定位成像的精度水平。随着现代科技水平的飞速发展,各领域对目标定位技术的精度要求也越来越高。
由于我国对无人机技术特别是目标成像定位系统的研发起步较国外晚,整体技术水平落后于国外,尤其是无人机成像定位的领域普遍存在定位精度差、抗干扰能力差的缺陷。因此,大力发展无人机成像定位技术应当是我国侦察技术领域研发的重中之重。
发明内容
本发明的目的在于提供一种无人机成像定位方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种无人机成像定位方法,包括以下步骤:
步骤一:利用无人机上的陀螺仪获得拍摄图像时的偏航角、俯仰角以及横滚角;步骤二:建立图像定位所需要的坐标系,其中包括相机坐标系、无人机地理坐标系、GPS坐标系和大地直角坐标系;
步骤三:根据图像建立图像像素坐标系和图像物理坐标系,然后计算图像上的目标点实际位置在相机坐标系内的三维坐标;
步骤四:将步骤三中计算得到的目标点在相机坐标系内的三维坐标代入到无人机地理坐标系中,得到图像上目标点实际位置在无人机地理坐标系中的三维坐标; 步骤五:将步骤四中计算得到的目标点在无人机地理坐标系中的三维坐标代入到大地直角坐标系中,得到图像上目标点实际位置在大地直角坐标系中的三维坐标;
步骤六:将步骤五中计算得到的目标点在大地直角坐标系中的三维坐标代入到GPS坐标系中,得到图像上目标点实际位置在GPS坐标系中的三维坐标。
进一步的,在所述相机坐标系中,以相机的平面中心点作为原点,记作Oc,以相机的光轴方向作为Z轴方向,X轴和Y轴的方向与图像中的X轴和Y轴的方向相同。
进一步的,在所述无人机地理坐标系中,以无人机的实际位置为原点,以无人机与地面的垂线为Z轴,以无人机的正南方向作为Y轴,以无人机的正东方向作为X轴,在俯拍时,陀螺仪的偏航角、俯仰角以及横滚角分别代表相机坐标系和无人机坐标系三个极轴之间的旋转角度; 所述GPS坐标系即世界大地坐标系WGS-84,坐标原点为地球质心,X轴由原点指向本初子午线与赤道的交点,Z轴指向地球北极方向,Y轴垂直于XOZ的平面,并与X、Z轴构成右手坐标系,在该坐标系下任意一点的坐标可以表示为B、L、H,分别代表该点的纬度、经度以及高度; 所述大地直角坐标系的坐标轴以及坐标原点与GPS坐标系的坐标轴和坐标原点完全重合。
进一步的,在步骤三中,所述图像像素坐标系是以当前拍摄的图像左上角为原点,以像素为坐标单位的直角坐标系,Xp和Yp分别表示该像素在数字图像中的行数与列数,所述图像物理坐标系是以相机光轴与相机内部图像传感器的交点为原点,以实际物理尺寸为单位的直角坐标系,其中Xw轴、Yw轴分别与图像像素坐标系的Xp和Yp轴平行。
进一步的,在图像像素坐标系中,像素点p的图像物理坐标与物点 P 的摄像机坐标系坐标/>的关系式如下:/>(5-1),其中/>为相机的焦距,像素点 p 的图像像素坐标/>与其图像物理坐标/>的关系如下:(5-2),其中,/>为图像主点,即相机光轴与相机内部图像传感器交点的图像像素坐标;dx 和dy别为相机的单个像元在Xw和Yw方向上的物理尺寸,结合关系式(5-1)以及关系式(5-2)可以将目标的图像像素坐标/>转化为图像物理坐标/>,图像中目标点在相机坐标系中坐标为/>;像素点p的图像物理坐标/>与物点 P 的摄像机坐标系坐标/>,/>为相机的焦距,像素点 p 的图像像素坐标/>,/>为图像主点,得到图像中目标实际位置在相机坐标系中坐标为/>。
进一步的,在步骤四中,相机坐标系中的点到无人机坐标系的坐标转换步骤如下:S1:将坐标系绕X轴沿右手螺旋方向旋转,即右手握住旋转轴,四指指向方向为转动方向,转换矩阵; S2:将坐标系绕Y轴沿右手螺旋方向旋转,转换矩阵/>;
进一步的,在步骤四中,计算无人机和目标点连线与无人机到地面的垂线的夹角、无人机和目标点的连接与无人机到图像中心点连接之间的夹角/>,其中夹角/>的表达式如下:/>,夹角/>的表达式如下:;随后利用拍摄该照片时的获取的无人机GPS信息/>、和/>,计算目标在无人机地理坐标系中的坐标,目标在无人机地理坐标系z轴上的投影,即目标的无人机地理坐标系z轴坐标是/>,根据该z轴坐标值与相机焦距的比值,分别计算/>、/>,得到无人机地理坐标系中的坐标,其中/>为相机的焦距/>、/>和/>分别代表无人机拍照时的经度、纬度和高度。
进一步的,在步骤五中,首先进行坐标的转换,将无人机地理坐标系绕X轴沿右手螺旋方向旋转度,此处采用右手螺旋法则,右手握住旋转轴,四指指向方向为转动方向,再绕指向地面方向Z轴沿右手螺旋方向旋转/>度,最后绕Z轴转-90度,获得以下转换矩阵:
;(8-2) 在矩阵(8-2)中,左边xyz是旋转之后的坐标平移量,右边各参数的意义如下:/>,其中,/>为椭球长半径;/>为地球卯酉圈曲率半径;/>为地球第一偏心率;结合矩阵(7-1)和矩阵(7-2),即可将目标点的坐标从无人机地理坐标系转换为大地直角坐标系坐标表示为/>,其转换公式如下:/>;
进一步的,在步骤六中,大地直角坐标系到GPS坐标系的转换公式如下:,其中,/>、/>、/>分别为待求目标的经度、纬度和高度,/>、/>、/>为目标在大地直角坐标系下的坐标,N的表达公式如下:,在计算时采用迭代算法,在迭代时先设定/>的初始值/>,计算公式如下:/>,然后计算/>的更新值:,最后将初始值/>和更新值/>之间的差值进行比较,若在误差范围内则结束迭代并最终计算出目标的大地坐标,反之若查出误差范围则以/>为初始值继续进行迭代,直至/>与/>之间的差值误差在范围内为止,所述误差范围为小于0.00000001,为弧度制;
其中为地球长半径;/>为地球卯酉圈曲率半径;/>为椭球第一偏心率,/>、、/>分别表示第i次迭代时对应/>、/>、/>的值,值得注意的是,在具体的实验过程中,无人机在拍照时的所处高度H可以采用雷达进行获取,以达到更精准的高度数值。
与现有技术相比,本发明的有益效果是:根据目标定位过程中目标点、像点和测量点的几何关系,利用Matlab算法计算出目标点的经纬度和高度,从而实现目标定位,并且通过对偏航角、横滚角和俯仰角进行分析,有利于无人机目标定位成像的精度的提高。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中心透视投影模型示意图;
图2为本发明目标定位几何关系图;
图3为本发明无人机地理坐标系到大地直角坐标系的转换示意图;
图4为本发明50M悬停GPS误差折线图;
图5为本发明10M悬停GPS误差折线图;
图6为本发明1.99m相机姿态角水平误差折线图;
图7为本发明不同高度下的定位误差(水平投影)图;
图8为本发明不同高度下的定位误差(距离误差)图;
图9为本发明不同姿态角下的定位误差(水平投影)图;
图10为本发明变姿态角下的A点定位误差图;
图11为本发明变姿态角下的B点定位误差图;
图12为本发明变姿态角水平误差折线图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-3,本发明实施例中,一种无人机成像定位方法,包括以下步骤:
步骤一:利用无人机上的陀螺仪获得拍摄图像时的偏航角、俯仰角以及横滚角;步骤二:建立图像定位所需要的坐标系,其中包括相机坐标系、无人机地理坐标系、GPS坐标系和大地直角坐标系;
步骤三:根据图像建立图像像素坐标系和图像物理坐标系,然后计算图像上的目标点实际位置在相机坐标系内的三维坐标;
步骤四:将步骤三中计算得到的目标点在相机坐标系内的三维坐标代入到无人机地理坐标系中,得到图像上目标点实际位置在无人机地理坐标系中的三维坐标; 步骤五:将步骤四中计算得到的目标点在无人机地理坐标系中的三维坐标代入到大地直角坐标系中,得到图像上目标点实际位置在大地直角坐标系中的三维坐标;
步骤六:将步骤五中计算得到的目标点在大地直角坐标系中的三维坐标代入到GPS坐标系中,得到图像上目标点实际位置在GPS坐标系中的三维坐标。
实施例一:
如图1-2所示,以图像左上角点为原点,以像素为坐标单位建立图像像素直角坐标系,Xp和Yp分别表示该像素在数字图像中的行数与列数;
所述图像物理坐标系是以相机光轴与相机内部图像传感器的交点为原点,以实际物理尺寸为单位的直角坐标系,其中Xw轴、Yw轴分别与图像像素坐标系的Xp和Yp轴平行;
如图1所示,依据中心透视投影模型的映射关系,像素点p的图像物理坐标与物点 P 的摄像机坐标系坐标/>的关系式如下:/>(5-1),其中/>为相机的焦距,像素点 p 的图像像素坐标/>与其图像物理坐标的关系如下:/>(5-2),其中,/>为图像主点,即相机光轴与相机内部图像传感器交点的图像像素坐标;dx 和dy别为相机的单个像元在Xw和Yw方向上的物理尺寸,结合关系式(5-1)以及关系式(5-2)可以将目标的图像像素坐标转化为图像物理坐标/>,其几何关系图如图2所示;
图像中目标点在相机坐标系中坐标为;像素点p的图像物理坐标与物点 P 的摄像机坐标系坐标/>,/>为相机的焦距,像素点 p 的图像像素坐标/>,/>为图像主点,得到图像中目标实际位置在相机坐标系中坐标为/>;
将目标点在相机坐标系的中坐标转换为无人机地理坐标系中的坐标:
相机坐标系中的点到无人机坐标系的坐标转换步骤如下: S1:将坐标系绕X轴沿右手螺旋方向旋转,即右手握住旋转轴,四指指向方向为转动方向,转换矩阵; S2:将坐标系绕Y轴沿右手螺旋方向旋转/>,转换矩阵/>;
计算无人机和目标点连线与无人机到地面的垂线的夹角、无人机和目标点的连接与无人机到图像中心点连接之间的夹角/>,其中夹角/>的表达式如下:,夹角/>的表达式如下:/>;随后利用拍摄该照片时的获取的无人机GPS信息/>、/>和/>,计算目标在无人机地理坐标系中的坐标,目标在无人机地理坐标系z轴上的投影,即目标的无人机地理坐标系z轴坐标是/>,根据该z轴坐标值与相机焦距的比值,分别计算/>、,得到无人机地理坐标系中的坐标/>,其中/>为相机的焦距,/>、/>和/>分别代表无人机拍照时的经度、纬度和高度。
将无人机地理坐标系下的坐标转换为大地直角坐标系下的坐标:
如图3所示,首先进行坐标的转换,将无人机地理坐标系绕X轴沿右手螺旋方向旋转度,此处采用右手螺旋法则,右手握住旋转轴,四指指向方向为转动方向,再绕指向地面方向Z轴沿右手螺旋方向旋转/>度,最后绕Z轴转-90度,获得以下转换矩阵:;(8-1)旋转之后进行坐标平移,平移矩阵如下:/>;(8-2) 在矩阵(8-2)中,左边xyz是旋转之后的坐标平移量,右边各参数的意义如下:,其中,/>为地球长半径;/>为地球卯酉圈曲率半径;/>为地球第一偏心率;结合矩阵(7-1)和矩阵(7-2),即可将目标点的坐标从无人机地理坐标系转换为大地直角坐标系坐标表示为/>,其转换公式如下:;
将大地直角坐标系下的坐标转换为GPS坐标系下的坐标:
大地直角坐标系到GPS坐标系的转换公式如下:,其中,/>、/>、/>分别为待求目标的经度、纬度和高度,/>、/>、/>为目标在大地直角坐标系下的坐标,N的表达公式如下:,在计算时采用迭代算法,在迭代时先设定/>的初始值/>,计算公式如下:/>,然后计算/>的更新值:,最后将初始值/>和更新值/>之间的差值进行比较,若在误差范围内则结束迭代并最终计算出目标的大地坐标,反之若查出误差范围则以/>为初始值继续进行迭代,直至/>与/>之间的差值误差在范围内为止,所述误差范围为小于0.00000001,为弧度制;
悬停误差实验:如图4-图6所示,在户外50m和10m的高度下,无人机悬停拍摄照片,对图片中的地标进行标定,从而进行图像GPS定位,分别得到50m和10m下的经纬度误差。以GPS 10m高度下纬度误差为例,得到10组GPS纬度测量值,我们求得其平均,再用测量值与平均值相减便可以得到10m高度下纬度均值误差。同理,可以计算不同高度下经度。
单点定位经度实验:
如图9所示,在户外2m到30m的高度下进行目标定位分析,每一高度拍多张图片,在所有高度所得图片上标定地面上同一点,求出该点的无人机坐标,并计算出该点的GPS坐标。以该点GPS数据均值作为计算出的GPS值,与实际测量GPS值做差,算出不同高度下GPS的精度,求同一高度的误差均值作为该高度下单点定位的误差,画出散点图,以目标实际位置为中心,横轴为东西方向,纵轴为南北方向。在地面取A、B两点进行上述单点定位测试。
飞行中不同姿态角的定位实验:
如图10-图12所示,在户外3、4、5m的高度下,分别进行定高变姿态角测试。如3m下,保持高度不变,改变无人机飞行姿态角拍摄多张,分别画出3m、4m、5m三个高度下的单点定位误差散点图,画出散点图,以目标实际位置为原点,横轴为东西方向,纵轴为南北方向;
定位算法以图像上所框选的目标像素点和导出的拍照时的无人机经纬度、高度信息以及当时的姿态角信息为输入,计算得到无人机坐标下目标的相对位置。将定位算法计算结果与理论GPS坐标值进行比较。定位精度测试结果如表1所示。在关键目标抵近阶段,定位算法可以确保无人机抵近目标所在位置。
表 1 定位算法精度测试(东、北为正,西、南为负)
该实验数据表明飞行高度越高精度越差,但整体正交方向上平均误差不超过1m。认为该算法在定位系统中低空抵近过程中定位表现良好距离误差均值为0.83m,而在高空飞行中表现一般,距离误差均值为2.85m。实验数据发现,飞行高度为1m时,无人机抵近过程中单点定位过程中在东西方向误差均值为0.05m,南北方向误差均值为0.08m,距离误差均值为0.83m。而飞行高度为3m时,无人机抵近过程中单点定位过程中在东西方向误差均值为-0.59m,南北方向误差均值为-0.44m,距离误差均值为5.24m。在较高空(高于10m)飞行时在东西方向误差均值为-0.43m,南北方向误差均值为-1.10m,距离误差均值为2.85m。
根据实验结果可以发现,5米以下两点间测距(以两点间距离2米为例)误差均在厘米级可以接受,高度越高误差越大。7m以下测距误差认为可以接受。其中测距误差均值为0.02%(3m)、-0.02%(4m)、-0.03%(5m)。
分析拍摄照片时的无人机高度获取对定位精度影响较大,在整体引导系统中采用测距传感器得到的无人机与目标的相对高度,以进行后续数据处理。受实验器材和条件限制,无法实飞,采用静态测量作为代替。将激光雷达连接至电脑,用电脑接受测距仪发送的数据,本实验的数据对实飞只具有参考意义。在静态实验中可以发现设备测距精度可以提升至1%,实飞精度需进一步实验进行了解。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
Claims (9)
1.一种无人机成像定位方法,其特征在于:包括以下步骤: 步骤一:利用无人机上的陀螺仪获得拍摄图像时的偏航角、俯仰角以及横滚角; 步骤二:建立图像定位所需要的坐标系,其中包括相机坐标系、无人机地理坐标系、GPS坐标系和大地直角坐标系;
步骤三:根据图像建立图像像素坐标系和图像物理坐标系,然后计算图像上的目标点实际位置在相机坐标系内的三维坐标;
步骤四:将步骤三中计算得到的目标点在相机坐标系内的三维坐标代入到无人机地理坐标系中,得到图像上目标点实际位置在无人机地理坐标系中的三维坐标; 步骤五:将步骤四中计算得到的目标点在无人机地理坐标系中的三维坐标代入到大地直角坐标系中,得到图像上目标点实际位置在大地直角坐标系中的三维坐标;
步骤六:将步骤五中计算得到的目标点在大地直角坐标系中的三维坐标代入到GPS坐标系中,得到图像上目标点实际位置在GPS坐标系中的三维坐标。
2.根据权利要求1所述的一种无人机成像定位方法,其特征在于:在所述相机坐标系中,以相机的平面中心点作为原点,记作Oc,以相机的光轴方向作为Z轴方向,X轴和Y轴的方向与图像中的X轴和Y轴的方向相同。
3.根据权利要求1所述的一种无人机成像定位方法,其特征在于:在所述无人机地理坐标系中,以无人机的实际位置为原点,以无人机与地面的垂线为Z轴,以无人机的正南方向作为Y轴,以无人机的正东方向作为X轴,在俯拍时,陀螺仪的偏航角、俯仰角以及横滚角分别代表相机坐标系和无人机坐标系三个极轴之间的旋转角度; 所述GPS坐标系即世界大地坐标系WGS-84,坐标原点为地球质心,X轴由原点指向本初子午线与赤道的交点,Z轴指向地球北极方向,Y轴垂直于XOZ的平面,并与X、Z轴构成右手坐标系,在该坐标系下任意一点的坐标可以表示为B、L、H,分别代表该点的纬度、经度以及高度; 所述大地直角坐标系的坐标轴以及坐标原点与GPS坐标系的坐标轴和坐标原点完全重合。
4.根据权利要求1所述的一种无人机成像定位方法,其特征在于:在步骤三中,所述图像像素坐标系是以当前拍摄的图像左上角为原点,以像素为坐标单位的直角坐标系,Xp和Yp分别表示该像素在数字图像中的行数与列数,所述图像物理坐标系是以相机光轴与相机内部图像传感器的交点为原点,以实际物理尺寸为单位的直角坐标系,其中Xw轴、Yw轴分别与图像像素坐标系的Xp和Yp轴平行。
5.根据权利要求4所述的一种无人机成像定位方法,其特征在于:在图像中选择一目标点P以及像素点p,其中,是像素点p在图像像素坐标系中的图像物理坐标,是像素点 p 在图像像素坐标系中的图像像素坐标,/>与目标点 P 的相机坐标系坐标/>的关系式如下:/>………………(5-1),
8.根据权利要求1所述的一种无人机成像定位方法,其特征在于:在步骤五中,首先进行坐标的转换,将无人机地理坐标系绕X轴沿右手螺旋方向旋转度,此处采用右手螺旋法则,右手握住旋转轴,四指指向方向为转动方向,再绕指向地面方向Z轴沿右手螺旋方向旋转/>度,最后绕Z轴转-90度,获得以下转换矩阵:
旋转之后进行坐标平移,平移矩阵如下:;(8-2) 在矩阵(8-2)中,左边xyz是旋转之后的坐标平移量,右边各参数的意义如下:,其中,/>为椭球长半径;N为地球卯酉圈曲率半径;/>为地球第一偏心率;结合矩阵(8-1)和矩阵(8-2),即可将目标点的坐标从无人机地理坐标系转换为大地直角坐标系坐标表示为/>,其转换公式如下:;
9.根据权利要求1所述的一种无人机成像定位方法,其特征在于:在步骤六中,大地直角坐标系到GPS坐标系的转换公式如下:,其中,/>、/>、/>分别为待求目标的经度、纬度和高度,/>、/>、/>为目标在大地直角坐标系下的坐标,N的表达公式如下:/>,在计算时采用迭代算法,在迭代时先设定/>的初始值/>,计算公式如下:/>,然后计算/> 的更新值:/>,最后将初始值/>和更新值/>之间的差值进行比较,若在误差范围内则结束迭代并最终计算出目标的大地坐标,反之若查出误差范围则以/>为初始值继续进行迭代,直至/>与/>之间的差值误差在范围内为止,所述误差范围为小于0.00000001,为弧度制;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310081307.8A CN116309798A (zh) | 2023-02-08 | 2023-02-08 | 一种无人机成像定位方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310081307.8A CN116309798A (zh) | 2023-02-08 | 2023-02-08 | 一种无人机成像定位方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116309798A true CN116309798A (zh) | 2023-06-23 |
Family
ID=86780566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310081307.8A Pending CN116309798A (zh) | 2023-02-08 | 2023-02-08 | 一种无人机成像定位方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116309798A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116839595A (zh) * | 2023-09-01 | 2023-10-03 | 北京宝隆泓瑞科技有限公司 | 一种创建无人机航线的方法 |
CN118209087A (zh) * | 2024-05-16 | 2024-06-18 | 晓智未来(成都)科技有限公司 | 基于摄影测量空间点与面定位校准方法 |
CN118799385A (zh) * | 2024-09-12 | 2024-10-18 | 天津云圣智能科技有限责任公司 | 一种目标物体的定位方法、装置、电子设备以及存储介质 |
-
2023
- 2023-02-08 CN CN202310081307.8A patent/CN116309798A/zh active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116839595A (zh) * | 2023-09-01 | 2023-10-03 | 北京宝隆泓瑞科技有限公司 | 一种创建无人机航线的方法 |
CN116839595B (zh) * | 2023-09-01 | 2023-11-28 | 北京宝隆泓瑞科技有限公司 | 一种创建无人机航线的方法 |
CN118209087A (zh) * | 2024-05-16 | 2024-06-18 | 晓智未来(成都)科技有限公司 | 基于摄影测量空间点与面定位校准方法 |
CN118799385A (zh) * | 2024-09-12 | 2024-10-18 | 天津云圣智能科技有限责任公司 | 一种目标物体的定位方法、装置、电子设备以及存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113850126B (zh) | 一种基于无人机的目标检测和三维定位方法和系统 | |
CN116309798A (zh) | 一种无人机成像定位方法 | |
CN115511956A (zh) | 一种无人机成像定位方法 | |
Sanz‐Ablanedo et al. | Reducing systematic dome errors in digital elevation models through better UAV flight design | |
US9185289B2 (en) | Generating a composite field of view using a plurality of oblique panoramic images of a geographic area | |
CN103345737B (zh) | 一种基于误差补偿的uav高分辨率影像几何校正方法 | |
CN110503687B (zh) | 一种空中光电测量平台目标定位方法 | |
CN104501779A (zh) | 基于多站测量的无人机高精度目标定位方法 | |
CN104835115A (zh) | 用于航空相机的图像成像方法及系统 | |
CN104764443B (zh) | 一种光学遥感卫星严密成像几何模型构建方法 | |
CN107490364A (zh) | 一种大角度倾斜成像航空相机对地目标定位方法 | |
CN112146629A (zh) | 一种多角度贴近摄影航迹与姿态规划方法 | |
CN108665499A (zh) | 一种基于视差法的近距飞机位姿测量方法 | |
CN112710311A (zh) | 一种地形自适应无人机三维实景重建航摄点自动规划方法 | |
CN104729482B (zh) | 一种基于飞艇的地面微小目标侦测系统及方法 | |
CN111307140B (zh) | 一种用于多云天气条件下的大气偏振光定向方法 | |
CN107917699A (zh) | 一种用于提高山区地貌倾斜摄影测量空三质量的方法 | |
CN110220533A (zh) | 一种基于传递对准的机载光电吊舱设备失准角标定方法 | |
CN110887477B (zh) | 一种基于偏振北极点及偏振太阳矢量的自主定位方法 | |
Zhou et al. | Automatic orthorectification and mosaicking of oblique images from a zoom lens aerial camera | |
CN113340272B (zh) | 一种基于无人机微群的地面目标实时定位方法 | |
CN112985398A (zh) | 目标定位方法及系统 | |
CN105389819A (zh) | 一种鲁棒的半标定下视图像极线校正方法及系统 | |
CN109146936A (zh) | 一种图像匹配方法、装置、定位方法及系统 | |
CN107705272A (zh) | 一种空间影像的高精度几何校正方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |