CN115772512A - Adenine deaminase, adenine base editor containing adenine deaminase and application of adenine base editor - Google Patents
Adenine deaminase, adenine base editor containing adenine deaminase and application of adenine base editor Download PDFInfo
- Publication number
- CN115772512A CN115772512A CN202111044206.0A CN202111044206A CN115772512A CN 115772512 A CN115772512 A CN 115772512A CN 202111044206 A CN202111044206 A CN 202111044206A CN 115772512 A CN115772512 A CN 115772512A
- Authority
- CN
- China
- Prior art keywords
- adenine
- amino acid
- deaminase
- mutated
- acid residue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229960000643 adenine Drugs 0.000 title claims abstract description 59
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 title claims abstract description 58
- 229930024421 Adenine Natural products 0.000 title claims abstract description 57
- 108010052875 Adenine deaminase Proteins 0.000 title claims abstract description 41
- 230000035772 mutation Effects 0.000 claims abstract description 24
- 101710163270 Nuclease Proteins 0.000 claims abstract description 10
- 150000001413 amino acids Chemical group 0.000 claims abstract description 7
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract description 6
- 125000000539 amino acid group Chemical group 0.000 claims description 24
- 108020001507 fusion proteins Proteins 0.000 claims description 20
- 102000037865 fusion proteins Human genes 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 8
- 108010077850 Nuclear Localization Signals Proteins 0.000 claims description 7
- 108091027544 Subgenomic mRNA Proteins 0.000 claims description 7
- 108090000623 proteins and genes Proteins 0.000 claims description 7
- 102000004169 proteins and genes Human genes 0.000 claims description 7
- 238000010276 construction Methods 0.000 claims description 6
- 239000003814 drug Substances 0.000 claims description 6
- 230000001225 therapeutic effect Effects 0.000 claims description 6
- 239000002773 nucleotide Substances 0.000 claims description 5
- 125000003729 nucleotide group Chemical group 0.000 claims description 5
- 238000010171 animal model Methods 0.000 claims description 3
- 238000001415 gene therapy Methods 0.000 claims description 3
- 239000008194 pharmaceutical composition Substances 0.000 claims description 3
- 101710172824 CRISPR-associated endonuclease Cas9 Proteins 0.000 claims description 2
- 241001112693 Lachnospiraceae Species 0.000 claims description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 2
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 claims description 2
- 241000191967 Staphylococcus aureus Species 0.000 claims description 2
- 238000009395 breeding Methods 0.000 claims description 2
- 230000001488 breeding effect Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 2
- 241000604451 Acidaminococcus Species 0.000 claims 1
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 abstract description 52
- 229940104302 cytosine Drugs 0.000 abstract description 26
- 230000000694 effects Effects 0.000 abstract description 14
- 239000000758 substrate Substances 0.000 abstract description 9
- 208000031873 Animal Disease Models Diseases 0.000 abstract description 2
- 238000011558 animal model by disease Methods 0.000 abstract description 2
- 238000012214 genetic breeding Methods 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 abstract 2
- 208000031753 acute bilirubin encephalopathy Diseases 0.000 description 60
- 108020004414 DNA Proteins 0.000 description 47
- 210000004027 cell Anatomy 0.000 description 46
- 238000001890 transfection Methods 0.000 description 18
- 230000000981 bystander Effects 0.000 description 16
- 239000013612 plasmid Substances 0.000 description 12
- 238000013461 design Methods 0.000 description 9
- 238000012350 deep sequencing Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000000605 extraction Methods 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 108091033409 CRISPR Proteins 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 210000005260 human cell Anatomy 0.000 description 5
- 208000026350 Inborn Genetic disease Diseases 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 208000016361 genetic disease Diseases 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 108091093088 Amplicon Proteins 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000010362 genome editing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 230000008488 polyadenylation Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 230000009871 nonspecific binding Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 1
- UBDHSURDYAETAL-UHFFFAOYSA-N 8-aminonaphthalene-1,3,6-trisulfonic acid Chemical compound OS(=O)(=O)C1=CC(S(O)(=O)=O)=C2C(N)=CC(S(O)(=O)=O)=CC2=C1 UBDHSURDYAETAL-UHFFFAOYSA-N 0.000 description 1
- RLMISHABBKUNFO-WHFBIAKZSA-N Ala-Ala-Gly Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)NCC(O)=O RLMISHABBKUNFO-WHFBIAKZSA-N 0.000 description 1
- KIUYPHAMDKDICO-WHFBIAKZSA-N Ala-Asp-Gly Chemical compound C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O KIUYPHAMDKDICO-WHFBIAKZSA-N 0.000 description 1
- GGNHBHYDMUDXQB-KBIXCLLPSA-N Ala-Glu-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)N GGNHBHYDMUDXQB-KBIXCLLPSA-N 0.000 description 1
- IHRGVZXPTIQNIP-NAKRPEOUSA-N Ala-Met-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H](C)N IHRGVZXPTIQNIP-NAKRPEOUSA-N 0.000 description 1
- OZNSCVPYWZRQPY-CIUDSAMLSA-N Arg-Asp-Glu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O OZNSCVPYWZRQPY-CIUDSAMLSA-N 0.000 description 1
- GOWZVQXTHUCNSQ-NHCYSSNCSA-N Arg-Glu-Val Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O GOWZVQXTHUCNSQ-NHCYSSNCSA-N 0.000 description 1
- SLNCSSWAIDUUGF-LSJOCFKGSA-N Arg-His-Ala Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C)C(O)=O SLNCSSWAIDUUGF-LSJOCFKGSA-N 0.000 description 1
- PDQBXRSOSCTGKY-ACZMJKKPSA-N Asn-Ala-Gln Chemical compound C[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](CC(=O)N)N PDQBXRSOSCTGKY-ACZMJKKPSA-N 0.000 description 1
- DXHINQUXBZNUCF-MELADBBJSA-N Asn-Tyr-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CC=C(C=C2)O)NC(=O)[C@H](CC(=O)N)N)C(=O)O DXHINQUXBZNUCF-MELADBBJSA-N 0.000 description 1
- CBHVAFXKOYAHOY-NHCYSSNCSA-N Asn-Val-Leu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O CBHVAFXKOYAHOY-NHCYSSNCSA-N 0.000 description 1
- 238000010354 CRISPR gene editing Methods 0.000 description 1
- 101150011252 CTSK gene Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- AEJSNWMRPXAKCW-WHFBIAKZSA-N Cys-Ala-Gly Chemical compound SC[C@H](N)C(=O)N[C@@H](C)C(=O)NCC(O)=O AEJSNWMRPXAKCW-WHFBIAKZSA-N 0.000 description 1
- GQNZIAGMRXOFJX-GUBZILKMSA-N Cys-Val-Met Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCSC)C(O)=O GQNZIAGMRXOFJX-GUBZILKMSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 230000033616 DNA repair Effects 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- ZMXZGYLINVNTKH-DZKIICNBSA-N Gln-Val-Phe Chemical compound NC(=O)CC[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 ZMXZGYLINVNTKH-DZKIICNBSA-N 0.000 description 1
- HMJULNMJWOZNFI-XHNCKOQMSA-N Glu-Ser-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CO)NC(=O)[C@H](CCC(=O)O)N)C(=O)O HMJULNMJWOZNFI-XHNCKOQMSA-N 0.000 description 1
- ICUTTWWCDIIIEE-BQBZGAKWSA-N Gly-Met-Asn Chemical compound CSCC[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)CN ICUTTWWCDIIIEE-BQBZGAKWSA-N 0.000 description 1
- LMMPTUVWHCFTOT-GARJFASQSA-N His-Asp-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC(=O)O)NC(=O)[C@H](CC2=CN=CN2)N)C(=O)O LMMPTUVWHCFTOT-GARJFASQSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- NYEYYMLUABXDMC-NHCYSSNCSA-N Ile-Gly-Leu Chemical compound CC[C@H](C)[C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)O)N NYEYYMLUABXDMC-NHCYSSNCSA-N 0.000 description 1
- PMGDADKJMCOXHX-UHFFFAOYSA-N L-Arginyl-L-glutamin-acetat Natural products NC(=N)NCCCC(N)C(=O)NC(CCC(N)=O)C(O)=O PMGDADKJMCOXHX-UHFFFAOYSA-N 0.000 description 1
- SITWEMZOJNKJCH-UHFFFAOYSA-N L-alanine-L-arginine Natural products CC(N)C(=O)NC(C(O)=O)CCCNC(N)=N SITWEMZOJNKJCH-UHFFFAOYSA-N 0.000 description 1
- SENJXOPIZNYLHU-UHFFFAOYSA-N L-leucyl-L-arginine Natural products CC(C)CC(N)C(=O)NC(C(O)=O)CCCN=C(N)N SENJXOPIZNYLHU-UHFFFAOYSA-N 0.000 description 1
- RRSLQOLASISYTB-CIUDSAMLSA-N Leu-Cys-Asp Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(O)=O)C(O)=O RRSLQOLASISYTB-CIUDSAMLSA-N 0.000 description 1
- JCFYLFOCALSNLQ-GUBZILKMSA-N Lys-Ala-Gln Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(O)=O JCFYLFOCALSNLQ-GUBZILKMSA-N 0.000 description 1
- WXJKFRMKJORORD-DCAQKATOSA-N Lys-Arg-Ala Chemical compound NC(=N)NCCC[C@@H](C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@@H](N)CCCCN WXJKFRMKJORORD-DCAQKATOSA-N 0.000 description 1
- SWWCDAGDQHTKIE-RHYQMDGZSA-N Lys-Arg-Thr Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(O)=O SWWCDAGDQHTKIE-RHYQMDGZSA-N 0.000 description 1
- WBSCNDJQPKSPII-KKUMJFAQSA-N Lys-Lys-Lys Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(O)=O WBSCNDJQPKSPII-KKUMJFAQSA-N 0.000 description 1
- YQAIUOWPSUOINN-IUCAKERBSA-N Lys-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H](N)CCCCN YQAIUOWPSUOINN-IUCAKERBSA-N 0.000 description 1
- QEVRUYFHWJJUHZ-DCAQKATOSA-N Met-Ala-Leu Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC(C)C QEVRUYFHWJJUHZ-DCAQKATOSA-N 0.000 description 1
- PHKBGZKVOJCIMZ-SRVKXCTJSA-N Met-Pro-Arg Chemical compound CSCC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(O)=O PHKBGZKVOJCIMZ-SRVKXCTJSA-N 0.000 description 1
- RMLLCGYYVZKKRT-CIUDSAMLSA-N Met-Ser-Glu Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCC(O)=O RMLLCGYYVZKKRT-CIUDSAMLSA-N 0.000 description 1
- SITLTJHOQZFJGG-UHFFFAOYSA-N N-L-alpha-glutamyl-L-valine Natural products CC(C)C(C(O)=O)NC(=O)C(N)CCC(O)=O SITLTJHOQZFJGG-UHFFFAOYSA-N 0.000 description 1
- 108010079364 N-glycylalanine Proteins 0.000 description 1
- 208000009869 Neu-Laxova syndrome Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- CSDMCMITJLKBAH-SOUVJXGZSA-N Phe-Glu-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CC2=CC=CC=C2)N)C(=O)O CSDMCMITJLKBAH-SOUVJXGZSA-N 0.000 description 1
- VFDRDMOMHBJGKD-UFYCRDLUSA-N Phe-Tyr-Arg Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC2=CC=C(C=C2)O)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N VFDRDMOMHBJGKD-UFYCRDLUSA-N 0.000 description 1
- FUOGXAQMNJMBFG-WPRPVWTQSA-N Pro-Val-Gly Chemical compound OC(=O)CNC(=O)[C@H](C(C)C)NC(=O)[C@@H]1CCCN1 FUOGXAQMNJMBFG-WPRPVWTQSA-N 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- DSGYZICNAMEJOC-AVGNSLFASA-N Ser-Glu-Phe Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O DSGYZICNAMEJOC-AVGNSLFASA-N 0.000 description 1
- HMRAQFJFTOLDKW-GUBZILKMSA-N Ser-His-Glu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCC(O)=O)C(O)=O HMRAQFJFTOLDKW-GUBZILKMSA-N 0.000 description 1
- XXNYYSXNXCJYKX-DCAQKATOSA-N Ser-Leu-Met Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(O)=O XXNYYSXNXCJYKX-DCAQKATOSA-N 0.000 description 1
- JCLAFVNDBJMLBC-JBDRJPRFSA-N Ser-Ser-Ile Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O JCLAFVNDBJMLBC-JBDRJPRFSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- STGXWWBXWXZOER-MBLNEYKQSA-N Thr-Ala-His Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CN=CN1 STGXWWBXWXZOER-MBLNEYKQSA-N 0.000 description 1
- BVOVIGCHYNFJBZ-JXUBOQSCSA-N Thr-Leu-Ala Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(O)=O BVOVIGCHYNFJBZ-JXUBOQSCSA-N 0.000 description 1
- YOTRXXBHTZHKLU-BVSLBCMMSA-N Tyr-Trp-Met Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(O)=O)C1=CC=C(O)C=C1 YOTRXXBHTZHKLU-BVSLBCMMSA-N 0.000 description 1
- ABSXSJZNRAQDDI-KJEVXHAQSA-N Tyr-Val-Thr Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O ABSXSJZNRAQDDI-KJEVXHAQSA-N 0.000 description 1
- FOADDSDHGRFUOC-DZKIICNBSA-N Val-Glu-Phe Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)N FOADDSDHGRFUOC-DZKIICNBSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 108010024078 alanyl-glycyl-serine Proteins 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 108010069205 aspartyl-phenylalanine Proteins 0.000 description 1
- 230000027455 binding Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 108010006025 bovine growth hormone Proteins 0.000 description 1
- 101150038500 cas9 gene Proteins 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005782 double-strand break Effects 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 239000003316 glycosidase inhibitor Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 108010000761 leucylarginine Proteins 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 108010017391 lysylvaline Proteins 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 108010012581 phenylalanylglutamate Proteins 0.000 description 1
- 108010051242 phenylalanylserine Proteins 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 108010015840 seryl-prolyl-lysyl-lysine Proteins 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/62—DNA sequences coding for fusion proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/78—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明属于基因编辑领域,具体涉及一种腺嘌呤脱氨酶、包含其的腺嘌呤碱基编辑器及其应用。The invention belongs to the field of gene editing, and in particular relates to an adenine deaminase, an adenine base editor containing the same and an application thereof.
背景技术Background technique
人类遗传病发生的本质是由于基因突变,60%左右的遗传疾病由单个碱基突变引起,传统的利用基因组编辑技术介导的同源重组进行纠正这类遗传病非常低效(0.1%-5%)。基于CRISPR系统衍生出来的单碱基编辑器(Base editor)是近年来新兴的高效碱基编辑技术,因其不产生DNA双链断裂、无须重组模板、高效编辑等优势,在基础研究和临床疾病治疗展示了巨大的应用前景。The essence of human genetic diseases is due to gene mutations. About 60% of genetic diseases are caused by single base mutations. The traditional use of homologous recombination mediated by genome editing technology to correct such genetic diseases is very inefficient (0.1%-5 %). The single base editor (Base editor) derived from the CRISPR system is an emerging high-efficiency base editing technology in recent years. Because of its advantages such as no DNA double-strand breaks, no need for recombination templates, and efficient editing, it is widely used in basic research and clinical diseases. Therapeutics show great promise.
经典的碱基编辑器主要分为胞嘧啶碱基编辑器和腺嘌呤碱基编辑器,前者由活性受损的来源于酿脓链球菌(Streptococcus pyogenes)的Cas9蛋白spCas9n、大鼠来源的胞嘧啶脱氨酶rAPOBEC1和尿嘧啶糖苷酶抑制剂组成,其中Cas9蛋白以NGG作为PAM识别并特异结合DNA,紧接着在脱氨酶以及DNA修复的作用下,最终在NGG(21~23位)上游靶向序列20bp范围实现C/G-T/A的替换,编辑窗口主要位于4~8位;后者则是将细菌来源的TadA(腺嘌呤脱氨酶)与spCas9融合,在定向进化和蛋白质工程化改造技术的辅助下,经历7轮进化最终获得可作用于单链DNA的腺嘌呤碱基编辑器ABE7.10,活性编辑区域主要位于4~7位,该系统在人类细胞中引起A/T-G/C的平均编辑效率约为53%,远高于利用同源重组介导碱基突变的效率,其产物纯度高达99.9%以及极低的indel(insertion-deletion,插入或缺失)发生,更重要的是人类致病性点突变约47%是由C·G突变为T·A所形成,而腺嘌呤碱基编辑器有望修正近一半的病原性点突变,展现出其在突变碱基修改以及遗传病治疗的巨大潜力,目前ABE已广泛应用于动物模型制备和基因治疗。Classical base editors are mainly divided into cytosine base editors and adenine base editors. The former is composed of the Cas9 protein spCas9n from Streptococcus pyogenes with impaired activity, and cytosine base editors from rats. Composed of deaminase rAPOBEC1 and uracil glycosidase inhibitors, in which Cas9 protein uses NGG as PAM to recognize and specifically bind DNA, and then under the action of deaminase and DNA repair, it finally targets upstream of NGG (position 21-23). The C/G-T/A replacement is realized in the 20bp range of the sequence, and the editing window is mainly located at positions 4 to 8; the latter is the fusion of TadA (adenine deaminase) from bacteria and spCas9, which is used in directed evolution and protein engineering transformation With the help of technology, after 7 rounds of evolution, the adenine base editor ABE7.10, which can act on single-stranded DNA, is finally obtained. The active editing region is mainly located at positions 4-7. This system causes A/T-G/C in human cells The average editing efficiency is about 53%, which is much higher than the efficiency of base mutation mediated by homologous recombination. About 47% of human pathogenic point mutations are formed by the mutation of C·G to T·A, and the adenine base editor is expected to correct nearly half of the pathogenic point mutations, showing its role in mutation base modification and genetic disease. With great therapeutic potential, ABE has been widely used in animal model preparation and gene therapy.
针对ABE7.10编辑效率低下以及编辑窗口狭小等问题,各实验室开展了大量的优化改造工作,利用更换核定位信号和密码子优化的策略获得ABEmax,相比于ABE7.10,A到G的编辑效率最高改善了7.1倍,融合CP-Cas9变体构建的CP-ABEmax系列将编辑窗口由4~7位扩展至4~12位,但编辑活性仍与ABEmax类似,此外为进一步扩大ABE的靶向范围,具备不同PAM选择性的ABE也被开发出来,如VQR-ABE(PAM:NGA)、VRQR-ABE(PAM:NGA)、SaCas9-ABE、(PAM:NNGRRT)、SaKKH-ABE(PAM:NNNRRT)、VRER-ABE(PAM:NGCG)、xABEmax(PAM:NGN)、NG-ABEmax(PAM:NG)。借助分子进化技术,最新报道的ABE8e(Richter MF,et al.Phage-assisted evolution of an adenine base editor with improved cas domaincompatibility and activity.Nat Biotechnol,2020,38:883-891)和ABE8s(GaudelliNM,et al.Directed evolution of adenine base editors with increased activityand therapeutic application.Nat Biotechnol,2020,38:892-900),再次显著性提高了碱基编辑效率,其中ABE8e活性相较于ABE7.10提高了590倍,同时编辑范围也进一步扩大,范围可覆盖3~14位,这也不可避免产生严重的“旁观者效应”,即窗口内所有腺嘌呤均会产生编辑,ABE8e和ABE8s执行编辑功能时均无法区别目标A和非目标A,因此对于精准医疗的临床应用仍缺少高精度高活性的腺嘌呤碱基编辑器,与此同时多个课题组报道ABE存在危害性的胞嘧啶编辑(Li S,et al.Docking sites inside cas9 for adenine baseediting diversification and rna off-target elimination.Nat Commun,2020,11:5827;Kurt IC,et al.Crispr c-to-g base editors for inducing targeted DNAtransversions in human cells.Nat Biotechnol,2021,39:41-46;Kim HS,etal.Adenine base editors catalyze cytosine conversions in human cells.NatBiotechnol,2019,37:1145-1148;Kim HS,et al.Adenine base editors catalyzecytosine conversions in human cells.Nat Biotechnol,2019,37:1145-1148;Grunewald J,et al.Crispr DNA base editors with reduced rna off-target andself-editing activities.Nat Biotechnol,2019,37:1041-1048),这也势必引发ABE应用安全性的担忧。In response to the low editing efficiency and narrow editing window of ABE7.10, various laboratories have carried out a lot of optimization and transformation work, using the strategy of replacing nuclear localization signals and codon optimization to obtain ABEmax. Compared with ABE7.10, A to G The highest editing efficiency was improved by 7.1 times. The CP-ABEmax series constructed by fusion of CP-Cas9 variants expanded the editing window from 4-7 positions to 4-12 positions, but the editing activity was still similar to ABEmax. In addition, in order to further expand the target of ABE ABEs with different PAM selectivities have also been developed, such as VQR-ABE(PAM:NGA), VRQR-ABE(PAM:NGA), SaCas9-ABE, (PAM:NNGRRT), SaKKH-ABE(PAM: NNNRRT), VRER-ABE(PAM:NGCG), xABEmax(PAM:NGN), NG-ABEmax(PAM:NG). With the help of molecular evolution technology, the newly reported ABE8e (Richter MF, et al. Phage-assisted evolution of an adenine base editor with improved cas domaincompatibility and activity. Nat Biotechnol, 2020, 38:883-891) and ABE8s (GaudelliNM, et al .Directed evolution of adenine base editors with increased activity and therapeutic application.Nat Biotechnol,2020,38:892-900), again significantly improved the efficiency of base editing, in which the activity of ABE8e increased by 590 times compared with ABE7.10, and at the same time The editing range is further expanded, covering 3 to 14 bits, which inevitably produces a serious "bystander effect", that is, all adenines in the window will be edited, and ABE8e and ABE8s cannot distinguish the target A when performing the editing function. and non-target A, so there is still a lack of high-precision and high-activity adenine base editors for the clinical application of precision medicine. At the same time, several research groups reported that ABE has harmful cytosine editing (Li S, et al. sites inside cas9 for adenine basedediting diversification and rna off-target elimination.Nat Commun,2020,11:5827;Kurt IC,et al.Crispr c-to-g base editors for inducing targeted DNAtransversions in human cells.Nat Biotechnol,2021, 39:41-46; Kim HS, et al. Adenine base editors catalyze cytosine conversions in human cells. Nat Biotechnol, 2019, 37: 1145-1148; Kim HS, et al. Adenine base editors catalyze cytosine conversions in human cells. Nat Biotechnol, 2019 , 37:1145-1148; Grunewald J, et al.Crispr DNA base editors with reduced rna off-target and self-editing activities.Nat Biotechnol,2019,37:1041-1048), which is bound to raise concerns about the safety of ABE applications.
目前,尚无可缩窄ABE的编辑窗口至1~2个碱基的报道,实现精准的腺嘌呤编辑仍然缺乏有效的碱基编辑器,同时ABE产生的危害性胞嘧啶编辑也没有得到完全地消除,产生的ABE安全性问题亟待解决。At present, there is no report that can narrow the editing window of ABE to 1-2 bases. There is still a lack of effective base editors to achieve precise adenine editing, and the harmful cytosine editing produced by ABE has not been completely eliminated. Elimination, ABE security issues generated need to be resolved urgently.
发明内容Contents of the invention
本发明所要解决的技术问题是为了克服现技术中缺少能够显著降低旁观者腺嘌呤和胞嘧啶编辑,提供一种精准高效、高安全性的腺嘌呤脱氨酶、包含其的腺嘌呤碱基编辑器及其应用。本发明的腺嘌呤碱基编辑器能够极大降低旁观者腺嘌呤、几乎完全去除旁观者胞嘧啶编辑,甚至能够将编辑窗口缩窄至1~2个碱基,具有极高的安全性。The technical problem to be solved by the present invention is to overcome the lack of ability to significantly reduce bystander adenine and cytosine editing in the prior art, and to provide an accurate, efficient, high-safety adenine deaminase, and an adenine base editor containing it. device and its application. The adenine base editor of the present invention can greatly reduce bystander adenine, almost completely eliminate bystander cytosine editing, and even narrow the editing window to 1-2 bases, and has extremely high safety.
发明人通过结构生物学预测了TadA-8e中几个关键性的催化位点,在此基础上,通过氨基酸替换,获得基于TadA-8e的单点突变体,意外发现部分单点突变体极大地破坏了腺嘌呤脱氨酶与底物腺嘌呤的非特异性结合,同时维持较高的编辑活性;在单点突变体的基础上进一步通过氨基酸替换获得双点突变体,发现双点突变体可将编辑窗口缩窄至1~2个碱基,同时维持较高的编辑活性,而突变引起的结构口袋变化也使得腺嘌呤脱氨酶无法识别胞嘧啶作为底物,最终完全消除了ABE中存在的独立胞嘧啶编辑事件,此外仍然保持较低的indel。The inventors predicted several key catalytic sites in TadA-8e through structural biology, on this basis, through amino acid substitutions, obtained single-point mutants based on TadA-8e, unexpectedly found that some single-point mutants greatly improved Destroyed the non-specific binding of adenine deaminase to substrate adenine while maintaining high editing activity; on the basis of single point mutants, double point mutants were further obtained through amino acid substitutions, and it was found that double point mutants could The editing window is narrowed to 1-2 bases, while maintaining high editing activity, and the structural pocket changes caused by the mutation also make it impossible for adenine deaminase to recognize cytosine as a substrate, and finally completely eliminate the presence of cytosine in ABE. Independent cytosine editing events, in addition still remain low indel.
本发明通过以下技术方案解决上述技术问题。The present invention solves the above-mentioned technical problems through the following technical solutions.
本发明的第一方面提供一种腺嘌呤脱氨酶,所述腺嘌呤脱氨酶在包括如SEQ IDNO:1所示的氨基酸序列的第29位、第84位、第108位和第145位发生一种或多种氨基酸突变。The first aspect of the present invention provides a kind of adenine deaminase, said adenine deaminase comprises the 29th, 84th, 108th and 145th positions of the amino acid sequence shown in SEQ ID NO:1 One or more amino acid mutations occur.
较佳地,所述一种或多种氨基酸突变包括:Preferably, the one or more amino acid mutations include:
第108位氨基酸残基N突变为Q;或,Amino acid residue N at position 108 is mutated to Q; or,
第145位氨基酸残基L突变为T;或,Amino acid residue 145 L is mutated to T; or,
第145位氨基酸残基L突变为Q;或,Amino acid residue L at position 145 is mutated to Q; or,
第84位氨基酸残基F突变为T;或,Amino acid residue F at position 84 is mutated to T; or,
第84位氨基酸残基F突变为T,并且第108位氨基酸残基N突变为Q;或,Amino acid residue 84 F is mutated to T and amino acid residue 108 N is mutated to Q; or,
第108位氨基酸残基N突变为Q,并且第145位氨基酸残基L突变为T;或,Amino acid residue N at position 108 is mutated to Q and amino acid residue 145 at L is mutated to T; or,
第108位氨基酸残基N突变为Q,并且第29位氨基酸残基P突变为M;或,Amino acid residue N at position 108 is mutated to Q, and amino acid residue at position 29 P is mutated to M; or,
第108位氨基酸残基N突变为Q,并且第29位氨基酸残基P突变为W。Amino acid residue N at position 108 was mutated to Q, and amino acid residue at position 29 P was mutated to W.
本发明中,氨基酸序列如SEQ ID NO:1所示的腺嘌呤脱氨酶的核苷酸序列如SEQID NO:2所示。In the present invention, the amino acid sequence is shown in SEQ ID NO:1 and the nucleotide sequence of adenine deaminase is shown in SEQ ID NO:2.
本发明中,所述腺嘌呤脱氨酶还包括在如SEQ ID NO:1所示的其他位点发生一种或多种氨基酸突变,形成的突变体具有与第一方面所述的腺嘌呤脱氨酶相同或相近的功能或生物学活性。In the present invention, the adenine deaminase also includes one or more amino acid mutations at other sites as shown in SEQ ID NO: 1, and the mutants formed have the same adenine deaminase as described in the first aspect. The same or similar function or biological activity as ammonia enzyme.
在本发明一些实施方案中,所述腺嘌呤脱氨酶还包括核定位信号序列;所述核定位信号序列可为本领域常规,例如为如SEQ ID NO:3所示的核定位信号序列。In some embodiments of the present invention, the adenine deaminase further includes a nuclear localization signal sequence; the nuclear localization signal sequence can be conventional in the art, for example, the nuclear localization signal sequence shown in SEQ ID NO:3.
本发明的第二方面提供一种腺嘌呤碱基编辑器,所述腺嘌呤碱基编辑器包括核酸酶和如第一方面所述的腺嘌呤脱氨酶。The second aspect of the present invention provides an adenine base editor, which includes a nuclease and the adenine deaminase as described in the first aspect.
在本发明一些实施方案中,所述核酸酶为Cas蛋白及其变体;In some embodiments of the present invention, the nuclease is Cas protein and variants thereof;
在本发明一些较佳的实施方案中,所述Cas蛋白为酿酒酵母来源的spCas9、金黄色葡萄球菌来源的SaCas9、毛螺菌科细菌来源的LbCas12a或酸胺球菌属细菌来源的enAsCas12a;所述Cas蛋白变体为VQR-spCas9、VRER-spCas9、spRY、spNG、SaCas9-KKH或SaCas9-NG。In some preferred embodiments of the present invention, the Cas protein is spCas9 derived from Saccharomyces cerevisiae, SaCas9 derived from Staphylococcus aureus, LbCas12a derived from Lachnospiraceae bacteria or enAsCas12a derived from bacteria of the genus Amidococcus; Cas protein variants are VQR-spCas9, VRER-spCas9, spRY, spNG, SaCas9-KKH or SaCas9-NG.
在本发明一些实施方案中,所述腺嘌呤碱基编辑器显著降低旁观者腺嘌呤编辑和旁观者胞嘧啶编辑。In some embodiments of the invention, the adenine base editor significantly reduces bystander adenine editing and bystander cytosine editing.
在本发明一些实施方案中,所述腺嘌呤碱基编辑器可极大缩窄编辑范围,精准编辑1~2个碱基,同时保持较低的indel事件发生。In some embodiments of the present invention, the adenine base editor can greatly narrow the editing range, precisely edit 1-2 bases, and keep the occurrence of indel events low.
本发明的第三方面提供一种融合蛋白,所述融合蛋白包含如第一方面所述的腺嘌呤脱氨酶。The third aspect of the present invention provides a fusion protein comprising the adenine deaminase as described in the first aspect.
在本发明一些实施方案中,所述融合蛋白还包含核酸酶,所述核酸酶的定义如第二方面所述。In some embodiments of the present invention, the fusion protein further comprises a nuclease, and the definition of the nuclease is as described in the second aspect.
本发明中,编码所述融合蛋白的序列组成可以为启动子-腺嘌呤脱氨酶-核酸酶-polyA,只要其能提供不低于ABE8e的A>G的编辑效率;其中,所述启动子和所述polyA可为本领域常规。In the present invention, the sequence composition encoding the fusion protein can be promoter-adenine deaminase-nuclease-polyA, as long as it can provide the editing efficiency of A>G not lower than that of ABE8e; wherein, the promoter And the polyA can be conventional in the art.
所述启动子可为CMV,或者其他类型的光谱启动子及组织特异性启动子,例如CAG、PGK、EF1α;肌肉特异启动子Ctsk;肝脏特异性启动子Lp1等。The promoter can be CMV, or other types of spectrum promoters and tissue-specific promoters, such as CAG, PGK, EF1α; muscle-specific promoter Ctsk; liver-specific promoter Lp1, etc.
所述polyA可为牛生长激素多腺苷酸化信号BGH polyA,或者其他生物来源的多腺苷酸化信号。The polyA can be bovine growth hormone polyadenylation signal BGH polyA, or polyadenylation signal of other biological origin.
所述序列组成例如为CMV-腺嘌呤脱氨酶-Cas9n-BGH polyA。The sequence composition is, for example, CMV-adenine deaminase-Cas9n-BGH polyA.
本发明的第四方面提供一种腺嘌呤碱基编辑系统,其包括:sgRNA和如第二方面所述的腺嘌呤碱基编辑器。The fourth aspect of the present invention provides an adenine base editing system, which includes: sgRNA and the adenine base editor as described in the second aspect.
在本发明一些实施方案中,所述sgRNA的靶序列如SEQ ID NO:4~15的核苷酸序列所示。In some embodiments of the present invention, the target sequence of the sgRNA is shown in the nucleotide sequence of SEQ ID NO: 4-15.
本发明的第五方面提供一种药物组合物,所述药物组合物包括如第一方面所述的腺嘌呤脱氨酶、如第二方面所述的腺嘌呤碱基编辑器、如第三方面所述的融合蛋白或者如第四方面所述的腺嘌呤碱基编辑系统。A fifth aspect of the present invention provides a pharmaceutical composition, the pharmaceutical composition comprising the adenine deaminase as described in the first aspect, the adenine base editor as described in the second aspect, the adenine base editor as described in the third aspect The fusion protein or the adenine base editing system as described in the fourth aspect.
本发明的第六方面提供一种非治疗目的的碱基编辑方法,所述碱基编辑方法包括:A sixth aspect of the present invention provides a non-therapeutic base editing method, the base editing method comprising:
在靶细胞中表达如第一方面所述的腺嘌呤脱氨酶、如第二方面所述的腺嘌呤碱基编辑器、如第三方面所述的融合蛋白或者如第四方面所述的腺嘌呤碱基编辑系统,使所述靶细胞发生碱基编辑,优选还包括加入sgRNA,所述sgRNA的靶序列如SEQ ID NO:4~15的核苷酸序列所示。Express the adenine deaminase as described in the first aspect, the adenine base editor as described in the second aspect, the fusion protein as described in the third aspect or the adenine as described in the fourth aspect in the target cell The purine base editing system, which causes base editing in the target cells, preferably further includes adding sgRNA, and the target sequence of the sgRNA is shown in the nucleotide sequence of SEQ ID NO: 4-15.
在本发明一些实施方案中,所述靶细胞的来源为分离的细胞系。In some embodiments of the invention, the source of the target cells is an isolated cell line.
在本发明一些较佳的实施方案中,所述分离的细胞系为293T细胞、HELA细胞、U2OS细胞、NIH3T3细胞或N2A细胞。In some preferred embodiments of the present invention, the isolated cell line is 293T cells, HELA cells, U2OS cells, NIH3T3 cells or N2A cells.
本发明中,所述非治疗目的例如在实验室中通过检测靶细胞发生的编辑来评价本发明所述的腺嘌呤脱氨酶、腺嘌呤碱基编辑器、融合蛋白或者所述的腺嘌呤碱基编辑系统。反之,也可以通过碱基编辑研究靶细胞的功能。In the present invention, the non-therapeutic purpose is to evaluate the adenine deaminase, adenine base editor, fusion protein or the adenine base described in the present invention by detecting the editing of target cells in the laboratory, for example. base editing system. Conversely, base editing can also be used to study the function of target cells.
本发明中,所述碱基编辑方法还可以是治疗目的的。本发明中,所述治疗是指治疗受试者例如人类的疾病,包括抑制所述疾病的发生或发展、缓解所述疾病的症状或治愈所述疾病。In the present invention, the base editing method can also be used for therapeutic purposes. In the present invention, the treatment refers to the treatment of diseases in subjects such as humans, including inhibiting the occurrence or development of the diseases, alleviating the symptoms of the diseases or curing the diseases.
本发明中,所述靶细胞可以为真核细胞、原核细胞、或者不同于原核细胞的古生物细胞。In the present invention, the target cells may be eukaryotic cells, prokaryotic cells, or archaic cells different from prokaryotic cells.
较佳地,所述靶细胞可以表达如第三方面所述的融合蛋白。Preferably, the target cell can express the fusion protein as described in the third aspect.
更佳地,所述靶细胞可以为植物细胞、人类细胞或动物细胞。More preferably, the target cells may be plant cells, human cells or animal cells.
本发明的第七方面提供如第一方面所述的腺嘌呤脱氨酶、如第二方面所述的腺嘌呤碱基编辑器、如第三方面所述的融合蛋白或者如第四方面所述的腺嘌呤碱基编辑系统在制备碱基编辑的药物或制备基因治疗的药物中的应用。The seventh aspect of the present invention provides the adenine deaminase as described in the first aspect, the adenine base editor as described in the second aspect, the fusion protein as described in the third aspect, or the fusion protein as described in the fourth aspect The application of the adenine base editing system in the preparation of base editing drugs or the preparation of gene therapy drugs.
本发明的第八方面提供如第一方面所述的腺嘌呤脱氨酶、如第二方面所述的腺嘌呤碱基编辑器、如第三方面所述的融合蛋白或者如第四方面所述的腺嘌呤碱基编辑系统在构建动物模型和农作物育种中的应用。The eighth aspect of the present invention provides the adenine deaminase as described in the first aspect, the adenine base editor as described in the second aspect, the fusion protein as described in the third aspect, or the fusion protein as described in the fourth aspect The application of the adenine base editing system in the construction of animal models and crop breeding.
本发明的第九方面提供如第一方面所述的腺嘌呤脱氨酶、如第二方面所述的腺嘌呤碱基编辑器、如第三方面所述的融合蛋白或者如第四方面所述的腺嘌呤碱基编辑系统在制备碱基编辑工具中的应用。The ninth aspect of the present invention provides the adenine deaminase as described in the first aspect, the adenine base editor as described in the second aspect, the fusion protein as described in the third aspect, or the fusion protein as described in the fourth aspect The application of the adenine base editing system in the preparation of base editing tools.
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。On the basis of conforming to common knowledge in the field, the above-mentioned preferred conditions can be combined arbitrarily to obtain preferred examples of the present invention.
本发明所用试剂和原料均市售可得。The reagents and raw materials used in the present invention are all commercially available.
本发明的积极进步效果在于:The positive progress effect of the present invention is:
本发明的腺嘌呤碱基编辑器可有效破坏腺嘌呤脱氨酶与底物碱基的非特异性结合,将编辑窗口缩窄至1~2个碱基,同时维持较高的编辑活性;突变引起的结构口袋变化也使得腺嘌呤脱氨酶无法识别胞嘧啶作为底物,最终完全消除了ABE中存在的独立胞嘧啶编辑事件;并且保持较低的indel,提高了安全性,可促进其在精准医疗、动物疾病模型制作、作物遗传育种等方面的应用,具有极大的应用价值。The adenine base editor of the present invention can effectively destroy the non-specific binding between adenine deaminase and substrate bases, narrow the editing window to 1-2 bases, and maintain a high editing activity; The change in the structural pocket of ABE also makes it impossible for adenine deaminase to recognize cytosine as a substrate, and finally completely eliminates the independent cytosine editing event in ABE; and maintains a low indel, which improves safety and promotes its precise It has great application value in medical treatment, animal disease model making, crop genetic breeding and other applications.
附图说明Description of drawings
图1为ABE8e结合底物DNA的晶体结构(PDB:6VPC)。Figure 1 is the crystal structure of ABE8e bound to substrate DNA (PDB: 6VPC).
图2为21个ABE8e突变体在293T上FANCF site1位点实现的A>G碱基编辑对比结果示意图。Figure 2 is a schematic diagram of the A>G base editing comparison results of 21 ABE8e mutants at the FANCF site1 site on 293T.
图3为21个ABE8e突变体在293T上FANCF site1位点实现的A4以及C6碱基编辑对比结果示意图。Figure 3 is a schematic diagram of the comparison results of A4 and C6 base editing achieved by 21 ABE8e mutants at the FANCF site1 site on 293T.
图4为ABE8e与ABE8e-N108Q在293T上4个靶点产生的A>G、C>G、C>T、C>A碱基编辑对比结果示意图。Figure 4 is a schematic diagram of the base editing comparison results of ABE8e and ABE8e-N108Q on 4 targets on 293T: A>G, C>G, C>T, and C>A.
图5为19个ABE8e组合突变在293T上ABE-site3和ABE-site10位点实现的A>G碱基编辑对比结果示意图。Figure 5 is a schematic diagram of the comparison results of A>G base editing achieved by 19 ABE8e combined mutations at the ABE-site3 and ABE-site10 sites on 293T.
图6为ABE9s和ABE9.1s在293T上ABE-site10、HEK-site7位点实现的A碱基以及C碱基编辑效率对比结果示意图。Figure 6 is a schematic diagram of the comparison results of A base and C base editing efficiency achieved by ABE9s and ABE9.1s at ABE-site10 and HEK-site7 sites on 293T.
图7为ABE9s、ABE9.1s、ABE9.2s、ABE9.3s和ABE9.4s在293T上ABE-site16、ABE-site17、ABE-site13和ABE-site8内源性靶点实现的A>G编辑效率对比结果示意图。Figure 7 shows the A>G editing efficiency of ABE9s, ABE9.1s, ABE9.2s, ABE9.3s and ABE9.4s on ABE-site16, ABE-site17, ABE-site13 and ABE-site8 endogenous targets on 293T Schematic diagram of the comparison results.
图8为ABE9s、ABE9.1s、ABE9.2s、ABE9.3s和ABE9.4s在293T上ABE-site16、ABE-site17、ABE-site13和ABE-site8内源性靶点产生的indel对比结果示意图。Figure 8 is a schematic diagram of the indel comparison results generated by ABE9s, ABE9.1s, ABE9.2s, ABE9.3s and ABE9.4s on ABE-site16, ABE-site17, ABE-site13 and ABE-site8 endogenous targets on 293T.
具体实施方式Detailed ways
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。The present invention is further illustrated below by means of examples, but the present invention is not limited to the scope of the examples. For the experimental methods that do not specify specific conditions in the following examples, select according to conventional methods and conditions, or according to the product instructions.
实施例中使用的突变体中,编码突变位点的密码子如表1所示。Among the mutants used in the examples, the codons encoding the mutation sites are shown in Table 1.
表1TadA单点突变序列Table 1 TadA single point mutation sequence
实施例中使用的靶点及其序列如表2所示。The targets and their sequences used in the examples are shown in Table 2.
表2所用靶点及序列Table 2 Targets and sequences used
实施例中使用的靶点的鉴定引物如表3所示。The identification primers of the targets used in the examples are shown in Table 3.
表3所用靶点的鉴定引物The identification primers of the targets used in Table 3
其中:F为正向引物,R为反向引物。Among them: F is the forward primer, R is the reverse primer.
实施例中使用的无缝克隆试剂盒为Vazyme ClonExpress MultiS One StepCloning Kit,C113-01。The seamless cloning kit used in the examples is Vazyme ClonExpress MultiS One StepCloning Kit, C113-01.
实施例中使用的HEK293T细胞为ATCC CRL-3216细胞系。The HEK293T cells used in the examples are ATCC CRL-3216 cell lines.
实施例中使用的质粒U6-sgRNA-EF1α-GFP的核苷酸序列如SEQ ID NO:40所示,其中,靶向靶序列的sgRNA的编码序列用连续的N表示。The nucleotide sequence of the plasmid U6-sgRNA-EF1α-GFP used in the examples is shown in SEQ ID NO: 40, wherein the coding sequence of the sgRNA targeting the target sequence is represented by continuous N.
实施例中测序的服务提供商为苏州金唯智生物科技有限公司。The service provider for sequencing in the examples is Suzhou Jinweizhi Biotechnology Co., Ltd.
实施例1Example 1
1.1质粒设计及构建1.1 Plasmid design and construction
1.1.1如图1所示,根据冷冻电镜捕捉ABE8e结合底物DNA的晶体结构,并根据该晶体结构,设计21个ABE8e的单点突变体(如表1所示),同时设计了1个来自于人的内源性测试靶点FANCF site1(如表2所示)用于筛选评价。1.1.1 As shown in Figure 1, capture the crystal structure of ABE8e binding substrate DNA according to the cryo-electron microscope, and design 21 single point mutants of ABE8e (as shown in Table 1) according to the crystal structure, and
1.1.2将21个ABE8e单点突变体按表1中的序列进行合成,以ABE8e为载体,之后进行无缝克隆组装,即按表2合成两条oligo,正链加CACC,反链加上AAAC,连接至已经用BbsI酶切好的U6-sgRNA-EF1α-GFP上。1.1.2 Synthesize 21 ABE8e single-point mutants according to the sequence in Table 1, use ABE8e as the vector, and then perform seamless cloning and assembly, that is, synthesize two oligos according to Table 2, add CACC to the positive strand, and add CACC to the reverse strand. AAAC, ligated to U6-sgRNA-EF1α-GFP digested with BbsI.
1.1.3将1.1.1与1.1.2中构建的质粒经sanger测序,确保序列完全正确。1.1.3 Sanger sequence the plasmids constructed in 1.1.1 and 1.1.2 to ensure that the sequences are completely correct.
1.2细胞转染1.2 Cell transfection
第1天:用293T细胞铺种24孔板Day 1: Plating 24-well plates with 293T cells
(1)消化HEK293T细胞,按照2×105cell/孔接种96孔板。(1) HEK293T cells were digested and inoculated into 96-well plates at 2×10 5 cells/well.
注意:细胞复苏后,一般需传代2次方可用于转染实验。Note: After recovery, the cells generally need to be subcultured twice before they can be used for transfection experiments.
第2天:转染Day 2: Transfection
(2)观察各孔细胞状态。(2) Observe the state of cells in each well.
注意:要求转染前细胞密度应为70%~90%,且状态正常。Note: It is required that the cell density before transfection should be 70%-90%, and the state should be normal.
(3)质粒转染量如下(以ABE8e作为对照):(3) The amount of plasmid transfection is as follows (using ABE8e as a control):
ABE8e单点突变体:U6-sgRNA-EF1α-GFP=750ng:250ngABE8e single point mutant: U6-sgRNA-EF1α-GFP=750ng:250ng
设置n=3孔/组。Set n = 3 wells/group.
1.3基因组提取及扩增子文库的准备1.3 Genome extraction and amplicon library preparation
转染后72h,用天根细胞基因组提取试剂盒(DP304)提取细胞基因组DNA。之后用Hi-Tom Gene Editing Detection Kit(诺禾致源)的操作流程,设计相对应的鉴定引物(如表3所示),即在正向引物5’端加上搭桥序列5’-ggagtgagtacggtgtgc-3’(SEQ ID NO:41),反向引物5’端加上搭桥序列5’-gagttggatgctggatgg-3’(SEQ ID NO:42),即得到一轮PCR产物,之后利用一轮PCR产物作为模板,进行二轮PCR,得到二轮PCR产物,之后混在一起进行切胶回收纯化后送公司进行测序。72h after transfection, the genomic DNA of the cells was extracted with Tiangen Cell Genome Extraction Kit (DP304). Then, use the operating procedure of Hi-Tom Gene Editing Detection Kit (Novogene) to design corresponding identification primers (as shown in Table 3), that is, add a bridge sequence 5'-ggagtgagtacggtgtgc- at the 5' end of the forward primer 3' (SEQ ID NO: 41), add the bridge sequence 5'-gagttggatgctggatgg-3' (SEQ ID NO: 42) to the 5' end of the reverse primer to obtain a round of PCR product, and then use the round of PCR product as a template , Carry out two rounds of PCR to obtain the second round of PCR products, and then mix them together for gel cutting, recovery and purification, and then send them to the company for sequencing.
1.4深度测序结果分析与统计1.4 Analysis and statistics of deep sequencing results
利用BE-analyzer网站(http://www.rgenome.net/be-analyzer/#!)分析深度测序结果,即统计A>G、C>T、C>G、C>A、Indel的比率,并用Graphpad Prism 9.1.0进行统计作图,如表4和图2~4所示。Use the BE-analyzer website (http://www.rgenome.net/be-analyzer/#!) to analyze the deep sequencing results, that is, to count the ratios of A>G, C>T, C>G, C>A, and Indel, And use Graphpad Prism 9.1.0 for statistical mapping, as shown in Table 4 and Figures 2-4.
1.5结果分析1.5 Result analysis
如表4和图2所示,根据Sanger结果,ABE8e的21个单点突变体中,ABE8e-L145T、ABE8e-L145Q、ABE8e-N108Q和ABE8e-F84T均显著降低旁观者A3的编辑,同时维持靶向碱基A4的编辑效率。As shown in Table 4 and Figure 2, according to the Sanger results, among the 21 single point mutants of ABE8e, ABE8e-L145T, ABE8e-L145Q, ABE8e-N108Q, and ABE8e-F84T all significantly reduced bystander A3 editing while maintaining target Editing efficiency to base A4.
表4靶点FANCF site 1的编辑效率结果(单位,%)Table 4 Editing efficiency results of target FANCF site 1 (unit, %)
如图3所示,深度测序评价旁观者C6编辑,ABE8e产生的旁观者胞嘧啶编辑为45.2%(C>G+C>T+C>A),而上述四种单点突变体产生的编辑效率分别仅为5.07%、3.67%、2.44%、2.93%,其中ABE8e-N108Q最高降低94.6%危害性胞嘧啶编辑。As shown in Figure 3, deep sequencing evaluated bystander C6 editing, bystander cytosine editing produced by ABE8e was 45.2% (C>G+C>T+C>A), while the above four single point mutants produced edits The efficiencies were only 5.07%, 3.67%, 2.44%, and 2.93%, respectively, and ABE8e-N108Q reduced the most harmful cytosine editing by 94.6%.
如图4所示,选择ABE8e-N108Q在另外四个内源性靶点(EGFR-library-sg4、HBG1-sg1、EMX1-sg2p、HBG-sg8)再次验证,结果表明:以ABE8e为对照,对于EGFR-library-sg4靶点,ABE8e-N108Q将旁观者胞嘧啶编辑从13.7%降低至3.13%,对于HBG-sg1靶点,旁观者胞嘧啶编辑从16.4%降低5.17%,对于EMX1-sg2P靶点,旁观者胞嘧啶编辑从14.5%降低1.9%,对于HBG-sg8靶点,旁观者胞嘧啶编辑从9.33%降低1.2%。As shown in Figure 4, ABE8e-N108Q was selected to be verified again in four other endogenous targets (EGFR-library-sg4, HBG1-sg1, EMX1-sg2p, HBG-sg8). For the EGFR-library-sg4 target, ABE8e-N108Q reduced bystander cytosine editing from 13.7% to 3.13% for the HBG-sg1 target, and from 16.4% for the HBG-sg1 target to 5.17% for the EMX1-sg2P target , bystander cytosine editing decreased from 14.5% to 1.9%, and for the HBG-sg8 target, bystander cytosine editing decreased from 9.33% to 1.2%.
综上,ABE8e-L145T、ABE8e-L145Q、ABE8e-N108Q和ABE8e-F84T均显著降低旁观者腺嘌呤编辑和旁观者胞嘧啶编辑。In summary, ABE8e-L145T, ABE8e-L145Q, ABE8e-N108Q and ABE8e-F84T all significantly reduced bystander adenine editing and bystander cytosine editing.
实施例2Example 2
为完全消除旁观者胞嘧啶编辑以及实现精准编辑单个A>G,设计本实施例。This embodiment is designed to completely eliminate bystander cytosine editing and to achieve precise editing of a single A>G.
2.1质粒设计及构建2.1 Plasmid design and construction
2.1.1基于实施例1的单点突变筛选结果,再次根据ABE8e的晶体结构,将潜在性影响底物结构的氨基酸位点进行组合突变合成,进行无缝克隆组装。同时设计2个富含poly A的内源性测试靶点ABE site10和ABE site3进行测试(如表2所示),构建方法同2.1.1 Based on the results of single-point mutation screening in Example 1, and again according to the crystal structure of ABE8e, amino acid sites that potentially affect the structure of the substrate were subjected to combinatorial mutation synthesis for seamless cloning assembly. At the same time, two poly A-rich endogenous test targets, ABE site10 and ABE site3, were designed for testing (as shown in Table 2), and the construction method was the same as
1.1.2。1.1.2.
2.1.2将2.1.1中构建的质粒经sanger测序,确保完全正确。2.1.2 Sanger sequenced the plasmid constructed in 2.1.1 to ensure that it is completely correct.
2.2细胞转染2.2 Cell transfection
第1天:用293T细胞铺种24孔板Day 1: Plating 24-well plates with 293T cells
(1)消化HEK293T细胞,按照2×105cell/孔接种96孔板。(1) HEK293T cells were digested and inoculated into 96-well plates at 2×10 5 cells/well.
注意:细胞复苏后,一般需传代2次方可用于转染实验。Note: After recovery, the cells generally need to be subcultured twice before they can be used for transfection experiments.
第2天:转染Day 2: Transfection
(2)观察各孔细胞状态。(2) Observe the state of cells in each well.
注意:要求转染前细胞密度应为70%~90%,且状态正常。Note: It is required that the cell density before transfection should be 70%-90%, and the state should be normal.
(3)质粒转染量如下(以ABE8e作为对照)(3) The amount of plasmid transfection is as follows (using ABE8e as a control)
2.1中新构建的质粒:U6-sgRNA-EF1α-GFP=750ng:250ngNewly constructed plasmid in 2.1: U6-sgRNA-EF1α-GFP=750ng:250ng
设置n=3孔/组。Set n = 3 wells/group.
2.3基因组提取及扩增子文库的准备2.3 Genome extraction and amplicon library preparation
转染后72h,用天根细胞基因组提取试剂盒(DP304)提取细胞基因组DNA。之后用Hitom试剂盒的操作流程,设计相对应的鉴定引物(如表3所示),即在正向引物5’端加上如SEQ ID NO:38所示的搭桥序列,反向引物5’端加上如SEQ ID NO:39所示的搭桥序列,即得到一轮PCR产物,之后利用一轮PCR产物作为模板,进行二轮PCR,得到二轮PCR产物,之后混在一起进行切胶回收纯化后送公司进行测序。72h after transfection, the genomic DNA of the cells was extracted with Tiangen Cell Genome Extraction Kit (DP304). Afterwards, use the operation process of the Hitom kit to design corresponding identification primers (as shown in Table 3), that is, add the bridging sequence shown in SEQ ID NO:38 at the 5' end of the forward primer, and the 5' end of the reverse primer Add the bridging sequence shown in SEQ ID NO:39 to the end to obtain a round of PCR product, and then use the round of PCR product as a template to perform a second round of PCR to obtain a second round of PCR product, which is then mixed together for recovery and purification by cutting the gel Sent to the company for sequencing.
2.4深度测序结果分析与统计2.4 Analysis and statistics of deep sequencing results
利用BE-analyzer网站(http://www.rgenome.net/be-analyzer/#!)分析深度测序结果,即统计A>G、C>T、C>G、C>A、Indel的比率,并用Graphpad Prism 9.1.0进行统计作图。Use the BE-analyzer website (http://www.rgenome.net/be-analyzer/#!) to analyze the deep sequencing results, that is, to count the ratio of A>G, C>T, C>G, C>A, Indel, And use Graphpad Prism 9.1.0 for statistical graphing.
2.5结果分析2.5 Result analysis
如图5所示,根据Sanger结果,在19个组合突变中,N108Q-L145T、N108Q-P29M、N108Q-P29W和N108Q-F84T显示了极窄的编辑窗口,靶向范围大约1~2个碱基。对于ABEsite3靶点,ABE8e编辑范围为~5个碱基,而已报道的具备缩窄窗口潜能的F148A突变,编辑范围也有~4个碱基,ABE8e-N108Q编辑窗口为~3个碱基,而四种组合突变仅编辑1个碱基,且高效精准编辑A5。同样对于ABE site10靶点,ABE8e覆盖~7个碱基,ABE8e-F148A靶向区域为~4个碱基,对于单点突变ABE8e-N108Q,编辑范围依然为~3个碱基,N108Q-L145T和N108Q-P29M编辑范围为~2个碱基,同样高效催化第五位的A>G,N108Q-P29W和N108Q-F84T则精准编辑1个碱基A5,编辑活性仅部分降低。为便于描述,将ABE8e-N108Q命名为ABE9s,N108Q-L145T、N108Q-P29M、N108Q-P29W和N108Q-F84T依次命名为ABE9.1s、ABE9.2s、ABE9.3s和ABE9.4s。ABE9.1s、ABE9.2s、ABE9.3s和ABE9.4s的编辑窗口约为1~2个碱基,腺嘌呤编辑的选择性依次严格。As shown in Figure 5, according to the Sanger results, among the 19 combined mutations, N108Q-L145T, N108Q-P29M, N108Q-P29W, and N108Q-F84T showed a very narrow editing window, and the targeting range was about 1 to 2 bases . For the ABEsite3 target, the editing range of ABE8e is ~5 bases, the reported F148A mutation with the potential to narrow the window also has an editing range of ~4 bases, the editing window of ABE8e-N108Q is ~3 bases, and the four This combination mutation only
如图6所示,以ABE9.1s为例,以ABE site10以及新设计的内源性靶点HEK site7为评价靶点,再次评价组合突变的旁观者胞嘧啶编辑特征。结果显示,相较于ABE9s,ABE9.1s完全消除了危害性胞嘧啶编辑,同时缩窄窗口至1~2个碱基,并且偏好性编辑A5/A6碱基。As shown in Figure 6, taking ABE9.1s as an example, taking ABE site10 and the newly designed endogenous target HEK site7 as evaluation targets, the bystander cytosine editing characteristics of combined mutations were evaluated again. The results showed that compared with ABE9s, ABE9.1s completely eliminated harmful cytosine editing, narrowed the window to 1-2 bases, and preferentially edited A5/A6 bases.
综上,ABE8e的组合突变N108Q-L145T、N108Q-P29M、N108Q-P29W和N108Q-F84T可以精准编辑1~2个碱基,同时完全消除危害性胞嘧啶编辑。In summary, the combined mutations N108Q-L145T, N108Q-P29M, N108Q-P29W, and N108Q-F84T of ABE8e can precisely edit 1-2 bases while completely eliminating harmful cytosine editing.
实施例3Example 3
为对比ABE9.1s、ABE9.2s、ABE9.3s和ABE9.4s的工作特性,设计本实施例。This embodiment is designed to compare the working characteristics of ABE9.1s, ABE9.2s, ABE9.3s and ABE9.4s.
3.1质粒设计及构建3.1 Plasmid design and construction
3.1.1以ABE8e和ABE9s为对照,设计4个额外的靶点ABE-site16、ABE-site17、ABE-site13和ABE-site8(如表2所示)进行评价。3.1.1 Using ABE8e and ABE9s as controls, design 4 additional targets ABE-site16, ABE-site17, ABE-site13 and ABE-site8 (as shown in Table 2) for evaluation.
3.1.2将3.1.1中构建的质粒经sanger测序,确保完全正确。3.1.2 Sanger sequenced the plasmid constructed in 3.1.1 to ensure that it is completely correct.
3.2细胞转染3.2 Cell transfection
第1天:用293T细胞铺种24孔板Day 1: Plating 24-well plates with 293T cells
(1)消化HEK293T细胞,按照2×105cell/孔接种96孔板。(1) HEK293T cells were digested and inoculated into 96-well plates at 2×10 5 cells/well.
注意:细胞复苏后,一般需传代2次方可用于转染实验。Note: After recovery, the cells generally need to be subcultured twice before they can be used for transfection experiments.
第2天:转染Day 2: Transfection
(2)观察各孔细胞状态。(2) Observe the state of cells in each well.
注意:要求转染前细胞密度应为70%~90%,且状态正常。Note: It is required that the cell density before transfection should be 70%-90%, and the state should be normal.
(3)质粒转染量如下(以ABE8e作为对照):(3) The amount of plasmid transfection is as follows (using ABE8e as a control):
3.1中新构建的质粒:U6-sgRNA-EF1α-GFP=750ng:250ngNewly constructed plasmid in 3.1: U6-sgRNA-EF1α-GFP=750ng:250ng
设置n=3孔/组。Set n = 3 wells/group.
3.3基因组提取及扩增子文库的准备3.3 Genome extraction and amplicon library preparation
转染后72h,用天根细胞基因组提取试剂盒(DP304)提取细胞基因组DNA。之后用Hitom试剂盒的操作流程,设计相对应的鉴定引物(如表3所示),即在正向引物5’端加上如SEQ ID NO:38所示的搭桥序列,反向引物5’端加上如SEQ ID NO:39所示的搭桥序列,即得到一轮PCR产物,之后利用一轮PCR产物作为模板,进行二轮PCR,得到二轮PCR产物,之后混在一起进行切胶回收纯化后进行送公司进行测序。72h after transfection, the genomic DNA of the cells was extracted with Tiangen Cell Genome Extraction Kit (DP304). Afterwards, use the operation process of the Hitom kit to design corresponding identification primers (as shown in Table 3), that is, add the bridging sequence shown in SEQ ID NO:38 at the 5' end of the forward primer, and the 5' end of the reverse primer Add the bridging sequence shown in SEQ ID NO:39 to the end to obtain a round of PCR product, and then use the round of PCR product as a template to perform a second round of PCR to obtain a second round of PCR product, which is then mixed together for recovery and purification by cutting the gel Then send it to the company for sequencing.
3.4深度测序结果分析与统计3.4 Analysis and statistics of deep sequencing results
利用BE-analyzer网站(http://www.rgenome.net/be-analyzer/#!)分析深度测序结果,即统计A>G、C>T、C>G、C>A、Indel的比率,并用Graphpad Prism 9.1.0进行统计作图。Use the BE-analyzer website (http://www.rgenome.net/be-analyzer/#!) to analyze the deep sequencing results, that is, to count the ratio of A>G, C>T, C>G, C>A, Indel, And use Graphpad Prism 9.1.0 for statistical graphing.
3.5结果分析3.5 Result analysis
如图7所示,在ABE site16位点,对应的ABE8e编辑窗口为~5个碱基,ABE9s可覆盖~4个碱基,ABE9.1s、ABE9.2s、ABE9.3s、ABE9.4s仅编辑1~2个碱基;在ABE site13和ABEsite13位点,ABE8e编辑范围为~5个碱基,ABE9s覆盖范围为3~4个碱基,而ABE9.1s、ABE9.2s、ABE9.3s和ABE9.4s中,除了ABE9.1s有轻微A7或者A4编辑外,其余三个变体均只编辑一个碱基。对于ABE site17位点,ABE8e编辑范围为~6个碱基,ABE9s编辑范围为~3个碱基,ABE9.1s和ABE9.2s主要编辑2个碱基(A5/A6),ABE9.3s和ABE9.4s依然精确编辑单个碱基。As shown in Figure 7, at ABE site16, the corresponding ABE8e editing window is ~5 bases, ABE9s can cover ~4 bases, ABE9.1s, ABE9.2s, ABE9.3s, ABE9.4s only edit 1 to 2 bases; at ABE site13 and ABEsite13, the editing range of ABE8e is ~5 bases, and the coverage of ABE9s is 3 to 4 bases, while ABE9.1s, ABE9.2s, ABE9.3s and ABE9 In .4s, except for ABE9.1s with slight A7 or A4 editing, the other three variants only edited one base. For the ABE site17 site, the editing range of ABE8e is ~6 bases, the editing range of ABE9s is ~3 bases, ABE9.1s and ABE9.2s mainly edit 2 bases (A5/A6), ABE9.3s and ABE9 .4s still edits single bases precisely.
综上,ABE9s可轻微缩窄编辑范围,而ABE9.1s,ABE9.2s,ABE9.3s,ABE9.4s精准编辑1~2个碱基,同时保持较低的indel事件发生(如图8所示)。In summary, ABE9s can slightly narrow the editing range, while ABE9.1s, ABE9.2s, ABE9.3s, and ABE9.4s can precisely edit 1 to 2 bases, while maintaining a low occurrence of indel events (as shown in Figure 8 ).
SEQUENCE LISTINGSEQUENCE LISTING
<110> 华东师范大学<110> East China Normal University
上海邦耀生物科技有限公司Shanghai Bangyao Biotechnology Co., Ltd.
<120> 腺嘌呤脱氨酶、包含其的腺嘌呤碱基编辑器及其应用<120> Adenine deaminase, adenine base editor comprising same and application thereof
<130> P21016504C<130> P21016504C
<160> 42<160> 42
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 167<211> 167
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> TadA<223> Tad A
<400> 1<400> 1
Met Ser Glu Val Glu Phe Ser His Glu Tyr Trp Met Arg His Ala LeuMet Ser Glu Val Glu Phe Ser His Glu Tyr Trp Met Arg His Ala Leu
1 5 10 151 5 10 15
Thr Leu Ala Lys Arg Ala Arg Asp Glu Arg Glu Val Pro Val Gly AlaThr Leu Ala Lys Arg Ala Arg Asp Glu Arg Glu Val Pro Val Gly Ala
20 25 30 20 25 30
Val Leu Val Leu Asn Asn Arg Val Ile Gly Glu Gly Trp Asn Arg AlaVal Leu Val Leu Asn Asn Arg Val Ile Gly Glu Gly Trp Asn Arg Ala
35 40 45 35 40 45
Ile Gly Leu His Asp Pro Thr Ala His Ala Glu Ile Met Ala Leu ArgIle Gly Leu His Asp Pro Thr Ala His Ala Glu Ile Met Ala Leu Arg
50 55 60 50 55 60
Gln Gly Gly Leu Val Met Gln Asn Tyr Arg Leu Ile Asp Ala Thr LeuGln Gly Gly Leu Val Met Gln Asn Tyr Arg Leu Ile Asp Ala Thr Leu
65 70 75 8065 70 75 80
Tyr Val Thr Phe Glu Pro Cys Val Met Cys Ala Gly Ala Met Ile HisTyr Val Thr Phe Glu Pro Cys Val Met Cys Ala Gly Ala Met Ile His
85 90 95 85 90 95
Ser Arg Ile Gly Arg Val Val Phe Gly Val Arg Asn Ser Lys Arg GlySer Arg Ile Gly Arg Val Val Phe Gly Val Arg Asn Ser Lys Arg Gly
100 105 110 100 105 110
Ala Ala Gly Ser Leu Met Asn Val Leu Asn Tyr Pro Gly Met Asn HisAla Ala Gly Ser Leu Met Asn Val Leu Asn Tyr Pro Gly Met Asn His
115 120 125 115 120 125
Arg Val Glu Ile Thr Glu Gly Ile Leu Ala Asp Glu Cys Ala Ala LeuArg Val Glu Ile Thr Glu Gly Ile Leu Ala Asp Glu Cys Ala Ala Leu
130 135 140 130 135 140
Leu Cys Asp Phe Tyr Arg Met Pro Arg Gln Val Phe Asn Ala Gln LysLeu Cys Asp Phe Tyr Arg Met Pro Arg Gln Val Phe Asn Ala Gln Lys
145 150 155 160145 150 155 160
Lys Ala Gln Ser Ser Ile AsnLys Ala Gln Ser Ser Ile Asn
165 165
<210> 2<210> 2
<211> 501<211> 501
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> TadA<223> Tad A
<400> 2<400> 2
atgtctgagg tggagttttc ccacgagtac tggatgagac atgccctgac cctggccaag 60atgtctgagg tggagttttc ccacgagtac tggatgagac atgccctgac cctggccaag 60
agggcacggg atgagaggga ggtgcctgtg ggagccgtgc tggtgctgaa caatagagtg 120agggcacggg atgagaggga ggtgcctgtg ggagccgtgc tggtgctgaa caatagagtg 120
atcggcgagg gctggaacag agccatcggc ctgcacgacc caacagccca tgccgaaatt 180atcggcgagg gctggaacag agccatcggc ctgcacgacc caacagccca tgccgaaatt 180
atggccctga gacagggcgg cctggtcatg cagaactaca gactgattga cgccaccctg 240atggccctga gacagggcgg cctggtcatg cagaactaca gactgattga cgccaccctg 240
tacgtgacat tcgagccttg cgtgatgtgc gccggcgcca tgatccactc taggatcggc 300tacgtgacat tcgagccttg cgtgatgtgc gccggcgcca tgatccactc taggatcggc 300
cgcgtggtgt ttggcgtgag gaactcaaaa agaggcgccg caggctccct gatgaacgtg 360cgcgtggtgt ttggcgtgag gaactcaaaa agaggcgccg caggctccct gatgaacgtg 360
ctgaactacc ccggcatgaa tcaccgcgtc gaaattaccg agggaatcct ggcagatgaa 420ctgaactacc ccggcatgaa tcaccgcgtc gaaattaccg agggaatcct ggcagatgaa 420
tgtgccgccc tgctgtgcga tttctatcgg atgcctagac aggtgttcaa tgctcagaag 480tgtgccgccc tgctgtgcga tttctatcgg atgcctagac aggtgttcaa tgctcagaag 480
aaggcccaga gctccatcaa c 501aaggcccaga gctccatcaa c 501
<210> 3<210> 3
<211> 18<211> 18
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> 核定位信号序列<223> Nuclear localization signal sequence
<400> 3<400> 3
Lys Arg Thr Ala Asp Gly Ser Glu Phe Glu Ser Pro Lys Lys Lys ArgLys Arg Thr Ala Asp Gly Ser Glu Phe Glu Ser Pro Lys Lys Lys Arg
1 5 10 151 5 10 15
Lys ValLys Val
<210> 4<210> 4
<211> 20<211> 20
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> FANCF site1<223> FANCF site1
<400> 4<400> 4
ggaatccctt ctgcagcacc 20
<210> 5<210> 5
<211> 20<211> 20
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> EGFR-library-sg4<223> EGFR-library-sg4
<400> 5<400> 5
aagatcaaag tgctgggctc 20
<210> 6<210> 6
<211> 20<211> 20
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> HBG-sg1<223> HBG-sg1
<400> 6<400> 6
cttgtcaagg ctattggtca 20
<210> 7<210> 7
<211> 20<211> 20
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> EMX1-sg2p<223> EMX1-sg2p
<400> 7<400> 7
gacatcgatg tcctccccat 20
<210> 8<210> 8
<211> 20<211> 20
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> HBG-sg8<223> HBG-sg8
<400> 8<400> 8
caggacaagg gagggaagga 20
<210> 9<210> 9
<211> 20<211> 20
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> ABE-site3<223> ABE-site3
<400> 9<400> 9
gtcaagaaag cagagactgc 20
<210> 10<210> 10
<211> 20<211> 20
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> ABE-site10<223> ABE-site10
<400> 10<400> 10
gaacataaag aatagaatga 20
<210> 11<210> 11
<211> 20<211> 20
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> HEK-site7<223> HEK-site7
<400> 11<400> 11
ggaacacaaa gcatagactg 20
<210> 12<210> 12
<211> 20<211> 20
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> ABE-site16<223> ABE-site16
<400> 12<400> 12
gggaataaat catagaatcc 20
<210> 13<210> 13
<211> 20<211> 20
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> ABE-site17<223> ABE-site17
<400> 13<400> 13
gacaaagagg aagagagacg 20
<210> 14<210> 14
<211> 20<211> 20
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> ABE-site13<223> ABE-site13
<400> 14<400> 14
gaagatagag aatagactgc 20
<210> 15<210> 15
<211> 20<211> 20
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> ABE-site8<223> ABE-site8
<400> 15<400> 15
gtaaacaaag catagactga 20
<210> 16<210> 16
<211> 43<211> 43
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> FANCF site1-F<223> FANCF site1-F
<400> 16<400> 16
ggagtgagta cggtgtgcaa ggaacacgga taaagacgct ggg 43ggagtgagta cggtgtgcaa ggaacacgga taaagacgct ggg 43
<210> 17<210> 17
<211> 43<211> 43
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> FANCF site1-R<223> FANCF site1-R
<400> 17<400> 17
gagttggatg ctggatggta ggtagtgctt gagaccgcca gaa 43gagttggatg ctggatggta ggtagtgctt gagaccgcca gaa 43
<210> 18<210> 18
<211> 43<211> 43
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> EGFR-library-sg4-F<223> EGFR-library-sg4-F
<400> 18<400> 18
ggagtgagta cggtgtgcct tgtggagcct cttacaccca gtg 43ggagtgagta cggtgtgcct tgtggagcct cttacaccca gtg 43
<210> 19<210> 19
<211> 41<211> 41
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> EGFR-library-sg4-R<223> EGFR-library-sg4-R
<400> 19<400> 19
gagttggatg ctggatggct ccccaccaga ccatgagagg c 41gagttggatg ctggatggct ccccaccaga ccatgagagg
<210> 20<210> 20
<211> 43<211> 43
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> HBG-sg1-F<223> HBG-sg1-F
<400> 20<400> 20
ggagtgagta cggtgtgctg gaatgactga atcggaacaa ggc 43ggagtgagta cggtgtgctg gaatgactga atcggaacaa ggc 43
<210> 21<210> 21
<211> 44<211> 44
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> HBG-sg1-R<223> HBG-sg1-R
<400> 21<400> 21
gagttggatg ctggatggct ggcctcactg gatactctaa gact 44gagttggatg ctggatggct ggcctcactg gatactctaa gact 44
<210> 22<210> 22
<211> 43<211> 43
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> EMX1-sg2p-F<223>EMX1-sg2p-F
<400> 22<400> 22
ggagtgagta cggtgtgcgt ggttccagaa ccggaggaca aag 43ggagtgagta cggtgtgcgt ggttccagaa ccggaggaca aag 43
<210> 23<210> 23
<211> 43<211> 43
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> EMX1-sg2p-R<223> EMX1-sg2p-R
<400> 23<400> 23
gagttggatg ctggatgggt ttgtggttgc ccaccctagt cat 43gagttggatg ctggatgggt ttgtggttgc ccaccctagt cat 43
<210> 24<210> 24
<211> 43<211> 43
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> HBG-sg8-F<223> HBG-sg8-F
<400> 24<400> 24
ggagtgagta cggtgtgctg gggcaaggtg aatgtggaag atg 43ggagtgagta cggtgtgctg gggcaaggtg aatgtggaag atg 43
<210> 25<210> 25
<211> 43<211> 43
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> HBG-sg8-R<223> HBG-sg8-R
<400> 25<400> 25
gagttggatg ctggatggaa cctctgggtc catgggtaga caa 43gagttggatg ctggatggaa cctctgggtc catgggtaga caa 43
<210> 26<210> 26
<211> 44<211> 44
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> ABE-site3-F<223> ABE-site3-F
<400> 26<400> 26
ggagtgagta cggtgtgctg tcttcccttt cccttttcct cacc 44ggagtgagta cggtgtgctg tcttcccttt cccttttcct cacc 44
<210> 27<210> 27
<211> 43<211> 43
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> ABE-site3-R<223> ABE-site3-R
<400> 27<400> 27
gagttggatg ctggatggaa ttgaggctca gaggagatgt gcc 43gagttggatg ctggatggaa ttgaggctca gaggagatgt gcc 43
<210> 28<210> 28
<211> 43<211> 43
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> ABE-site10-F<223> ABE-site10-F
<400> 28<400> 28
ggagtgagta cggtgtgcta cattaaccat ccccacatta tcc 43ggagtgagta cggtgtgcta cattaaccat ccccacatta tcc 43
<210> 29<210> 29
<211> 45<211> 45
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> ABE-site10-R<223> ABE-site10-R
<400> 29<400> 29
gagttggatg ctggatggag ggaactagat gttatgttta ggtga 45ggttggatg ctggatggag ggaactagat gttatgttta ggtga 45
<210> 30<210> 30
<211> 44<211> 44
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> HEK-site7-F<223> HEK-site7-F
<400> 30<400> 30
ggagtgagta cggtgtgctg aatggattcc ttggaaacaa tgat 44ggagtgagta cggtgtgctg aatggattcc ttggaaacaa tgat 44
<210> 31<210> 31
<211> 41<211> 41
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> HEK-site7-R<223> HEK-site7-R
<400> 31<400> 31
gagttggatg ctggatggtg tcaaactgtg cgtatgacat c 41gagttggatg ctggatggtg tcaaactgtg cgtatgacat
<210> 32<210> 32
<211> 43<211> 43
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> ABE-site16-F<223> ABE-site16-F
<400> 32<400> 32
ggagtgagta cggtgtgcta caattctgac cccatgcacc ctc 43ggagtgagta cggtgtgcta caattctgac cccatgcacc ctc 43
<210> 33<210> 33
<211> 43<211> 43
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> ABE-site16-R<223> ABE-site16-R
<400> 33<400> 33
gagttggatg ctggatggat gccagatacc agcaatccag caa 43gagttggatg ctggatggat gccagatacc agcaatccag caa 43
<210> 34<210> 34
<211> 43<211> 43
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> ABE-site17-F<223> ABE-site17-F
<400> 34<400> 34
ggagtgagta cggtgtgcct caagcctgat tccaaggaga ttg 43ggagtgagta cggtgtgcct caagcctgat tccaaggaga ttg 43
<210> 35<210> 35
<211> 39<211> 39
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> ABE-site17-R<223> ABE-site17-R
<400> 35<400> 35
gagttggatg ctggatggtc cctcctctgc gtgaatttg 39gagttggatg ctggatggtc cctcctctgc gtgaatttg 39
<210> 36<210> 36
<211> 44<211> 44
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> ABE-site13-F<223> ABE-site13-F
<400> 36<400> 36
ggagtgagta cggtgtgcca tcaatcaact tctctttctc tccc 44ggagtgagta cggtgtgcca tcaatcaact tctctttctc tccc 44
<210> 37<210> 37
<211> 44<211> 44
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> ABE-site13-R<223> ABE-site13-R
<400> 37<400> 37
gagttggatg ctggatggat atcacttcag cccaggagta taac 44gagttggatg ctggatggat atcacttcag cccaggagta taac 44
<210> 38<210> 38
<211> 43<211> 43
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> ABE-site8-F<223> ABE-site8-F
<400> 38<400> 38
ggagtgagta cggtgtgcct gctgccgtgg gagacaattc ata 43ggagtgagta cggtgtgcct gctgccgtgg gagacaattc ata 43
<210> 39<210> 39
<211> 43<211> 43
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> ABE-site8-R<223> ABE-site8-R
<400> 39<400> 39
gagttggatg ctggatggag ctgttgcatg aggaaaggga cta 43gagttggatg ctggatggag ctgttgcatg aggaaaggga cta 43
<210> 40<210> 40
<211> 2340<211> 2340
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> U6-sgRNA-EF1α-GFP<223> U6-sgRNA-EF1α-GFP
<220><220>
<221> misc_feature<221> misc_feature
<222> (250)..(269)<222> (250)..(269)
<223> n is a, c, g, or t<223> n is a, c, g, or t
<400> 40<400> 40
gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60
ataattagaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120ataattagaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120
aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180
atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240
cgaaacaccn nnnnnnnnnn nnnnnnnnng ttttagagct agaaatagca agttaaaata 300cgaaacaccn nnnnnnnnnn nnnnnnnnng ttttagagct agaaatagca agttaaaata 300
aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt ttaggcctga 360aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt ttaggcctga 360
attctgcaga tatccatcac actggcggct ccggtgcccg tcagtgggca gagcgcacat 420attctgcaga tatccatcac actggcggct ccggtgcccg tcagtggggca gagcgcacat 420
cgcccacagt ccccgagaag ttggggggag gggtcggcaa ttgaaccggt gcctagagaa 480cgcccacagt ccccgagaag ttggggggag gggtcggcaa ttgaaccggt gcctagagaa 480
ggtggcgcgg ggtaaactgg gaaagtgatg tcgtgtactg gctccgcctt tttcccgagg 540ggtggcgcgg ggtaaactgg gaaagtgatg tcgtgtactg gctccgcctt tttcccgagg 540
gtgggggaga accgtatata agtgcagtag tcgccgtgaa cgttcttttt cgcaacgggt 600gtggggggaga accgtatata agtgcagtag tcgccgtgaa cgttcttttt cgcaacgggt 600
ttgccgccag aacacaggta agtgccgtgt gtggttcccg cgggcctggc ctctttacgg 660ttgccgccag aacacaggta agtgccgtgt gtggttcccg cgggcctggc ctctttacgg 660
gttatggccc ttgcgtgcct tgaattactt ccactggctg cagtacgtga ttcttgatcc 720gttatggccc ttgcgtgcct tgaattactt ccactggctg cagtacgtga ttcttgatcc 720
cgagcttcgg gttggaagtg ggtgggagag ttcgaggcct tgcgcttaag gagccccttc 780cgagcttcgg gttggaagtg ggtgggagag ttcgaggcct tgcgcttaag gagccccttc 780
gcctcgtgct tgagttgagg cctggcctgg gcgctggggc cgccgcgtgc gaatctggtg 840gcctcgtgct tgagttgagg cctggcctgg gcgctggggc cgccgcgtgc gaatctggtg 840
gcaccttcgc gcctgtctcg ctgctttcga taagtctcta gccatttaaa atttttgatg 900gcaccttcgc gcctgtctcg ctgctttcga taagtctcta gccattaaa atttttgatg 900
acctgctgcg acgctttttt tctggcaaga tagtcttgta aatgcgggcc aagatctgca 960acctgctgcg acgctttttt tctggcaaga tagtcttgta aatgcgggcc aagatctgca 960
cactggtatt tcggtttttg gggccgcggg cggcgacggg gcccgtgcgt cccagcgcac 1020cactggtatt tcggtttttg gggccgcggg cggcgacggg gcccgtgcgt cccagcgcac 1020
atgttcggcg aggcggggcc tgcgagcgcg gccaccgaga atcggacggg ggtagtctca 1080atgttcggcg aggcggggcc tgcgagcgcg gccaccgaga atcggacggg ggtagtctca 1080
agctggccgg cctgctctgg tgcctggcct cgcgccgccg tgtatcgccc cgccctgggc 1140agctggccgg cctgctctgg tgcctggcct cgcgccgccg tgtatcgccc cgccctgggc 1140
ggcaaggctg gcccggtcgg caccagttgc gtgagcggaa agatggccgc ttcccggccc 1200ggcaaggctg gcccggtcgg caccagttgc gtgagcggaa agatggccgc ttcccggccc 1200
tgctgcaggg agctcaaaat ggaggacgcg gcgctcggga gagcgggcgg gtgagtcacc 1260tgctgcaggg agctcaaaat ggaggacgcg gcgctcggga gagcgggcgg gtgagtcacc 1260
cacacaaagg aaaagggcct ttccgtcctc agccgtcgct tcatgtgact ccacggagta 1320cacacaaagg aaaagggcct ttccgtcctc agccgtcgct tcatgtgact ccacggagta 1320
ccgggcgccg tccaggcacc tcgattagtt ctcgagcttt tggagtacgt cgtctttagg 1380ccgggcgccg tccaggcacc tcgattagtt ctcgagcttt tggagtacgt cgtctttagg 1380
ttggggggag gggttttatg cgatggagtt tccccacact gagtgggtgg agactgaagt 1440ttggggggag gggttttatg cgatggagtt tccccaacact gagtgggtgg agactgaagt 1440
taggccagct tggcacttga tgtaattctc cttggaattt gccctttttg agtttggatc 1500taggccagct tggcacttga tgtaattctc cttggaattt gccctttttg agtttggatc 1500
ttggttcatt ctcaagcctc agacagtggt tcaaagtttt tttcttccat ttcaggtgtc 1560ttggttcatt ctcaagcctc agacagtggt tcaaagtttt tttcttccat ttcaggtgtc 1560
gtgaaatacg actcactata gggagaccca agctggctag ttaagcttgg taccgccacc 1620gtgaaatacg actcactata gggagaccca agctggctag ttaagcttgg taccgccacc 1620
atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 1680atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 1680
ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 1740ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 1740
ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 1800ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 1800
ctcgtgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccga ccacatgaag 1860ctcgtgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccga ccacatgaag 1860
cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcttc 1920cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcttc 1920
ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 1980ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 1980
gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 2040gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 2040
aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa gcagaagaac 2100aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa gcagaagaac 2100
ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 2160ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 2160
gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 2220gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 2220
tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 2280tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 2280
ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct gtacaagtaa 2340ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct gtacaagtaa 2340
<210> 41<210> 41
<211> 18<211> 18
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> 正向引物端搭桥序列<223> Forward primer end bridge sequence
<400> 41<400> 41
ggagtgagta cggtgtgc 18ggagtgagta cggtgtgc 18
<210> 42<210> 42
<211> 18<211> 18
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> 反向引物端搭桥序列<223> Reverse primer end bridging sequence
<400> 42<400> 42
gagttggatg ctggatgg 18gagttggatg ctggatgg 18
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111044206.0A CN115772512A (en) | 2021-09-07 | 2021-09-07 | Adenine deaminase, adenine base editor containing adenine deaminase and application of adenine base editor |
PCT/CN2022/117592 WO2023036189A1 (en) | 2021-09-07 | 2022-09-07 | Adenine deaminase, adenine base editor containing same, and applications thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111044206.0A CN115772512A (en) | 2021-09-07 | 2021-09-07 | Adenine deaminase, adenine base editor containing adenine deaminase and application of adenine base editor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115772512A true CN115772512A (en) | 2023-03-10 |
Family
ID=85387684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111044206.0A Pending CN115772512A (en) | 2021-09-07 | 2021-09-07 | Adenine deaminase, adenine base editor containing adenine deaminase and application of adenine base editor |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115772512A (en) |
WO (1) | WO2023036189A1 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3645054A4 (en) * | 2017-06-26 | 2021-03-31 | The Broad Institute, Inc. | COMPOSITIONS BASED ON CRISPR / CAS-ADENIN-DEAMINASE, SYSTEMS AND METHODS FOR TARGETED NUCLEIC ACID EDITING |
CN114072496A (en) * | 2019-02-13 | 2022-02-18 | 比姆医疗股份有限公司 | Adenosine deaminase base editor and method for modifying nucleobases in target sequence by using same |
CN110407945A (en) * | 2019-06-14 | 2019-11-05 | 上海科技大学 | A kind of adenine base editing tool and its application |
JP2023501223A (en) * | 2019-10-30 | 2023-01-18 | ペアーワイズ プランツ サービシズ, インコーポレイテッド | Type V CRISPR-CAS base editor and method of use |
US20230235309A1 (en) * | 2020-02-05 | 2023-07-27 | The Broad Institute, Inc. | Adenine base editors and uses thereof |
CN112143753A (en) * | 2020-09-17 | 2020-12-29 | 中国农业科学院植物保护研究所 | Adenine base editor and related biological material and application thereof |
CN115247162B (en) * | 2021-04-27 | 2024-05-03 | 华东师范大学 | Fusion protein for adenine base editing and application thereof |
-
2021
- 2021-09-07 CN CN202111044206.0A patent/CN115772512A/en active Pending
-
2022
- 2022-09-07 WO PCT/CN2022/117592 patent/WO2023036189A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2023036189A1 (en) | 2023-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109957569B (en) | Base editing system and method based on CPF1 protein | |
US10724021B1 (en) | Nucleic acid-guided nucleases | |
CN110157727A (en) | Alkaloid edit methods | |
CN109517845A (en) | CRISPR (clustered regularly interspaced short palindromic repeats) single-base repair system and application thereof | |
CN112979821A (en) | Fusion protein for improving gene editing efficiency and application thereof | |
CN110577971A (en) | CRISPR/Sa-SauriCas9 gene editing system and its application | |
CN110551761A (en) | CRISPR/Sa-SepCas9 gene editing system and application thereof | |
Zhang et al. | Rapid assembly of customized TALENs into multiple delivery systems | |
WO2021133261A1 (en) | Nucleobase editors | |
CN115772512A (en) | Adenine deaminase, adenine base editor containing adenine deaminase and application of adenine base editor | |
CN116200382A (en) | Novel gene editing system for mediating A-to-C mutation or T-to-G mutation and application thereof | |
WO2023125814A1 (en) | Adenine deaminase and application thereof | |
CN116410963A (en) | A mini gene editing system for realizing efficient base transversion and its application | |
CN114560946A (en) | Product, method and application of adenine single base editing without PAM limitation | |
CN113549650B (en) | CRISPR-SaCas9 gene editing system and application thereof | |
CN113564145A (en) | Fusion protein for cytosine base editing and application thereof | |
CN114686456A (en) | Base editing system based on bimolecular deaminase complementation and its application | |
CN116217733A (en) | Base editing fusion protein and its application | |
Fräbel et al. | Progress in precise and predictable genome editing in plants with base editing | |
CN111944811A (en) | Double sgRNA for targeted knockout of FRZB gene, pig fibroblast line for knockout of FRZB gene and application of pig fibroblast line | |
WO2023024089A1 (en) | Base editing system for achieving a-to-c and/or a-to-t base mutation and use thereof | |
CN110577972A (en) | CRISPR/Sa-ShaCas9 gene editing system and its application | |
CA3133130A1 (en) | High-precision base editors | |
CN110551763A (en) | CRISPR/SlutCas9 gene editing system and application thereof | |
WO2024055664A1 (en) | Optimized guide rna, crispr/acc2c9 gene editing system, and gene editing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |