[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN116182837A - 基于视觉激光雷达惯性紧耦合的定位建图方法 - Google Patents

基于视觉激光雷达惯性紧耦合的定位建图方法 Download PDF

Info

Publication number
CN116182837A
CN116182837A CN202310253115.0A CN202310253115A CN116182837A CN 116182837 A CN116182837 A CN 116182837A CN 202310253115 A CN202310253115 A CN 202310253115A CN 116182837 A CN116182837 A CN 116182837A
Authority
CN
China
Prior art keywords
radar
imu
point
visual
representing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310253115.0A
Other languages
English (en)
Inventor
田栢苓
马文瑀
谌宏鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202310253115.0A priority Critical patent/CN116182837A/zh
Publication of CN116182837A publication Critical patent/CN116182837A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • G01C21/1652Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with ranging devices, e.g. LIDAR or RADAR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Navigation (AREA)

Abstract

本发明涉及无人机、视觉激光雷达、里程计和定位建图技术领域,为提出一种基于视觉激光雷达惯性紧耦合的定位建图方法,以得到高精度的定位轨迹和周围环境的几何结构信息,且在典型激光雷达退化场景下可以保持较好的鲁棒性与精度,本发明,基于视觉激光雷达惯性紧耦合的定位建图方法,首先分别对自主定位与建图、激光雷达自主定位与建图、视觉与惯性测量单元IMU三种传感器数据进行处理;其次,构建视觉重投影、IMU预积分和雷达几何约束,联合三种约束建立非线性优化问题;最后,利用优化完成后的位姿与当前帧雷达点云更新体素地图,为后续过程提供几何结构信息。本发明主要应用于无人机设计制造场合。

Description

基于视觉激光雷达惯性紧耦合的定位建图方法
技术领域
本发明属于定位建图领域,具体涉及基于视觉激光雷达惯性紧耦合的自主定位与建图技术、基于自适应权值调整的视觉雷达惯性里程计以及基于自适应体素的地图维护方法。
背景技术
近年来,微小型无人机在情报搜集、搜索救援、侦察预警、精确打击等方面正发挥着越来越重要的作用,已经成为未来军事战场中不可或缺的力量。传统无人机在执行任务时,往往需要依赖全球导航卫星系统进行定位,存在诸多局限,如在导航信号杂乱的环境或低空飞行时,会受到障碍物的影响,严重影响定位精度,且无法在卫星导航拒止复杂环境下进行应用,同时全球导航卫星系统无法提供周围的环境信息,使其无法应用在混乱环境或室内密闭环境中的快速飞行。因此微小型无人机在各种任务的执行中主要通过自身机载传感器实现实时的自主定位与建图(Simultaneous Localization And Mapping,SLAM)。
针对视觉SLAM和激光雷达SLAM方法,国内外学者进行了大量的研究。视觉SLAM方面,2015年萨拉戈萨大学Mur-Artal等人提出了著名的单目视觉SLAM系统ORB-SLAM,其采用的ORB特征点加速了局部地图与当前帧中特征点的匹配,该方案还加入了回环检测功能,存在轨迹闭环时可以通过合理分配累计误差来获得更高的位姿估计精度。在ORB-SLAM的基础上,其后续又提出了适用单目、双目、RGBD相机的ORB-SLAM2和适用于视觉、视觉惯性融合的ORB-SLAM3,将视觉与惯性测量单元(Inertial Measurement Unit,IMU)进行传感器融合以提升定位方法的性能。2017年香港科技大学Aerial Robotics Group提出了VINS-Mono,其使用基于优化的滑动窗口来提供高精度的视觉惯性定位,具有高效的IMU预积分、偏差校正、在线外参校准、故障检测和恢复、闭环检测、全局姿态图优化、地图合并、姿态图重用等功能,随后该团队又将其改进为多源传感器紧耦合优化框架VINS-Fusion、GVINS和VINS-Fisheye。激光雷达SLAM方面,卡耐基梅隆大学学者Ji Zhang等人于2014年提出了LOAM,是目前使用最广泛的基于特征的激光雷达SLAM算法之一。该方法从点云中提取分布在边缘线与平面上的特征点,通过计算点云间点线、点面距离实现点云匹配。通过帧间匹配与地图层匹配相结合得到了兼具实时性与精度的位姿估计。2019年MIT学者T.Shan等人基于LOAM提出了LeGO-LOAM,在点云匹配环节使用点云聚类标记特征,提高了匹配的精度,同时在后端加入了因子图优化实现回环检测。2020年T.Shan等人又提出了一个基于因子图优化的激光雷达惯性自主导航方法LIO-SAM,该方法融合了IMU预积分约束与LOAM中提出的地图层匹配约束,结合关键帧策略实现实时状态估计。
发明内容
为克服现有技术的不足,本发明旨在提出一种基于视觉激光雷达惯性紧耦合的定位建图方法。使用本方法可以得到高精度的定位轨迹和周围环境的几何结构信息,且在典型激光雷达退化场景(如长走廊)场景下可以保持较好的鲁棒性与精度。为此,本发明采取的技术方案是,基于视觉激光雷达惯性紧耦合的定位建图方法,首先分别对自主定位与建图、激光雷达自主定位与建图、视觉与惯性测量单元IMU三种传感器数据进行处理,对IMU测量数据进行积分得到高频位姿估计和预积分值;对自主定位与建图中的视觉图像提取特征点并进行匹配与跟踪,接着利用投影到相机坐标系下的激光雷达点云,恢复视觉特征点的深度信息;对采集到的激光雷达点云进行运动畸变校正,采用几何特征提取算法,对点云数据中的线面特征进行提取,与局部地图中的点云进行匹配,构建雷达几何因子;其次,构建视觉重投影、IMU预积分和雷达几何约束,联合三种约束建立非线性优化问题,对雷达几何约束的Hessian矩阵进行退化分析,调整各约束权值,利用列文伯格-马夸尔特方法进行位姿求解;最后,利用优化完成后的位姿与当前帧雷达点云更新体素地图,根据输入点云的几何性质自适应调整体素大小,为后续过程提供几何结构信息。
具体步骤如下:
第一部分,传感器数据预处理:
(1)IMU数据预处理
接收到IMU输入后,对IMU数据进行预处理用以实现实时预测机器人状态,IMU的测量模型表示为:
Figure BDA0004128509020000021
Figure BDA0004128509020000022
其中,
Figure BDA0004128509020000023
Figure BDA0004128509020000024
分别为tk时刻IMU测量得到的三轴加速度和三轴角速度,
Figure BDA0004128509020000025
Figure BDA0004128509020000026
为tk时刻加速度与角速度的实际值,
Figure BDA0004128509020000027
Figure BDA0004128509020000028
分别为tk时刻加速度计偏置和陀螺仪偏置,
Figure BDA0004128509020000029
表示tk时刻从世界系到机体系的旋转矩阵,g表示世界系下的重力矢量,na与ng为IMU测量噪声;
然后根据IMU的输入积分获得高频状态预测,tk与tk+1时刻之间的离散运动方程表示为:
Figure BDA00041285090200000210
Figure BDA00041285090200000211
Figure BDA00041285090200000212
Figure BDA00041285090200000213
分别表示tk时刻的从世界系到机体系的平移向量、世界系下的速度和从机体系到世界系的旋转四元数,
Figure BDA00041285090200000214
分别表示tk+1时刻的从世界系到机体系的平移向量、世界系下的速度和从机体系到世界系的旋转四元数,Δtk表示tk与tk+1时刻之间的时间间隔,
Figure BDA00041285090200000215
表示tk与tk+1时刻之间的时间间隔的平方,
Figure BDA00041285090200000216
表示四元数乘法,
Figure BDA00041285090200000217
Figure BDA00041285090200000218
为利用中值法将机体系下的测量加速度和角速度转换至世界系的加速度和角速度,其表达式为:
Figure BDA0004128509020000031
Figure BDA0004128509020000032
其中,
Figure BDA0004128509020000033
分别表示tk+1时刻IMU测量得到的三轴加速度和三轴角速度,
Figure BDA0004128509020000034
为tk时刻从机体系到世界系的旋转矩阵,
Figure BDA0004128509020000035
为tk+1时刻从机体系到世界系的旋转矩阵,将离散运动方程中的状态量与IMU的测量数据分离,将原本世界系下的积分变为相邻两帧间相对运动的积分,在离散运动方程两边同时乘以从世界系到机体系的旋转矩阵
Figure BDA0004128509020000036
或者其对应的旋转四元数
Figure BDA0004128509020000037
得下式:
Figure BDA0004128509020000038
Figure BDA0004128509020000039
Figure BDA00041285090200000310
其中,
Figure BDA00041285090200000311
即为tk到tk+1时刻之间的IMU预积分增量信息,分别表示以tk时刻机体系为参考坐标系到tk+1时刻的平移增量、速度增量和tk+1时刻到tk时刻的旋转四元数,具体离散形式表达式为:
Figure BDA00041285090200000312
Figure BDA00041285090200000313
Figure BDA00041285090200000314
其中,
Figure BDA00041285090200000315
分别表示从tk时刻到ti+1时刻的平移、速度和旋转预积分量,
Figure BDA00041285090200000316
分别表示从tk时刻到ti时刻的平移、速度和旋转预积分量,
Figure BDA00041285090200000317
为利用中值法将当前机体系下的测量加速度和角速度转换至tk时刻机体系的加速度和角速度,通过上式不断迭代即可得到从tk时刻到tk+1时刻的平移、速度和旋转预积分量;
(2)图像数据处理
使用角点检测来获取图像特征,针对相机获取的图像信息,对图像提取特征点:图像上有一个像素矩形向多个方向滑动,如果像素矩形灰度没有变化,则认为窗口内不存在角点;如果像素矩形沿某一方向移动灰度变化很大,沿另一方向灰度变化不大,则认为像素矩形内图像为一条边;若像素矩形图像沿任何方向移动,灰度值均产生变化,则认为图像中存在角点;
(3)雷达几何特征点提取
对于单帧雷达点云数据的一点Pi=(xi,yi,zi),xi,yi,zi为点Pi在雷达坐标系中的坐标,按照平滑度ci将其定义为线特征与平面特征,其计算公式如下:
Figure BDA0004128509020000041
其中,S为Pi的邻域点集合,xj为Pi的一个邻域点,|S|为邻域点数量,||Pi||为Pi到雷达坐标系原点的距离,当ci小于某一阈值的时候,认为该点是平面特征点;当ci大于某一阈值的时候,认为该点是线特征点;
第二部分,约束建立与状态求解:对于一个视觉激光雷达惯性紧耦合系统而言,系统的状态估计问题建模为一个最大后验估计问题:
Figure BDA0004128509020000042
其中,XLVIO表示视觉雷达惯性里程计的状态向量,
Figure BDA0004128509020000043
表示视觉雷达惯性里程计状态的最大后验估计,u表示IMU采集的加速度和角速度信息,zL表示雷达观测信息,zV表示视觉观测,arg max(·)表示求使得括号内的值最大的参数的函数,p(·)表示概率密度函数,该最大后验概率估计问题可通过贝叶斯公式转化为一个非线性最小二乘问题,如下式所示:
Figure BDA0004128509020000044
其中,arg min(·)表示求使得括号内的值最大的参数的函数,rB为IMU预积分残差,k为关键帧编号,
Figure BDA0004128509020000045
为IMU预积分协方差,rC为视觉重投影残差,(l,j)表示第l个特征点在第j个相机帧中被观测组成的视觉观测,C表示视觉观测的集合,
Figure BDA0004128509020000046
表示视觉观测协方差,μ为雷达退化权值,rL为雷达几何残差,s表示第s个雷达特征点,
Figure BDA0004128509020000047
表示雷达特征的集合,σs为雷达观测的协方差,利用L-M法对该非线性最小二乘问题进行迭代求解即可得到位姿状态;
(1)IMU预积分残差
IMU预积分约束rB为通过现有状态求得的相机两帧之间包括位置、姿态、速度、偏置的状态变量和通过IMU预积分求得的两帧之间的状态变量之间的残差,如下式所示:
Figure BDA0004128509020000051
其中,
Figure BDA0004128509020000052
为通过IMU预积分求得的两帧之间的位置、速度和姿态的增量残差,
Figure BDA0004128509020000053
为两帧之间IMU加速度计偏置和陀螺仪偏置残差,[·]xyz表示取四元数的虚部,
Figure BDA0004128509020000054
表示IMU预积分姿态增量四元数的逆,
Figure BDA0004128509020000055
Figure BDA0004128509020000056
分别为tk+1时刻加速度计偏置和陀螺仪偏置;
(2)视觉重投影残差
由于估计值与实际位置的误差,实际位置下投影的特征点与原来保存的特征点重投影会产生误差rC,该误差被定义为视觉特征的重投影误差,将特征点Pl从第i帧相机坐标系Ci通过两帧之间的位姿转换关系,转换到第j帧相机坐标系Cj下的像素坐标,与实际观察到的第j帧相机坐标系下的特征点的像素坐标之间的像素值的差的马氏距离,即为视觉特征重投影误差,定义视觉误差项为:
Figure BDA0004128509020000057
其中,
Figure BDA0004128509020000058
为特征点Pl在第j帧相机坐标系Cj下的归一化坐标,
Figure BDA0004128509020000059
是特征点Pl从第i帧相机坐标系通过位姿关系投影到第j帧相机坐标系的归一化坐标;
(3)雷达几何残差
设点
Figure BDA00041285090200000510
为平面点特征集合中的一点,先将其投影至世界坐标系,记作
Figure BDA00041285090200000511
然后在局部地图中搜索与
Figure BDA00041285090200000512
最近的三个点Pa,Pb,Pc,进而可以构建点到面的几何残差为:
Figure BDA00041285090200000513
(4)雷达退化处理
对于非线性的雷达残差rL,进行一阶泰勒展开,如下式所示:
Figure BDA0004128509020000061
其中,
Figure BDA0004128509020000062
为rL在线性化工作点的值,JL为雷达残差的雅可比矩阵,ΔXLVIO表示状态增量,则雷达残差部分对应的Hessian矩阵为
Figure BDA0004128509020000068
,对其进行奇异值分解找到其最小特征值λmin,设定经验阈值thres,当Hessian矩阵的特征值大于这个阈值时,认为未发生退化,赋予雷达残差权重μ1;当Hessian矩阵的特征值大于这个阈值时,认为发生退化,赋予雷达残差权重μ2,即:
Figure BDA0004128509020000063
自适应体素地图管理:针对每一帧特征点云,首先按其世界坐标系中的坐标位置将其分配到固定大小的体素中,然后针对每个体素中的点
Figure BDA0004128509020000064
按照以下方式计算其均值
Figure BDA0004128509020000065
与协方差cov;
Figure BDA0004128509020000066
Figure BDA0004128509020000067
其中,N为体素中的雷达特征点数量,求得体素中的雷达特征点云协方差后,对其进行特征值分解,得到按照小到达依次排列的三个特征值λ123,若λ2大于λ1一定的倍数,则停止继续拆分体素;若λ2小于或者等于λ1一定的倍数,但体素大小未达到最小,则也停止拆分体素,若体素大小未达到最小,则继续对子体素内的特征点云进行均值和协方差的计算并进行体素的拆分,直至其特征值比例不满足要求或者体素大小已达到最小。
本发明的特点及有益效果是:
1、本发明提出了视觉激光雷达惯性紧耦合的定位建图方法,首先在前端对IMU数据处理后得到高频IMU预测位姿和帧间预积分,对视觉图像进行角点提取与匹配得到帧间特征对应关系,对雷达原始点云基于几何特征提取得到雷达平面特征点;在后端位姿解算利用L-M法迭代优化求解得到低频视觉激光雷达惯性里程计位姿,最后与IMU预测位姿紧耦合输出高频位姿里程计位姿。在不同的场景下均具有较稳定的效果,能够很好的平衡时间效率和精度之间的要求,针对室外大环境以及室内密闭环境可以在保证实时性的同时建立一致性良好的地图。
2、本发明设计了基于自适应权值调整的视觉雷达惯性里程计,利用视觉重投影约束、雷达几何约束和IMU预积分约束构建非线性优化问题,然后针对雷达约束对应的雅可比矩阵构建Hessian矩阵,对其进行特征值分解,以最小特征值作为退化判据,设置经验阈值调整约束权重,采取滑动窗口策略优化求解无人机位姿状态,实现不依赖外部传感器的快速精确定位,在约束充足的场景下,该方法与最先进的框架定位精度相当,在约束不足易导致退化的场景下,仍可以表现出高鲁棒性。
3、本发明设计了一个基于自适应体素的地图维护方法,根据雷达点云在空间中的三维分布,对雷达特征点云进行体素化处理,构建基于八叉树数据结构自适应体素地图。通过对每个体素中的雷达点云的均值和协方差计算,分析其三维空间几何性质,并作为体素细分的依据,直到每个体素中存储的均值与协方差均能很好地反应雷达特征点云的空间几何性质,在提供良好特征约束的同时,减少维护地图的计算资源与内存消耗。
附图说明:
图1为无人机硬件实物平台;
图2为基于视觉激光雷达惯性紧耦合系统结构图;
图3为走廊场景下视觉角点示意图;
图4为走廊场景下的雷达特征点示意图;
图5为本发明与主流方法在SubT仿真环境的定位轨迹误差指标对比图;
图6为本发明与主流方法在走廊退化场景下的定位轨迹对比图;
图7为本发明在丛林飞行中的定位与建图效果示意图。
具体实施方式
视觉SLAM方法无需具备环境先验信息即可完成定位工作,具备成本低、通用性强等优点。但视觉自主定位也有显著的缺陷,比如受到光照、纹理的限制,长时间运行容易产生估计漂移现象,很大程度上影响了无人机在复杂环境下运行的可靠性。激光雷达SLAM方法具有更宽的视场范围且不受光照变化影响,能直接测得环境的距离信息,适用场景比视觉SLAM方法更为广泛,精度也更为准确。但在缺乏几何特征的退化场景下难以进行有效的局部和全局点云匹配,造成定位和建图精度下降。因此,通过三种传感器的融合充分利用视觉采集稠密的环境信息、IMU测量高频运动信息和激光雷达精确测量环境距离信息的优势,研制一套鲁棒高精度的多传感器融合定位系统,对无人机在导航拒止环境下的自主飞行至关重要。
本发明技术方案是,基于视觉激光雷达惯性紧耦合的定位建图方法,
首先分别对三种传感器数据进行处理,对IMU测量数据进行积分得到高频位姿估计和预积分值;对视觉图像提取特征点并进行匹配与跟踪,接着利用投影到相机坐标系下的激光雷达点云,恢复视觉特征点的深度信息;对采集到的激光雷达点云进行运动畸变校正,采用几何特征提取算法,对点云数据中的线面特征进行提取,与局部地图中的点云进行匹配,构建雷达几何因子。其次,构建视觉重投影、IMU预积分和雷达几何约束,联合三种约束建立非线性优化问题,对雷达几何约束的Hessian矩阵进行退化分析,调整各约束权值,利用列文伯格-马夸尔特(Levenberg-Marquardt,L-M)方法进行位姿求解。最后,利用优化完成后的位姿与当前帧雷达点云更新体素地图,根据输入点云的几何性质自适应调整体素大小,在节约内存资源的同时,为后续过程提供有效几何结构信息。
本发明提出的方法,旨在解决单一传感器退化场景下的鲁棒准确定位建图问题,为此,本发明采用的技术方案是基于视觉激光雷达惯性紧耦合的定位建图技术,具体内容分为以下三部分:
第一部分,传感器数据预处理:
(1)IMU数据预处理
接收到IMU输入后,对IMU数据进行预处理用以实现实时预测机器人状态,IMU的测量模型可以表示为:
Figure BDA0004128509020000081
Figure BDA0004128509020000082
其中,
Figure BDA0004128509020000083
Figure BDA0004128509020000084
分别为tk时刻IMU测量得到的三轴加速度和三轴角速度,
Figure BDA0004128509020000085
Figure BDA0004128509020000086
为tk时刻加速度与角速度的实际值,
Figure BDA0004128509020000087
Figure BDA0004128509020000088
分别为tk时刻加速度计偏置和陀螺仪偏置,
Figure BDA0004128509020000089
表示tk时刻从世界系到机体系的旋转矩阵,g表示世界系下的重力矢量,na与ng为IMU测量噪声。
然后根据IMU的输入积分获得高频状态预测,tk与tk+1时刻之间的离散运动方程可以表示为:
Figure BDA00041285090200000810
Figure BDA00041285090200000811
Figure BDA00041285090200000812
Figure BDA00041285090200000813
分别表示tk时刻的从世界系到机体系的平移向量、世界系下的速度和从机体系到世界系的旋转四元数,
Figure BDA00041285090200000814
分别表示tk+1时刻的从世界系到机体系的平移向量、世界系下的速度和从机体系到世界系的旋转四元数,Δtk表示tk与tk+1时刻之间的时间间隔,
Figure BDA00041285090200000815
表示tk与tk+1时刻之间的时间间隔的平方,
Figure BDA00041285090200000816
表示四元数乘法,
Figure BDA00041285090200000817
Figure BDA00041285090200000818
为利用中值法将机体系下的测量加速度和角速度转换至世界系的加速度和角速度,其表达式为:
Figure BDA00041285090200000819
Figure BDA00041285090200000820
其中,
Figure BDA00041285090200000821
分别表示tk+1时刻IMU测量得到的三轴加速度和三轴角速度,
Figure BDA00041285090200000822
为tk时刻从机体系到世界系的旋转矩阵,
Figure BDA00041285090200000823
为tk+1时刻从机体系到世界系的旋转矩阵。为了节约计算量,将离散运动方程中的状态量与IMU的测量数据分离,将原本世界系下的积分变为相邻两帧间相对运动的积分,使得这个积分量只与IMU测量值有关,而与积分起始点无关。因此,在离散运动方程两边同时乘以从世界系到机体系的旋转矩阵
Figure BDA00041285090200000824
(或者其对应的旋转四元数
Figure BDA0004128509020000091
)可得下式:
Figure BDA0004128509020000092
Figure BDA0004128509020000093
Figure BDA0004128509020000094
其中,
Figure BDA0004128509020000095
即为tk到tk+1时刻之间的IMU预积分增量信息,分别表示以tk时刻机体系为参考坐标系到tk+1时刻的平移增量、速度增量和tk+1时刻到tk时刻的旋转四元数,具体离散形式表达式为:
Figure BDA0004128509020000096
Figure BDA0004128509020000097
Figure BDA0004128509020000098
其中,
Figure BDA0004128509020000099
分别表示从tk时刻到ti+1时刻的平移、速度和旋转预积分量,
Figure BDA00041285090200000910
分别表示从tk时刻到ti时刻的平移、速度和旋转预积分量,
Figure BDA00041285090200000911
为利用中值法将当前机体系下的测量加速度和角速度转换至tk时刻机体系的加速度和角速度,通过上式不断迭代即可得到从tk时刻到tk+1时刻的平移、速度和旋转预积分量。
(2)图像数据处理
为充分利用图像中的环境信息,需要提取图像上区分度较明显的特征,通常对图像中的角点信息或边缘信息进行提取,本发明提出的方法主要使用角点检测来获取图像特征,针对相机获取的图像信息,对图像提取特征点。特征点选取Harris角点,其相对于ORB、SIFT、SURF等特征点具有速度更快、计算量适中的优势,相对于FAST特征点具有精度更高、具备旋转不变性等优势,是一种计算时间及提取精度适中的特征点。
Harris角点的基本思想是图像上有一个像素矩形向多个方向滑动,如果像素矩形灰度没有变化,则认为窗口内不存在角点;如果像素矩形沿某一方向移动灰度变化很大,沿另一方向灰度变化不大,则认为像素矩形内图像为一条边;若像素矩形图像沿任何方向移动,灰度值均产生变化,则认为图像中存在角点。
(3)雷达几何特征点提取
不同于相机传感器采集的丰富的像素信息,激光雷达只能采集到周围环境中稀疏的物体信息,因此本发明提出的方法从点云的空间几何特征寻找可靠的雷达特征提取方法。
对于单帧雷达点云数据的一点Pi=(xi,yi,zi),xi,yi,zi为点Pi在雷达坐标系中的坐标,可按照平滑度ci将其定义为线特征与平面特征,其计算公式如下:
Figure BDA0004128509020000101
其中,S为Pi的邻域点集合,xj为Pi的一个邻域点,|S|为邻域点数量,||Pi||为Pi到雷达坐标系原点的距离。当ci小于某一阈值的时候,认为该点是平面特征点;当ci大于某一阈值的时候,认为该点是线特征点。本方法中只采用了平面特征点作为雷达几何特征点。
第二部分,约束建立与状态求解:对于一个视觉激光雷达惯性紧耦合系统而言,系统的状态估计问题可以建模为一个最大后验估计问题:
Figure BDA0004128509020000102
其中,XLVIO表示视觉雷达惯性里程计的状态向量,
Figure BDA0004128509020000103
表示视觉雷达惯性里程计状态的最大后验估计,u表示IMU采集的加速度和角速度信息,zL表示雷达观测信息,zV表示视觉观测,arg max(·)表示求使得括号内的值最大的参数的函数,p(·)表示概率密度函数。该最大后验概率估计问题可通过贝叶斯公式转化为一个非线性最小二乘问题,如下式所示:
Figure BDA0004128509020000104
其中,arg min(·)表示求使得括号内的值最大的参数的函数,rB为IMU预积分残差,k为关键帧编号,
Figure BDA0004128509020000105
为IMU预积分协方差,rC为视觉重投影残差,(l,j)表示第l个特征点在第j个相机帧中被观测组成的视觉观测,C表示视觉观测的集合,
Figure BDA0004128509020000106
表示视觉观测协方差,μ为雷达退化权值,rL为雷达几何残差,s表示第s个雷达特征点,
Figure BDA0004128509020000107
表示雷达特征的集合,σs为雷达观测的协方差,利用L-M法对该非线性最小二乘问题进行迭代求解即可得到位姿状态。
(1)IMU预积分残差
IMU预积分约束rB为通过现有状态求得的相机两帧之间位置、姿态、速度、偏置等状态变量和通过IMU预积分求得的两帧之间的状态变量之间的残差,如下式所示:
Figure BDA0004128509020000111
其中,
Figure BDA0004128509020000112
为通过IMU预积分求得的两帧之间的位置、速度和姿态的增量残差,
Figure BDA0004128509020000113
为两帧之间IMU加速度计偏置和陀螺仪偏置残差,[·]xyz表示取四元数的虚部,
Figure BDA0004128509020000114
表示IMU预积分姿态增量四元数的逆,
Figure BDA0004128509020000115
Figure BDA0004128509020000116
分别为tk+1时刻加速度计偏置和陀螺仪偏置。
(2)视觉重投影残差
通过视觉特征点提取与视觉重投影,可以有效地感知外部环境并利用与环境的相对位置实现长期鲁棒的位置估计。由于估计值与实际位置的误差,实际位置下投影的特征点与原来保存的特征点重投影会产生误差rC,该误差可被定义为视觉特征的重投影误差。将特征点Pl从第i帧相机坐标系Ci通过两帧之间的位姿转换关系,转换到第j帧相机坐标系Cj下的像素坐标,与实际观察到的第j帧相机坐标系下的特征点的像素坐标之间的像素值的差的马氏距离,即为视觉特征重投影误差。可定义视觉误差项为:
Figure BDA0004128509020000117
其中,
Figure BDA0004128509020000118
为特征点Pl在第j帧相机坐标系Cj下的归一化坐标,
Figure BDA0004128509020000119
是特征点Pl从第i帧相机坐标系通过位姿关系投影到第j帧相机坐标系的归一化坐标。
(3)雷达几何残差
设点
Figure BDA00041285090200001110
为平面点特征集合中的一点,先将其投影至世界坐标系,记作
Figure BDA00041285090200001111
然后在局部地图中搜索与
Figure BDA00041285090200001112
最近的三个点Pa,Pb,Pc,进而可以构建点到面的几何残差为:
Figure BDA00041285090200001113
(4)雷达退化处理
针对激光雷达退化场景,本质上是雷达观测所提供的某个自由度上的约束缺失或者较为稀少。在构建无人机状态优化问题时,每个雷达观测提供的约束对应优化方程系数矩阵中的若干行,因此通过对雷达约束构成的优化问题系数矩阵进行退化分析,作为雷达残差权值调整的退化依据。
对于非线性的雷达残差rL,进行一阶泰勒展开,如下式所示:
Figure BDA0004128509020000121
其中,
Figure BDA0004128509020000122
为rL在线性化工作点的值,JL为雷达残差的雅可比矩阵,ΔXLVIO表示状态增量,则雷达残差部分对应的Hessian矩阵为
Figure BDA0004128509020000123
对其进行奇异值分解找到其最小特征值λmin,设定经验阈值thres,当Hessian矩阵的特征值大于这个阈值时,认为未发生退化,赋予雷达残差权重μ1;当Hessian矩阵的特征值大于这个阈值时,认为发生退化,赋予雷达残差权重μ2,即:
Figure BDA0004128509020000124
自适应体素地图管理:本发明使用基于八叉树结构的自适应体素地图实现高效的地图存储,具体针对每一帧特征点云,首先按其世界坐标系中的坐标位置将其分配到固定大小的体素中,然后针对每个体素中的点
Figure BDA0004128509020000125
按照以下方式计算其均值
Figure BDA0004128509020000126
与协方差cov。
Figure BDA0004128509020000127
Figure BDA0004128509020000128
其中,N为体素中的雷达特征点数量,求得体素中的雷达特征点云协方差后,对其进行特征值分解,得到按照小到达依次排列的三个特征值λ123,若λ2大于λ1一定的倍数,则停止继续拆分体素;若λ2小于或者等于λ1一定的倍数,但体素大小未达到最小,则也停止拆分体素,若体素大小未达到最小,则继续对子体素内的特征点云进行均值和协方差的计算并进行体素的拆分,直至其特征值比例不满足要求或者体素大小已达到最小。
以下结合附图对本发明的技术方案作进一步说明。
本发明提出了一种基于视觉激光雷达惯性紧耦合的定位建图方法。使用本方法可以得到高精度的定位轨迹和周围环境的几何结构信息,且在典型激光雷达退化场景(如长走廊)场景下可以保持较好的鲁棒性与精度。本方法选用的传感器为Velodyne vlp-16机械式激光雷达,Intel Realsense D455相机和pixhawk飞控内置的IMU,无人机硬件平台如图1所示。视觉激光雷达惯性紧耦合SLAM算法,分为三个部分:传感器数据预处理、约束建立与状态求解以及自适应体素地图管理。结构如图2所示:传感器数据预处理部分对IMU数据处理后得到高频IMU预测位姿和帧间预积分;对视觉图像进行角点提取与匹配得到帧间特征对应关系,走廊场景视觉特征如图3所示;对雷达原始点云基于几何特征提取得到雷达平面特征点,走廊场景雷达平面特征点如图4所示。约束建立与状态求解部分利用视觉重投影约束、雷达几何约束和IMU预积分约束构建非线性优化问题,并针对传感器退化情况调整约束权重,采取滑动窗口策略优化求解无人机位姿状态,实现不依赖外部传感器的快速精确定位。自适应体素地图管理部分根据点云地图在空间中的三维分布,构建基于八叉树数据结构的自适应体素栅格地图,对雷达特征进行体素化处理,减小维护地图的计算资源与内存消耗。
具体实现方法如下:
接收到IMU输入后,对IMU数据进行预处理用以实现实时预测机器人状态,IMU的测量模型可以表示为:
Figure BDA0004128509020000131
Figure BDA0004128509020000132
其中,
Figure BDA0004128509020000133
Figure BDA0004128509020000134
分别为tk时刻IMU测量得到的三轴加速度和三轴角速度,
Figure BDA0004128509020000135
Figure BDA0004128509020000136
为tk时刻加速度与角速度的实际值,
Figure BDA0004128509020000137
Figure BDA0004128509020000138
分别为tk时刻加速度计偏置和陀螺仪偏置,
Figure BDA0004128509020000139
表示tk时刻从世界系到机体系的旋转矩阵,g表示世界系下的重力矢量,na与ng为IMU测量噪声。
然后根据IMU的输入积分获得高频状态预测,tk与tk+1时刻之间的离散运动方程可以表示为:
Figure BDA00041285090200001310
Figure BDA00041285090200001311
Figure BDA00041285090200001312
Figure BDA00041285090200001313
分别表示tk时刻的从世界系到机体系的平移向量、世界系下的速度和从机体系到世界系的旋转四元数,
Figure BDA00041285090200001314
分别表示tk+1时刻的从世界系到机体系的平移向量、世界系下的速度和从机体系到世界系的旋转四元数,Δtk表示tk与tk+1时刻之间的时间间隔,
Figure BDA00041285090200001315
表示tk与tk+1时刻之间的时间间隔的平方,
Figure BDA00041285090200001316
表示四元数乘法,
Figure BDA00041285090200001317
Figure BDA00041285090200001318
为利用中值法将机体系下的测量加速度和角速度转换至世界系的加速度和角速度,其表达式为:
Figure BDA00041285090200001319
Figure BDA00041285090200001320
其中,
Figure BDA00041285090200001321
分别表示tk+1时刻IMU测量得到的三轴加速度和三轴角速度,
Figure BDA00041285090200001322
为tk时刻从机体系到世界系的旋转矩阵,
Figure BDA00041285090200001323
为tk+1时刻从机体系到世界系的旋转矩阵。为了节约计算量,将离散运动方程中的状态量与IMU的测量数据分离,将原本世界系下的积分变为相邻两帧间相对运动的积分,使得这个积分量只与IMU测量值有关,而与积分起始点无关。因此,在离散运动方程两边同时乘以从世界系到机体系的旋转矩阵
Figure BDA0004128509020000141
(或者其对应的旋转四元数
Figure BDA0004128509020000142
)可得下式:
Figure BDA0004128509020000143
Figure BDA0004128509020000144
Figure BDA0004128509020000145
其中,
Figure BDA0004128509020000146
即为tk到tk+1时刻之间的IMU预积分增量信息,分别表示以tk时刻机体系为参考坐标系到tk+1时刻的平移增量、速度增量和tk+1时刻到tk时刻的旋转四元数,具体离散形式表达式为:
Figure BDA0004128509020000147
Figure BDA0004128509020000148
Figure BDA0004128509020000149
其中,
Figure BDA00041285090200001410
分别表示从tk时刻到ti+1时刻的平移、速度和旋转预积分量,
Figure BDA00041285090200001411
分别表示从tk时刻到ti时刻的平移、速度和旋转预积分量,
Figure BDA00041285090200001412
为利用中值法将当前机体系下的测量加速度和角速度转换至tk时刻机体系的加速度和角速度,通过上式不断迭代即可得到从tk时刻到tk+1时刻的平移、速度和旋转预积分量。
为充分利用图像中的环境信息,需要提取图像上区分度较明显的特征,通常对图像中的角点信息或边缘信息进行提取,本发明提出的方法主要使用角点检测来获取图像特征,针对相机获取的图像信息,对图像提取特征点。特征点选取Harris角点,其相对于ORB、SIFT、SURF等特征点具有速度更快、计算量适中的优势,相对于FAST特征点具有精度更高、具备旋转不变性等优势,是一种计算时间及提取精度适中的特征点。
Harris角点的基本思想是图像上有一个像素矩形向多个方向滑动,如果像素矩形灰度没有变化,则认为窗口内不存在角点;如果像素矩形沿某一方向移动灰度变化很大,沿另一方向灰度变化不大,则认为像素矩形内图像为一条边;若像素矩形图像沿任何方向移动,灰度值均产生变化,则认为图像中存在角点。
不同于相机传感器采集的丰富的像素信息,激光雷达只能采集到周围环境中稀疏的物体信息,因此本发明提出的方法从点云的空间几何特征寻找可靠的雷达特征提取方法。
对于单帧雷达点云数据的一点Pi=(xi,yi,zi),xi,yi,zi为点Pi在雷达坐标系中的坐标,可按照平滑度ci将其定义为线特征与平面特征,其计算公式如下:
Figure BDA0004128509020000151
其中,S为Pi的邻域点集合,xj为Pi的一个邻域点,|S|为邻域点数量,||Pi||为Pi到雷达坐标系原点的距离。当ci小于某一阈值的时候,认为该点是平面特征点;当ci大于某一阈值的时候,认为该点是线特征点。本方法中只采用了平面特征点作为雷达几何特征点。
对于一个视觉激光雷达惯性紧耦合系统而言,系统的状态估计问题可以建模为一个最大后验估计问题:
Figure BDA0004128509020000152
其中,XLVIO表示视觉雷达惯性里程计的状态向量,
Figure BDA0004128509020000153
表示视觉雷达惯性里程计状态的最大后验估计,u表示IMU采集的加速度和角速度信息,zL表示雷达观测信息,zV表示视觉观测,arg max(·)表示求使得括号内的值最大的参数的函数,p(·)表示概率密度函数。该最大后验概率估计问题可通过贝叶斯公式转化为一个非线性最小二乘问题,如下式所示:
Figure BDA0004128509020000154
其中,arg min(·)表示求使得括号内的值最大的参数的函数,rB为IMU预积分残差,k为关键帧编号,
Figure BDA0004128509020000155
为IMU预积分协方差,rC为视觉重投影残差,(l,j)表示第l个特征点在第j个相机帧中被观测组成的视觉观测,C表示视觉观测的集合,
Figure BDA0004128509020000156
表示视觉观测协方差,μ为雷达退化权值,rL为雷达几何残差,s表示第s个雷达特征点,
Figure BDA0004128509020000157
表示雷达特征的集合,σs为雷达观测的协方差,利用L-M法对该非线性最小二乘问题进行迭代求解即可得到位姿状态。
IMU预积分约束rB为通过现有状态求得的相机两帧之间位置、姿态、速度、偏置等状态变量和通过IMU预积分求得的两帧之间的状态变量之间的残差,如下式所示:
Figure BDA0004128509020000161
其中,
Figure BDA0004128509020000162
为通过IMU预积分求得的两帧之间的位置、速度和姿态的增量残差,
Figure BDA0004128509020000163
为两帧之间IMU加速度计偏置和陀螺仪偏置残差,[·]xyz表示取四元数的虚部,
Figure BDA0004128509020000164
表示IMU预积分姿态增量四元数的逆,
Figure BDA0004128509020000165
Figure BDA0004128509020000166
分别为tk+1时刻加速度计偏置和陀螺仪偏置。
通过视觉特征点提取与视觉重投影,可以有效地感知外部环境并利用与环境的相对位置实现长期鲁棒的位置估计。由于估计值与实际位置的误差,实际位置下投影的特征点与原来保存的特征点重投影会产生误差rC,该误差可被定义为视觉特征的重投影误差。将特征点Pl从第i帧相机坐标系Ci通过两帧之间的位姿转换关系,转换到第j帧相机坐标系Cj下的像素坐标,与实际观察到的第j帧相机坐标系下的特征点的像素坐标之间的像素值的差的马氏距离,即为视觉特征重投影误差。可定义视觉误差项为:
Figure BDA0004128509020000167
其中,
Figure BDA0004128509020000168
为特征点Pl在第j帧相机坐标系Cj下的归一化坐标,
Figure BDA0004128509020000169
是特征点Pl从第i帧相机坐标系通过位姿关系投影到第j帧相机坐标系的归一化坐标。
设点
Figure BDA00041285090200001610
为雷达平面点特征集合中的一点,先将其投影至世界坐标系,记作
Figure BDA00041285090200001611
然后在局部地图中搜索与
Figure BDA00041285090200001612
最近的三个点Pa,Pb,Pc,进而可以构建点到面的几何残差为:
Figure BDA00041285090200001613
针对激光雷达退化场景,本质上是雷达观测所提供的某个自由度上的约束缺失或者较为稀少。在构建无人机状态优化问题时,每个雷达观测提供的约束对应优化方程系数矩阵中的若干行,因此通过对雷达约束构成的优化问题系数矩阵进行退化分析,作为雷达残差权值调整的退化依据。
对于非线性的雷达残差rL,进行一阶泰勒展开,如下式所示:
Figure BDA0004128509020000171
其中,
Figure BDA0004128509020000172
为rL在线性化工作点的值,JL为雷达残差的雅可比矩阵,ΔXLVIO表示状态增量,则雷达残差部分对应的Hessian矩阵为
Figure BDA0004128509020000173
对其进行奇异值分解找到其最小特征值λmin,设定经验阈值thres,当Hessian矩阵的特征值大于这个阈值时,认为未发生退化,赋予雷达残差权重μ1;当Hessian矩阵的特征值大于这个阈值时,认为发生退化,赋予雷达残差权重μ2,即:
Figure BDA0004128509020000174
使用基于八叉树结构的自适应体素地图实现高效的地图存储,具体针对每一帧特征点云,首先按其世界坐标系中的坐标位置将其分配到固定大小的体素中,然后针对每个体素中的点
Figure BDA0004128509020000175
按照以下方式计算其均值
Figure BDA0004128509020000176
与协方差cov。
Figure BDA0004128509020000177
Figure BDA0004128509020000178
其中,N为体素中的雷达特征点数量,求得体素中的雷达特征点云协方差后,对其进行特征值分解,得到按照小到达依次排列的三个特征值λ123,若λ2大于λ1一定的倍数,则停止继续拆分体素;若λ2小于或者等于λ1一定的倍数,但体素大小未达到最小,则也停止拆分体素,若体素大小未达到最小,则继续对子体素内的特征点云进行均值和协方差的计算并进行体素的拆分,直至其特征值比例不满足要求或者体素大小已达到最小。
图5是本发明与主流方法在SubT仿真场景下定位轨迹误差指标对比图。图6是本发明在长走廊退化环境下与主流视觉和雷达雷达里程计的定位轨迹对比,视觉和雷达方法均无法完成闭环轨迹的定位,而本方法可以在保证不退化的同时得到很好的定位精度。图7是丛林环境无人机飞行过程中的定位轨迹与建图效果示意图,可见本方法在实际飞行中获得了良好的定位精度与建图效果。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (2)

1.一种基于视觉激光雷达惯性紧耦合的定位建图方法,其特征是,首先分别对自主定位与建图、激光雷达自主定位与建图、视觉与惯性测量单元IMU三种传感器数据进行处理,对IMU测量数据进行积分得到高频位姿估计和预积分值;对自主定位与建图中的视觉图像提取特征点并进行匹配与跟踪,接着利用投影到相机坐标系下的激光雷达点云,恢复视觉特征点的深度信息;对采集到的激光雷达点云进行运动畸变校正,采用几何特征提取算法,对点云数据中的线面特征进行提取,与局部地图中的点云进行匹配,构建雷达几何因子;其次,构建视觉重投影、IMU预积分和雷达几何约束,联合三种约束建立非线性优化问题,对雷达几何约束的Hessian矩阵进行退化分析,调整各约束权值,利用列文伯格-马夸尔特方法进行位姿求解;最后,利用优化完成后的位姿与当前帧雷达点云更新体素地图,根据输入点云的几何性质自适应调整体素大小,为后续过程提供几何结构信息。
2.如权利要求1所述的基于视觉激光雷达惯性紧耦合的定位建图方法,其特征是,具体步骤如下:
第一部分,传感器数据预处理:
(1)IMU数据预处理
接收到IMU输入后,对IMU数据进行预处理用以实现实时预测机器人状态,IMU的测量模型表示为:
Figure FDA0004128509010000011
Figure FDA0004128509010000012
其中,
Figure FDA0004128509010000013
Figure FDA0004128509010000014
分别为tk时刻IMU测量得到的三轴加速度和三轴角速度,
Figure FDA0004128509010000015
Figure FDA0004128509010000016
为tk时刻加速度与角速度的实际值,
Figure FDA0004128509010000017
Figure FDA0004128509010000018
分别为tk时刻加速度计偏置和陀螺仪偏置,
Figure FDA0004128509010000019
表示tk时刻从世界系到机体系的旋转矩阵,g表示世界系下的重力矢量,na与ng为IMU测量噪声;
然后根据IMU的输入积分获得高频状态预测,tk与tk+1时刻之间的离散运动方程表示为:
Figure FDA00041285090100000110
Figure FDA00041285090100000111
Figure FDA00041285090100000112
Figure FDA00041285090100000113
分别表示tk时刻的从世界系到机体系的平移向量、世界系下的速度和从机体系到世界系的旋转四元数,
Figure FDA00041285090100000114
分别表示tk+1时刻的从世界系到机体系的平移向量、世界系下的速度和从机体系到世界系的旋转四元数,Δtk表示tk与tk+1时刻之间的时间间隔,
Figure FDA00041285090100000115
表示tk与tk+1时刻之间的时间间隔的平方,
Figure FDA00041285090100000116
表示四元数乘法,
Figure FDA00041285090100000117
Figure FDA00041285090100000118
为利用中值法将机体系下的测量加速度和角速度转换至世界系的加速度和角速度,其表达式为:
Figure FDA0004128509010000021
Figure FDA0004128509010000022
其中,
Figure FDA0004128509010000023
分别表示tk+1时刻IMU测量得到的三轴加速度和三轴角速度,
Figure FDA0004128509010000024
为tk时刻从机体系到世界系的旋转矩阵,
Figure FDA0004128509010000025
为tk+1时刻从机体系到世界系的旋转矩阵,将离散运动方程中的状态量与IMU的测量数据分离,将原本世界系下的积分变为相邻两帧间相对运动的积分,在离散运动方程两边同时乘以从世界系到机体系的旋转矩阵
Figure FDA0004128509010000026
或者其对应的旋转四元数
Figure FDA0004128509010000027
得下式:
Figure FDA0004128509010000028
Figure FDA0004128509010000029
Figure FDA00041285090100000210
其中,
Figure FDA00041285090100000211
即为tk到tk+1时刻之间的IMU预积分增量信息,分别表示以tk时刻机体系为参考坐标系到tk+1时刻的平移增量、速度增量和tk+1时刻到tk时刻的旋转四元数,具体离散形式表达式为:
Figure FDA00041285090100000212
Figure FDA00041285090100000213
Figure FDA00041285090100000214
其中,
Figure FDA00041285090100000215
分别表示从tk时刻到ti+1时刻的平移、速度和旋转预积分量,
Figure FDA00041285090100000216
分别表示从tk时刻到ti时刻的平移、速度和旋转预积分量,
Figure FDA00041285090100000217
为利用中值法将当前机体系下的测量加速度和角速度转换至tk时刻机体系的加速度和角速度,通过上式不断迭代即可得到从tk时刻到tk+1时刻的平移、速度和旋转预积分量;
(2)图像数据处理
使用角点检测来获取图像特征,针对相机获取的图像信息,对图像提取特征点:图像上有一个像素矩形向多个方向滑动,如果像素矩形灰度没有变化,则认为窗口内不存在角点;如果像素矩形沿某一方向移动灰度变化很大,沿另一方向灰度变化不大,则认为像素矩形内图像为一条边;若像素矩形图像沿任何方向移动,灰度值均产生变化,则认为图像中存在角点;
(3)雷达几何特征点提取
对于单帧雷达点云数据的一点Pi=(xi,yi,zi),xi,yi,zi为点Pi在雷达坐标系中的坐标,按照平滑度ci将其定义为线特征与平面特征,其计算公式如下:
Figure FDA0004128509010000031
其中,S为Pi的邻域点集合,xj为Pi的一个邻域点,|S|为邻域点数量,||Pi||为Pi到雷达坐标系原点的距离,当ci小于某一阈值的时候,认为该点是平面特征点;当ci大于某一阈值的时候,认为该点是线特征点;
第二部分,约束建立与状态求解:对于一个视觉激光雷达惯性紧耦合系统而言,系统的状态估计问题建模为一个最大后验估计问题:
Figure FDA0004128509010000032
其中,XLVIO表示视觉雷达惯性里程计的状态向量,
Figure FDA0004128509010000033
表示视觉雷达惯性里程计状态的最大后验估计,u表示IMU采集的加速度和角速度信息,zL表示雷达观测信息,zV表示视觉观测,arg max(·)表示求使得括号内的值最大的参数的函数,p(·)表示概率密度函数,该最大后验概率估计问题可通过贝叶斯公式转化为一个非线性最小二乘问题,如下式所示:
Figure FDA0004128509010000034
其中,arg min(·)表示求使得括号内的值最大的参数的函数,rB为IMU预积分残差,k为关键帧编号,
Figure FDA0004128509010000035
为IMU预积分协方差,rC为视觉重投影残差,(l,j)表示第l个特征点在第j个相机帧中被观测组成的视觉观测,C表示视觉观测的集合,
Figure FDA0004128509010000036
表示视觉观测协方差,μ为雷达退化权值,rL为雷达几何残差,s表示第s个雷达特征点,
Figure FDA0004128509010000037
表示雷达特征的集合,σs为雷达观测的协方差,利用L-M法对该非线性最小二乘问题进行迭代求解即可得到位姿状态;
(1)IMU预积分残差
IMU预积分约束rB为通过现有状态求得的相机两帧之间包括位置、姿态、速度、偏置的状态变量和通过IMU预积分求得的两帧之间的状态变量之间的残差,如下式所示:
Figure FDA0004128509010000041
其中,
Figure FDA0004128509010000042
为通过IMU预积分求得的两帧之间的位置、速度和姿态的增量残差,
Figure FDA0004128509010000043
为两帧之间IMU加速度计偏置和陀螺仪偏置残差,[]xyz表示取四元数的虚部,
Figure FDA0004128509010000044
表示IMU预积分姿态增量四元数的逆,
Figure FDA0004128509010000045
Figure FDA0004128509010000046
分别为tk+1时刻加速度计偏置和陀螺仪偏置;
(2)视觉重投影残差
由于估计值与实际位置的误差,实际位置下投影的特征点与原来保存的特征点重投影会产生误差rC,该误差被定义为视觉特征的重投影误差,将特征点Pl从第i帧相机坐标系Ci通过两帧之间的位姿转换关系,转换到第j帧相机坐标系Cj下的像素坐标,与实际观察到的第j帧相机坐标系下的特征点的像素坐标之间的像素值的差的马氏距离,即为视觉特征重投影误差,定义视觉误差项为:
Figure FDA0004128509010000047
其中,CjPl为特征点Pl在第j帧相机坐标系Cj下的归一化坐标,
Figure FDA0004128509010000048
是特征点Pl从第i帧相机坐标系通过位姿关系投影到第j帧相机坐标系的归一化坐标;
(3)雷达几何残差
设点
Figure FDA0004128509010000049
为平面点特征集合中的一点,先将其投影至世界坐标系,记作
Figure FDA00041285090100000410
然后在局部地图中搜索与
Figure FDA00041285090100000411
最近的三个点Pa,Pb,Pc,进而可以构建点到面的几何残差为:
Figure FDA00041285090100000412
(4)雷达退化处理
对于非线性的雷达残差rL,进行一阶泰勒展开,如下式所示:
Figure FDA0004128509010000051
其中,
Figure FDA0004128509010000052
为rL在线性化工作点的值,JL为雷达残差的雅可比矩阵,ΔXLVIO表示状态增量,则雷达残差部分对应的Hessian矩阵为
Figure FDA0004128509010000053
对其进行奇异值分解找到其最小特征值λmin,设定经验阈值thres,当Hessian矩阵的特征值大于这个阈值时,认为未发生退化,赋予雷达残差权重μ1;当Hessian矩阵的特征值大于这个阈值时,认为发生退化,赋予雷达残差权重μ2,即:
Figure FDA0004128509010000054
自适应体素地图管理:针对每一帧特征点云,首先按其世界坐标系中的坐标位置将其分配到固定大小的体素中,然后针对每个体素中的点
Figure FDA0004128509010000055
按照以下方式计算其均值
Figure FDA0004128509010000056
与协方差cov;
Figure FDA0004128509010000057
Figure FDA0004128509010000058
其中,N为体素中的雷达特征点数量,求得体素中的雷达特征点云协方差后,对其进行特征值分解,得到按照小到达依次排列的三个特征值λ123,若λ2大于λ1一定的倍数,则停止继续拆分体素;若λ2小于或者等于λ1一定的倍数,但体素大小未达到最小,则也停止拆分体素,若体素大小未达到最小,则继续对子体素内的特征点云进行均值和协方差的计算并进行体素的拆分,直至其特征值比例不满足要求或者体素大小已达到最小。
CN202310253115.0A 2023-03-16 2023-03-16 基于视觉激光雷达惯性紧耦合的定位建图方法 Pending CN116182837A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310253115.0A CN116182837A (zh) 2023-03-16 2023-03-16 基于视觉激光雷达惯性紧耦合的定位建图方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310253115.0A CN116182837A (zh) 2023-03-16 2023-03-16 基于视觉激光雷达惯性紧耦合的定位建图方法

Publications (1)

Publication Number Publication Date
CN116182837A true CN116182837A (zh) 2023-05-30

Family

ID=86448835

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310253115.0A Pending CN116182837A (zh) 2023-03-16 2023-03-16 基于视觉激光雷达惯性紧耦合的定位建图方法

Country Status (1)

Country Link
CN (1) CN116182837A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116698046A (zh) * 2023-08-04 2023-09-05 苏州观瑞汽车技术有限公司 一种物业室内服务机器人建图定位和回环检测方法及系统
CN116758161A (zh) * 2023-06-26 2023-09-15 北京道仪数慧科技有限公司 移动端空间数据生成方法及空间感知移动端
CN117073690A (zh) * 2023-10-17 2023-11-17 山东大学 一种基于多地图策略的导航方法及系统
CN117109568A (zh) * 2023-08-24 2023-11-24 北京自动化控制设备研究所 惯性/多维视觉联合定位方法
CN117367412A (zh) * 2023-12-07 2024-01-09 南开大学 一种融合捆集调整的紧耦合激光惯导里程计与建图方法
CN117437290A (zh) * 2023-12-20 2024-01-23 深圳市森歌数据技术有限公司 一种多传感器融合的自然保护区无人机三维空间定位方法
CN117824625A (zh) * 2024-03-05 2024-04-05 河海大学 基于改进视觉里程计的高坝大库水下环境感知与构图方法
CN118537605A (zh) * 2024-07-24 2024-08-23 集美大学 一种三维点云匹配退化的检测方法、装置及程序产品

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116758161A (zh) * 2023-06-26 2023-09-15 北京道仪数慧科技有限公司 移动端空间数据生成方法及空间感知移动端
CN116698046B (zh) * 2023-08-04 2023-12-01 苏州观瑞汽车技术有限公司 一种物业室内服务机器人建图定位和回环检测方法及系统
CN116698046A (zh) * 2023-08-04 2023-09-05 苏州观瑞汽车技术有限公司 一种物业室内服务机器人建图定位和回环检测方法及系统
CN117109568A (zh) * 2023-08-24 2023-11-24 北京自动化控制设备研究所 惯性/多维视觉联合定位方法
CN117073690B (zh) * 2023-10-17 2024-03-15 山东大学 一种基于多地图策略的导航方法及系统
CN117073690A (zh) * 2023-10-17 2023-11-17 山东大学 一种基于多地图策略的导航方法及系统
CN117367412B (zh) * 2023-12-07 2024-03-29 南开大学 一种融合捆集调整的紧耦合激光惯导里程计与建图方法
CN117367412A (zh) * 2023-12-07 2024-01-09 南开大学 一种融合捆集调整的紧耦合激光惯导里程计与建图方法
CN117437290B (zh) * 2023-12-20 2024-02-23 深圳市森歌数据技术有限公司 一种多传感器融合的自然保护区无人机三维空间定位方法
CN117437290A (zh) * 2023-12-20 2024-01-23 深圳市森歌数据技术有限公司 一种多传感器融合的自然保护区无人机三维空间定位方法
CN117824625A (zh) * 2024-03-05 2024-04-05 河海大学 基于改进视觉里程计的高坝大库水下环境感知与构图方法
CN117824625B (zh) * 2024-03-05 2024-05-14 河海大学 基于改进视觉里程计的高坝大库水下环境感知与构图方法
CN118537605A (zh) * 2024-07-24 2024-08-23 集美大学 一种三维点云匹配退化的检测方法、装置及程序产品
CN118537605B (zh) * 2024-07-24 2024-10-29 集美大学 一种三维点云匹配退化的检测方法、装置及程序产品

Similar Documents

Publication Publication Date Title
CN112347840B (zh) 视觉传感器激光雷达融合无人机定位与建图装置和方法
CN116182837A (zh) 基于视觉激光雷达惯性紧耦合的定位建图方法
CN109709801B (zh) 一种基于激光雷达的室内无人机定位系统及方法
CN110243358B (zh) 多源融合的无人车室内外定位方法及系统
CN109798896B (zh) 一种室内机器人定位与建图方法及装置
CN113625774B (zh) 局部地图匹配与端到端测距多无人机协同定位系统和方法
CN111288989B (zh) 一种小型无人机视觉定位方法
CN110726406A (zh) 一种改进的非线性优化单目惯导slam的方法
CN114419147A (zh) 一种救援机器人智能化远程人机交互控制方法及系统
CN103413352A (zh) 基于rgbd多传感器融合的场景三维重建方法
Jia et al. A Survey of simultaneous localization and mapping for robot
CN115272596A (zh) 一种面向单调无纹理大场景的多传感器融合slam方法
Zhang et al. Hybrid iteration and optimization-based three-dimensional reconstruction for space non-cooperative targets with monocular vision and sparse lidar fusion
Liu et al. A multi-sensor fusion with automatic vision-LiDAR calibration based on Factor graph joint optimization for SLAM
CN111739066B (zh) 一种基于高斯过程的视觉定位方法、系统及存储介质
CN111812978B (zh) 一种多无人机协作slam方法与系统
CN115355904A (zh) 一种针对地面移动机器人的Lidar-IMU融合的slam方法
Wang et al. Micro aerial vehicle navigation with visual-inertial integration aided by structured light
CN112945233B (zh) 一种全局无漂移的自主机器人同时定位与地图构建方法
Zuo et al. Overview of obstacle avoidance algorithms for UAV environment awareness
CN115512054B (zh) 三维时空连续点云地图的构建方法
Zhao et al. 3D indoor map building with monte carlo localization in 2D map
CN116295342A (zh) 一种用于飞行器勘测的多传感状态估计器
CN116953723A (zh) 机车检修车间环境中移动机器人即时定位与地图构建方法
CN114459474A (zh) 一种基于因子图的惯性/偏振/雷达/光流紧组合导航的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination