CN116154101A - Electrochemical devices and electronic devices - Google Patents
Electrochemical devices and electronic devices Download PDFInfo
- Publication number
- CN116154101A CN116154101A CN202310200234.XA CN202310200234A CN116154101A CN 116154101 A CN116154101 A CN 116154101A CN 202310200234 A CN202310200234 A CN 202310200234A CN 116154101 A CN116154101 A CN 116154101A
- Authority
- CN
- China
- Prior art keywords
- positive electrode
- electrolyte
- active material
- electrode active
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
本申请是申请号为202110564152.4、发明名称为“电化学装置和电子装置”的中国发明的分案申请。This application is a divisional application of the Chinese invention with application number 202110564152.4 and invention name “Electrochemical device and electronic device”.
技术领域Technical Field
本申请涉及储能技术领域,具体地讲,涉及电化学装置和电子装置。The present application relates to the field of energy storage technology, in particular, to electrochemical devices and electronic devices.
背景技术Background Art
锂离子电池因其能量密度高、循环性能好、环保、安全且无记忆效应等优点,被广泛的应用于便携式电子产品、电动交通、国防航空、能源储备等领域。为了满足社会发展的需求,寻求具有更高能量密度和功率密度的锂离子电池是亟待解决的问题,这就要求所用正极材料具有更高比容量和更高电压平台。Lithium-ion batteries are widely used in portable electronic products, electric transportation, defense aviation, energy storage and other fields due to their high energy density, good cycle performance, environmental protection, safety and no memory effect. In order to meet the needs of social development, it is urgent to seek lithium-ion batteries with higher energy density and power density, which requires the cathode materials used to have higher specific capacity and higher voltage platform.
为了获取更高比能量,正极活性材料正朝着高电压方向发展,目前的正极活性材料随着电压的升高,Li+大量脱出,材料的晶体结构将发生一系列不可逆的破坏,使得晶格氧脱出,电池循环性能大大降低。In order to obtain higher specific energy, positive electrode active materials are developing towards high voltage. At present, as the voltage of positive electrode active materials increases, a large amount of Li + will be released, and the crystal structure of the material will undergo a series of irreversible damage, causing the lattice oxygen to be released, and the battery cycle performance will be greatly reduced.
因此,急需寻求一种电化学装置,以提高在高电压下的正极界面稳定性及循环稳定性。Therefore, there is an urgent need to seek an electrochemical device to improve the positive electrode interface stability and cycle stability under high voltage.
发明内容Summary of the invention
鉴于此,本申请提出了电化学装置,可以提高超高压下正极活性材料在循环过程中的结构稳定性,提升电化学装置的循环稳定性。In view of this, the present application proposes an electrochemical device, which can improve the structural stability of the positive electrode active material during the cycle under ultra-high pressure and enhance the cycle stability of the electrochemical device.
第一方面,本申请提供一种电化学装置,包括正极、负极、隔离膜及电解液;所述正极包括具有P63mc晶体结构的正极活性材料;利用X射线光电子能谱分析,所述正极表面的硼元素的质量含量为n1%,所述正极表面的氧元素的质量含量为n2%,且n1/n2>0.2。In a first aspect, the present application provides an electrochemical device, comprising a positive electrode, a negative electrode, a separator and an electrolyte; the positive electrode comprises a positive electrode active material having a P6 3 mc crystal structure; using X-ray photoelectron spectroscopy analysis, the mass content of boron element on the surface of the positive electrode is n 1 %, the mass content of oxygen element on the surface of the positive electrode is n 2 %, and n 1 /n 2 >0.2.
在上述方案中,电化学装置中的正极活性材料具有P63mc晶体结构,晶体结构稳定,并结合电解液中的硼元素稳定高电压下正极活性材料中的晶格氧,提高正极活性材料在循环过程中结构稳定性,减少高电压下正极活性材料失去活性氧对电解液的氧化,提升电化学装置在超高电压下的循环稳定性。In the above scheme, the positive electrode active material in the electrochemical device has a P6 3 mc crystal structure, which is stable. It combines with the boron element in the electrolyte to stabilize the lattice oxygen in the positive electrode active material under high voltage, thereby improving the structural stability of the positive electrode active material during the cycle, reducing the oxidation of the electrolyte by the positive electrode active material due to the loss of active oxygen under high voltage, and improving the cycle stability of the electrochemical device under ultra-high voltage.
结合第一方面,在一种可行的实施方式中,所述正极表面的硼元素的质量含量为n1%,5<n1<15。In combination with the first aspect, in a feasible implementation manner, the mass content of the boron element on the surface of the positive electrode is n 1 , 5<n 1 <15.
结合第一方面,在一种可行的实施方式中,所述正极表面的氧元素的质量含量为n2%,8<n2<25。In combination with the first aspect, in a feasible implementation manner, the mass content of oxygen element on the surface of the positive electrode is n 2 %, 8<n 2 <25.
结合第一方面,在一种可行的实施方式中,所述电化学装置在满充状态下,利用X射线光电子能谱分析,所述正极活性材料在17.5°至19°范围内具有特征峰,所述特征峰的半峰宽为0.05°至0.1°。In combination with the first aspect, in a feasible implementation, when the electrochemical device is in a fully charged state, using X-ray photoelectron spectroscopy analysis, the positive electrode active material has a characteristic peak in the range of 17.5° to 19°, and the half-peak width of the characteristic peak is 0.05° to 0.1°.
结合第一方面,在一种可行的实施方式中,所述正极活性材料满足以下特征(a)至(c)中的至少一者:(a)所述正极活性材料的平均粒径为8μm至30μm;(b)所述正极活性材料的振实密度为2.2g/cm3至3g/cm3;(c)所述正极活性材料包含具有氧元素及M元素的锂金属复合氧化物,其中,M元素包括Al、Mg、Ti、Mn、Fe、Ni、Zn、Cu、Nb、Cr或Zr中的至少一种。In combination with the first aspect, in a feasible embodiment, the positive electrode active material satisfies at least one of the following characteristics (a) to (c): (a) the average particle size of the positive electrode active material is 8μm to 30μm; (b) the tap density of the positive electrode active material is 2.2g/ cm3 to 3g/ cm3 ; (c) the positive electrode active material comprises a lithium metal composite oxide having an oxygen element and an M element, wherein the M element includes at least one of Al, Mg, Ti, Mn, Fe, Ni, Zn, Cu, Nb, Cr or Zr.
结合第一方面,在一种可行的实施方式中,所述正极活性材料包括LixNazCo1- yMyO2,其中,0.6<x<1.02,0≤y<0.15,0≤z<0.03,M元素包括Al、Mg、Ti、Mn、Fe、Ni、Zn、Cu、Nb、Cr或Zr中的至少一种。In combination with the first aspect, in a feasible implementation, the positive electrode active material includes LixNazCo1 - yMyO2 , wherein 0.6<x<1.02 , 0≤y<0.15, 0≤z<0.03, and the M element includes at least one of Al, Mg, Ti, Mn, Fe, Ni, Zn, Cu, Nb, Cr or Zr.
结合第一方面,在一种可行的实施方式中,所述电解液包括二氟草酸硼酸锂、四氟硼酸锂或双三氟甲磺酰亚胺锂中的至少一种。In combination with the first aspect, in a feasible implementation, the electrolyte includes at least one of lithium difluorooxalatoborate, lithium tetrafluoroborate or lithium bis(trifluoromethanesulfonyl)imide.
结合第一方面,在一种可行的实施方式中,所述电解液包括二氟草酸硼酸锂、四氟硼酸锂或双三氟甲磺酰亚胺锂中的至少一种。In combination with the first aspect, in a feasible implementation, the electrolyte includes at least one of lithium difluorooxalatoborate, lithium tetrafluoroborate or lithium bis(trifluoromethanesulfonyl)imide.
结合第一方面,在一种可行的实施方式中,所述电解液满足以下条件(d)至(f)中至少一者:(d)所述电解液包括二氟草酸硼酸锂,所述二氟草酸硼酸锂在所述电解液中的质量为X%,X的取值范围为8至25;(e)所述电解液包括二氟草酸硼酸锂,所述二氟草酸硼酸锂在所述电解液中的质量为X%,所述电解液还包括四氟硼酸锂,所述四氟硼酸锂在所述电解液中的质量为Y%,Y的取值范围为1至10,且0.8≤X/Y≤25;(f)所述电解液包括二氟草酸硼酸锂,所述二氟草酸硼酸锂在所述电解液中的质量为X%,所述电解液还包括四氟硼酸锂,所述四氟硼酸锂在所述电解液中的质量为Y%,所述电解液还包括双三氟甲磺酰亚胺锂,所述双三氟甲磺酰亚胺锂在所述电解液中的质量为Z%,Z的取值范围为2至30,且0.3≤(X+Y)/Z≤17.5。In combination with the first aspect, in a feasible embodiment, the electrolyte satisfies at least one of the following conditions (d) to (f): (d) the electrolyte includes lithium difluorooxalatoborate, and the mass of the lithium difluorooxalatoborate in the electrolyte is X%, and the value range of X is 8 to 25; (e) the electrolyte includes lithium difluorooxalatoborate, and the mass of the lithium difluorooxalatoborate in the electrolyte is X%. The electrolyte also includes lithium tetrafluoroborate, and the mass of the lithium tetrafluoroborate in the electrolyte is Y%. The value range of Y is 1 to 10, and 0.8≤X/Y≤25; (f) the electrolyte includes lithium difluorooxalatoborate, the mass of lithium difluorooxalatoborate in the electrolyte is X%, the electrolyte also includes lithium tetrafluoroborate, the mass of lithium tetrafluoroborate in the electrolyte is Y%, the electrolyte also includes lithium bis(trifluoromethanesulfonylimide), the mass of lithium bis(trifluoromethanesulfonylimide) in the electrolyte is Z%, the value range of Z is 2 to 30, and 0.3≤(X+Y)/Z≤17.5.
结合第一方面,在一种可行的实施方式中,1.16≤(X+Y)/Z≤13。In combination with the first aspect, in a feasible implementation manner, 1.16≤(X+Y)/Z≤13.
第二方面,本申请提供一种电子装置,所述电子装置包括上述第一方面所述的电化学装置。In a second aspect, the present application provides an electronic device, which includes the electrochemical device described in the first aspect.
相对于现有技术,本申请至少具有以下有益效果:Compared with the prior art, this application has at least the following beneficial effects:
本申请提供的电化学装置中的正极活性材料具有P63mc晶体结构,晶体结构稳定性高,降低颗粒破碎、晶体结构损坏的概率,改善高电压循环过程中正极活性材料的结构稳定性,从而改善电化学装置的循环性能。The positive electrode active material in the electrochemical device provided in the present application has a P6 3 mc crystal structure with high crystal structure stability, which reduces the probability of particle breakage and crystal structure damage, improves the structural stability of the positive electrode active material during high voltage cycling, and thus improves the cycling performance of the electrochemical device.
本申请的电化学装置的电解液中的锂盐能够在正极活性材料表面形成富含B-O键的正极材料固态电解质界面膜,在高电压下,正极表面的B-O键能够稳定正极活性材料中的晶格氧,改善高电压循环过程中正极活性材料的结构稳定性;通过对正极活性材料晶体结构的改性,增强电解液正极成膜保护,改善电化学装置在超高电压(>4.55V)下的循环稳定性。The lithium salt in the electrolyte of the electrochemical device of the present application can form a positive electrode material solid electrolyte interface film rich in B-O bonds on the surface of the positive electrode active material. Under high voltage, the B-O bonds on the positive electrode surface can stabilize the lattice oxygen in the positive electrode active material and improve the structural stability of the positive electrode active material during high voltage cycling. By modifying the crystal structure of the positive electrode active material, the electrolyte positive electrode film formation protection is enhanced, and the cycle stability of the electrochemical device under ultra-high voltage (>4.55V) is improved.
具体实施方式DETAILED DESCRIPTION
以下所述是本发明实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明实施例的保护范围。The following is a preferred implementation of the embodiment of the present invention. It should be pointed out that for ordinary technicians in this technical field, several improvements and modifications can be made without departing from the principles of the embodiment of the present invention. These improvements and modifications are also regarded as the protection scope of the embodiment of the present invention.
为了简便,本文仅明确地公开了一些数值范围。然而,任意下限可以与任何上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,尽管未明确记载,但是范围端点间的每个点或单个数值都包含在该范围内。因而,每个点或单个数值可以作为自身的下限或上限与任意其它点或单个数值组合或与其它下限或上限组合形成未明确记载的范围。For simplicity, only some numerical ranges are explicitly disclosed herein. However, any lower limit can be combined with any upper limit to form an unambiguous range; and any lower limit can be combined with other lower limits to form an unambiguous range, and any upper limit can be combined with any other upper limit to form an unambiguous range. In addition, although not explicitly stated, each point or single value between the range endpoints is included in the range. Thus, each point or single value can be combined as its own lower limit or upper limit with any other point or single value or with other lower limits or upper limits to form an unambiguous range.
在本文的描述中,需要说明的是,除非另有说明,“以上”、“以下”为包含本数,“一种或多种”中“多种”的含义是两个以上。In the description of this article, it should be noted that, unless otherwise specified, “above” and “below” are inclusive of the number itself, and “multiple” in “one or more” means more than two.
本申请的上述发明内容并不意欲描述本申请中的每个公开的实施方式或每种实现方式。如下描述更具体地举例说明示例性实施方式。在整篇申请中的多处,通过一系列实施例提供了指导,这些实施例可以以各种组合形式使用。在各个实例中,列举仅作为代表性组,不应解释为穷举。The above invention summary of the present application is not intended to describe each disclosed embodiment or each implementation in the present application. The following description more specifically illustrates exemplary embodiments. In many places throughout the application, guidance is provided by a series of examples, which can be used in various combinations. In each example, enumeration is only used as a representative group and should not be interpreted as exhaustive.
第一方面,本申请提供一种电化学装置,包括正极、负极、隔离膜及电解液;所述正极包括正极活性材料,所述正极活性材料具有P63mc晶体结构;利用X射线光电子能谱分析,所述正极表面的硼元素的质量含量为n1%,所述正极表面的氧元素的质量含量为n2%,且n1/n2>0.2。In a first aspect, the present application provides an electrochemical device, comprising a positive electrode, a negative electrode, a separator and an electrolyte; the positive electrode comprises a positive electrode active material, and the positive electrode active material has a P6 3 mc crystal structure; using X-ray photoelectron spectroscopy analysis, the mass content of boron element on the surface of the positive electrode is n 1 %, the mass content of oxygen element on the surface of the positive electrode is n 2 %, and n 1 /n 2 >0.2.
本申请的电化学装置,电解液中的锂盐能够在正极活性材料表面形成富含B-O的正极材料固态电解质界面膜,在高电压下,正极表面的B-O键能够稳定正极活性材料中的晶格氧,改善高电压循环过程中正极活性材料的结构稳定性;正极活性材料具有P63mc晶体结构,晶体结构稳定性高,降低颗粒破碎、晶体结构损坏的概率,改善高电压循环过程中正极活性材料的结构稳定性。通过晶体结构的改性,增强电解液正极成膜保护,可以改善电化学装置在超高电压(>4.55V)下的循环稳定性。In the electrochemical device of the present application, the lithium salt in the electrolyte can form a BO-rich positive electrode material solid electrolyte interface film on the surface of the positive electrode active material. Under high voltage, the BO bond on the positive electrode surface can stabilize the lattice oxygen in the positive electrode active material, improving the structural stability of the positive electrode active material during high voltage cycling; the positive electrode active material has a P6 3 mc crystal structure, which has high crystal structure stability, reduces the probability of particle crushing and crystal structure damage, and improves the structural stability of the positive electrode active material during high voltage cycling. By modifying the crystal structure and enhancing the electrolyte positive electrode film formation protection, the cycle stability of the electrochemical device under ultra-high voltage (>4.55V) can be improved.
如本文中所使用正极表面指的是经过充放电后电解液与正极材料之间形成在正极表面的界面。如本文中所使用,“满充状态”指的是将电化学装置充电至4.55V以上时的状态。即所述电化学装置在满充状态下,正极的充电电位在4.55V以上,具体可以是4.55V、4.56V、4.57V、4.58V、4.59V或4.6V等。As used herein, the positive electrode surface refers to the interface formed on the positive electrode surface between the electrolyte and the positive electrode material after charge and discharge. As used herein, "fully charged state" refers to the state when the electrochemical device is charged to 4.55V or above. That is, when the electrochemical device is in the fully charged state, the charging potential of the positive electrode is above 4.55V, specifically 4.55V, 4.56V, 4.57V, 4.58V, 4.59V or 4.6V, etc.
作为本申请可选的技术方案,正极包括正极集流体以及设置于正极集流体至少一个表面上的正极活性物质层。As an optional technical solution of the present application, the positive electrode includes a positive electrode current collector and a positive electrode active material layer arranged on at least one surface of the positive electrode current collector.
正极集流体可以采用金属箔材、涂炭金属箔材或多孔金属板,优选采用铝箔。The positive electrode current collector can be made of metal foil, carbon-coated metal foil or porous metal plate, preferably aluminum foil.
正极活性物质层包括正极活性材料,所述正极活性材料具有P63mc晶体结构,具体为六方密堆积的晶体结构,晶体结构的稳定性更高,颗粒破碎、晶体结构损坏的概率更低,锂离子脱嵌、入嵌过程中引起的结构变化较小,且在空气及水中的稳定性较高,从而对改善锂离子电池的循环性能和热稳定性有利。The positive electrode active material layer includes a positive electrode active material, and the positive electrode active material has a P6 3 mc crystal structure, specifically a hexagonal close-packed crystal structure, the crystal structure has higher stability, lower probability of particle breakage and crystal structure damage, smaller structural changes caused by lithium ion deintercalation and intercalation, and higher stability in air and water, which is beneficial to improving the cycle performance and thermal stability of lithium ion batteries.
作为本申请可选的技术方案,所述正极活性材料为包含具有氧元素及M元素的锂金属复合氧化物,其中,M元素包括Al、Mg、Ti、Mn、Fe、Ni、Zn、Cu、Nb、Cr或Zr中的至少一种。As an optional technical solution of the present application, the positive electrode active material is a lithium metal composite oxide containing oxygen and M elements, wherein the M element includes at least one of Al, Mg, Ti, Mn, Fe, Ni, Zn, Cu, Nb, Cr or Zr.
优选地,M元素包括Al、Mg、Ti、Mn或Y中的至少一种。Preferably, the M element includes at least one of Al, Mg, Ti, Mn or Y.
在本申请的具体实施方式中,所述正极活性材料的化学通式为LixNazCo1-yMyO2,其中,0.6<x<0.85,0≤y<0.15,0≤z<0.03,M元素包括Al、Mg、Ti、Mn、Fe、Ni、Zn、Cu、Nb、Cr或Zr中的至少一种。In a specific embodiment of the present application, the chemical formula of the positive electrode active material is LixNazCo1 -yMyO2 , wherein 0.6<x<0.85, 0≤y<0.15, 0≤z<0.03, and the M element includes at least one of Al, Mg, Ti, Mn, Fe , Ni, Zn, Cu, Nb, Cr or Zr.
所述电化学装置在满充状态下,利用X射线光电子能谱分析,所述正极活性材料在17.5°至19°范围内具有特征峰,所述特征峰的半峰宽为0.05°至0.1°。When the electrochemical device is in a fully charged state, the positive electrode active material has a characteristic peak in the range of 17.5° to 19° through X-ray photoelectron spectroscopy analysis, and the half-peak width of the characteristic peak is 0.05° to 0.1°.
具体地,所述正极活性材料的XRD图谱中的特征峰可以位于17.5°、18°、18.5°或19°等,所述特征峰的半峰宽可以为0.05°至0.1°。Specifically, the characteristic peak in the XRD spectrum of the positive electrode active material may be located at 17.5°, 18°, 18.5° or 19°, etc., and the half-peak width of the characteristic peak may be 0.05° to 0.1°.
在本申请的一些实施方式中,正极活性材料包括但不限于In some embodiments of the present application, the positive electrode active material includes but is not limited to
Li0.63Co0.985Al0.015O2、Li0.6Na0.01Co0.985Al0.015O2、Li0.7Na0.01Co0.985Al0.015O2、DD210838I-DIVLi 0.63 Co 0.985 Al 0.015 O 2 , Li 0.6 Na 0.01 Co 0.985 Al 0.015 O 2 , Li 0.7 Na 0.01 Co 0.985 Al 0.015 O 2 , DD210838I-DIV
Li0.8Na0.01Co0.985Al0.015O2、Li0.7Na0.01Co0.98Al0.02O2、Li0.7Na0.01Co0.975Al0.025O2、Li0.7Na0.015Co0.985Al0.015O2、Li0.7Na0.02Co0.985Al0.015O2、Li0.7Na0.01Co0.983Al0.015Mg0.002O2、Li0.7Na0.01Co0.984Al0.015Ti0.001O2、Li0.7Na0.01Co0.994Al0.003Mg0.002Ti0.001O2。Li 0.8 Na 0.01 Co 0.985 Al 0.015 O 2 , Li 0.7 Na 0.01 Co 0.98 Al 0.02 O 2 , Li 0.7 Na 0.01 Co 0.975 Al 0.025 O 2 , Li 0.7 Na 0.015 Co 0.985 Al 0.015 O 2 , Li 0. 7 Na 0.02 Co 0.985 Al 0.015 O 2 , Li 0.7 Na 0.01 Co 0.983 Al 0.015 Mg 0.002 O 2 , Li 0.7 Na 0.01 Co 0.984 Al 0.015 Ti 0.001 O 2 , Li 0.7 Na 0.01 Co 0.994 Al 0.003 Mg 0.002 Ti 0.001 O 2 .
在本申请的一些实施方式中,正极活性材料的平均粒径Dv50为8μm至30μm,平均粒径具体可以是8μm、9μm、10μm、12μm、15μm、18μm、20μm、22μm、25μm、28μm或30μm等等,当然也可以是上述范围内的其他值,在此不做限定。平均粒径太大,锂离子在大粒径颗粒中扩散路径较长,且扩散需要克服的阻力越大,嵌入过程引起的正极活性材料晶体变形与体积膨胀不断积累,使得嵌入过程逐渐变得难以进行,将正极活性材料的粒径控制在30μm以下,可以提高充放电过程中的电化学动力学性能及倍率性能,并减小极化现象,使电池具有较高的比容量、库伦效率及循环性能。平均粒径太小,正极活性材料的比表面积往往较大,表面副反应会增多,将正极活性材料的粒径在8μm以上,保证正极活性材料的粒径不会过小,减少材料表面副反应,并且还能有效抑制粒径过小的正极活性材料的颗粒与颗粒之间的团聚,保证电池具有较高的倍率性能和循环性能。In some embodiments of the present application, the average particle size Dv50 of the positive electrode active material is 8 μm to 30 μm, and the average particle size can be 8 μm, 9 μm, 10 μm, 12 μm, 15 μm, 18 μm, 20 μm, 22 μm, 25 μm, 28 μm or 30 μm, etc., and of course it can also be other values within the above range, which are not limited here. If the average particle size is too large, the diffusion path of lithium ions in large-size particles is longer, and the greater the resistance that needs to be overcome for diffusion, the crystal deformation and volume expansion of the positive electrode active material caused by the embedding process continue to accumulate, making the embedding process gradually difficult to carry out. Controlling the particle size of the positive electrode active material below 30 μm can improve the electrochemical kinetics and rate performance during the charge and discharge process, and reduce polarization, so that the battery has a higher specific capacity, coulombic efficiency and cycle performance. If the average particle size is too small, the specific surface area of the positive electrode active material is often large, and the surface side reactions will increase. The particle size of the positive electrode active material is kept above 8μm to ensure that the particle size of the positive electrode active material is not too small, reduce the side reactions on the material surface, and effectively inhibit the agglomeration of particles of the positive electrode active material with too small a particle size, thereby ensuring that the battery has high rate performance and cycle performance.
所述正极活性材料的振实密度为2.2g/cm3至3g/cm3。振实密度具体可以是2.2g/cm3、2.3g/cm3、2.4g/cm3、2.5g/cm3、2.6g/cm3、2.7g/cm3、2.8g/cm3、2.9g/cm3或3g/cm3等等,当然也可以是上述范围内的其他值,在此不做限定。使正极活性材料的振实密度在上述范围内,有利于提高电池的比容量和能量密度,并提高电池的倍率性能及循环性能。The tap density of the positive electrode active material is 2.2 g/cm 3 to 3 g/cm 3. The tap density can be 2.2 g/cm 3 , 2.3 g/cm 3 , 2.4 g/cm 3 , 2.5 g/cm 3 , 2.6 g/cm 3 , 2.7 g/cm 3 , 2.8 g/cm 3 , 2.9 g/cm 3 or 3 g/cm 3 , etc., and of course it can be other values within the above range, which is not limited here. Making the tap density of the positive electrode active material within the above range is conducive to improving the specific capacity and energy density of the battery, and improving the rate performance and cycle performance of the battery.
可选地,正极活性材料的颗粒可以包括一次颗粒和/或二次颗粒。Alternatively, the particles of the positive electrode active material may include primary particles and/or secondary particles.
需要说明的是,正极活性材料的晶体结构可以采用X射线粉末衍射仪测定,例如使用德国Brucker AxS公司的Brucker D8A_A25型X射线衍射仪,以CuKα射线为辐射源,射线波长扫描2θ角范围为10°至90°,扫描速率为4°/min。It should be noted that the crystal structure of the positive electrode active material can be determined by an X-ray powder diffractometer, for example, a Brucker D8A_A25 X-ray diffractometer from Brucker AxS of Germany, with CuKα radiation as the radiation source and a radiation wavelength of The scanning 2θ angle range was from 10° to 90°, and the scanning rate was 4°/min.
正极活性材料的振实密度可以用本领域公知的仪器及方法进行测定,例如用振实密度测定仪方便地测定,如FZS4-4B型振实密度测定仪。The tap density of the positive electrode active material can be measured using instruments and methods known in the art, for example, it can be conveniently measured using a tap density tester, such as a FZS4-4B tap density tester.
正极活性材料的平均粒径Dv50为本领域公知的含义,颗粒粒度测试方法参照GB/T19077-2016。例如可以用激光粒度分析仪方便地测定,如英国马尔文仪器有限公司的Mastersizer 3000型激光粒度分析仪。The average particle size Dv50 of the positive electrode active material is well known in the art, and the particle size test method refers to GB/T19077-2016. For example, it can be conveniently measured using a laser particle size analyzer, such as the Mastersizer 3000 laser particle size analyzer produced by Malvern Instruments Ltd., UK.
进一步地,正极活性物质层中还包括粘结剂和导电剂。Furthermore, the positive electrode active material layer also includes a binder and a conductive agent.
所述粘结剂可以是丁苯橡胶(SBR)、水性丙烯酸树脂、羧甲基纤维素(CMC)、聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、乙烯-醋酸乙烯酯共聚物(EVA)及聚乙烯醇(PVA)中的一种或多种。The binder may be one or more of styrene-butadiene rubber (SBR), water-based acrylic resin, carboxymethyl cellulose (CMC), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), ethylene-vinyl acetate copolymer (EVA) and polyvinyl alcohol (PVA).
所述导电剂可以是超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的一种或多种。The conductive agent may be one or more of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
可以按照本领域常规方法制备上述正极。通常将正极活性材料及可选的导电剂和粘结剂分散于溶剂(例如N-甲基吡咯烷酮,简称为NMP)中,形成均匀的正极浆料,将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,得到正极。The positive electrode can be prepared according to conventional methods in the art. Usually, the positive electrode active material and optional conductive agent and binder are dispersed in a solvent (such as N-methylpyrrolidone, referred to as NMP) to form a uniform positive electrode slurry, and the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode is obtained.
由于采用了本申请第一方面的正极活性材料,因此本申请的正极具有较高的综合电化学性能及安全性能。Since the positive electrode active material of the first aspect of the present application is adopted, the positive electrode of the present application has higher comprehensive electrochemical performance and safety performance.
进一步地,负极可以是包括负极集流体及设置于负极集流体上的负极活性物质层。例如负极集流体包括相对的两个表面,负极活性物质层层叠设置于负极集流体的两个表面中的任意一者或两者上。Furthermore, the negative electrode may include a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector. For example, the negative electrode current collector includes two opposite surfaces, and the negative electrode active material layer is stacked on either or both of the two surfaces of the negative electrode current collector.
负极集流体可以采用铜箔、镍箔、不锈钢箔、钛箔、泡沫镍、泡沫铜、覆有导电金属的聚合物基底及其组合。The negative electrode current collector may be made of copper foil, nickel foil, stainless steel foil, titanium foil, foamed nickel, foamed copper, a polymer substrate coated with a conductive metal, and a combination thereof.
负极活性物质层通常包括负极活性材料以及可选的导电剂、粘结剂和增稠剂。The negative electrode active material layer generally includes a negative electrode active material and optionally a conductive agent, a binder and a thickener.
作为本申请可选的技术方案,所述负极活性材料的实例可以包括,但不限于,天然石墨、人造石墨、中间相微碳球(简称为MCMB)、硬碳、软碳、硅、硅-碳复合物、Li-Sn合金、Li-Sn-O合金、Sn、SnO、SnO2或尖晶石结构的锂化TiO2-Li4Ti5O12、Li金属、Li-Al合金中的至少一种。其中,硅-碳复合物是指基于硅-碳负极活性材料的重量包含至少约5重量%的硅。As an optional technical solution of the present application, examples of the negative electrode active material may include, but are not limited to, natural graphite, artificial graphite, mesophase microcarbon beads (MCMB for short), hard carbon, soft carbon, silicon, silicon-carbon composite, Li-Sn alloy, Li-Sn-O alloy, Sn, SnO, SnO 2 or lithiated TiO 2 -Li 4 Ti 5 O 12 of spinel structure, Li metal, at least one of Li-Al alloy. Wherein, the silicon-carbon composite refers to silicon containing at least about 5 weight % based on the weight of the silicon-carbon negative electrode active material.
导电剂可以是超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的一种或多种,粘结剂可以是丁苯橡胶(SBR)、水性丙烯酸树脂及羧甲基纤维素(CMC)中的一种或多种,增稠剂可以是羧甲基纤维素(CMC)。但本申请并不限定于这些材料,本申请还可以使用其它可被用作锂离子电池负极活性物质、导电剂、粘结剂、增稠剂的材料。The conductive agent may be one or more of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers, the binder may be one or more of styrene-butadiene rubber (SBR), water-based acrylic resin and carboxymethyl cellulose (CMC), and the thickener may be carboxymethyl cellulose (CMC). However, the present application is not limited to these materials, and the present application may also use other materials that can be used as negative electrode active materials, conductive agents, binders and thickeners of lithium ion batteries.
可以按照本领域常规方法制备上述负极。通常将负极活性材料及可选的导电剂、粘结剂和增稠剂分散于溶剂中,溶剂可以是去离子水,形成均匀的负极浆料,将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,得到负极。The negative electrode can be prepared according to conventional methods in the art. Usually, the negative electrode active material and optional conductive agent, binder and thickener are dispersed in a solvent, which can be deionized water, to form a uniform negative electrode slurry, which is then coated on the negative electrode current collector, and then dried, cold pressed and other processes are performed to obtain the negative electrode.
对上述隔离膜没有特别的限制,可以选用任意公知的具有电化学稳定性和化学稳定性的多孔结构隔离膜,例如可以是玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的一种或多种的单层或多层薄膜。There is no particular limitation on the above-mentioned isolation membrane, and any known porous structure isolation membrane with electrochemical stability and chemical stability can be selected, for example, it can be a single-layer or multi-layer film of one or more of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
在对正极活性材料改性的基础上,若进一步对电解液体系进行改进,能够更好地稳定正极活性材料的界面,抑制正极活性材料与电解液之间的副反应,从而降低正极活性材料的晶格氧的脱出,改善电化学装置的循环性能。On the basis of modifying the positive electrode active material, if the electrolyte system is further improved, the interface of the positive electrode active material can be better stabilized, the side reaction between the positive electrode active material and the electrolyte can be inhibited, thereby reducing the release of lattice oxygen of the positive electrode active material and improving the cycle performance of the electrochemical device.
电解液包括有机溶剂、锂盐和添加剂。The electrolyte includes an organic solvent, a lithium salt and additives.
作为本申请可选的技术方案,电解液中的锂盐可包括二氟草酸硼酸锂、四氟硼酸锂或双三氟甲磺酰亚胺锂中的至少一种。可以理解地,上述锂盐含有硼元素,有利于高电压下电解液与正极表面接触反应时,在正极表面形成B-O键,稳定正极活性材料中的晶格氧,改善高电压循环过程中正极活性材料的结构稳定性。As an optional technical solution of the present application, the lithium salt in the electrolyte may include at least one of lithium difluorooxalatoborate, lithium tetrafluoroborate or lithium bis(trifluoromethanesulfonyl)imide. It can be understood that the above lithium salt contains boron, which is conducive to the formation of B-O bonds on the positive electrode surface when the electrolyte contacts and reacts with the positive electrode surface under high voltage, stabilizes the lattice oxygen in the positive electrode active material, and improves the structural stability of the positive electrode active material during high voltage cycling.
作为本申请可选的技术方案,所述电解液包括二氟草酸硼酸锂(LiDFOB),二氟草酸硼酸锂(LiDFOB)在电解液中的质量为X%,X的取值范围为8至25。具体地,二氟草酸硼酸锂(LiDFOB)在电解液中的质量具体可以是8%、10%、12%、14%或25%等,当然也可以是上述范围内的其他值。As an optional technical solution of the present application, the electrolyte includes lithium difluorooxalate borate (LiDFOB), the mass of lithium difluorooxalate borate (LiDFOB) in the electrolyte is X%, and the value range of X is 8 to 25. Specifically, the mass of lithium difluorooxalate borate (LiDFOB) in the electrolyte can be 8%, 10%, 12%, 14% or 25%, etc., and of course it can also be other values within the above range.
作为本申请可选的技术方案,所述电解液还包括四氟硼酸锂(LiBF4),所述四氟硼酸锂(LiBF4)在所述电解液中的质量为Y%,Y的取值范围为1至10,且0.8≤X/Y≤25。As an optional technical solution of the present application, the electrolyte further includes lithium tetrafluoroborate (LiBF 4 ), the mass of the lithium tetrafluoroborate (LiBF 4 ) in the electrolyte is Y%, the value range of Y is 1 to 10, and 0.8≤X/Y≤25.
具体地,四氟硼酸锂(LiBF4)在电解液中的质量具体可以是1%、2%、4%、5%、6%、7%、8%或10%等,当然也可以是上述范围内的其他值。Specifically, the mass of lithium tetrafluoroborate (LiBF 4 ) in the electrolyte can be 1%, 2%, 4%, 5%, 6%, 7%, 8% or 10%, etc., and can also be other values within the above range.
其中,X/Y的比值具体可以是0.8、1、2、4、6、8、10、12、14或25等,当然也可以是上述范围内的其他值。The ratio of X/Y may specifically be 0.8, 1, 2, 4, 6, 8, 10, 12, 14 or 25, etc., and may also be other values within the above range.
作为本申请可选的技术方案,所述电解液还包括双三氟甲磺酰亚胺锂(LiTFSI),所述双三氟甲磺酰亚胺锂(LiTFSI)在所述电解液中的质量为Z%,Z的取值范围为2至30,且0.3≤(X+Y)/Z≤17.5。As an optional technical solution of the present application, the electrolyte further includes lithium bistrifluoromethanesulfonyl imide (LiTFSI), the mass of lithium bistrifluoromethanesulfonyl imide (LiTFSI) in the electrolyte is Z%, the value range of Z is 2 to 30, and 0.3≤(X+Y)/Z≤17.5.
具体地,双三氟甲磺酰亚胺锂(LiTFSI)在电解液中的质量具体可以是2%、4%、6%、8%、11%、15%、20%或30%等,当然也可以是上述范围内的其他值。Specifically, the mass of lithium bistrifluoromethanesulfonyl imide (LiTFSI) in the electrolyte can be 2%, 4%, 6%, 8%, 11%, 15%, 20% or 30%, etc., and can also be other values within the above range.
其中,(X+Y)/Z的比值具体可以是0.3、1、2、3、6、7、9、10、11、12、13、14、15或17.5等,当然也可以是上述范围内的其他值。Among them, the ratio of (X+Y)/Z can specifically be 0.3, 1, 2, 3, 6, 7, 9, 10, 11, 12, 13, 14, 15 or 17.5, and of course it can also be other values within the above range.
有机溶剂可包括环状碳酸酯、链状碳酸酯、羧酸酯中的一种或几种。例如可以是:碳酸乙烯酯(EC),碳酸丙烯酯(PC),碳酸二乙酯(DEC),碳酸甲乙酯(DEC),碳酸二甲酯(DMC),环丁砜(SF),γ-丁内酯(γ-BL),碳酸丙乙酯,甲酸甲酯(MF),甲酸乙酯(MA),乙酸乙酯(EA),丙酸乙酯(EP),丙酸丙酯(PP),丙酸甲酯,丁酸甲酯,丁酸乙酯,氟代碳酸甲乙酯,氟代碳酸二甲酯,氟代碳酸二乙酯等中的至少一种。The organic solvent may include one or more of cyclic carbonates, linear carbonates, and carboxylates. For example, it may be: ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), ethyl methyl carbonate (DEC), dimethyl carbonate (DMC), sulfolane (SF), γ-butyrolactone (γ-BL), propyl carbonate, methyl formate (MF), ethyl formate (MA), ethyl acetate (EA), ethyl propionate (EP), propyl propionate (PP), methyl propionate, methyl butyrate, ethyl butyrate, ethyl methyl fluorocarbonate, dimethyl fluorocarbonate, diethyl fluorocarbonate, etc. At least one of the above.
所述电解液中还可包括功能添加剂,功能添加剂选自碳酸亚乙烯酯(VC)、硫酸乙烯酯(DTD)、丙磺酸内酯(PS)、氟代碳酸乙烯酯(FEC)、三(三甲基硅基)磷酸酯(TMSP)、己二腈(ADN)、琥珀腈(SN)、1,3,6-己烷三腈(HTCN)或1,2,3-三(2-氰氧基)丙烷(TCEP)中的至少一种。The electrolyte may further include a functional additive, wherein the functional additive is selected from at least one of vinylene carbonate (VC), vinyl sulfate (DTD), propane sultone (PS), fluoroethylene carbonate (FEC), tris(trimethylsilyl) phosphate (TMSP), adiponitrile (ADN), succinonitrile (SN), 1,3,6-hexanetrinitrile (HTCN) or 1,2,3-tris(2-cyano)propane (TCEP).
作为本申请可选的技术方案,所述电解液包括如式I所示结构的杂环磺酸盐化合物,所述杂环磺酸盐化合物在所述电解液中的质量为0.1%至2%;As an optional technical solution of the present application, the electrolyte includes a heterocyclic sulfonate compound with a structure as shown in Formula I, and the mass of the heterocyclic sulfonate compound in the electrolyte is 0.1% to 2%;
其中,M为Na或K;X为O或S;Wherein, M is Na or K; X is O or S;
R1、R2、R3各自独立地选自氢、卤素和醛基中的至少一种。R 1 , R 2 and R 3 are each independently selected from at least one of hydrogen, halogen and aldehyde.
具体地,杂环磺酸盐化合物在所述电解液中的质量具体可以是0.1%、0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.8%或2%等,当然也可以是上述范围内的其他值,在此不做限定。Specifically, the mass of the heterocyclic sulfonate compound in the electrolyte can be 0.1%, 0.3%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8% or 2%, etc., and of course it can also be other values within the above range, which is not limited here.
具体地,所述杂环磺酸盐化合物选自以下化合物中的至少一种:Specifically, the heterocyclic sulfonate compound is selected from at least one of the following compounds:
由于采用了具有P63mc晶体结构的正极活性材料以及上述电解液中LiDFOB、LiBF4或LiTFSI的正极成膜添加剂,相互配合,共同作用,稳定了正极活性材料在高电压下的晶格氧,稳定了正极活性材料的结构,改善电化学装置在高电压下的循环稳定性。Due to the use of a positive electrode active material with a P6 3 mc crystal structure and the positive electrode film-forming additives of LiDFOB, LiBF 4 or LiTFSI in the above-mentioned electrolyte, they cooperate with each other and work together to stabilize the lattice oxygen of the positive electrode active material at high voltage, stabilize the structure of the positive electrode active material, and improve the cycle stability of the electrochemical device at high voltage.
作为本申请可选的技术方案,本申请的电化学装置还包括设置在正极与负极之间的隔离膜以防止短路。本申请对电化学装置中使用的隔离膜的材料和形状没有特别限制,其可为现有技术中公开的任何材料和形状。在一些实施例中,隔离膜包括由对本申请的电解液稳定的材料形成的聚合物或无机物等。As an optional technical solution of the present application, the electrochemical device of the present application further includes a separator disposed between the positive electrode and the negative electrode to prevent short circuit. The present application does not particularly limit the material and shape of the separator used in the electrochemical device, which may be any material and shape disclosed in the prior art. In some embodiments, the separator includes a polymer or inorganic substance formed of a material that is stable to the electrolyte of the present application.
作为本申请可选的技术方案,隔离膜可包括基材层和涂覆层。在一些实施例中,基材层为具有多孔结构的无纺布、膜或复合膜。在一些实施例中,基材层的材料可以包括或者选自聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯或聚酰亚胺中的至少一种。在一些实施例中,基材层的材料可以包括或者选自聚乙烯多孔膜、聚丙烯多孔膜、聚乙烯无纺布、聚丙烯无纺布或聚丙烯-聚乙烯-聚丙烯多孔复合膜等。As an optional technical solution of the present application, the isolation film may include a substrate layer and a coating layer. In some embodiments, the substrate layer is a non-woven fabric, a film or a composite film with a porous structure. In some embodiments, the material of the substrate layer may include or be selected from at least one of polyethylene, polypropylene, polyethylene terephthalate or polyimide. In some embodiments, the material of the substrate layer may include or be selected from polyethylene porous film, polypropylene porous film, polyethylene non-woven fabric, polypropylene non-woven fabric or polypropylene-polyethylene-polypropylene porous composite film, etc.
涂覆层可以是,但不限制于,聚合物层、无机物层或者由聚合物与无机物形成的混合层。涂覆层厚度为0.5μm至10μm,具体可以是0.5μm、1μm、2μm、3μm、4μm、6μm、8μm或10μm等等。The coating layer may be, but is not limited to, a polymer layer, an inorganic layer or a mixed layer formed by a polymer and an inorganic substance. The coating layer thickness is 0.5 μm to 10 μm, specifically 0.5 μm, 1 μm, 2 μm, 3 μm, 4 μm, 6 μm, 8 μm or 10 μm, etc.
作为本申请可选的技术方案,无机物层包括无机颗粒,无机颗粒可以包括或者选自氧化铝、氧化硅、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙和硫酸钡中的一种或几种的组合。无机颗粒的平均粒径为0.001μm至3μm,具体可以是0.001μm、0.01μm、0.1μm、0.5μm、1μm、1.5μm、1.8μm、2μm、2.5μm或3μm等等,在此不做限定。As an optional technical solution of the present application, the inorganic layer includes inorganic particles, and the inorganic particles may include or be selected from one or more of aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, hafnium dioxide, tin oxide, cerium dioxide, nickel oxide, zinc oxide, calcium oxide, zirconium oxide, yttrium oxide, silicon carbide, boehmite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide and barium sulfate. The average particle size of the inorganic particles is 0.001 μm to 3 μm, and specifically can be 0.001 μm, 0.01 μm, 0.1 μm, 0.5 μm, 1 μm, 1.5 μm, 1.8 μm, 2 μm, 2.5 μm or 3 μm, etc., which is not limited here.
作为本申请可选的技术方案,聚合物层包括粘结剂,粘结剂选自聚偏氟乙烯(PVDF)、聚偏氟乙烯-六氟乙烯共聚物(PVDF-HFP)、聚乙烯吡咯烷酮(PVP)、聚丙烯酸酯、纯丙乳液(由丙烯酸酯及特殊功能单体共聚而成的阴离子型丙烯酸乳液)、苯丙乳液((苯乙烯-丙烯酸酯乳液)是由苯乙烯和丙烯酸酯单体经乳液共聚而得)以及丁苯乳液(SBR,由丁二烯与苯乙烯乳液共聚而得)中的至少一种。As an optional technical solution of the present application, the polymer layer includes a binder, and the binder is selected from at least one of polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoroethylene copolymer (PVDF-HFP), polyvinyl pyrrolidone (PVP), polyacrylate, pure acrylic emulsion (anionic acrylic emulsion formed by copolymerization of acrylic ester and special functional monomers), styrene acrylic emulsion ((styrene-acrylate emulsion) is obtained by emulsion copolymerization of styrene and acrylate monomers) and styrene-butadiene emulsion (SBR, obtained by copolymerization of butadiene and styrene emulsion).
本领域的技术人员将理解,本申请的电化学装置可以为锂离子电池,也可以为其他任何合适的电化学装置。在不背离本申请公开的内容的基础上,本申请实施例中的电化学装置包括发生电化学反应的任何装置,它的具体实例包括所有种类的一次电池、二次电池、太阳能电池或电容器。特别地,所述电化学装置是锂二次电池,包括锂金属二次电池、锂离子二次电池、锂聚合物二次电池或锂离子聚合物二次电池。Those skilled in the art will understand that the electrochemical device of the present application can be a lithium ion battery or any other suitable electrochemical device. Without departing from the disclosure of the present application, the electrochemical device in the embodiments of the present application includes any device in which an electrochemical reaction occurs, and its specific examples include all kinds of primary batteries, secondary batteries, solar cells or capacitors. In particular, the electrochemical device is a lithium secondary battery, including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
下面结合具体实施例,进一步阐述本申请。应理解,这些实施例仅用于说明本申请而不用于限制本申请的范围。The present application is further described below in conjunction with specific examples. It should be understood that these examples are only used to illustrate the present application and are not used to limit the scope of the present application.
一、正极活性材料的制备1. Preparation of positive electrode active materials
1)、制备P63mc结构的Li0.73Na0.02CoO2 1) Preparation of Li 0.73 Na 0.02 CoO 2 with P6 3 mc structure
步骤(1):将四氧化三钴与碳酸钠粉体按照Na与Co的摩尔比为0.75:1的比例混合;将混合均匀的粉体在氧气气氛中、800℃条件下烧结46h,得到P63mc结构的Na0.75CoO2;Step (1): Cobalt trioxide and sodium carbonate powder are mixed in a ratio of Na to Co of 0.75:1; the uniformly mixed powder is sintered in an oxygen atmosphere at 800° C. for 46 hours to obtain Na 0.75 CoO 2 with a P6 3 mc structure;
步骤(2):将Na0.75CoO2与硝酸锂按照Na与Li的摩尔比为0.75:5的比例混合均匀,在300℃、空气气氛中反应6h,反应物经去离子水多次洗涤,待熔盐清洗干净,烘干粉体得到具有P63mc结构的Li0.73Na0.02CoO2。Step (2): Na 0.75 CoO 2 and lithium nitrate are uniformly mixed in a molar ratio of Na to Li of 0.75:5, and reacted at 300° C. in an air atmosphere for 6 hours. The reactants are washed with deionized water for multiple times. After the molten salt is cleaned, the powder is dried to obtain Li 0.73 Na 0.02 CoO 2 with a P6 3 mc structure.
2)制备P63mc结构的LixNazCo1-yAlyO2 2) Preparation of P6 3 mc structure Li x Na z Co 1-y Al y O 2
步骤(1):将氯化钴和硫酸铝按照Co与Al的摩尔比为1-y:y的比例加入去离子水中,加入沉淀剂碳酸钠和络合剂氨水调节PH值为7,使之沉淀;然后将沉淀物在600℃进行烧结7h,研磨获得(Co1-yAly)3O4粉体。Step (1): adding cobalt chloride and aluminum sulfate in a molar ratio of Co to Al of 1-y:y into deionized water, adding a precipitant of sodium carbonate and a complexing agent of ammonia water to adjust the pH value to 7 to cause precipitation; then sintering the precipitate at 600°C for 7h, and grinding to obtain (Co 1-y Al y ) 3 O 4 powder.
步骤(2):将(Co1-yAly)3O4粉体与碳酸钠粉体按照Na与Co的摩尔比为z:y的比例混合;将混合均匀的粉体在氧气气氛中、800℃条件下烧结46h,得到NazCo1-yAlyO2。Step (2): Mix (Co 1-y Aly ) 3 O 4 powder and sodium carbonate powder in a molar ratio of Na to Co of z:y; sinter the uniformly mixed powder in an oxygen atmosphere at 800°C for 46 hours to obtain Na z Co 1-y Aly O 2 .
步骤(3):将NazCo1-yAlyO2与硝酸锂按Na与Li的摩尔比为z:10x的比例混合均匀,在300℃、空气气氛中反应6h,反应物经去离子水多次洗涤,待熔盐清洗干净,烘干粉体得到具有P63mc结构的LixNazCo1-yAlyO2。Step (3): Na z Co 1-y Aly O 2 and lithium nitrate are uniformly mixed in a molar ratio of Na to Li of z:10x, and reacted at 300°C in an air atmosphere for 6 hours. The reactants are washed with deionized water for multiple times, and after the molten salt is cleaned, the powder is dried to obtain Li x Na z Co 1-y Aly O 2 with a P6 3 mc structure.
3)制备P63mc结构的LixNazCo1-yMyO2 3) Preparation of P6 3 mc structured Li x Na z Co 1-y My O 2
LixNazCo1-yMyO2与LixNazCo1-yAlyO2的制备方法基本相同,不同之处在于参杂元素M的种类和/或含量的不同,具体地,M选自Al、Mg、Ti、Mn、Fe、Ni、Zn、Cu、Nb、Cr或Zr。The preparation methods of LixNazCo1 -yMyO2 and LixNazCo1 - yAlyO2 are basically the same, the difference lies in the type and/or content of the doping element M. Specifically, M is selected from Al, Mg, Ti, Mn , Fe, Ni, Zn , Cu, Nb, Cr or Zr.
4)非P63mc结构的Li0.58Na0.01Co0.985Al0.015O2 4) Non-P6 3 mc structure Li 0.58 Na 0.01 Co 0.985 Al 0.015 O 2
步骤(1):将氯化钴和硫酸铝按照钴与铝的摩尔比为0.985:0.015的比例加入去离子水中,加入沉淀剂碳酸钠和络合剂氨水,调节PH值为7,使之沉淀;然后将沉淀物进行烧结,研磨获得(Co0.985Al0.015)3O4粉体。Step (1): adding cobalt chloride and aluminum sulfate into deionized water at a molar ratio of cobalt to aluminum of 0.985:0.015, adding a precipitant of sodium carbonate and a complexing agent of ammonia water, adjusting the pH value to 7, and causing precipitation; then sintering the precipitate, and grinding to obtain (Co 0.985 Al 0.015 ) 3 O 4 powder.
步骤(2):将(Co0.985Al0.015)3O4粉体与碳酸锂按照锂与钴的摩尔比为0.58:0.985的比例混合均匀后,在空气中,1000℃烧结12h,冷却后,研磨并过筛得到具有R-3m结构的Li0.58Na0.01Co0.985Al0.015O2。Step (2): (Co 0.985 Al 0.015 ) 3 O 4 powder and lithium carbonate are uniformly mixed in a molar ratio of lithium to cobalt of 0.58:0.985, sintered at 1000° C. for 12 h in air, and after cooling, ground and sieved to obtain Li 0.58 Na 0.01 Co 0.985 Al 0.015 O 2 with an R-3m structure.
二、正极的制备2. Preparation of positive electrode
将上述制备的正极活性材料LixNazCo1-yMyO2、导电炭黑(Super P)、粘结剂聚偏二氟乙烯(PVDF)按重量比97:1.4:1.6进行混合,加入N-甲基吡咯烷酮(NMP)中充分搅拌混合,使其形成均匀的正极浆料;其中,正极浆料的固含量为72wt%;将正极浆料均匀涂覆于正极集流体铝箔上;将涂覆后的铝箔进行烘干,然后经过冷压、裁片、分切后,在真空条件下干燥,得到正极。The prepared positive electrode active material Li x Na z Co 1-y My O 2 , conductive carbon black (Super P) and binder polyvinylidene fluoride (PVDF) are mixed in a weight ratio of 97:1.4:1.6, added into N-methylpyrrolidone (NMP), stirred and mixed thoroughly to form a uniform positive electrode slurry; wherein the solid content of the positive electrode slurry is 72wt%; the positive electrode slurry is uniformly coated on the positive electrode current collector aluminum foil; the coated aluminum foil is dried, and then cold pressed, cut into pieces, slit, and dried under vacuum conditions to obtain a positive electrode.
三、负极的制备3. Preparation of negative electrode
将负极活性材料人造石墨、导电炭黑(Super P)、增稠剂羧甲基纤维素钠(CMC)以及粘结剂丁苯橡胶(SBR)按照重量比96.4:1.5:0.5:1.6进行混合,加入去离子水搅拌均匀,得到负极浆料,其中负极浆料的固含量为54wt%。将该负极浆料涂布在负极集流体铜箔上,然后进行烘干,冷压,再经过裁片、焊接极耳、干燥,得到负极。The negative electrode active material artificial graphite, conductive carbon black (Super P), thickener sodium carboxymethyl cellulose (CMC) and binder styrene butadiene rubber (SBR) were mixed according to a weight ratio of 96.4:1.5:0.5:1.6, and deionized water was added and stirred to obtain a negative electrode slurry, wherein the solid content of the negative electrode slurry was 54wt%. The negative electrode slurry was coated on the negative electrode current collector copper foil, and then dried, cold pressed, cut into pieces, welded to the pole ears, and dried to obtain the negative electrode.
四、隔离膜的制备4. Preparation of isolation membrane
选用9μm厚的聚乙烯(PE)隔离膜,经过聚偏氟乙烯(PVDF)浆液、Al2O3浆液涂覆烘干后得到最终隔离膜。A 9 μm thick polyethylene (PE) isolation membrane was selected, and the final isolation membrane was obtained after being coated with polyvinylidene fluoride (PVDF) slurry and Al 2 O 3 slurry and dried.
五、电解液的制备5. Preparation of electrolyte
在干燥氩气环境下,将碳酸亚乙酯(EC)、碳酸亚丙酯(PC)碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、按照质量比为EC:PC:EMC:DEC=20:20:40:30进行混合均匀,再将充分干燥的锂盐LiPF6(1mol/kg)溶解于上述非水溶剂,最后将实施例中添加剂或锂盐添加到基础电解液中,混合均匀获得电解液。In a dry argon environment, ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) are mixed uniformly in a mass ratio of EC:PC:EMC:DEC=20:20:40:30, and then fully dried lithium salt LiPF6 (1 mol/kg) is dissolved in the above non-aqueous solvent. Finally, the additive or lithium salt in the embodiment is added to the basic electrolyte, and mixed uniformly to obtain an electrolyte.
六、锂离子电池的制备6. Preparation of lithium-ion batteries
将正极、隔离膜、负极按顺序叠好,使隔离膜处于正极、负极之间起到隔离的作用,然后卷绕得到裸电芯;焊接极耳后将裸电芯置于外包装箔铝塑膜中,将上述制备好的电解液注入到干燥后的裸电芯中,经过真空封装、静置、化成、整形、容量测试等工序,获得软包锂离子电池(厚度3.3mm、宽度39mm、长度96mm)。The positive electrode, the separator, and the negative electrode are stacked in order, so that the separator is placed between the positive electrode and the negative electrode to play an isolating role, and then they are wound to obtain a bare cell; after welding the pole ears, the bare cell is placed in an outer packaging foil aluminum-plastic film, and the prepared electrolyte is injected into the dried bare cell. After vacuum packaging, standing, formation, shaping, capacity testing and other processes, a soft-pack lithium-ion battery (thickness 3.3 mm, width 39 mm, length 96 mm) is obtained.
性能测试:Performance Testing:
(1)循环性能测试(1) Cyclic performance test
在25℃环境温度下,将实施例和对比例制备得到的锂离子电池以3C(软包电池容量为2000mAh)的恒流充电至电压为4.6V,然后4.6V恒压充电至电流为0.05C,此时的充电容量记为锂离子电池的首圈充电容量,之后静置5min,再以1C恒流放电至电压为3.0V,静置5min,此为一个循环充放电过程,此次的放电容量记为锂离子电池首圈放电容量,也即为锂离子电池的初始容量。将锂离子电池按照上述方法进行200圈循环充放电测试,检测得到第200圈循环的放电容量。25℃循环200圈容量保持率(%)=第200圈循环的放电容量/首圈放电容量×100%。At an ambient temperature of 25°C, the lithium-ion battery prepared in the embodiment and comparative example is charged at a constant current of 3C (the capacity of the soft-pack battery is 2000mAh) to a voltage of 4.6V, and then charged at a constant voltage of 4.6V to a current of 0.05C. The charging capacity at this time is recorded as the first-cycle charging capacity of the lithium-ion battery. After that, it is allowed to stand for 5 minutes, and then discharged at a constant current of 1C to a voltage of 3.0V, and allowed to stand for 5 minutes. This is a cyclic charge and discharge process. The discharge capacity this time is recorded as the first-cycle discharge capacity of the lithium-ion battery, which is also the initial capacity of the lithium-ion battery. The lithium-ion battery is subjected to a 200-cycle charge and discharge test according to the above method, and the discharge capacity of the 200th cycle is detected. Capacity retention rate (%) after 200 cycles at 25°C = discharge capacity of the 200th cycle/first-cycle discharge capacity × 100%.
在45℃环境温度下,将实施例和对比例制备得到的锂离子电池以3C(软包电池容量为2000mAh)的恒流充电至电压为4.6V,然后4.6V恒压充电至电流为0.05C,此时的充电容量记为锂离子电池的首圈充电容量,之后静置5min,再以1C恒流放电至电压为3.0V,静置5min,此为一个循环充放电过程,此次的放电容量记为锂离子电池首圈放电容量,也即为锂离子电池的初始容量。将锂离子电池按照上述方法进行200圈循环充放电测试,检测得到第200圈循环的放电容量。45℃循环200圈容量保持率(%)=第200圈循环的放电容量/首圈放电容量×100%。At an ambient temperature of 45°C, the lithium-ion battery prepared in the embodiment and comparative example is charged at a constant current of 3C (the capacity of the soft-pack battery is 2000mAh) to a voltage of 4.6V, and then charged at a constant voltage of 4.6V to a current of 0.05C. The charging capacity at this time is recorded as the first-cycle charging capacity of the lithium-ion battery. After that, it is allowed to stand for 5 minutes, and then discharged at a constant current of 1C to a voltage of 3.0V, and allowed to stand for 5 minutes. This is a cyclic charge and discharge process. The discharge capacity this time is recorded as the first-cycle discharge capacity of the lithium-ion battery, which is also the initial capacity of the lithium-ion battery. The lithium-ion battery is subjected to a 200-cycle charge and discharge test according to the above method, and the discharge capacity of the 200th cycle is detected. Capacity retention rate (%) after 200 cycles at 45°C = discharge capacity of the 200th cycle/first-cycle discharge capacity × 100%.
(2)化成后正极片利用X射线光电子能谱分析测试:(2) After the formation, the positive electrode is tested by X-ray photoelectron spectroscopy:
将化成后的电芯进行满放至3V,手套箱里面拆解电芯,取部分正极片用甲基丙烯酸二甲氨基乙酯(DM)进行洗涤,然后在手套箱中晾干48h,随后用样品袋密封好正极进行X射线光电子能谱分析(即正极表面),测试元素中一般选取O和B元素,然后得到正极表面相关X射线光电子能谱分析图谱及相关元素质量百分数。测试数据如表1所示。The formed battery cell was fully discharged to 3V, and the battery cell was disassembled in the glove box. Part of the positive electrode was washed with dimethylaminoethyl methacrylate (DM), and then dried in the glove box for 48 hours. The positive electrode was then sealed with a sample bag for X-ray photoelectron spectroscopy analysis (i.e., the positive electrode surface). O and B elements were generally selected in the test elements, and then the positive electrode surface related X-ray photoelectron spectroscopy analysis spectrum and related element mass percentage were obtained. The test data are shown in Table 1.
按照上述制备过程,获得实施例1至实施例13和对比例1与对比例2的电池,其中:According to the above preparation process, the batteries of Examples 1 to 13 and Comparative Examples 1 and 2 were obtained, wherein:
实施例1至实施例13中电解液无LiPF6,正极活性材料为P63mc结构的Li0.63Na0.01Co0.985Al0.015O2;电解液中锂盐添加种类与质量见表1,其余条件均与对比例2相同。In Examples 1 to 13, the electrolyte does not contain LiPF 6 , and the positive electrode active material is Li 0.63 Na 0.01 Co 0.985 Al 0.015 O 2 of P6 3 mc structure; the type and mass of lithium salt added to the electrolyte are shown in Table 1, and the other conditions are the same as those in Comparative Example 2.
对比例1中锂盐为1mol/kg的LiPF6,正极活性材料为非P63mc结构的Li0.58Na0.01Co0.985Al0.015O2。In Comparative Example 1, the lithium salt is 1 mol/kg of LiPF 6 , and the positive electrode active material is Li 0.58 Na 0.01 Co 0.985 Al 0.015 O 2 of non-P6 3 mc structure.
对比例2中锂盐为1mol/kg的LiPF6,正极活性材料为P63mc结构的Li0.63Na0.01Co0.985Al0.015O2。In Comparative Example 2, the lithium salt is 1 mol/kg of LiPF 6 , and the positive electrode active material is Li 0.63 Na 0.01 Co 0.985 Al 0.015 O 2 of P6 3 mc structure.
经测试,对比例1与实施例7化成后正极XPS测试各元素质量含量及硼元素、氧元素质量含量比见表1所示。After testing, the mass content of each element and the mass content ratio of boron element and oxygen element in the positive electrode XPS test after formation of Comparative Example 1 and Example 7 are shown in Table 1.
表1Table 1
实施例1至实施例13以及对比例1及对比例2的测试结果如表2所示:The test results of Examples 1 to 13 and Comparative Examples 1 and 2 are shown in Table 2:
表2Table 2
需要说明的是“/”表示该组分未添加或不存在。It should be noted that “/” indicates that the component is not added or does not exist.
根据上表中实施例1至6的测试数据可见,随着电解液中的LiDFOB含量的增加,化成后的正极表面的硼元素质量含量与氧元素质量含量的比值逐步增大,由于硼元素质量含量与氧元素质量含量的比值的增大意味着界面中可以形成更多的B-O键,有利于稳定正极活性材料中的晶格氧,因此,电池在常温(25℃)或高温(45℃)下的循环容量保持率先增大,后基本变动不明显,合适浓度和正极表面硼/氧元素质量含量比与正极活性材料协同作用可以提高电压下电池的循环稳定性。According to the test data of Examples 1 to 6 in the above table, it can be seen that with the increase of the LiDFOB content in the electrolyte, the ratio of the mass content of the boron element to the mass content of the oxygen element on the positive electrode surface after formation gradually increases. Since the increase in the ratio of the mass content of the boron element to the mass content of the oxygen element means that more B-O bonds can be formed in the interface, it is beneficial to stabilize the lattice oxygen in the positive electrode active material. Therefore, the cycle capacity of the battery at room temperature (25°C) or high temperature (45°C) first increases, and then the basic change is not obvious. The appropriate concentration and the boron/oxygen element mass content ratio on the positive electrode surface synergistically act with the positive electrode active material to improve the cycle stability of the battery under voltage.
根据上表中实施例2、7至10的测试数据可见,随着电解液中的LiBF4含量的增加,化成后的正极表面的硼元素质量含量与氧元素质量含量的比值也呈增大趋势,有利于稳定正极活性材料中的晶格氧,循环容量保持率均增大,提高电压下电池的循环稳定性。According to the test data of Examples 2, 7 to 10 in the above table, it can be seen that with the increase of the LiBF4 content in the electrolyte, the ratio of the mass content of the boron element to the mass content of the oxygen element on the surface of the positive electrode after formation also shows an increasing trend, which is beneficial to stabilize the lattice oxygen in the positive electrode active material, increase the cycle capacity retention rate, and improve the cycle stability of the battery under voltage.
根据上表中实施例8、11至13的测试数据可见,随着电解液中的LiTFSI的含量的增加,化成后的正极表面的硼元素质量含量与氧元素质量含量的比值增大的不明显,可见LiTFSI能够轻微改善高电压循环,因为LiTFSI较LiDFOB与LiBF4更稳定,能够提供稳定锂离子传输。According to the test data of Examples 8, 11 to 13 in the above table, it can be seen that with the increase of the content of LiTFSI in the electrolyte, the ratio of the mass content of the boron element to the mass content of the oxygen element on the surface of the positive electrode after formation does not increase significantly, which shows that LiTFSI can slightly improve the high voltage cycle because LiTFSI is more stable than LiDFOB and LiBF4 and can provide stable lithium ion transmission.
由于实施例1至13采用了P63mc结构的正极活性材料,由于该晶体结构中的晶格氧在高电压循环过程中结构稳定性好,并且,实施例1至13的电解液中含有硼元素,硼元素和P63mc结构的正极活性材料协同作用,够稳定正极材料表面的晶格氧,进而改善高电压循环。Since embodiments 1 to 13 use positive electrode active materials with a P6 3 mc structure, the lattice oxygen in the crystal structure has good structural stability during high voltage cycling. In addition, the electrolytes of embodiments 1 to 13 contain boron. The boron element and the positive electrode active materials with a P6 3 mc structure work synergistically to stabilize the lattice oxygen on the surface of the positive electrode material, thereby improving the high voltage cycling.
通过对比例1与实施例1至10的测试数据可知,由于对比例1中的正极活性材料为非P63mc结构的Li0.58Na0.01Co0.985Al0.015O2,其晶格结构不稳定,在高电压循环过程中,正极活性材料的晶格中的晶格氧脱出,氧化电解液,使得电池在常温(25℃)或高温(45℃)下的循环容量保持率明显下降。It can be seen from the test data of Comparative Example 1 and Examples 1 to 10 that since the positive electrode active material in Comparative Example 1 is Li 0.58 Na 0.01 Co 0.985 Al 0.015 O 2 of non-P6 3 mc structure, its lattice structure is unstable. During the high-voltage cycle process, the lattice oxygen in the lattice of the positive electrode active material is released to oxidize the electrolyte, causing the cycle capacity retention rate of the battery at room temperature (25°C) or high temperature (45°C) to decrease significantly.
通过对比例2与实施例1至10的测试数据可知,虽然正极活性材料为P63mc结构的Li0.63Na0.01Co0.985Al0.015O2,但是其电解液中不含有LiTFSI、LiDFOB或LiBF4,没有硼元素能够与氧元素形成B-O键,不有利于稳定正极材料中的晶格氧,并且电解质LiPF6的正极成膜能力小于电解质LiDFOB,不利于形成稳定正极界面膜,电池循环容量保持率也明显下降。It can be seen from the test data of Comparative Example 2 and Examples 1 to 10 that although the positive electrode active material is Li 0.63 Na 0.01 Co 0.985 Al 0.015 O 2 of P6 3 mc structure, its electrolyte does not contain LiTFSI, LiDFOB or LiBF 4 , and there is no boron element that can form BO bonds with oxygen elements, which is not conducive to stabilizing the lattice oxygen in the positive electrode material. In addition, the positive electrode film-forming ability of the electrolyte LiPF 6 is lower than that of the electrolyte LiDFOB, which is not conducive to the formation of a stable positive electrode interface film, and the battery cycle capacity retention rate is also significantly reduced.
进一步地,根据上述制备方法制得实施例14至23,实施例14至23中的正极活性材料见表2,其余条件均与实施例5相同;实施例5、14至23以及对比例1的测试结果如表3所示:Further, Examples 14 to 23 were prepared according to the above preparation method. The positive electrode active materials in Examples 14 to 23 are shown in Table 2, and the other conditions are the same as those in Example 5. The test results of Examples 5, 14 to 23 and Comparative Example 1 are shown in Table 3:
表3Table 3
对比分析表2中的数据可见,本申请实施例5、14至23中的具有P63mc结构的LixNazCo1-yMyO2,其含(002)晶面的特征峰位于17.5°至19°之间,特征峰的半峰宽在0.05°至0.1°之间,电解液中含有的含硼元素和正极活性材料协同作用,可以提高正极活性材料对空气、水及二氧化碳的稳定性,提高电池在常温或高温环境且高电压下的循环稳定性。From the comparative analysis of the data in Table 2, it can be seen that the LixNazCo1 -yMyO2 with the P63mc structure in Examples 5, 14 to 23 of the present application has a characteristic peak containing the (002) crystal plane located between 17.5° and 19°, and a half-peak width of the characteristic peak between 0.05° and 0.1°. The boron-containing element contained in the electrolyte and the positive electrode active material act synergistically to improve the stability of the positive electrode active material to air, water and carbon dioxide, and to improve the cycle stability of the battery at room temperature or high temperature and high voltage.
进一步地,根据上述制备方法制得实施例24至29,实施例24至29的电解液中式I-1所示的化合物添加量不同,其余条件与实施例5相同;实施例5、实施例24至29的测试结果如表4所示:Further, Examples 24 to 29 were prepared according to the above preparation method. The amount of the compound represented by Formula I-1 added to the electrolyte of Examples 24 to 29 was different, and the other conditions were the same as those of Example 5. The test results of Example 5 and Examples 24 to 29 are shown in Table 4:
表4Table 4
根据表3中实施例5与实施例24至29的测试数据可知,随着式I-1化合物添加量的增加,电池的循环容量保持率变化如表4所示,这是由于式I-1化合物有利于在正极界面形成稳定固态电解质膜,与含硼锂盐和P63mc结构的正极活性材料协同作用,减少电解液的副反应,进而改善电池循环性能。According to the test data of Example 5 and Examples 24 to 29 in Table 3, as the amount of the compound of Formula I-1 added increases, the cycle capacity retention rate of the battery changes as shown in Table 4. This is because the compound of Formula I-1 is conducive to forming a stable solid electrolyte film at the positive electrode interface, and synergistically acts with the positive electrode active material containing boron lithium salt and P6 3 mc structure to reduce the side reaction of the electrolyte, thereby improving the battery cycle performance.
本申请虽然以较佳实施例公开如上,但并不是用来限定权利要求,任何本领域技术人员在不脱离本申请构思的前提下,都可以做出若干可能的变动和修改,因此本申请的保护范围应当以本申请权利要求所界定的范围为准。Although the present application is disclosed as above with preferred embodiments, it is not intended to limit the claims. Any technical personnel in this field may make several possible changes and modifications without departing from the concept of the present application. Therefore, the scope of protection of the present application shall be based on the scope defined by the claims of the present application.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310200234.XA CN116154101A (en) | 2021-05-24 | 2021-05-24 | Electrochemical devices and electronic devices |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110564152.4A CN113299903B (en) | 2021-05-24 | 2021-05-24 | Electrochemical device and electronic device |
CN202310200234.XA CN116154101A (en) | 2021-05-24 | 2021-05-24 | Electrochemical devices and electronic devices |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110564152.4A Division CN113299903B (en) | 2021-05-24 | 2021-05-24 | Electrochemical device and electronic device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116154101A true CN116154101A (en) | 2023-05-23 |
Family
ID=77324127
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110564152.4A Active CN113299903B (en) | 2021-05-24 | 2021-05-24 | Electrochemical device and electronic device |
CN202310200234.XA Pending CN116154101A (en) | 2021-05-24 | 2021-05-24 | Electrochemical devices and electronic devices |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110564152.4A Active CN113299903B (en) | 2021-05-24 | 2021-05-24 | Electrochemical device and electronic device |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN113299903B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116062797A (en) * | 2023-01-17 | 2023-05-05 | 珠海冠宇电池股份有限公司 | A positive electrode material and a battery comprising the positive electrode material |
WO2024168480A1 (en) * | 2023-02-13 | 2024-08-22 | 东莞新能源科技有限公司 | Electrochemical apparatus and electronic apparatus |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5150928B2 (en) * | 2007-03-16 | 2013-02-27 | 日立マクセルエナジー株式会社 | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery |
JP2012104335A (en) * | 2010-11-09 | 2012-05-31 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
CN103582971A (en) * | 2011-05-31 | 2014-02-12 | 三洋电机株式会社 | Nonaqueous electrolyte battery |
CN104205436A (en) * | 2012-01-17 | 2014-12-10 | 三洋电机株式会社 | Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
JP6081262B2 (en) * | 2013-03-28 | 2017-02-15 | 住友精化株式会社 | Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device |
CN104332653B (en) * | 2014-09-01 | 2017-03-01 | 东莞新能源科技有限公司 | A kind of nonaqueous electrolytic solution and the lithium ion battery using this electrolyte |
CN108550913A (en) * | 2018-05-18 | 2018-09-18 | 东莞市杉杉电池材料有限公司 | A kind of lithium-ion battery electrolytes and the lithium ion battery containing the electrolyte |
CN110943215B (en) * | 2019-05-31 | 2020-12-04 | 宁德时代新能源科技股份有限公司 | Lithium ion secondary battery |
CN111211354A (en) * | 2020-01-15 | 2020-05-29 | 松山湖材料实验室 | Combined electrolyte additive, electrolyte and battery for high voltage lithium ion battery |
CN111261941A (en) * | 2020-03-30 | 2020-06-09 | 山东海容电源材料股份有限公司 | Electrolyte for high-power lithium battery and preparation method thereof |
CN112259791A (en) * | 2020-10-27 | 2021-01-22 | 惠州亿纬锂能股份有限公司 | Non-aqueous electrolyte, preparation method thereof and lithium ion battery |
CN112331841B (en) * | 2020-11-10 | 2022-06-24 | 宁德新能源科技有限公司 | Positive electrode active material and electrochemical device |
-
2021
- 2021-05-24 CN CN202110564152.4A patent/CN113299903B/en active Active
- 2021-05-24 CN CN202310200234.XA patent/CN116154101A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN113299903A (en) | 2021-08-24 |
CN113299903B (en) | 2023-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022105614A1 (en) | Lithium metal negative electrode, preparation method therefor and related lithium metal battery thereof, and device | |
CN114614212B (en) | An electrochemical device and electronic device | |
CN114175303B (en) | Positive electrode plate, electrochemical device and electronic device comprising same | |
CN102332579B (en) | Lithium ion battery and negative electrode active material thereof | |
CN114730883B (en) | Negative electrode composite material and application thereof | |
CN106784558A (en) | Ceramic diaphragm with aeroge as powder and its application in lithium ion battery | |
US12327864B2 (en) | Positive electrode plate, and electrochemical apparatus and electronic apparatus containing such positive electrode plate | |
CN113748539B (en) | Secondary battery and device containing secondary battery | |
CN111370695A (en) | Negative electrode active material, and electrochemical device and electronic device using same | |
WO2023098311A1 (en) | Electrochemical device and electronic device | |
CN114766067B (en) | Positive electrode sheet, electrochemical device and electronic device | |
CN115136357A (en) | Positive pole piece and lithium ion secondary battery comprising same | |
CN113299903B (en) | Electrochemical device and electronic device | |
CN114188504B (en) | Electrochemical device and electronic device | |
CN116420259B (en) | Electrolyte, secondary battery, battery module, battery pack and power-consuming device | |
CN113421999B (en) | Electrochemical device and electronic device | |
CN106207049B (en) | Ceramic diaphragm and application thereof in lithium ion battery | |
WO2022087830A1 (en) | Electrolyte and electrochemical device and electronic device comprising same | |
WO2024140882A1 (en) | Positive electrode active material and preparation method therefor, positive electrode sheet, secondary battery, and electric device | |
CN113784916B (en) | Method for preparing negative electrode active material | |
WO2024077522A1 (en) | Negative electrode active material preparation method, negative electrode active material, secondary battery and electric apparatus | |
KR20230088792A (en) | Negative active material and method for manufacturing the same, secondary battery having the same | |
CN115152058A (en) | Electrochemical device and electronic device including the same | |
KR20230174760A (en) | Electrochemical devices and electronic devices comprising such electrochemical devices | |
WO2024140982A1 (en) | Lithium battery and preparation method and control method therefor, battery system, and electric vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |