CN116260237A - Quick switching method for single-phase alternating current/direct current power supply - Google Patents
Quick switching method for single-phase alternating current/direct current power supply Download PDFInfo
- Publication number
- CN116260237A CN116260237A CN202310543201.5A CN202310543201A CN116260237A CN 116260237 A CN116260237 A CN 116260237A CN 202310543201 A CN202310543201 A CN 202310543201A CN 116260237 A CN116260237 A CN 116260237A
- Authority
- CN
- China
- Prior art keywords
- amount
- current
- switching
- converter
- instruction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/02—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Ac-Ac Conversion (AREA)
- Rectifiers (AREA)
Abstract
The invention discloses a rapid switching method of a single-phase alternating current/direct current power supply, which belongs to the field of alternating current/direct current switching and comprises the following steps of S1, receiving a switching instruction; when the converter receives the instruction, the received instruction is transmitted to the detection module; s2, collecting port voltage; the method comprises the steps of S1, collecting voltage of a port in the time period through data received by transmission, and transmitting the collected data to a measurement module; s3, calculating an initial angle and an initial control value; receiving the data transmitted in the step S2, integrating the received data, calculating the integrated data, and transmitting the obtained result to a control end; s4, limiting the control value variation, and continuously outputting until the next instruction is received; starting and stopping the converter according to the calculated data until receiving a next instruction or a stopping instruction; the alternating current/direct current seamless switching of the two-way alternating current/direct current power supply can be realized, the impact current during switching is reduced, and the purpose of stable and rapid alternating current/direct current switching of the alternating current/direct current power supply is realized.
Description
Technical Field
The invention relates to the technical field of AC/DC switching, in particular to a rapid switching method of a single-phase AC/DC power supply.
Background
The converter is an electrical device which changes the voltage, frequency, phase number and other electric quantity or characteristics of a power supply system, the requirements of the converter on an input source are diversified, the converter is required to work under the condition of an alternating current and direct current power supply, and a source supporting alternating current and direct current switching is required to be tested. The test standard of some converters requires seamless switching of alternating current and direct current, and the response time of millisecond level tests the limit working condition of the converters so as to meet the use requirement of actual clients.
The method has the advantages that the problem of residual voltage exists when alternating current is switched to direct current, the problem of a switching phase starting point and an initial value exists when direct current is switched to alternating current, certain uncertainty exists between the phase and voltage of a power supply and a demand target during actual switching, an impact circuit is easy to cause, in addition, unreasonable switching methods and process speeds are low, seamless switching cannot be achieved, high surge current is easy to exist in the process of alternating current-direct current switching instantly, and the problem of low alternating current-direct current switching speed is solved.
Disclosure of Invention
The invention aims to solve the problems that in the prior art, certain uncertainty exists between the phase and voltage of a power supply and a demand target during actual switching, a circuit is easy to be impacted, and in addition, an unreasonable switching method and a process speed are low, so that seamless switching cannot be realized.
In order to achieve the above purpose, the present invention adopts the following technical scheme:
a rapid switching method of a single-phase alternating current/direct current power supply comprises the following steps:
s1, receiving a switching instruction, and transmitting the received instruction to a detection module when the converter receives the instruction;
s2, collecting port voltage, collecting the voltage of the port in the time period through the data received in the S1, and transmitting the collected data to a measurement module;
s3, calculating an initial angle and an initial control value, receiving the data transmitted in the S2, integrating the received data, calculating the integrated data, and transmitting the obtained result to a control end;
s4, limiting the control value variation, continuously outputting until receiving the next instruction, and starting and stopping the converter according to the calculated data until receiving the next instruction or stopping the instruction.
Thereby realizing the seamless switching of the alternating current and the direct current of the two-way alternating current and direct current power supply, reducing the impact current during switching and realizing the purpose of stable and rapid switching of the alternating current and the direct current power supply.
As a further description of the above scheme: when the output of the converter is positive direct current, the output angle of the converter is 90 degrees, and when the output of the converter is negative direct current, the output angle of the converter is 270 degrees.
As a further description of the above scheme: when the output reference quantity and the sampling quantity are larger than or equal to the set limit pressure difference, the sampling quantity adds the limit pressure difference in the direction of the reference quantity.
As a further description of the above scheme: when the converter outputs alternating current, and the absolute value of the sampling quantity is smaller than sqrt (2) times of the setting quantity, the initial angle is arcsin (sampling quantity/setting quantity), the voltage control quantity is a sampling value, when the absolute value of the sampling quantity is larger than sqrt (2) times of the setting quantity, the initial angle is the product of the sampling quantity and 90 degrees, and when the output reference quantity and the sampling quantity are smaller than the set limit differential pressure, the initial control quantity is the setting quantity, and when the output reference quantity and the sampling quantity of the converter are larger than or equal to the set limit differential pressure, the sampling quantity adds the limit differential pressure in the direction of the reference quantity.
Meanwhile, the single-phase alternating-current and direct-current power supply rapid switching method selects proper phase, voltage value and starting strategy, reduces switching impulse current under the condition of seamless switching of alternating-current and direct-current power supplies, improves the reliability of alternating-current and direct-current switching of the alternating-current and direct-current power supplies, accelerates the switching speed of alternating-current and direct-current of the alternating-current and direct-current power supplies under the condition of alternating-current and direct-current, realizes seamless switching of alternating-current and direct-current of the two-way alternating-current and direct-current power supplies, reduces impulse current during switching, and realizes the purpose of stable and rapid switching of alternating-current and direct-current of the alternating-current and direct-current power supplies.
As a further description of the above scheme: the amount of change in the control value is set to 10% of the rated value.
Compared with the prior art, the invention provides a rapid switching method of a single-phase alternating current/direct current power supply, which has the following beneficial effects:
1. according to the single-phase alternating-current and direct-current power supply rapid switching method, when the reference quantity and the sampling quantity output by the converter are smaller than a set limit pressure difference, the initial control quantity is the set quantity, and when the reference quantity and the sampling quantity output by the converter are larger than or equal to the set limit pressure difference, the sampling quantity adds the limit pressure difference in the direction of the reference quantity; the variation of the control value is set to be 10% of the rated value, and meanwhile, the single-phase alternating-current direct-current power supply rapid switching method is used for selecting proper phase, voltage value and starting strategy, so that the switching impulse current under the condition of seamless switching of the alternating-current power supply is reduced, the reliability of alternating-current and direct-current switching of the alternating-current and direct-current power supply is improved, and the alternating-current and direct-current switching speed of the alternating-current and direct-current power supply under the condition of alternating-current and direct-current is accelerated.
2. According to the single-phase alternating-current and direct-current power supply rapid switching method, when direct current is output through the converter, when the output reference quantity and the sampling quantity are smaller than the set limit pressure difference, the initial control quantity is the set quantity, when the output reference quantity and the sampling quantity are larger than or equal to the set limit pressure difference, the sampling quantity adds the limit pressure difference in the direction of the reference quantity, so that the seamless switching of alternating current and direct current of the two-way alternating-current and direct-current power supply can be realized, the impact current during switching is reduced, and the purpose of stable and rapid switching of alternating current and direct current of the alternating-current and direct-current power supply is realized.
Drawings
FIG. 1 is a flow chart of a method for rapidly switching a single-phase AC/DC power supply according to the present invention;
fig. 2 is a schematic diagram of an ac/dc power switching process of a single-phase ac/dc power rapid switching method according to the present invention.
Detailed Description
The following description of the embodiments of the present invention will be made clearly and completely with reference to the accompanying drawings, in which it is apparent that the embodiments described are only some embodiments of the present invention, but not all embodiments. All other embodiments, which can be made by those skilled in the art based on the embodiments of the invention without making any inventive effort, are intended to be within the scope of the invention.
In the description of the present invention, it should be noted that, directions or positional relationships indicated by terms such as "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer", etc., are based on directions or positional relationships shown in the drawings, are merely for convenience of description and simplification of description, and do not indicate or imply that the apparatus or element to be referred to must have a specific direction, be constructed and operated in the specific direction, and thus should not be construed as limiting the present invention; the terms "first," "second," "third," and the like, are used for descriptive purposes only and are not to be construed as indicating or implying relative importance, and furthermore, unless explicitly specified and limited otherwise, the terms "mounted," "connected," "coupled," and the like are to be construed broadly, and may be fixedly coupled, detachably coupled, or integrally coupled, for example; can be mechanically or electrically connected; can be directly connected or indirectly connected through an intermediate medium, and can be communication between two elements. The specific meaning of the above terms in the present invention will be understood in specific cases by those of ordinary skill in the art.
Embodiment one: referring to fig. 1, a method for rapidly switching a single-phase ac/dc power supply includes:
s1, receiving a switching instruction, and transmitting the received instruction to a detection module when the converter receives the instruction;
s2, collecting port voltage, collecting the voltage of the port in the time period through the data received in the S1, and transmitting the collected data to a measurement module;
s3, calculating an initial angle and an initial control value, receiving the data transmitted in the S2, integrating the received data, calculating the integrated data, and transmitting the obtained result to a control end;
s4, limiting the control value variation, continuously outputting until receiving the next instruction, and starting and stopping the converter according to the calculated data until receiving the next instruction or stopping the instruction.
In the process that the current transformer detects an asymmetric fault occurring in the alternating current power grid through the fault ride-through control module, the fault ride-through control module can detect a negative sequence voltage (namely a first negative sequence voltage) of an output end of the current transformer module, the first negative sequence voltage can be a negative sequence component of the voltage of the output end of the current transformer module, the first negative sequence voltage is used as an asymmetric fault parameter, if the first negative sequence voltage exceeds a set threshold value, the ride-through control module judges that the current alternating current power grid has an asymmetric fault, in other words, the fault ride-through control module can detect the first negative sequence voltage serving as the asymmetric fault parameter, and judges that the current alternating current power grid has an asymmetric fault when the asymmetric fault parameter is larger than the set threshold value (which can be called as a fault judgment threshold value) corresponding to the first negative sequence voltage;
when the output of the converter is positive direct current, the output angle of the converter is 90 degrees, and when the output of the converter is negative direct current, the output angle of the converter is 270 degrees; when the converter outputs direct current, when the output reference quantity and the sampling quantity are smaller than the set limit pressure difference, the initial control quantity is the set quantity, and when the output reference quantity and the sampling quantity are larger than or equal to the set limit pressure difference, the sampling quantity adds the limit pressure difference in the direction of the reference quantity;
when the converter outputs alternating current, and the absolute value of the sampling quantity is smaller than sqrt (2) times of the setting quantity, the initial angle is arcsin (sampling quantity/setting quantity), the voltage control quantity is a sampling value, when the absolute value of the sampling quantity is larger than sqrt (2) times of the setting quantity, the initial angle is the product of the sampling quantity and 90 degrees, and when the output reference quantity and the sampling quantity are smaller than the set limit differential pressure, the initial control quantity is the setting quantity, and when the output reference quantity and the sampling quantity of the converter are larger than or equal to the set limit differential pressure, the sampling quantity adds the limit differential pressure in the direction of the reference quantity; the variation of the control value is set to be 10% of the rated value, and meanwhile, a single-phase alternating-current direct-current power supply rapid switching method is used for selecting proper phase, voltage value and starting strategy, so that switching impact current under the condition of seamless switching of alternating-current and direct-current power supplies is reduced, the reliability of alternating-current and direct-current switching of the alternating-current and direct-current power supplies is improved, the switching speed of alternating-current and direct-current power supplies under the condition of alternating-current and direct-current is accelerated, the seamless switching of alternating-current and direct-current of the two-way alternating-current and direct-current power supplies is realized, impact current during switching is reduced, and the purpose of stable and rapid switching of alternating-current and direct-current power supplies is realized.
Embodiment two: referring to fig. 1-2, a method for rapidly switching a single-phase ac/dc power supply includes:
s1, receiving a switching instruction, and transmitting the received instruction to a detection module when the converter receives the instruction;
s2, collecting port voltage, collecting the voltage of the port in the time period through the data received in the S1, and transmitting the collected data to a measurement module;
s3, calculating an initial angle and an initial control value, receiving the data transmitted in the S2, integrating the received data, calculating the integrated data, and transmitting the obtained result to a control end;
s4, limiting the control value variation, continuously outputting until receiving the next instruction, and starting and stopping the converter according to the calculated data until receiving the next instruction or stopping the instruction.
When the output of the converter is positive direct current, the output angle of the converter is 90 degrees, and when the output of the converter is negative direct current, the output angle of the converter is 270 degrees; when the converter outputs direct current, when the output reference quantity and the sampling quantity are smaller than the set limit pressure difference, the initial control quantity is the set quantity, and when the output reference quantity and the sampling quantity are larger than or equal to the set limit pressure difference, the sampling quantity adds the limit pressure difference in the direction of the reference quantity;
when the converter outputs alternating current, and the absolute value of the sampling quantity is smaller than sqrt (2) times of the setting quantity, the initial angle is arcsin (sampling quantity/setting quantity), the voltage control quantity is a sampling value, when the absolute value of the sampling quantity is larger than sqrt (2) times of the setting quantity, the initial angle is the product of the sampling quantity and 90 degrees, and when the output reference quantity and the sampling quantity are smaller than the set limit differential pressure, the initial control quantity is the setting quantity, and when the output reference quantity and the sampling quantity of the converter are larger than or equal to the set limit differential pressure, the sampling quantity adds the limit differential pressure in the direction of the reference quantity; the variation of the control value is set to 10% of the rated value;
as shown in fig. 2, the single-phase voltage 220v system receives the command switching to the direct current positive 300v at 777 point, 1014 receives the command switching to the single-phase voltage 110v system, and 1940 receives the command switching to the direct current positive 200 v. At 777, the output voltage is 260v, the alternating current phase angle is 57 degrees, the output limiting differential pressure is 10v each time, the output reference voltage is 270v at 778 th point, the output limiting differential pressure is increased by 10v each time until 781 th point reaches the target value, at 1014 th point, the output voltage is 300v, the received command is switched to a single-phase 110v system, the peak voltage 156v of the single-phase 110v system is smaller than 300v, so that the alternating current phase angle is 90 degrees, the control voltage is reduced by 10v each time until the target voltage is reached, and then is continuously output to 1942 of the next command, the alternating current voltage value at 1940 th point is-119 v, the phase angle is 310 degrees, the received command is direct current and is increased by 200v each time until 1972 s reaches the target value, then the output is continued until the next command arrives, and the subsequent operation is adjusted through the next command.
The foregoing is only a preferred embodiment of the present invention, but the scope of the present invention is not limited thereto, and any person skilled in the art, who is within the scope of the present invention, should make equivalent substitutions or modifications according to the technical scheme of the present invention and the inventive concept thereof, and should be covered by the scope of the present invention.
Claims (5)
1. The rapid switching method of the single-phase alternating current/direct current power supply is characterized by comprising the following steps of:
s1, receiving a switching instruction, and transmitting the received instruction to a detection module when the converter receives the instruction;
s2, collecting port voltage, namely collecting voltage from the time of transmitting instructions to the time of detecting the voltage in the S1 through the data received in the S1, and transmitting the collected data to a measurement module;
s3, calculating an initial angle and an initial control value, receiving the data transmitted in the S2, integrating the received data, calculating the integrated data, and transmitting the obtained result to a control end;
s4, limiting the control value variation, continuously outputting until receiving the next instruction, and starting and stopping the converter according to the calculated data until receiving the next instruction or stopping the instruction.
2. The method for fast switching a single-phase ac/dc power supply according to claim 1, wherein the output angle of the converter is 90 ° when the output of the converter is positive dc, and 270 ° when the output of the converter is negative dc.
3. The method for fast switching a single-phase ac/dc power supply according to claim 1, wherein when the converter outputs dc, the initial control amount is set when the output reference amount and the sampling amount are smaller than a set limit differential pressure, and when the output reference amount and the sampling amount are greater than or equal to the set limit differential pressure, the sampling amount adds the limit differential pressure in the direction of the reference amount.
4. The method for fast switching between single-phase ac and dc power according to claim 1, wherein when the converter outputs ac, and the absolute value of the sampling amount is smaller than sqrt (2) times of the setting amount, the initial angle is arcsin (sampling amount/setting amount), the voltage control amount is the sampling value, when the absolute value of the sampling amount is larger than sqrt (2) times of the setting amount, the initial angle is the product of the sampling amount and 90 degrees, and when the reference amount and the sampling amount outputted are smaller than the set limit differential pressure, the initial control amount is the setting amount, and when the reference amount and the sampling amount outputted by the converter are larger than or equal to the set limit differential pressure, the sampling amount adds the limit differential pressure in the direction of the reference amount.
5. The method according to claim 1, wherein the variation of the control value is set to 10% of the rated value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310543201.5A CN116260237B (en) | 2023-05-15 | 2023-05-15 | Quick switching method for single-phase alternating current/direct current power supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310543201.5A CN116260237B (en) | 2023-05-15 | 2023-05-15 | Quick switching method for single-phase alternating current/direct current power supply |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116260237A true CN116260237A (en) | 2023-06-13 |
CN116260237B CN116260237B (en) | 2023-08-25 |
Family
ID=86684732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310543201.5A Active CN116260237B (en) | 2023-05-15 | 2023-05-15 | Quick switching method for single-phase alternating current/direct current power supply |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116260237B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5771161A (en) * | 1997-01-10 | 1998-06-23 | Northrop Grumman Corporation | Uninterruptable capability for an active power line conditioner |
CN1281289A (en) * | 2000-06-07 | 2001-01-24 | 深圳市华为电气技术有限公司 | Method and device based on modulation percentage for controlling instantaneous value of pulse width modulated sine waves for inverter |
CN101771287A (en) * | 2009-01-07 | 2010-07-07 | 富士电机系统株式会社 | Control device for uninterruptible power supply apparatus |
CN105591459A (en) * | 2015-10-16 | 2016-05-18 | 国网江西省电力科学研究院 | Voltage tracking retainer on the basis of single-phase inversion |
CN111525595A (en) * | 2020-04-29 | 2020-08-11 | 广东电网有限责任公司佛山供电局 | Virtual synchronous control system of power distribution network flexible switch device |
CN114123325A (en) * | 2021-11-24 | 2022-03-01 | 北京四方继保自动化股份有限公司 | Converter control method and system for improving traditional protection action performance of electric power system |
CN114499348A (en) * | 2022-03-29 | 2022-05-13 | 美的集团(上海)有限公司 | Motor control method, device, equipment and storage medium |
WO2022227697A1 (en) * | 2021-04-27 | 2022-11-03 | 科华数据股份有限公司 | Control method and apparatus for grid-connected converter and grid-connected converter |
-
2023
- 2023-05-15 CN CN202310543201.5A patent/CN116260237B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5771161A (en) * | 1997-01-10 | 1998-06-23 | Northrop Grumman Corporation | Uninterruptable capability for an active power line conditioner |
CN1281289A (en) * | 2000-06-07 | 2001-01-24 | 深圳市华为电气技术有限公司 | Method and device based on modulation percentage for controlling instantaneous value of pulse width modulated sine waves for inverter |
CN101771287A (en) * | 2009-01-07 | 2010-07-07 | 富士电机系统株式会社 | Control device for uninterruptible power supply apparatus |
CN105591459A (en) * | 2015-10-16 | 2016-05-18 | 国网江西省电力科学研究院 | Voltage tracking retainer on the basis of single-phase inversion |
CN111525595A (en) * | 2020-04-29 | 2020-08-11 | 广东电网有限责任公司佛山供电局 | Virtual synchronous control system of power distribution network flexible switch device |
WO2022227697A1 (en) * | 2021-04-27 | 2022-11-03 | 科华数据股份有限公司 | Control method and apparatus for grid-connected converter and grid-connected converter |
CN114123325A (en) * | 2021-11-24 | 2022-03-01 | 北京四方继保自动化股份有限公司 | Converter control method and system for improving traditional protection action performance of electric power system |
CN114499348A (en) * | 2022-03-29 | 2022-05-13 | 美的集团(上海)有限公司 | Motor control method, device, equipment and storage medium |
Non-Patent Citations (1)
Title |
---|
赖振宏: "用于低电压问题治理的柔性交直流切换配电系统设计", 《电力系统自动化》, vol. 47, no. 6, pages 123 - 131 * |
Also Published As
Publication number | Publication date |
---|---|
CN116260237B (en) | 2023-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108988373B (en) | Method and system for controlling alternating current fault of receiving end of hybrid direct current transmission system | |
EP2837942B1 (en) | Ground fault detecting circuit and power conversion device using same | |
CN110212564A (en) | A kind of DC transmission system preventive control for commutation failure method under electric network fault | |
CN106788105B (en) | A kind of method, frequency converter and the electric power switching system of frequency conversion switching power frequency | |
CN105203911A (en) | Open conductor fault detection method and device for three-phase power source and automatic transfer switch | |
CN103746622A (en) | Single-tube IGBT (Insulated Gate Bipolar Translator)-based three-stage brushless generator power control device and power control method | |
CN111624452B (en) | High-voltage generator for insulation test of distribution cable | |
CN105866637A (en) | System and method for automatically testing interphase and phase-to-ground insulation PDIV of variable frequency motor | |
CN108964109A (en) | A kind of control method for coordinating inhibiting continuous commutation failure | |
CN116754854A (en) | Method and system for testing power grid adaptability of secondary side of power electronic equipment | |
CN105353261B (en) | Open phase fault detection method, device and a kind of automatic change-over | |
CN116260237B (en) | Quick switching method for single-phase alternating current/direct current power supply | |
CN102901883A (en) | Trigger test device for thyristor unit of converter valve | |
CN104300862A (en) | High-voltage inverter vector control method and device | |
CN113589023B (en) | Rapid detection method and device for single-set alternating current measurement abnormality of redundant system | |
CN113567891B (en) | Transformer differential system test method and test device | |
US12095257B2 (en) | Controlling an inverter to emulate synchronous generator under fault conditions | |
CN114942383A (en) | Fault detection method and system for grid-connected switch | |
CN114258620B (en) | Current control method and system for voltage asymmetry fault | |
US20210396790A1 (en) | Method and device for approximately determining voltages at a high-voltage side of a transformer | |
CN108880402B (en) | Phase-missing grid-connection method for high-power nine-phase motor | |
CN115128355A (en) | Power supply system and detection method for earth impedance | |
CN108169605B (en) | Test system and method for realizing full load of frequency converter by SVG | |
CN112557783A (en) | Grid-connected detection system and method for converter equipment | |
CN110763911A (en) | Direct-current transmission end power grid short-circuit ratio value calculation method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |