CN116239786A - Metal-organic framework material for separation of carbon dioxide mixed gas and its preparation method and application - Google Patents
Metal-organic framework material for separation of carbon dioxide mixed gas and its preparation method and application Download PDFInfo
- Publication number
- CN116239786A CN116239786A CN202310257733.2A CN202310257733A CN116239786A CN 116239786 A CN116239786 A CN 116239786A CN 202310257733 A CN202310257733 A CN 202310257733A CN 116239786 A CN116239786 A CN 116239786A
- Authority
- CN
- China
- Prior art keywords
- carbon dioxide
- mixed gas
- organic framework
- framework material
- separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 104
- 239000000463 material Substances 0.000 title claims abstract description 95
- 239000012621 metal-organic framework Substances 0.000 title claims abstract description 75
- 238000000926 separation method Methods 0.000 title claims abstract description 70
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 52
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 49
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 12
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000011259 mixed solution Substances 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 10
- 239000001530 fumaric acid Substances 0.000 claims abstract description 9
- 239000002904 solvent Substances 0.000 claims abstract description 9
- 238000003756 stirring Methods 0.000 claims abstract description 9
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims abstract description 9
- 150000003839 salts Chemical class 0.000 claims abstract description 8
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000008367 deionised water Substances 0.000 claims abstract description 6
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 6
- 238000001035 drying Methods 0.000 claims abstract description 6
- 235000019253 formic acid Nutrition 0.000 claims abstract description 6
- 150000000703 Cerium Chemical class 0.000 claims abstract description 5
- 150000002362 hafnium Chemical class 0.000 claims abstract description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical group [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 3
- 238000005406 washing Methods 0.000 claims abstract description 3
- 238000001179 sorption measurement Methods 0.000 claims description 36
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 11
- 239000003463 adsorbent Substances 0.000 claims description 8
- 230000004913 activation Effects 0.000 claims description 4
- XMPZTFVPEKAKFH-UHFFFAOYSA-P ceric ammonium nitrate Chemical group [NH4+].[NH4+].[Ce+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O XMPZTFVPEKAKFH-UHFFFAOYSA-P 0.000 claims description 4
- PDPJQWYGJJBYLF-UHFFFAOYSA-J hafnium tetrachloride Chemical group Cl[Hf](Cl)(Cl)Cl PDPJQWYGJJBYLF-UHFFFAOYSA-J 0.000 claims description 3
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical group Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 claims description 3
- 150000003754 zirconium Chemical class 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 3
- 238000009210 therapy by ultrasound Methods 0.000 claims 1
- 238000005303 weighing Methods 0.000 claims 1
- 238000004729 solvothermal method Methods 0.000 abstract description 2
- 238000002525 ultrasonication Methods 0.000 abstract description 2
- 231100000252 nontoxic Toxicity 0.000 abstract 1
- 230000003000 nontoxic effect Effects 0.000 abstract 1
- 239000002994 raw material Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 45
- 239000011148 porous material Substances 0.000 description 9
- 238000001144 powder X-ray diffraction data Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 230000008929 regeneration Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000013110 organic ligand Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 238000000634 powder X-ray diffraction Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000002336 sorption--desorption measurement Methods 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002178 crystalline material Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G83/00—Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
- C08G83/008—Supramolecular polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/20—Organic adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明公开一种用于二氧化碳混合气体分离的金属有机框架材料及其制备方法和应用。称取适量的金属盐,加入去离子水,超声5~10min后加入甲酸,所得混合溶液以600rpm搅拌10min后,加入富马酸,再次将所得混合溶液在室温下搅拌12h,离心,用水和乙醇洗涤,干燥,得到用于二氧化碳混合气体分离的MOF‑801;所述金属盐为锆盐、铈盐或铪盐。本发明制备方法简单、成本低、环境友好、重复性好、可放大,合成的原料、溶剂均绿色无毒,应用方面可与高温溶剂热合成的MOFs在气体分离性能上相匹,在常温常压下可持续分离CO2/N2或CO2/CH4,是MOFs在工业领域应用的优秀候选者。
The invention discloses a metal organic framework material for separating carbon dioxide mixed gas, a preparation method and application thereof. Weigh an appropriate amount of metal salt, add deionized water, add formic acid after ultrasonication for 5-10min, stir the resulting mixed solution at 600rpm for 10min, add fumaric acid, stir the resulting mixed solution at room temperature for 12h, centrifuge, wash with water and ethanol Washing and drying to obtain MOF-801 for the separation of carbon dioxide mixed gas; the metal salt is zirconium salt, cerium salt or hafnium salt. The preparation method of the present invention is simple, low in cost, environment-friendly, good in repeatability, and can be scaled up. The raw materials and solvents synthesized are green and non-toxic. In terms of application, they can match the gas separation performance of MOFs synthesized by high-temperature solvothermal synthesis. The sustainable separation of CO 2 /N 2 or CO 2 /CH 4 under pressure is an excellent candidate for the application of MOFs in industrial fields.
Description
技术领域technical field
本发明属于气体分离技术领域,具体涉及一种用于二氧化碳混合气体分离的金属有机框架材料及其绿色合成方法,该材料具有高热稳定性和分离循环稳定性。The invention belongs to the technical field of gas separation, and in particular relates to a metal organic framework material for the separation of carbon dioxide mixed gas and a green synthesis method thereof. The material has high thermal stability and separation cycle stability.
背景技术Background technique
随着社会的发展和科技的进步,全球能源形势日趋紧张。不可否认,气体分离作为能源行业的重要净化方法已经发挥了举足轻重的作用。目前,传统的低温蒸馏等分离技术占世界能源消耗的10-15%。而非热驱动的吸附分离被认为是一种低成本、高效和环保的分离技术。With the development of society and the progress of science and technology, the global energy situation is becoming increasingly tense. It is undeniable that gas separation has played a pivotal role as an important purification method in the energy industry. Currently, separation technologies such as traditional cryogenic distillation account for 10-15% of the world's energy consumption. Non-thermally driven adsorption separation is considered as a low-cost, efficient and environmentally friendly separation technology.
两次工业革命以来,化石燃料的大量使用所产生的二氧化碳的过度排放是导致“温室气体”的主要原因。温室效应会导致全球变暖,冰层融化,海平面上升等危害,极大的影响了人们的日常生活。传统处理二氧化碳的方法是利用胺类溶液来对其进行化学吸收,然而由于其对生产设备要求高,吸附剂再生成本高等缺点,急需开发一种高效低价且再生能力强的二氧化碳吸附剂。金属-有机骨架(MOFs)由于其高孔隙率、可调节的孔隙通道和表面化学性质,往往表现优异的气体吸附及分离性能。然而,如何设计兼具高选择性和高气体吸附容量的MOFs材料仍然是一个具有挑战的难题。Since the two industrial revolutions, the excessive emission of carbon dioxide produced by the extensive use of fossil fuels is the main cause of "greenhouse gases". The greenhouse effect will lead to global warming, ice melting, sea level rise and other hazards, which greatly affect people's daily life. The traditional method of treating carbon dioxide is to use amine solution to chemically absorb it. However, due to its high requirements for production equipment and high regeneration costs of the adsorbent, it is urgent to develop a high-efficiency, low-cost and strong regeneration capacity carbon dioxide adsorbent. Metal-organic frameworks (MOFs) often exhibit excellent gas adsorption and separation properties due to their high porosity, tunable pore channels, and surface chemistry. However, how to design MOFs with high selectivity and high gas adsorption capacity is still a challenging problem.
早期开发的吸附剂,如沸石和活性炭等已在气体分离中显示出一定的应用。虽然这些材料价格低廉,但由于高度可调性和结构多样性的限制,其分离效率较差,不能满足实际的工业应用。目前,一种可行的方法是通过设计可调节结构的多孔吸附剂来分离工业气体。高度和多样化的功能,不仅可以降低能耗,还可以通过设计最大限度地提高分离效率。Early developed adsorbents such as zeolites and activated carbons have shown some application in gas separation. Although these materials are inexpensive, their separation efficiency is poor due to the limitations of height tunability and structural diversity, which cannot meet practical industrial applications. Currently, a feasible approach is to separate industrial gases by designing porous adsorbents with adjustable structures. High and diverse functions, not only can reduce energy consumption, but also can maximize separation efficiency by design.
传统合成MOFs材料的方法如溶剂热、水热合成等需要消耗一定的能量,而且大多数有机配体价格昂贵,即使取得了一定的分离性能,但由于成本限制仍然难以实现工业化大规模应用。因此,通过绿色合成的方法制备具有高吸附容量和分离选择性的新型吸附剂是非常必要的。Traditional methods of synthesizing MOFs, such as solvothermal and hydrothermal synthesis, consume a certain amount of energy, and most organic ligands are expensive. Even if a certain separation performance has been achieved, it is still difficult to achieve large-scale industrial applications due to cost constraints. Therefore, it is very necessary to prepare novel adsorbents with high adsorption capacity and separation selectivity through green synthesis methods.
发明内容Contents of the invention
本发明的目的在于提供一种用于二氧化碳混合气体分离的金属有机框架材料的绿色合成方法,以解决MOFs材料合成过程中的巨大能量消耗以及成本大的问题,促进MOFs材料在气体分离领域的工业化进程。The purpose of the present invention is to provide a green synthesis method of metal organic framework materials for the separation of carbon dioxide mixed gas, to solve the problems of huge energy consumption and high cost in the synthesis process of MOFs materials, and to promote the industrialization of MOFs materials in the field of gas separation process.
为实现上述目的,本发明采用的技术方案如下:一种用于二氧化碳混合气体分离的金属有机框架材料,所述用于二氧化碳混合气体分离的金属有机框架材料为MOF-801,制备方法包括如下步骤:称取适量的金属盐,加入去离子水,超声5~10min后加入甲酸,所得混合溶液以600rpm搅拌10min后,加入富马酸,再次将所得混合溶液在室温下搅拌12h,离心,用水和乙醇洗涤,干燥,得用于二氧化碳混合气体分离的MOF-801;所述金属盐为锆盐、铈盐或铪盐。In order to achieve the above object, the technical scheme adopted in the present invention is as follows: a metal organic framework material for the separation of carbon dioxide mixed gas, the metal organic framework material for the separation of carbon dioxide mixed gas is MOF-801, and the preparation method includes the following steps : Weigh an appropriate amount of metal salt, add deionized water, add formic acid after ultrasonication for 5-10min, stir the resulting mixed solution at 600rpm for 10min, add fumaric acid, stir the resulting mixed solution at room temperature for 12h, centrifuge, water and Washing with ethanol and drying to obtain MOF-801 for the separation of carbon dioxide mixed gas; the metal salt is zirconium salt, cerium salt or hafnium salt.
进一步的,上述的一种用于二氧化碳混合气体分离的金属有机框架材料,所述锆盐为氯化锆。Further, in the aforementioned metal organic framework material for the separation of carbon dioxide mixed gas, the zirconium salt is zirconium chloride.
进一步的,上述的一种用于二氧化碳混合气体分离的金属有机框架材料,所述铈盐为硝酸铈铵。Further, in the aforementioned metal organic framework material for the separation of carbon dioxide mixed gas, the cerium salt is cerium ammonium nitrate.
进一步的,上述的一种用于二氧化碳混合气体分离的金属有机框架材料,所述铪盐为氯化铪。Further, in the aforementioned metal organic framework material for the separation of carbon dioxide mixed gas, the hafnium salt is hafnium chloride.
进一步的,上述的一种用于二氧化碳混合气体分离的金属有机框架材料,所述用于二氧化碳混合气体分离的MOF-801比表面积为573.0234~817.8636m2/g,具有的笼型孔。Further, the above metal organic framework material for the separation of carbon dioxide mixed gas, the specific surface area of MOF-801 for the separation of carbon dioxide mixed gas is 573.0234-817.8636m 2 /g, with cage hole.
进一步的,上述的一种用于二氧化碳混合气体分离的金属有机框架材料,按摩尔比,金属盐:富马酸=1:1。Further, the metal-organic framework material for the separation of carbon dioxide mixed gas mentioned above has a molar ratio of metal salt:fumaric acid=1:1.
本发明提供的用于二氧化碳混合气体分离的金属有机框架材料作为吸附剂在二氧化碳混合气体中分离二氧化碳中的应用。The metal organic framework material used for the separation of carbon dioxide mixed gas provided by the invention is used as an adsorbent in the separation of carbon dioxide from carbon dioxide mixed gas.
进一步的,所述二氧化碳混合气体包括,CO2与N2和/或CH4的混合气体。Further, the carbon dioxide mixed gas includes a mixed gas of CO 2 and N 2 and/or CH 4 .
进一步的,方法如下:于二氧化碳混合气体中加入用于二氧化碳混合气体分离的金属有机框架材料。Further, the method is as follows: a metal organic framework material for separating the carbon dioxide mixed gas is added to the carbon dioxide mixed gas.
进一步的,用于二氧化碳混合气体分离的金属有机框架材料在吸附前进行活化,所述活化方法包括如下步骤:将用于二氧化碳混合气体分离的金属有机框架材料置于甲醇中36h,进行溶剂交换,期间每6h换一次新鲜的甲醇,交换完成后离心分离活化产物并在60℃下真空干燥。Further, the metal organic framework material used for the separation of the carbon dioxide mixed gas is activated before adsorption, and the activation method includes the following steps: placing the metal organic framework material used for the separation of the carbon dioxide mixed gas in methanol for 36 hours, performing solvent exchange, During this period, fresh methanol was changed every 6 hours. After the exchange was completed, the activated product was separated by centrifugation and dried under vacuum at 60°C.
本发明的有益效果是:The beneficial effects of the present invention are:
1、本发明所用的有机配体富马酸是一种绿色廉价的有机配体,结构中共轭的马来酰基以及金属团簇中的μ-OH位点对CO2能够产生极化作用,从而达到高效吸附CO2的目的。1, the organic ligand fumaric acid used in the present invention is a kind of green cheap organic ligand, and the μ-OH site in the conjugated maleic group in the structure and metal cluster can produce polarizing action to CO , thus To achieve the purpose of efficiently adsorbing CO2 .
2、本发明合成的金属有机框架材料是依靠金属团簇中的μ-OH结合位点和双键对CO2的极化作用实现对CO2/N2和CO2/CH4选择性物理吸附,因而其等温吸附焓(28.50kJ·mol-1)远远小于其他MOFs材料,这一特性大大降低了吸附剂循环利用的再生成本,具有重要的实际意义。2. The metal-organic framework material synthesized in the present invention relies on the polarization of the μ-OH binding site and double bond in the metal cluster to CO 2 to realize the selective physical adsorption of CO 2 /N 2 and CO 2 /CH 4 , so its isothermal adsorption enthalpy (28.50kJ·mol -1 ) is much smaller than that of other MOFs materials. This feature greatly reduces the regeneration cost of adsorbent recycling, which has important practical significance.
3、本发明制备的MOF-801系列材料在模拟实际燃气发动机尾气的双组分气体(CO2/N2,15:85;v:v)的穿透实验表明,该材料可以在长达100分钟的时间内完全分离CO2和N2。由此说明该材料可以实际有效地实现CO2/N2的高选择性分离。3. The penetration experiments of the MOF-801 series materials prepared by the present invention in the dual-component gas (CO 2 /N 2 , 15:85; v:v) simulating the actual gas engine exhaust gas show that the material can be used for as long as 100 Complete separation of CO 2 and N 2 within minutes. This shows that the material can actually and effectively realize the highly selective separation of CO 2 /N 2 .
4、本发明合成的MOF-801系列材料具有优异的化学稳定性与热稳定性。热重测试和吸附分离后的XRD均表明该材料具有很好的稳定性和可再生性能。4. The MOF-801 series materials synthesized by the present invention have excellent chemical stability and thermal stability. Both thermogravimetric test and XRD after adsorption separation show that the material has good stability and renewable performance.
5、本发明通过绿色合成的方法制备了一系列反应条件温和、产量大且具有高稳定性的金属有机框架材料,该金属有机框架材料在CO2/N2和CO2/CH4选择分离吸附领域以及缓解温室效应方面具有极大的应用前景。5. The present invention prepares a series of metal-organic framework materials with mild reaction conditions, large output and high stability through the method of green synthesis. The metal-organic framework materials selectively separate and adsorb CO 2 /N 2 and CO 2 /CH 4 It has great application prospects in the field and in mitigating the greenhouse effect.
6、本发明所述的MOFs制备方法操作简单、重复性好,具有良好的热稳定性和分离循环稳定性。6. The MOFs preparation method of the present invention is simple to operate, has good repeatability, and has good thermal stability and separation cycle stability.
附图说明Description of drawings
图1为本发明合成的金属有机框架材料MOF-801(Zr)的N2在77K下的单组份吸附曲线及孔径分布图。Fig. 1 is the single-component adsorption curve and pore size distribution diagram of N2 at 77K for the metal organic framework material MOF-801 (Zr) synthesized by the present invention.
图2为本发明合成的金属有机框架材料MOF-801(Ce)的N2在77K下的单组份吸附曲线及孔径分布图。Fig. 2 is the single-component adsorption curve and pore size distribution diagram of the metal organic framework material MOF-801(Ce) synthesized by the present invention under N2 at 77K.
图3为本发明合成的金属有机框架材料MOF-801(Hf)的N2在77K下的单组份吸附曲线及孔径分布图。Fig. 3 is the single-component adsorption curve and pore size distribution diagram of N2 at 77K for the metal organic framework material MOF-801(Hf) synthesized by the present invention.
图4为本发明合成的金属有机框架材料的X射线粉末衍射(PXRD)图。Fig. 4 is an X-ray powder diffraction (PXRD) pattern of the metal organic framework material synthesized in the present invention.
图5为本发明合成的金属有机框架材料的CO2和N2在298K下的单组份吸附曲线图。Fig. 5 is a single-component adsorption curve of CO 2 and N 2 at 298K for the metal organic framework material synthesized by the present invention.
图6为本发明合成的金属有机框架材料的CO2和CH4在298K下的单组份吸附曲线图。Fig. 6 is a single-component adsorption curve of CO 2 and CH 4 at 298K for the metal organic framework material synthesized in the present invention.
图7为本发明合成的金属有机框架材料的CO2等温吸附焓曲线图。Fig. 7 is a graph showing the CO 2 isothermal adsorption enthalpy curve of the metal organic framework material synthesized in the present invention.
图8为本发明合成的金属有机框架材料MOF-801(Zr)的穿透曲线图。Fig. 8 is a breakthrough curve of the metal organic framework material MOF-801(Zr) synthesized in the present invention.
图9为本发明合成的金属有机框架材料MOF-801(Ce)的穿透曲线图。Fig. 9 is a breakthrough curve of the metal organic framework material MOF-801(Ce) synthesized in the present invention.
图10为本发明合成的金属有机框架材料MOF-801(Hf)的穿透曲线图。Fig. 10 is the breakthrough curve of the metal organic framework material MOF-801(Hf) synthesized in the present invention.
图11为本发明合成的金属有机框架材料MOF-801(Zr)在CO2/N2体积比为1:1的混合气体条件下的三次穿透曲线图。Fig. 11 is a three-time breakthrough curve of the metal organic framework material MOF-801(Zr) synthesized in the present invention under the mixed gas condition of CO 2 /N 2 volume ratio of 1:1.
图12为本发明合成的金属有机框架材料MOF-801(Zr)在吸附分离7次循环后的粉末X射线衍射(PXRD)图。Fig. 12 is a powder X-ray diffraction (PXRD) pattern of the metal organic framework material MOF-801 (Zr) synthesized in the present invention after 7 cycles of adsorption separation.
图13为本发明合成的金属有机框架材料MOF-801(Ce)在吸附分离7次循环后的粉末X射线衍射(PXRD)图。Fig. 13 is a powder X-ray diffraction (PXRD) pattern of the metal organic framework material MOF-801 (Ce) synthesized in the present invention after 7 cycles of adsorption separation.
图14为本发明合成的金属有机框架材料MOF-801(Hf)在吸附分离7次循环后的粉末X射线衍射(PXRD)图。Fig. 14 is a powder X-ray diffraction (PXRD) pattern of the metal organic framework material MOF-801(Hf) synthesized in the present invention after 7 cycles of adsorption separation.
具体实施方式Detailed ways
为了使发明的技术手段、创作特征和实现效果易于明白了解,下面将结合实施例进一步阐明本发明的内容。但不以此限定本发明的实施范围,即依据本发明专利范围及说明书内容所做的等效修饰,皆应属于本发明涵盖的范围。In order to make the technical means, creative features and realization effects of the invention easy to understand, the content of the present invention will be further elucidated below in conjunction with the embodiments. However, this does not limit the implementation scope of the present invention, that is, equivalent modifications made according to the scope of patents of the present invention and the contents of the description shall all fall within the scope of the present invention.
实施例1用于二氧化碳混合气体分离的金属有机框架材料(一)用于二氧化碳混合气体分离的金属有机框架材料(MOF-801(Zr))的制备Example 1 Metal-organic framework material for separation of carbon dioxide mixed gas (1) Preparation of metal-organic framework material (MOF-801(Zr)) for separation of carbon dioxide mixed gas
制备方法如下:称取氯化锆(350mg,1.5mmol)置于100mL的圆底烧瓶中,加入8mL去离子水,超声5~10min,全部溶解后加入2mL甲酸,所得混合溶液在600rpm下搅拌10min,随后加入富马酸(174mg,1.5mmol),再次将所得混合溶液在室温下搅拌12h,产生白色固体,离心收集产品,用水和乙醇分别洗涤三次,最后在恒温干燥箱中干燥,得用于二氧化碳混合气体分离的MOF-801,标记为MOF-801(Zr)。The preparation method is as follows: weigh zirconium chloride (350mg, 1.5mmol) and place it in a 100mL round bottom flask, add 8mL deionized water, ultrasonicate for 5-10min, add 2mL formic acid after it is completely dissolved, and stir the resulting mixed solution at 600rpm for 10min , then added fumaric acid (174mg, 1.5mmol), and the resulting mixed solution was stirred at room temperature for 12h again to produce a white solid, which was collected by centrifugation, washed three times with water and ethanol, and finally dried in a constant temperature drying oven to obtain The MOF-801 separated from carbon dioxide mixed gas is labeled as MOF-801(Zr).
(二)用于二氧化碳混合气体分离的金属有机框架材料(MOF-801(Ce))的制备(2) Preparation of metal organic framework material (MOF-801(Ce)) for the separation of carbon dioxide mixed gas
制备方法如下:称取硝酸铈铵(822mg,1.5mmol)置于100mL的圆底烧瓶中,加入8mL去离子水,超声5~10min,全部溶解后加入2mL甲酸,所得混合溶液在600rpm下搅拌10min,随后加入富马酸(174mg,1.5mmol),再次将所得混合溶液在室温下搅拌12h,产生白色固体,离心收集产品,用水和乙醇分别洗涤三次,最后在恒温干燥箱中干燥,得用于二氧化碳混合气体分离的MOF-801,标记为MOF-801(Ce)。The preparation method is as follows: Weigh cerium ammonium nitrate (822mg, 1.5mmol) into a 100mL round bottom flask, add 8mL deionized water, ultrasonicate for 5-10min, add 2mL formic acid after all dissolved, and stir the resulting mixed solution at 600rpm for 10min , then added fumaric acid (174mg, 1.5mmol), and the resulting mixed solution was stirred at room temperature for 12h again to produce a white solid, which was collected by centrifugation, washed three times with water and ethanol, and finally dried in a constant temperature drying oven to obtain The MOF-801 separated from carbon dioxide mixed gas is labeled as MOF-801(Ce).
(三)用于二氧化碳混合气体分离的金属有机框架材料(MOF-801(Hf))的制备(3) Preparation of metal organic framework material (MOF-801(Hf)) for the separation of carbon dioxide mixed gas
制备方法如下:称取氯化铪(480mg,1.5mmol)置于100mL的圆底烧瓶中,加入8mL去离子水,超声5~10min,全部溶解后加入2mL甲酸,所得混合溶液在600rpm下搅拌10min,随后加入富马酸(174mg,1.5mmol),再次将所得混合溶液在室温下搅拌12h,产生白色固体,离心收集产品,用水和乙醇分别洗涤三次,最后在恒温干燥箱中干燥,得用于二氧化碳混合气体分离的MOF-801,标记为MOF-801(Hf)。The preparation method is as follows: Weigh hafnium chloride (480mg, 1.5mmol) into a 100mL round-bottomed flask, add 8mL deionized water, ultrasonicate for 5-10min, add 2mL formic acid after it is completely dissolved, and stir the resulting mixed solution at 600rpm for 10min , then added fumaric acid (174mg, 1.5mmol), and the resulting mixed solution was stirred at room temperature for 12h again to produce a white solid, which was collected by centrifugation, washed three times with water and ethanol, and finally dried in a constant temperature drying oven to obtain The MOF-801 separated from carbon dioxide mixed gas is labeled as MOF-801(Hf).
(四)表征(4) Representation
活化:为了去除材料孔中的溶剂分子得到活化的晶体材料,首先利用溶剂交换法将金属有机框架材料进行活化。将300mg用于二氧化碳混合气体分离的金属有机框架材料MOF-801置于干燥的甲醇中浸泡36h,进行溶剂交换,期间每6h换一次新鲜的甲醇,交换完成后离心分离活化产物并在60℃下真空干燥6h,再在120℃下真空活化12h,最终得到活化后的金属有机框架材料MOF-801约250mg晶体材料。Activation: In order to remove the solvent molecules in the pores of the material to obtain an activated crystal material, the metal-organic framework material is first activated by solvent exchange. Soak 300mg of MOF-801, a metal-organic framework material used for the separation of carbon dioxide mixed gas, in dry methanol for 36 hours, and perform solvent exchange. During this period, fresh methanol was changed every 6 hours. Vacuum-dried for 6 hours, and then vacuum-activated at 120°C for 12 hours to finally obtain about 250 mg of crystal material of the activated metal-organic framework material MOF-801.
将活化后的晶体材料在液氮条件下完成77K-N2吸附实验,从而得到晶体材料的比表面积等参数。图1为本实施例合成的金属有机框架材料MOF-801(Zr)在77K的N2吸附-脱附曲线图。由图1可见,所制备的MOF-801(Zr)具有典型的微孔特征,其孔径大小约为图2为本实施例合成的金属有机框架材料MOF-801(Ce)在77K的N2吸附-脱附曲线图。由图2可见,所制备的MOF-801(Ce)具有典型的微孔特征,其孔径大小约为/>图3为本实施例合成的金属有机框架材料MOF-801(Hf)在77K的N2吸附-脱附曲线图。由图3可见,所制备的MOF-801(Hf)具有典型的微孔特征,其孔径大小约为/> The activated crystalline material was subjected to 77K-N 2 adsorption experiments under liquid nitrogen conditions to obtain parameters such as the specific surface area of the crystalline material. Fig. 1 is the N2 adsorption-desorption curve of the metal organic framework material MOF-801 (Zr) synthesized in this example at 77K. It can be seen from Figure 1 that the prepared MOF-801(Zr) has typical microporous characteristics, and its pore size is about Fig. 2 is the N2 adsorption-desorption curve of the metal organic framework material MOF-801 (Ce) synthesized in this example at 77K. As can be seen from Figure 2, the prepared MOF-801 (Ce) has typical microporous characteristics, and its pore size is about Fig. 3 is the N2 adsorption-desorption curve of the metal organic framework material MOF-801(Hf) synthesized in this example at 77K. As can be seen from Figure 3, the prepared MOF-801 (Hf) has typical microporous characteristics, and its pore size is about
图4为本实施例合成的金属有机框架材料的X粉末射线衍射(PXRD)图。由图4可见,所制备的MOF-801系列材料与模拟所得的衍射峰一致,证明材料的结晶性好,相纯度高。Fig. 4 is an X powder ray diffraction (PXRD) pattern of the metal organic framework material synthesized in this example. It can be seen from Figure 4 that the prepared MOF-801 series materials are consistent with the diffraction peaks obtained by simulation, which proves that the materials have good crystallinity and high phase purity.
然后分别在273K、298K控温条件下完成晶体材料在相应温度下的CO2,N2,CH4单组分吸附曲线。图5为本实施例合成的金属有机框架材料的CO2和N2在298K下的单组份吸附曲线图。由图5可见,在298K条件下,所得材料具有良好的CO2吸附性能,其中MOF-801(Ce)表现出最高的吸附能力,相比之下,N2的吸附几乎可以忽略不急,证明材料对CO2/N2具有优秀的分离潜力。图6为本实施例合成的金属有机框架材料的CO2和CH4在298K下的单组份吸附曲线图。由图6可见,材料对于CH4的吸附量远远低于CO2,表明材料具有良好的CO2/CH4分离潜力。图7为本实施例合成的金属有机框架材料的CO2等温吸附焓曲线图。由图7可见,所制备的材料对于CO2的吸附焓均在22~30kJ mol-1之间,其中MOF-801(Ce)和CO2的吸附焓最高,为28.4kJ mol-1。Then, under the temperature control conditions of 273K and 298K, the single-component adsorption curves of CO 2 , N 2 , and CH 4 of the crystal materials at corresponding temperatures were completed. Fig. 5 is a single-component adsorption curve of CO 2 and N 2 at 298K for the metal organic framework material synthesized in this example. It can be seen from Fig. 5 that at 298K, the obtained materials have good CO2 adsorption performance, among which MOF-801(Ce) exhibits the highest adsorption capacity, in contrast, the adsorption of N2 is almost negligible, proving that The material has excellent separation potential for CO 2 /N 2 . Fig. 6 is a single-component adsorption curve of CO 2 and CH 4 at 298K for the metal organic framework material synthesized in this example. It can be seen from Figure 6 that the adsorption capacity of the material for CH 4 is much lower than that of CO 2 , indicating that the material has good CO 2 /CH 4 separation potential. Fig. 7 is the CO2 isothermal adsorption enthalpy curve of the metal organic framework material synthesized in this example. It can be seen from Figure 7 that the adsorption enthalpy of the prepared materials for CO 2 is between 22 and 30kJ mol -1 , among which the adsorption enthalpy of MOF-801(Ce) and CO 2 is the highest, which is 28.4kJ mol -1 .
实施例2用于二氧化碳混合气体分离的金属有机框架材料的应用Example 2 Application of Metal Organic Framework Materials for Separation of Carbon Dioxide Mixed Gases
(一)方法如下:(1) The method is as follows:
活化:为了去除材料孔中的溶剂分子得到活化的晶体材料,首先利用溶剂交换法将金属有机框架材料进行活化。将300mg用于二氧化碳混合气体分离的金属有机框架材料MOF-801置于干燥的甲醇中浸泡36h,进行溶剂交换,期间每6h换一次新鲜的甲醇,交换完成后离心分离活化产物并在60℃下真空干燥6h,再在120℃下真空活化12h,最终得到活化后的金属有机框架材料MOF-801约250mg晶体材料。Activation: In order to remove the solvent molecules in the pores of the material to obtain an activated crystal material, the metal-organic framework material is first activated by solvent exchange. Soak 300mg of MOF-801, a metal-organic framework material used for the separation of carbon dioxide mixed gas, in dry methanol for 36 hours, and perform solvent exchange. During this period, fresh methanol was changed every 6 hours. Vacuum-dried for 6 hours, and then vacuum-activated at 120°C for 12 hours to finally obtain about 250 mg of crystal material of the activated metal-organic framework material MOF-801.
气体分离:取1.2g活化后的MOF-801材料在动态吸附气体穿透设备上完成模拟燃料发动机尾气的穿透模拟。分别在CO2和N2体积比为15:85或50:50的混合气体氛围下,测试了材料对混合气体的分离性能以及分离循环稳定性,值得注意的是,每次穿透结束后仅需在80℃下用10mL/min的氦气吹扫即可完成再生,证明材料优异的可再生性能。Gas separation: Take 1.2g of activated MOF-801 material to complete the penetration simulation of simulated fuel engine exhaust on the dynamic adsorption gas penetration equipment. In the mixed gas atmosphere of CO 2 and N 2 with a volume ratio of 15:85 or 50:50, the separation performance of the material on the mixed gas and the stability of the separation cycle were tested. It is worth noting that after each breakthrough, only It needs to be purged with 10mL/min helium at 80°C to complete the regeneration, which proves the excellent regeneration performance of the material.
(二)表征(2) Representation
图8为本发明合成的金属有机框架材料MOF-801(Zr)的穿透曲线图。由图8可见,MOF-801(Zr)具有良好的CO2/N2分离能力,分别表现出30min(50/50,v/v)和55min(15/85,v/v)的有效分离时长。Fig. 8 is a breakthrough curve of the metal organic framework material MOF-801(Zr) synthesized in the present invention. It can be seen from Figure 8 that MOF-801(Zr) has good CO 2 /N 2 separation ability, showing effective separation time of 30min (50/50, v/v) and 55min (15/85, v/v) respectively .
图9为本发明合成的金属有机框架材料MOF-801(Ce)的穿透曲线图。由图9可见,MOF-801(Ce)具有良好的CO2/N2分离能力,分别表现出70min(50/50,v/v)和90min(15/85,v/v)的有效分离时长。Fig. 9 is a breakthrough curve of the metal organic framework material MOF-801(Ce) synthesized in the present invention. It can be seen from Figure 9 that MOF-801(Ce) has good CO 2 /N 2 separation ability, showing effective separation time of 70min (50/50, v/v) and 90min (15/85, v/v) respectively .
图10为本发明合成的金属有机框架材料MOF-801(Hf)的穿透曲线图。由图10可见,MOF-801(Ce)具有良好的CO2/N2分离能力,分别表现出44min(50/50,v/v)和56min(15/85,v/v)的有效分离时长。Fig. 10 is the breakthrough curve of the metal organic framework material MOF-801(Hf) synthesized in the present invention. It can be seen from Figure 10 that MOF-801(Ce) has a good CO 2 /N 2 separation ability, showing an effective separation time of 44min (50/50, v/v) and 56min (15/85, v/v) respectively .
图11为本发明合成的金属有机框架材料MOF-801(Zr)在CO2/N2体积比为1:1的混合气体条件下的三次穿透曲线图。由图11可见,所制备的MOF-801(Zr)在三次循环穿透测试中性能稳定,分离效果没有发生明显变化。Fig. 11 is a three-time breakthrough curve of the metal organic framework material MOF-801(Zr) synthesized in the present invention under the mixed gas condition of CO 2 /N 2 volume ratio of 1:1. It can be seen from Figure 11 that the prepared MOF-801(Zr) has stable performance in the three-cycle breakthrough test, and the separation effect has not changed significantly.
图12为本发明合成的金属有机框架材料MOF-801(Zr)在吸附分离7次循环后的粉末X射线衍射(PXRD)图。由图12可见,所制备的MOF-801(Zr)在经过7次吸附循环测试后结构保持完整,证明材料在实际应用中具有优异的结构稳定性。Fig. 12 is a powder X-ray diffraction (PXRD) pattern of the metal organic framework material MOF-801 (Zr) synthesized in the present invention after 7 cycles of adsorption separation. It can be seen from Figure 12 that the structure of the prepared MOF-801(Zr) remains intact after 7 adsorption cycle tests, which proves that the material has excellent structural stability in practical applications.
图13为本发明合成的金属有机框架材料MOF-801(Ce)在吸附分离7次循环后的粉末X射线衍射(PXRD)图。由图13可见,所制备的MOF-801(Ce)在经过7次吸附循环测试后结构保持完整,证明材料在实际应用中具有优异的结构稳定性。Fig. 13 is a powder X-ray diffraction (PXRD) pattern of the metal organic framework material MOF-801 (Ce) synthesized in the present invention after 7 cycles of adsorption separation. It can be seen from Figure 13 that the structure of the prepared MOF-801(Ce) remains intact after 7 adsorption cycle tests, which proves that the material has excellent structural stability in practical applications.
图14为本发明合成的金属有机框架材料MOF-801(Hf)在吸附分离7次循环后的粉末X射线衍射(PXRD)图。由图14可见,所制备的MOF-801(Hf)在经过7次吸附循环测试后结构保持完整,证明材料在实际应用中具有优异的结构稳定性。Fig. 14 is a powder X-ray diffraction (PXRD) pattern of the metal organic framework material MOF-801(Hf) synthesized in the present invention after 7 cycles of adsorption separation. It can be seen from Figure 14 that the structure of the prepared MOF-801(Hf) remains intact after 7 adsorption cycle tests, which proves that the material has excellent structural stability in practical applications.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310257733.2A CN116239786A (en) | 2023-03-17 | 2023-03-17 | Metal-organic framework material for separation of carbon dioxide mixed gas and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310257733.2A CN116239786A (en) | 2023-03-17 | 2023-03-17 | Metal-organic framework material for separation of carbon dioxide mixed gas and its preparation method and application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116239786A true CN116239786A (en) | 2023-06-09 |
Family
ID=86633118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310257733.2A Pending CN116239786A (en) | 2023-03-17 | 2023-03-17 | Metal-organic framework material for separation of carbon dioxide mixed gas and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116239786A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117362660A (en) * | 2023-08-31 | 2024-01-09 | 中山大学 | Metal organic framework material Zr-MOF, and preparation method and application thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017210874A1 (en) * | 2016-06-08 | 2017-12-14 | Xia, Ling | Imperfect mofs (imofs) material, preparation and use in catalysis, sorption and separation |
CN108912340A (en) * | 2018-07-20 | 2018-11-30 | 河南中烟工业有限责任公司 | A kind of humectation type cigarette paper and preparation method thereof |
CN108940212A (en) * | 2018-07-27 | 2018-12-07 | 南京工业大学 | Method for green synthesis of metal organic framework material MOF-801 |
WO2019162344A1 (en) * | 2018-02-20 | 2019-08-29 | Profmof As | Process for preparing a mof with gamma-valerolactone |
CN113087918A (en) * | 2021-03-04 | 2021-07-09 | 中国科学院宁波材料技术与工程研究所 | Zirconium-based metal organic framework material and preparation method and application thereof |
CN113441114A (en) * | 2021-08-04 | 2021-09-28 | 辽宁大学 | Mixed metal MOF and preparation method and application thereof |
WO2023278249A2 (en) * | 2021-06-28 | 2023-01-05 | ExxonMobil Technology and Engineering Company | Methods of making metal organic frameworks with low-connectivity and increased thermal stability |
-
2023
- 2023-03-17 CN CN202310257733.2A patent/CN116239786A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017210874A1 (en) * | 2016-06-08 | 2017-12-14 | Xia, Ling | Imperfect mofs (imofs) material, preparation and use in catalysis, sorption and separation |
WO2019162344A1 (en) * | 2018-02-20 | 2019-08-29 | Profmof As | Process for preparing a mof with gamma-valerolactone |
CN108912340A (en) * | 2018-07-20 | 2018-11-30 | 河南中烟工业有限责任公司 | A kind of humectation type cigarette paper and preparation method thereof |
CN108940212A (en) * | 2018-07-27 | 2018-12-07 | 南京工业大学 | Method for green synthesis of metal organic framework material MOF-801 |
CN113087918A (en) * | 2021-03-04 | 2021-07-09 | 中国科学院宁波材料技术与工程研究所 | Zirconium-based metal organic framework material and preparation method and application thereof |
WO2023278249A2 (en) * | 2021-06-28 | 2023-01-05 | ExxonMobil Technology and Engineering Company | Methods of making metal organic frameworks with low-connectivity and increased thermal stability |
CN113441114A (en) * | 2021-08-04 | 2021-09-28 | 辽宁大学 | Mixed metal MOF and preparation method and application thereof |
Non-Patent Citations (6)
Title |
---|
HUI-MIN REN等: "Comparative Studies on the Proton Conductivities of Hafnium-Based Metal -Organic Frameworks and Related Chitosan or Nafion Composite Membranes", 《INORGANIC CHEMISTRY》, 14 June 2022 (2022-06-14), pages 9564 - 9579 * |
NICHOLAUS PRASETYA等: "Synthesis of defective MOF-801 via an environmentally benign approach for diclofenac removal from water streams", 《SEPARATION AND PURIFICATION TECHNOLOGY》, 27 August 2022 (2022-08-27), pages 1 - 12 * |
SHAN DAI等: "One-Step Room-Temperature Synthesis of Metal(IV) Carboxylate MOFs", 《 ANGEW. CHEM.》, vol. 21, 12 November 2020 (2020-11-12), pages 1 - 8 * |
YI-MING GU等: "Mixed-linker metal-organic frameworks for carbon and hydrocarbons capture under moist conditions", 《CHEMICAL ENGINEERING JOURNAL》, 4 January 2022 (2022-01-04), pages 1 - 9 * |
朱文华等: "两个三维柱层式Ce混合羧酸多孔金属-有机骨架配合物的合成、结构与磁性", 《高等学校化学学报》, no. 3, 31 March 2011 (2011-03-31), pages 532 - 537 * |
李晨宁: "MOF-801的绿色合成、改性及其气体吸附分离性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, no. 2, 15 February 2024 (2024-02-15), pages 016 - 848 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117362660A (en) * | 2023-08-31 | 2024-01-09 | 中山大学 | Metal organic framework material Zr-MOF, and preparation method and application thereof |
CN117362660B (en) * | 2023-08-31 | 2024-04-26 | 中山大学 | Metal organic framework material Zr-MOF, and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111375385B (en) | A kind of preparation method and application of bimetallic organic framework adsorbent | |
CN102274715B (en) | Modified metal organic framework porous adsorption material and working substance pair adsorbed by same | |
CN105233802B (en) | One kind doping arginic copper base metal organic framework materials of L and preparation method thereof | |
CN111205469A (en) | Ultramicropore zirconium-based metal organic framework material and preparation method and application thereof | |
CN112915969B (en) | Metal organic framework/halide composite ammonia adsorbent and preparation method thereof | |
CN113667136B (en) | Ultrahigh-stability and low-cost metal-organic framework material for efficiently separating acetylene/carbon dioxide and preparation method thereof | |
CN103372420A (en) | Metal organic frameworks (MOFs)-amine modified/oxidized graphite composite material and preparation method thereof | |
CN108654578A (en) | A kind of meerschaum adsorbent and its preparation method and application that amino silane grafting is modified | |
CN102335592A (en) | Metal organic skeleton-graphite oxide nano composite adsorption material and preparing method thereof | |
CN106925235A (en) | One kind can efficiently separate CO in moisture2Adsorbent and preparation method thereof | |
CN116239786A (en) | Metal-organic framework material for separation of carbon dioxide mixed gas and its preparation method and application | |
CN110776522B (en) | A kind of copper metal organic framework material and preparation method thereof, gas capture method, gas separation method | |
CN115536857B (en) | A kind of zinc-organic framework material and synthetic method for selectively adsorbing carbon dioxide | |
CN105597705B (en) | One kind has excellent CO2Absorption and the ultramicropore covalent triazine framework material and preparation method of separating property | |
CN109201009A (en) | Load the preparation and application of the photosensitive chromium metal organic framework porous material of azo | |
CN109264713B (en) | A kind of preparation method of biomass tar-based high specific surface area porous carbon for carbon dioxide physical adsorption | |
CN116376037B (en) | Preparation method and application of microporous zirconium-based metal-organic framework material | |
Zhu et al. | Precisely capture trace ammonia from fuel cell system over ionic liquid grafted hierarchically porous carbons | |
CN107522210A (en) | A kind of preparation method of the composite molecular screens of amino modified KIT 6/ZSM 5 | |
CN104772117B (en) | A kind of activated carbon composite modifying method | |
CN114887594B (en) | Hydrophobic HKUST-1 composite material, preparation method and carbon neutralization application | |
CN117732445A (en) | Preparation method of strong acid polymer-based ammonia adsorbent | |
CN103120931A (en) | Cage type carbon dioxide adsorption material as well as preparation method and application thereof | |
CN102059092A (en) | Refrigerating composite absorbent and preparation method thereof | |
CN118063783A (en) | A preparation method of metal organic framework material for separation of CO2/N2 mixed gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |