CN116052082A - 一种基于深度学习算法的配电站房异常检测方法及装置 - Google Patents
一种基于深度学习算法的配电站房异常检测方法及装置 Download PDFInfo
- Publication number
- CN116052082A CN116052082A CN202310049195.8A CN202310049195A CN116052082A CN 116052082 A CN116052082 A CN 116052082A CN 202310049195 A CN202310049195 A CN 202310049195A CN 116052082 A CN116052082 A CN 116052082A
- Authority
- CN
- China
- Prior art keywords
- network
- image
- deep learning
- abnormal
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 134
- 238000004422 calculation algorithm Methods 0.000 title claims abstract description 38
- 238000013135 deep learning Methods 0.000 title claims abstract description 38
- 238000009826 distribution Methods 0.000 title claims abstract description 32
- 230000002159 abnormal effect Effects 0.000 claims abstract description 63
- 238000000034 method Methods 0.000 claims abstract description 41
- 230000007246 mechanism Effects 0.000 claims abstract description 18
- 238000007781 pre-processing Methods 0.000 claims abstract description 10
- 230000002776 aggregation Effects 0.000 claims abstract description 7
- 238000004220 aggregation Methods 0.000 claims abstract description 7
- 238000012549 training Methods 0.000 claims description 41
- 238000012545 processing Methods 0.000 claims description 27
- 230000006870 function Effects 0.000 claims description 12
- 238000003860 storage Methods 0.000 claims description 12
- 238000004590 computer program Methods 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 9
- 238000013138 pruning Methods 0.000 claims description 9
- 238000005070 sampling Methods 0.000 claims description 9
- 230000001629 suppression Effects 0.000 claims description 8
- 238000013527 convolutional neural network Methods 0.000 claims description 7
- 230000005856 abnormality Effects 0.000 claims description 6
- 238000013528 artificial neural network Methods 0.000 claims description 6
- 238000005520 cutting process Methods 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims description 4
- 230000005764 inhibitory process Effects 0.000 claims description 4
- 238000013519 translation Methods 0.000 claims description 4
- 230000004069 differentiation Effects 0.000 claims description 3
- 238000005457 optimization Methods 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 238000011156 evaluation Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000015654 memory Effects 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 6
- 230000006399 behavior Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000009545 invasion Effects 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012876 topography Methods 0.000 description 3
- 240000006365 Vitis vinifera Species 0.000 description 2
- 235000014787 Vitis vinifera Nutrition 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000007123 defense Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011897 real-time detection Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 206010000117 Abnormal behaviour Diseases 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 244000141353 Prunus domestica Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 235000019580 granularity Nutrition 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- LLLILZLFKGJCCV-UHFFFAOYSA-M n-methyl-n-[(1-methylpyridin-1-ium-4-yl)methylideneamino]aniline;methyl sulfate Chemical compound COS([O-])(=O)=O.C=1C=CC=CC=1N(C)\N=C\C1=CC=[N+](C)C=C1 LLLILZLFKGJCCV-UHFFFAOYSA-M 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/24—Aligning, centring, orientation detection or correction of the image
- G06V10/245—Aligning, centring, orientation detection or correction of the image by locating a pattern; Special marks for positioning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/07—Target detection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310049195.8A CN116052082A (zh) | 2023-02-01 | 2023-02-01 | 一种基于深度学习算法的配电站房异常检测方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310049195.8A CN116052082A (zh) | 2023-02-01 | 2023-02-01 | 一种基于深度学习算法的配电站房异常检测方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116052082A true CN116052082A (zh) | 2023-05-02 |
Family
ID=86116459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310049195.8A Pending CN116052082A (zh) | 2023-02-01 | 2023-02-01 | 一种基于深度学习算法的配电站房异常检测方法及装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116052082A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116681980A (zh) * | 2023-07-31 | 2023-09-01 | 北京建筑大学 | 基于深度学习的大缺失率图像修复方法、装置和存储介质 |
CN117468084A (zh) * | 2023-12-27 | 2024-01-30 | 浙江晶盛机电股份有限公司 | 晶棒生长控制方法、装置、长晶炉系统和计算机设备 |
CN118155106A (zh) * | 2024-05-13 | 2024-06-07 | 齐鲁空天信息研究院 | 面向山区救援的无人机行人检测方法、系统、设备及介质 |
-
2023
- 2023-02-01 CN CN202310049195.8A patent/CN116052082A/zh active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116681980A (zh) * | 2023-07-31 | 2023-09-01 | 北京建筑大学 | 基于深度学习的大缺失率图像修复方法、装置和存储介质 |
CN116681980B (zh) * | 2023-07-31 | 2023-10-20 | 北京建筑大学 | 基于深度学习的大缺失率图像修复方法、装置和存储介质 |
CN117468084A (zh) * | 2023-12-27 | 2024-01-30 | 浙江晶盛机电股份有限公司 | 晶棒生长控制方法、装置、长晶炉系统和计算机设备 |
CN117468084B (zh) * | 2023-12-27 | 2024-05-28 | 浙江晶盛机电股份有限公司 | 晶棒生长控制方法、装置、长晶炉系统和计算机设备 |
CN118155106A (zh) * | 2024-05-13 | 2024-06-07 | 齐鲁空天信息研究院 | 面向山区救援的无人机行人检测方法、系统、设备及介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111353413B (zh) | 一种输电设备低漏报率缺陷识别方法 | |
CN110084165B (zh) | 基于边缘计算的电力领域开放场景下异常事件的智能识别与预警方法 | |
CN110688925B (zh) | 基于深度学习的级联目标识别方法及系统 | |
CN116052082A (zh) | 一种基于深度学习算法的配电站房异常检测方法及装置 | |
KR20180135898A (ko) | 기계 학습에 의해 객체 분류기를 훈련시키는 시스템 및 방법 | |
CN111553403B (zh) | 基于伪3d卷积神经网络的烟雾检测方法及系统 | |
Maksymiv et al. | Real-time fire detection method combining AdaBoost, LBP and convolutional neural network in video sequence | |
CN113989702B (zh) | 一种目标识别方法和装置 | |
CN115457428A (zh) | 融入可调节坐标残差注意力的改进YOLOv5火灾检测方法及装置 | |
Jiang et al. | A self-attention network for smoke detection | |
CN113642474A (zh) | 一种基于yolov5的危险区域人员监控方法 | |
Yandouzi et al. | Investigation of combining deep learning object recognition with drones for forest fire detection and monitoring | |
CN111539325A (zh) | 基于深度学习的森林火灾探测方法 | |
CN112270671B (zh) | 图像检测方法、装置、电子设备及存储介质 | |
CN116884192A (zh) | 一种电力生产作业风险预警方法、系统和设备 | |
CN113191273A (zh) | 基于神经网络的油田井场视频目标检测与识别方法及系统 | |
CN115546742A (zh) | 一种基于单目热红外摄像头的铁轨异物识别方法及系统 | |
CN114155551A (zh) | 基于YOLOv3改进的复杂环境下的行人检测方法及装置 | |
CN111339952B (zh) | 基于人工智能的图像分类方法、装置及电子设备 | |
Madhumathi et al. | Advanced Wild Animal Detection and Alert System using YOLO V5 Model | |
Yang et al. | Abnormal Object Detection with an Improved YOLOv8 in the Transmission Lines | |
CN112329550A (zh) | 基于弱监督学习的受灾建筑快速定位评估方法及装置 | |
CN118038021A (zh) | 基于改进yolov4的变电站作业现场异物入侵检测方法 | |
Shetty et al. | Animal Detection and Classification in Image & Video Frames Using YOLOv5 and YOLOv8 | |
CN115083229B (zh) | 基于ai视觉识别的飞行训练设备智能识别与警示系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhang Hao Inventor after: Zhu Tianze Inventor after: Jiang Chao Inventor after: Zhao Cheng Inventor after: Chen Zhiming Inventor after: Li Chunpeng Inventor after: Wang Baoping Inventor after: Luan Qiqi Inventor after: Yang Xiaoping Inventor after: Li Jun Inventor after: Guan Guofei Inventor after: Song Qingwu Inventor after: Jiang Feng Inventor before: Zhang Hao Inventor before: Zhu Tianze Inventor before: Jiang Chao Inventor before: Zhao Cheng Inventor before: Chen Zhiming Inventor before: Su Yubiao Inventor before: Jiang Lincen Inventor before: Xu He Inventor before: Ji Yimu Inventor before: Liu Shangdong Inventor before: Li Chunpeng Inventor before: Wang Baoping Inventor before: Luan Qiqi Inventor before: Yang Xiaoping Inventor before: Li Jun Inventor before: Guan Guofei Inventor before: Song Qingwu Inventor before: Jiang Feng |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240122 Address after: 211100 No. 19 Tianyuan Middle Road, Jiangning Science Park, Nanjing City, Jiangsu Province Applicant after: JIANGSU FANGTIAN POWER TECHNOLOGY Co.,Ltd. Country or region after: China Address before: 211100 No. 19 Tianyuan Middle Road, Jiangning Science Park, Nanjing City, Jiangsu Province Applicant before: JIANGSU FANGTIAN POWER TECHNOLOGY Co.,Ltd. Country or region before: China Applicant before: NANJING University OF POSTS AND TELECOMMUNICATIONS |