CN115750089A - A high-temperature molten salt heat storage coupled gas-fired power generation peak-shaving system and its operation method - Google Patents
A high-temperature molten salt heat storage coupled gas-fired power generation peak-shaving system and its operation method Download PDFInfo
- Publication number
- CN115750089A CN115750089A CN202211505466.8A CN202211505466A CN115750089A CN 115750089 A CN115750089 A CN 115750089A CN 202211505466 A CN202211505466 A CN 202211505466A CN 115750089 A CN115750089 A CN 115750089A
- Authority
- CN
- China
- Prior art keywords
- molten salt
- steam
- low
- heat exchange
- temperature molten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
本发明涉及一种高温熔盐储热耦合燃气发电调峰系统及运行方法,包括燃气轮发电机组、烟气换热装置、熔盐储热换热装置、汽轮机发电机组和循环水路;熔盐储热换热装置包括低温熔盐储罐、低温熔盐泵、高温熔盐储罐、高温熔盐泵和熔盐蒸汽换热机构;燃气轮发电机组烟气出口与烟气换热装置烟气进口连通,低温熔盐储罐、烟气换热装置、高温熔盐储罐和熔盐蒸汽换热机构依次连通构成循环储热换热回路,汽轮机发电机组、熔盐蒸汽换热机构和循环水路依次连通构成蒸汽循环发电回路;低温熔盐储罐的熔盐进口和熔盐出口设置有低温熔盐旁路管,高温熔盐储罐的熔盐进口和高温熔盐泵的熔盐出口设置有高温熔盐旁路管;此系统可以进行深度调峰,调峰能力更高。
The invention relates to a high-temperature molten salt heat storage coupling gas-fired power generation peak regulation system and its operation method, including a gas turbine generator set, a flue gas heat exchange device, a molten salt heat storage heat exchange device, a steam turbine generator set and a circulating waterway; The heat exchange device includes a low-temperature molten salt storage tank, a low-temperature molten salt pump, a high-temperature molten salt storage tank, a high-temperature molten salt pump, and a molten salt steam heat exchange mechanism; the flue gas outlet of the gas turbine generator set and the flue gas inlet of the flue gas heat exchange device Connected, the low-temperature molten salt storage tank, the flue gas heat exchange device, the high-temperature molten salt storage tank and the molten salt steam heat exchange mechanism are connected in sequence to form a circulating heat storage and heat exchange circuit. The steam turbine generator set, the molten salt steam heat exchange mechanism and the circulating water circuit Connected to form a steam cycle power generation circuit; the molten salt inlet and outlet of the low-temperature molten salt storage tank are provided with low-temperature molten salt bypass pipes, and the molten salt inlet of the high-temperature molten salt storage tank and the molten salt outlet of the high-temperature molten salt pump are provided with high-temperature Molten salt bypass pipe; this system can perform deep peak shaving with higher peak shaving capacity.
Description
技术领域technical field
本发明涉及火电灵活性技术领域,特别是涉及一种高温熔盐储热耦合燃气发电调峰系统及运行方法。The invention relates to the technical field of thermal power flexibility, in particular to a peak-shaving system and an operating method for high-temperature molten salt heat storage coupled with gas-fired power generation.
背景技术Background technique
当前,我国政策大力重视新能源电力的推广,降低火电机组的比例,使得火电机组的发展面临严峻考验,未来火力发电势必要给新能源电力发展让路,这将使得火力发电的主要职能发生根本性改变,将由原来的供电保障主力电源转变为灵活调节性电源。近年来,由于大力发展新能源电力,致使高比例新能源电力接入电网而导致了严重的“弃风弃光”现象,给电网的安全运行和电力供应保障带来了巨大挑战。因此,提升电网中灵活性调节电源的占比,以提升电网消纳新能源电力的能力,增加电网中清洁绿色电能的占比,则迫在眉睫。At present, our country's policy attaches great importance to the promotion of new energy power and reduces the proportion of thermal power units, which makes the development of thermal power units face severe challenges. In the future, thermal power generation will inevitably give way to the development of new energy power, which will make the main functions of thermal power generation fundamentally The change will transform the main power supply from the original power supply guarantee to a flexible and adjustable power supply. In recent years, due to the vigorous development of new energy power, a high proportion of new energy power has been connected to the power grid, resulting in a serious phenomenon of "abandoning wind and light", which has brought great challenges to the safe operation of the power grid and the guarantee of power supply. Therefore, it is imminent to increase the proportion of flexible and adjustable power sources in the grid to enhance the ability of the grid to absorb new energy power and increase the proportion of clean and green power in the grid.
目前,燃气-蒸汽联合循环方式以其发电效率高、建设周期短、操作运行方便等优点,成为了国际上发展最快的发电形式,这也对我国当前的电力结构调整具有重大的指导意义。然而,联合循环机组在参与电网电力调峰时,随着用电负荷及新能源电力的波动,运行负荷波动频繁,导致联合循环机组的效率大大降低,例如机组低负荷运行与满负荷运行相比,机组负荷率60%时,热耗增加8%,机组负荷率40%时,热耗将增加20%。由此,在联合循环系统中集成储能装置,以保证机组在参与电力调峰时,仍能以较高的负荷运行,提升整体系统的高效性与灵活性,则至关重要。At present, the gas-steam combined cycle method has become the fastest-growing form of power generation in the world due to its advantages of high power generation efficiency, short construction period, and convenient operation. This also has great guiding significance for my country's current power structure adjustment. However, when the combined cycle unit participates in grid power peak regulation, the operating load fluctuates frequently with the fluctuation of the electricity load and new energy power, which leads to a significant reduction in the efficiency of the combined cycle unit. , when the unit load rate is 60%, the heat consumption will increase by 8%, and when the unit load rate is 40%, the heat consumption will increase by 20%. Therefore, it is very important to integrate energy storage devices in the combined cycle system to ensure that the unit can still operate at a higher load when participating in power peak regulation, and to improve the efficiency and flexibility of the overall system.
熔盐储热技术以其成本低、热容高、安全性好等优点,已发展成为国际上最为主流的高温储热技术。因此,利用熔盐储热技术,解决以联合循环机组为主的热电厂存在的电力调峰能力不足难题,则是极具前景的一种技术应用方式。在相关专利技术中,主要为高温烟气直接加热熔盐进行储热调峰、电能直接加热熔盐进行储热调峰、高参数蒸汽直接加热熔盐进行储热调峰等技术应用方式,当高温烟气与高参数蒸汽加热熔盐进行储热,燃气轮机组在保持高效率稳定运行时,汽轮机发电机组运行负荷无法降为零,储热调峰能力有限,无法满足电网的深度电力调峰要求。Molten salt heat storage technology has developed into the most mainstream high-temperature heat storage technology in the world due to its advantages of low cost, high heat capacity, and good safety. Therefore, using molten salt heat storage technology to solve the problem of insufficient power peak regulation capacity in thermal power plants dominated by combined cycle units is a very promising technology application method. Among the relevant patented technologies, there are mainly technical application methods such as direct heating of molten salt by high-temperature flue gas for heat storage and peak regulation, direct heating of molten salt by electric energy for heat storage and peak regulation, and direct heating of molten salt by high-parameter steam for heat storage and peak regulation. High-temperature flue gas and high-parameter steam heat molten salt for heat storage. When the gas turbine unit maintains high-efficiency and stable operation, the operating load of the steam turbine generator unit cannot be reduced to zero, and the peak-shaving capacity of heat storage is limited, which cannot meet the deep power peak-shaving requirements of the grid. .
发明内容Contents of the invention
本发明要解决的技术问题在于克服现有技术中的燃气轮机组在保持高效率稳定运行时,汽轮机发电机组运行负荷无法降为零,储热调峰能力有限,无法满足电网的深度电力调峰要求的缺陷,从而提供一种高温熔盐储热耦合燃气发电调峰系统及运行方法。The technical problem to be solved by the present invention is to overcome the problem that when the gas turbine set in the prior art maintains high efficiency and stable operation, the operating load of the steam turbine generator set cannot be reduced to zero, and the heat storage peak-shaving capability is limited, which cannot meet the deep power peak-shaving requirements of the power grid defects, thereby providing a high-temperature molten salt heat storage coupled gas-fired power generation peak-shaving system and an operation method.
为实现上述目的,本发明采用了如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种高温熔盐储热耦合燃气发电调峰系统,包括燃气轮发电机组、烟气换热装置、熔盐储热换热装置、汽轮机发电机组和循环水路;A high-temperature molten salt heat storage coupled gas-fired power generation peak-shaving system, including a gas turbine generator set, a flue gas heat exchange device, a molten salt heat storage heat exchange device, a steam turbine generator set, and a circulating waterway;
上述熔盐储热换热装置包括低温熔盐储罐、低温熔盐泵、高温熔盐储罐、高温熔盐泵和熔盐蒸汽换热机构;The above-mentioned molten salt heat storage and heat exchange device includes a low-temperature molten salt storage tank, a low-temperature molten salt pump, a high-temperature molten salt storage tank, a high-temperature molten salt pump, and a molten salt steam heat exchange mechanism;
上述燃气轮发电机组的烟气出口与上述烟气换热装置的烟气进口连通,上述低温熔盐储罐、上述烟气换热装置、上述高温熔盐储罐和上述熔盐蒸汽换热机构依次连通构成循环储热换热回路,且上述低温熔盐泵设于上述烟气换热装置的熔盐进口,上述高温熔盐泵设于上述高温熔盐储罐的熔盐出口;上述汽轮机发电机组、上述熔盐蒸汽换热机构和上述循环水路依次连通构成蒸汽循环发电回路,上述汽轮机发电机组与上述熔盐蒸汽换热机构的蒸汽出口连通;The flue gas outlet of the gas turbine generator set communicates with the flue gas inlet of the flue gas heat exchange device, the low temperature molten salt storage tank, the flue gas heat exchange device, the high temperature molten salt storage tank and the molten salt steam heat exchange mechanism connected in turn to form a circulating heat storage and heat exchange circuit, and the above-mentioned low-temperature molten salt pump is installed at the molten salt inlet of the above-mentioned flue gas heat exchange device, and the above-mentioned high-temperature molten salt pump is installed at the molten salt outlet of the above-mentioned high-temperature molten salt storage tank; the above-mentioned steam turbine generates electricity The unit, the above-mentioned molten salt steam heat exchange mechanism and the above-mentioned circulating waterway are connected in sequence to form a steam cycle power generation circuit, and the above-mentioned steam turbine generator set is connected with the steam outlet of the above-mentioned molten salt steam heat exchange mechanism;
上述低温熔盐储罐的熔盐进口和熔盐出口之间连通有低温熔盐旁路管,上述高温熔盐储罐的熔盐进口和上述高温熔盐泵的熔盐出口之间连通有高温熔盐旁路管。A low-temperature molten salt bypass pipe is connected between the molten salt inlet and the molten salt outlet of the above-mentioned low-temperature molten salt storage tank, and a high-temperature molten salt bypass pipe is connected between the molten salt inlet of the above-mentioned high-temperature molten salt storage tank and the molten salt outlet of the above-mentioned high-temperature molten salt pump. Molten salt bypass pipe.
优选地,上述熔盐蒸汽换热机构包括高压过热器、高压汽包、中压过热器和中压汽包;Preferably, the molten salt steam heat exchange mechanism includes a high-pressure superheater, a high-pressure steam drum, a medium-pressure superheater and a medium-pressure steam drum;
上述高压过热器的熔盐出口均与上述高压汽包的熔盐进口和上述中压过热器的熔盐进口连通,上述中压汽包的熔盐进口均与上述高压汽包的熔盐出口和上述中压过热器的熔盐出口连通,上述高压过热器的熔盐进口与上述高温熔盐泵的熔盐出口连通,上述中压汽包的熔盐出口与上述低温熔盐储罐的熔盐进口连通;The molten salt outlet of the above-mentioned high pressure superheater is all connected with the molten salt inlet of the above-mentioned high-pressure steam drum and the molten salt inlet of the above-mentioned medium pressure superheater, and the molten salt inlet of the above-mentioned medium-pressure steam drum is connected with the molten salt outlet of the above-mentioned high-pressure steam drum and The molten salt outlet of the above-mentioned medium pressure superheater is connected, the molten salt inlet of the above-mentioned high-pressure superheater is connected with the molten salt outlet of the above-mentioned high-temperature molten salt pump, and the molten salt outlet of the above-mentioned medium-pressure steam drum is connected with the molten salt of the above-mentioned low-temperature molten salt storage tank. import connectivity;
上述高压汽包的进水口设置有第一水泵,上述中压汽包的进水口设置有第二水泵,上述循环水路的出水口均与上述第一水泵和上述第二水泵连通,上述高压汽包的出汽口与上述高压过热器的进汽口连通,上述中压汽包的出汽口与上述中压过热器的进汽口连通,上述高压过热器的出汽口和上述中压过热器的出汽口分别与上述汽轮机发电机组的高压进汽口和中压进汽口连通。The water inlet of the above-mentioned high-pressure steam drum is provided with a first water pump, and the water inlet of the above-mentioned medium-pressure steam drum is provided with a second water pump. The steam outlet of the above-mentioned high-pressure superheater is connected with the steam inlet of the above-mentioned high-pressure superheater, the steam outlet of the above-mentioned medium-pressure drum is connected with the steam inlet of the above-mentioned medium-pressure superheater, and the steam outlet of the above-mentioned high-pressure superheater is connected with the steam inlet of the above-mentioned medium-pressure superheater The steam outlets of the steam turbines are respectively connected with the high-pressure steam inlets and the medium-pressure steam inlets of the above-mentioned steam turbine generator sets.
优选地,上述烟气换热装置包括熔盐式余热锅炉、熔盐低温加热器和熔盐高温加热器,上述熔盐低温加热器和上述熔盐高温加热器设于上述熔盐式余热锅炉中,上述低温熔盐储罐、上述熔盐低温加热器、上述熔盐高温加热器和上述高温熔盐储罐依次连通。Preferably, the flue gas heat exchange device includes a molten salt waste heat boiler, a molten salt low temperature heater and a molten salt high temperature heater, and the molten salt low temperature heater and the molten salt high temperature heater are arranged in the molten salt waste heat boiler , the above-mentioned low-temperature molten salt storage tank, the above-mentioned low-temperature molten salt heater, the above-mentioned high-temperature molten salt heater and the above-mentioned high-temperature molten salt storage tank are connected in sequence.
优选地,上述循环水路包括凝汽器、凝结水泵、第三水泵、除氧器、第五水泵和给水预热器,上述凝汽器的乏汽进口与上述汽轮机发电机组的排汽口连通,上述凝汽器、上述凝结水泵、上述除氧器、上述第五水泵和上述给水预热器依次连通,上述给水预热器的出水口与上述熔盐蒸汽换热机构的进水口连通,上述除氧器的进水口连通有补水管,上述第三水泵设于上述补水管上。Preferably, the circulating water circuit includes a condenser, a condensed water pump, a third water pump, a deaerator, a fifth water pump and a feed water preheater, and the exhaust steam inlet of the above condenser is connected with the steam exhaust port of the above steam turbine generator set, The above-mentioned condenser, the above-mentioned condensate pump, the above-mentioned deaerator, the above-mentioned fifth water pump and the above-mentioned feedwater preheater are connected in sequence, the water outlet of the above-mentioned feedwater preheater is connected with the water inlet of the above-mentioned molten salt steam heat exchange mechanism, and the above-mentioned deaerator The water inlet of the oxygenator is communicated with a water supply pipe, and the above-mentioned third water pump is arranged on the above-mentioned water supply pipe.
优选地,上述烟气换热装置的烟气出口还连通有低压蒸汽发生器,上低压蒸汽发生器的进水口与上述给水预热器的出水口连通,上述给水预热器的烟气进口与上述低压蒸汽发生器的烟气出口连通,上述除氧器的蒸汽入口与上述低压蒸汽发生器的蒸汽出口连通。Preferably, the flue gas outlet of the above-mentioned flue gas heat exchange device is also connected with a low-pressure steam generator, the water inlet of the upper low-pressure steam generator is connected with the water outlet of the above-mentioned feedwater preheater, and the flue gas inlet of the above-mentioned feedwater preheater is connected with the The flue gas outlet of the above-mentioned low-pressure steam generator is connected, and the steam inlet of the above-mentioned deaerator is connected with the steam outlet of the above-mentioned low-pressure steam generator.
优选地,上述烟气换热装置的烟气出口还连通有低压蒸汽过热器,上述低压蒸汽过热器的烟气出口与上述低压蒸汽发生器的烟气进口连通,上述低压蒸汽发生器的蒸汽出口与上述低压蒸汽过热器的蒸汽进口连通,上述低压蒸汽过热器的蒸汽出口还连通有工业蒸汽用户。Preferably, the flue gas outlet of the above-mentioned flue gas heat exchange device is also connected with a low-pressure steam superheater, the flue gas outlet of the above-mentioned low-pressure steam superheater is connected with the flue gas inlet of the above-mentioned low-pressure steam generator, and the steam outlet of the above-mentioned low-pressure steam generator It is connected with the steam inlet of the above-mentioned low-pressure steam superheater, and the steam outlet of the above-mentioned low-pressure steam superheater is also connected with industrial steam users.
优选地,上述循环水路还包括热水储罐,上述热水储罐的出水口连通有第四水泵,上述热水储罐的进水口与上述给水预热器的出水口连通,上述第四水泵的出水口均与上述熔盐蒸汽换热机构的进水口和上述低压蒸汽发生器的进水口连通。Preferably, the circulating water circuit further includes a hot water storage tank, the outlet of the hot water storage tank is connected to a fourth water pump, the water inlet of the hot water storage tank is connected to the water outlet of the feed water preheater, and the fourth water pump The water outlets are all communicated with the water inlet of the above-mentioned molten salt steam heat exchange mechanism and the water inlet of the above-mentioned low-pressure steam generator.
一种高温熔盐储热耦合燃气发电调峰系统的运行方法,包括:An operation method of a high-temperature molten salt heat storage coupled gas-fired power generation peak-shaving system, comprising:
当热电厂不参与电力调峰时,上述燃气轮发电机组与上述汽轮机发电机组均保持高负荷运行,以保证热电厂高效率运行,在运行过程中,上述熔盐储热换热装置只参与换热过程,不参与储热和放热,熔盐通过搬运烟气余热只加热循环水为蒸汽;When the thermal power plant does not participate in power peak regulation, the above-mentioned gas turbine generator set and the above-mentioned steam turbine generator set maintain high-load operation to ensure high-efficiency operation of the thermal power plant. During operation, the above-mentioned molten salt heat storage and heat exchange device only participates in the heat exchange process , does not participate in heat storage and heat release, the molten salt only heats the circulating water into steam by carrying the waste heat of the flue gas;
当热电厂参与电力调峰且需要降低上网电负荷时,上述燃气轮发电机组仍保持高负荷运行,降低上述汽轮机发电机组运行负荷来降低上网电负荷,在运行过程中,上述熔盐储热换热装置参与换热过程,也参与储热,一部分熔盐搬运烟气余热加热循环水为蒸汽,一部分具有烟气余热的熔盐储存起来;When the thermal power plant participates in power peak regulation and needs to reduce the grid load, the above-mentioned gas turbine generator set still maintains high-load operation, and reduces the operating load of the steam turbine generator set to reduce the grid load. During operation, the above-mentioned molten salt heat storage and heat exchange The device participates in the heat exchange process and also participates in heat storage. Part of the molten salt transports the waste heat of the flue gas to heat the circulating water into steam, and a part of the molten salt with the waste heat of the flue gas is stored;
当热电厂参与电力调峰且需要增加上网电负荷时,上述燃气轮发电机组仍保持高负荷运行,增加上述汽轮机发电机组运行负荷来增加上网电负荷,在运行过程中,上述熔盐储热换热装置参与换热过程,也参与放热,一部分熔盐搬运烟气余热加热循环水为蒸汽,一部分储存起来具有烟气余热的熔盐进行放热,用于加热循环水为蒸汽;When the thermal power plant participates in power peak regulation and needs to increase the on-grid power load, the above-mentioned gas turbine generator set still maintains high-load operation, and increases the above-mentioned steam turbine generator set operating load to increase the on-grid power load. During operation, the above-mentioned molten salt heat storage and heat exchange The device participates in the heat exchange process and also participates in heat release. A part of the molten salt transports the waste heat of the flue gas to heat the circulating water into steam, and a part of the stored molten salt with the waste heat of the flue gas releases heat to heat the circulating water into steam;
当热电厂参与电力调峰且需要深度降低上网电负荷时,上述燃气轮发电机组仍保持高负荷运行,上述汽轮机发电机组运行负荷为零,在运行过程中,上述熔盐储热换热装置不参与换热过程,只进行储热,吸收烟气余热的熔盐全部储存起来。When the thermal power plant participates in power peak regulation and needs to deeply reduce the grid load, the above-mentioned gas turbine generator set still maintains high-load operation, and the above-mentioned steam turbine generator set operates at zero load. During the operation, the above-mentioned molten salt heat storage and heat exchange device does not participate In the heat exchange process, only heat storage is performed, and the molten salt that absorbs the waste heat of the flue gas is all stored.
优选地,当热电厂参与电力调峰且需要降低上网电负荷时,来自上述烟气换热装置的高温熔盐分两路,一路进入上述高温熔盐储罐进行储热,上述高温熔盐泵不运行,另一路通过上述高温熔盐旁路管进入上述熔盐蒸汽换热机构内,与其内的循环水进行换热,加热成蒸汽,然后进入上述汽轮机发电机组内发电,最后形成的低温熔盐进入上述低温熔盐旁路管并与上述低温熔盐储罐输出的低温熔盐汇合后,并在上述低温熔盐泵的带动下进入上述烟气换热装置中进行加热形成高温熔盐循环使用,然后分别进入上述高温熔盐储罐进行储存与进入上述熔盐蒸汽换热机构中循环使用。Preferably, when the thermal power plant participates in power peak regulation and needs to reduce the load on the grid, the high-temperature molten salt from the above-mentioned flue gas heat exchange device is divided into two paths, and one path enters the above-mentioned high-temperature molten salt storage tank for heat storage, and the above-mentioned high-temperature molten salt pump does not operate , the other way enters the above-mentioned molten salt steam heat exchange mechanism through the above-mentioned high-temperature molten salt bypass pipe, exchanges heat with the circulating water in it, heats it into steam, and then enters the above-mentioned steam turbine generator set to generate electricity, and finally the formed low-temperature molten salt enters After the above-mentioned low-temperature molten salt bypass pipe is merged with the low-temperature molten salt output from the above-mentioned low-temperature molten salt storage tank, and driven by the above-mentioned low-temperature molten salt pump, it enters the above-mentioned flue gas heat exchange device for heating to form high-temperature molten salt for recycling. Then enter the above-mentioned high-temperature molten salt storage tank for storage and enter the above-mentioned molten salt steam heat exchange mechanism for recycling.
优选地,当热电厂参与电力调峰且需要增加上网电负荷时,来自上述烟气换热装置的高温熔盐通过上述高温熔盐旁路管与在上述高温熔盐泵作用下来自上述高温熔盐储罐的高温熔盐汇合后一起进入上述熔盐蒸汽换热机构内,与其内的循环水进行换热,加热成蒸汽,然后进入上述汽轮机发电机组内发电,最后形成低温熔盐分为两路,一路返回至上述低温熔盐储罐进行储存,另一路通过上述低温熔盐旁路管,并在上述低温熔盐泵的带动下进入上述烟气换热装置内进行再次加热形成高温熔盐循环使用。Preferably, when the thermal power plant participates in power peak regulation and needs to increase the grid-connected power load, the high-temperature molten salt from the above-mentioned flue gas heat exchange device passes through the above-mentioned high-temperature molten salt bypass pipe and the high-temperature molten salt from the above-mentioned high-temperature molten salt pump under the action of the above-mentioned high-temperature molten salt pump. After the high-temperature molten salt in the storage tank merges, it enters the above-mentioned molten salt steam heat exchange mechanism together, exchanges heat with the circulating water in it, heats it into steam, and then enters the above-mentioned steam turbine generator set to generate electricity, and finally forms a low-temperature molten salt. One way returns to the above-mentioned low-temperature molten salt storage tank for storage, and the other way passes through the above-mentioned low-temperature molten salt bypass pipe, and is driven by the above-mentioned low-temperature molten salt pump into the above-mentioned flue gas heat exchange device for reheating to form high-temperature molten salt for recycling .
相比现有技术,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
本系统通过烟气余热加热熔盐,熔盐搬运烟气余热再次加热循环水为蒸汽,从而使得汽轮机发电机组发电,熔盐成为烟气余热的载体,通过低温熔盐储罐、低温熔盐泵、高温熔盐储罐、高温熔盐泵、熔盐蒸汽换热机构、低温熔盐旁路管和高温熔盐旁路的配合运行调整汽轮机发电机组的运行负荷,克服现有技术利用高参数蒸汽或部分高温烟气加热熔盐进行储热而无法在燃气轮机组高效率运行的同时使得汽轮机组运行负荷无法降为零的调峰能力有限的缺陷,实现了燃气轮机组高效率的高负荷运行时仍能使得汽轮机组运行负荷降为零,极大提升了热电厂的电力调峰能力,满足了电网的深度电力调峰要求,而且在热电厂参与电力调峰且需要降低输出电负荷时,利用熔盐储热装置对高温烟气余热进行储存,避免选择降低燃气轮机组运行负荷来满足电力调峰要求,保证了燃气轮机组高效率运行,从而相对地提升了热电厂的能源利用效率。The system heats the molten salt through the waste heat of the flue gas, and the molten salt transports the waste heat of the flue gas to reheat the circulating water into steam, so that the steam turbine generator set generates electricity, and the molten salt becomes the carrier of the waste heat of the flue gas, through the low-temperature molten salt storage tank and the low-temperature molten salt pump , high-temperature molten salt storage tank, high-temperature molten salt pump, molten salt steam heat exchange mechanism, low-temperature molten salt bypass pipe and high-temperature molten salt bypass to adjust the operating load of the steam turbine generator set, overcome the existing technology to use high-parameter steam Or part of the high-temperature flue gas heats the molten salt for heat storage, which makes it impossible for the gas turbine unit to operate at high efficiency while making the operating load of the steam turbine unit unable to reduce to zero. It can reduce the operating load of the steam turbine unit to zero, greatly improve the power peak-shaving capability of the thermal power plant, and meet the deep power peak-shaving requirements of the power grid, and when the thermal power plant participates in power peak-shaving and needs to reduce the output load The thermal device stores the waste heat of the high-temperature flue gas, avoids choosing to reduce the operating load of the gas turbine unit to meet the power peak regulation requirements, ensures the high-efficiency operation of the gas turbine unit, and relatively improves the energy utilization efficiency of the thermal power plant.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the specific implementation of the present invention or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings that need to be used in the specific implementation or description of the prior art. Obviously, the accompanying drawings in the following description The drawings show some implementations of the present invention, and those skilled in the art can obtain other drawings based on these drawings without any creative work.
图1为本发明实施例的系统框图。FIG. 1 is a system block diagram of an embodiment of the present invention.
附图标记说明:Explanation of reference signs:
1、燃气轮发电机组;101、燃气轮机压气机;102、燃气轮机燃烧室;103、燃气轮机透平;104、第一发电机;2、烟气换热装置;201、熔盐式余热锅炉;202、熔盐低温加热器;203、熔盐高温加热器;3、低温熔盐储罐;4、低温熔盐泵;5、高温熔盐储罐;6、高温熔盐泵;7、熔盐蒸汽换热机构;71、高压过热器;72、高压汽包;73、中压过热器;74、中压汽包;75、第一水泵;76、第二水泵;8、低温熔盐旁路管;9、高温熔盐旁路管;10、汽轮机发电机组;105、汽轮机中高压缸;106、汽轮机低压缸;107、第二发电机;11、凝汽器;12、凝结水泵;13、第三水泵;14、除氧器;15、给水预热器;16、补水管;17、凝结水管;18、低压蒸汽发生器;19、低压蒸汽过热器;20、工业蒸汽用户;21、热水储罐;22、第四水泵;23、第五水泵;24、第一阀;25、第二阀;26、第三阀;27、第四阀;28、第五阀;29、第六阀;30、第七阀;31、第八阀;32、第九阀;33、第十阀;34、第十一阀;35、第十二阀;36、第十三阀;37、第十四阀;38、第十五阀;39、第十六阀;40、第十七阀;41、第十八阀;42、第十九阀;43、高压进汽管;44、中压进汽管。1. Gas turbine generating set; 101. Gas turbine compressor; 102. Gas turbine combustion chamber; 103. Gas turbine turbine; 104. First generator; 2. Flue gas heat exchange device; 201. Molten salt waste heat boiler; 202. Molten salt low temperature heater; 203. Molten salt high temperature heater; 3. Low temperature molten salt storage tank; 4. Low temperature molten salt pump; 5. High temperature molten salt storage tank; 6. High temperature molten salt pump; 7. Molten salt steam exchange Thermal mechanism; 71. High-pressure superheater; 72. High-pressure steam drum; 73. Medium-pressure superheater; 74. Medium-pressure steam drum; 75. First water pump; 76. Second water pump; 8. Low-temperature molten salt bypass pipe; 9. High temperature molten salt bypass pipe; 10. Turbine generator set; 105. Medium and high pressure cylinder of steam turbine; 106. Low pressure cylinder of steam turbine; 107. Second generator; 11. Condenser; 12. Condensate water pump; 13. Third Water pump; 14. Deaerator; 15. Feed water preheater; 16. Water supply pipe; 17. Condensate water pipe; 18. Low pressure steam generator; 19. Low pressure steam superheater; 20. Industrial steam user; 21. Hot water storage Tank; 22, the fourth water pump; 23, the fifth water pump; 24, the first valve; 25, the second valve; 26, the third valve; 27, the fourth valve; 28, the fifth valve; 29, the sixth valve; 30. Seventh valve; 31. Eighth valve; 32. Ninth valve; 33. Tenth valve; 34. Eleventh valve; 35. Twelfth valve; 36. Thirteenth valve; 37. Fourteenth Valve; 38, fifteenth valve; 39, sixteenth valve; 40, seventeenth valve; 41, eighteenth valve; 42, nineteenth valve; 43, high-pressure steam inlet pipe; 44, medium-pressure steam inlet Tube.
具体实施方式Detailed ways
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below in conjunction with the accompanying drawings. Apparently, the described embodiments are some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。In the description of the present invention, it should be noted that the terms "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer" etc. The indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, or in a specific orientation. construction and operation, therefore, should not be construed as limiting the invention. In addition, the terms "first", "second", and "third" are used for descriptive purposes only, and should not be construed as indicating or implying relative importance.
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that unless otherwise specified and limited, the terms "installation", "connection" and "connection" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
如图1所示,本发明实施例提供了一种高温熔盐储热耦合燃气发电调峰系统,包括燃气轮发电机组1、烟气换热装置2、熔盐储热换热装置、汽轮机发电机组10和循环水路;燃气轮发电机组1包括燃气轮机压气机101、燃气轮机燃烧室102、燃气轮机透平103和第一发电机104,燃气轮机压气机101的排气口与燃气轮机燃烧室102的进气口连接,燃气轮机燃烧室102的排气口与燃气轮机透平103的进气口连接,燃气轮机透平103的排气口与熔盐式余热锅炉201的烟气进口连接,燃气轮机透平103驱动第一发电机104进行发电,且燃气轮机透平103与燃气轮机压气机101同轴连接;熔盐储热换热装置包括低温熔盐储罐3、低温熔盐泵4、高温熔盐储罐5、高温熔盐泵6和熔盐蒸汽换热机构7;烟气换热装置2包括熔盐式余热锅炉201、熔盐低温加热器202和熔盐高温加热器203,熔盐低温加热器202和熔盐高温加热器203沿着烟气流动方向依次安装于熔盐式余热锅炉201内,低温熔盐储罐3、熔盐低温加热器202、熔盐高温加热器203和高温熔盐储罐5依次连通。As shown in Figure 1, an embodiment of the present invention provides a high-temperature molten salt heat storage coupled gas-fired power generation peak-shaving system, including a gas turbine generator set 1, a flue gas heat exchange device 2, a molten salt heat storage and heat exchange device, and a steam turbine power generation The unit 10 and the circulating waterway; the gas turbine generating unit 1 includes a gas turbine compressor 101, a gas turbine combustor 102, a gas turbine turbine 103 and a first generator 104, an exhaust port of the gas turbine compressor 101 and an air inlet of the gas turbine combustor 102 connection, the exhaust port of the gas turbine combustor 102 is connected to the air inlet of the gas turbine 103, the exhaust port of the gas turbine 103 is connected to the flue gas inlet of the molten salt waste heat boiler 201, and the gas turbine 103 drives the first power generation generator 104 for power generation, and the gas turbine turbine 103 is coaxially connected with the gas turbine compressor 101; the molten salt heat storage and heat exchange device includes a low-temperature molten salt storage tank 3, a low-temperature molten salt pump 4, a high-temperature molten salt storage tank 5, and a high-temperature molten salt Pump 6 and molten salt steam heat exchange mechanism 7; flue gas heat exchange device 2 includes molten salt type waste heat boiler 201, molten salt low temperature heater 202 and molten salt high temperature heater 203, molten salt low temperature heater 202 and molten salt high temperature heating The device 203 is sequentially installed in the molten salt waste heat boiler 201 along the flue gas flow direction, and the low-temperature molten salt storage tank 3, the molten salt low-temperature heater 202, the molten salt high-temperature heater 203 and the high-temperature molten salt storage tank 5 are connected in sequence.
具体的,燃气轮机透平103的烟气出口与烟气换热装置2的烟气进口连通,低温熔盐储罐3、烟气换热装置2、高温熔盐储罐5和熔盐蒸汽换热机构7依次连通构成循环储热换热回路;具体的,低温熔盐储罐3的熔盐出口连通有第一管,第一管上设置有第一阀24,第一管和熔盐低温加热器202之间连通有第二管,低温熔盐泵4设于熔盐低温加热器202的熔盐进口且低温熔盐泵4设于第二管上,熔盐低温加热器202和熔盐高温加热器203连通,熔盐高温加热器203的熔盐出口连通有第三管,高温熔盐储罐5的熔盐进口连通有第四管,第四管上连通有第二阀25,第三管和第四管连通,高温熔盐储罐5的熔盐出口连通有第五管,第五管上连通有第三阀26且高温熔盐泵6位于第五管上,第三管和第五管之间连通有高温熔盐旁路管9,高温熔盐旁路管9连通有第四阀27,第五管与熔盐蒸汽换热机构7的高温熔盐进口连通,熔盐蒸汽换热机构7的低温熔盐出口与低温熔盐储罐3的熔盐进口连通有第六管,第六管上连通有第五阀28,第六管和第一管之间连通有低温熔盐旁路管8,低温熔盐旁路管8连通有第六阀29;循环储热换热回路使用的时候,系统内可根据使用情况形成四个闭合回路,如下,回路一:第四阀27、第六阀29和低温熔盐泵4开启,熔盐低温加热器202、熔盐高温加热器203、高温熔盐旁路管9、熔盐蒸汽换热机构7和低温熔盐旁路管8形成闭合回路,低温熔盐储罐3和高温熔盐储罐5不参与使用,在此回路中,熔盐储热换热装置只参与换热过程,不参与储热和放热,搬运烟气余热只加热循环水为蒸汽;回路二:第一阀24、第二阀25、第四阀27、第六阀29和低温熔盐泵4开启,熔盐低温加热器202、熔盐高温加热器203、高温熔盐旁路管9、熔盐蒸汽换热机构7和低温熔盐旁路管8形成闭合回路,低温熔盐储罐3和高温熔盐储罐5参与使用,在此回路中,熔盐储热换热装置参与换热过程,也参与储热,一部分熔盐搬运烟气余热加热循环水为蒸汽,一部分具有烟气余热的熔盐进入高温熔盐储罐5内储存起来;回路三:第三阀26、第四阀27、第五阀28、第六阀29、低温熔盐泵4和高温熔盐泵6开启,熔盐低温加热器202、熔盐高温加热器203、高温熔盐旁路管9、熔盐蒸汽换热机构7和低温熔盐旁路管8形成闭合回路,低温熔盐储罐3和高温熔盐储罐5参与使用,在此回路中,熔盐储热换热装置参与换热过程,也参与放热,一部分熔盐搬运烟气余热加热循环水为蒸汽,一部分储存在高温熔盐储罐5内高温熔盐通过高温熔盐泵6运输出去进行放热,用于加热循环水为蒸汽,补充系统内热量;回路四:第一阀24、第二阀25和低温熔盐泵4开启,低温熔盐储罐3、熔盐低温加热器202、熔盐高温加热器203和高温熔盐储罐5形成单向回路,熔盐只参与储热过程。Specifically, the flue gas outlet of the
具体的,当热电厂不参与电力调峰时,燃气轮发电机组1与汽轮机发电机组10均保持高负荷运行,回路一运行,当热电厂参与电力调峰且需要降低上网电负荷时,上述燃气轮发电机组1仍保持高负荷运行,需降低上述汽轮机发电机组10运行负荷来降低上网电负荷时,回路二运行;当热电厂参与电力调峰且需要增加上网电负荷时,燃气轮发电机组1仍保持高负荷运行,需增加上述汽轮机发电机组10运行负荷来增加上网电负荷时,回路三运行;当热电厂参与电力调峰且需要深度降低上网电负荷时,燃气轮发电机组1仍保持高负荷运行,需汽轮机发电机组10运行负荷为零时,回路四运行;综上所述,通过烟气余热加热熔盐,熔盐搬运烟气余热再次加热循环水为蒸汽,从而使得汽轮机发电机组10发电,熔盐成为烟气余热的载体,通过低温熔盐储罐3、低温熔盐泵4、高温熔盐储罐5、高温熔盐泵6、熔盐蒸汽换热机构7、低温熔盐旁路管8和高温熔盐旁路的配合运行调整汽轮机发电机组10的运行负荷,克服现有技术利用高参数蒸汽或部分高温烟气加热熔盐进行储热而无法在燃气轮发电机组1高效率运行的同时使得汽轮机发电机组10运行负荷无法降为零的调峰能力有限的缺陷,实现了燃气轮发电机组1高效率的高负荷运行时仍能使得汽轮机发电机组10运行负荷降为零,极大提升了热电厂的电力调峰能力,满足了电网的深度电力调峰要求,而且在热电厂参与电力调峰且需要降低输出电负荷时,利用熔盐储热换热装置对高温烟气余热进行储存,避免选择降低燃气轮发电机组1运行负荷来满足电力调峰要求,保证了燃气轮发电机组1高效率运行,从而相对地提升了热电厂的能源利用效率。Specifically, when the thermal power plant does not participate in power peak regulation, both the gas turbine generator set 1 and the steam turbine generator set 10 maintain high-load operation, and loop 1 operates. Unit 1 still maintains high-load operation, and when it is necessary to reduce the operating load of the above-mentioned steam turbine generator set 10 to reduce the grid load, loop 2 operates; when the thermal power plant participates in power peak regulation and needs to increase the grid load, the gas turbine generator set 1 remains high. Load operation, when it is necessary to increase the operating load of the above-mentioned steam turbine generator set 10 to increase the grid load, the loop three operates; When the operating load of the steam turbine generator set 10 is zero, loop 4 operates; in summary, the molten salt is heated by the residual heat of the flue gas, and the molten salt transports the residual heat of the flue gas to reheat the circulating water into steam, so that the steam turbine generator set 10 generates electricity, and the molten salt Become the carrier of waste heat of flue gas, through low temperature molten salt storage tank 3, low temperature molten salt pump 4, high temperature molten
汽轮机发电机组10、熔盐蒸汽换热机构7和循环水路依次连通构成蒸汽循环发电回路;具体的,汽轮机发电机组10包括汽轮机中高压缸105、汽轮机低压缸106和第二发电机107,汽轮机中高压缸105的进汽口与熔盐蒸汽换热机构7的高压进汽口通过高压进汽管43连通,汽轮机低压缸106的进汽口与熔盐蒸汽换热机构7中压出汽口通过中压进汽管44连通,汽轮机中高压缸105的排汽口通过中低压连通管与汽轮机低压缸106的进汽口连接,且在中低压连通管上安装有第十九阀42,汽轮机低压缸106的排汽口与凝汽器11的乏汽进口连接,汽轮机中高压缸105和汽轮机低压缸106与第二发电机107同轴连接,且同时做功驱动第二发电机107进行发电;循环水路包括凝汽器11、凝结水泵12、第三水泵13、除氧器14、第五水泵23和给水预热器15,凝汽器11的乏汽进口与汽轮机发电机组10的排汽口连通,凝汽器11与凝结水泵12连通,凝结水泵12与除氧器14之间连通有凝结水管17,凝结水管17上连通有补水管16,补水管16上依次连通有第三水泵13和第七阀30,除氧器14的出水口和给水预热器15的进水口之间连通有第八管,第五水泵23连通于第八管上,给水预热器15的出水口连通有第九管。The steam turbine generator set 10, the molten salt steam heat exchange mechanism 7, and the circulating waterway are connected in sequence to form a steam cycle power generation circuit; specifically, the steam turbine generator set 10 includes a steam turbine medium-
具体的,熔盐式余热锅炉201的烟气出口还依次连通有低压蒸汽过热器19和低压蒸汽发生器18,低压蒸汽发生器18的烟气出口与给水预热器15的烟气进口连通有第十管,给水预热器15的出水口处的第九管与低压蒸汽发生器18的进水口连通有第十一管,第十一管上设置有第八阀31,低压蒸汽发生器18的蒸汽出口与除氧器14的蒸汽进口连通有第十二管,第十二管连通有第九阀32,低压蒸汽发生器18的蒸汽出口与低压蒸汽过热器19的蒸汽进口连通有第十三管,第十三管连通有第十阀33,低压蒸汽过热器19的蒸汽出口还连通有工业蒸汽用户20,一方面通过利用烟气的余热通过低压蒸汽过热器19和低压蒸汽发生器18加热蒸汽,给工业用户提供蒸汽,另一方面利用烟气余热预加热循环水,从而使得烟气余热得到充分利用。Specifically, the flue gas outlet of the molten salt type
具体的,循环水路还包括热水储罐21,热水储罐21的出水口连通有第十四管,第十四管连通有第十一阀34和第四水泵22,第十四管的出水口与第九管连通,热水储罐21的进水口和给水预热器15的出水口处的第九管之间连通有第十五管,第十五管连通有第十二阀35,负荷降低时,多余的热水可以储存到热水储罐21内,负荷升高时,可以利用热水储罐21内的热水,使循环水的温度和流量升高,加快蒸汽的产生,满足负荷所需要的蒸汽量。Specifically, the circulating waterway also includes a hot
具体的,熔盐蒸汽换热机构7包括高压过热器71、高压汽包72、中压过热器73和中压汽包74;高压过热器71的熔盐进口连通有第十六管,第五管和高温熔盐旁路管9均与第十六管连通,高压过热器71的熔盐出口连通有第十七管,第十七管与高压汽包72的熔盐进口连通有第十八管,第十八管上连通有第十三阀36,高压汽包72的熔盐出口连通有第十九管,第十九管连通有第十四阀37,第十七管与中压过热器73的熔盐进口连通有第二十管,第二十管连通有第十五阀38,中压过热器73的熔盐出口连通有第二十一管,第十二管连通有第十六阀39,中压汽包74的熔盐进口连通有第二十二管,第十九管和第二十一管均与第二十二管连通,中压汽包74的熔盐出口通过第六管与低温熔盐储罐3的熔盐进口连通;给水预热器15的出水口连通有第九管,高压汽包72的进水口与第九管之间连通有第二十三管,第二十三管依次连通有第一水泵75和第十七阀40,高压汽包72把其内的水加热成饱和蒸汽,高压汽包72的蒸汽出口与高压过热器71的蒸汽进口连通有第二十四管,高压过热器71的蒸汽出口与汽轮机中高压缸105的蒸汽进口连通有高压进汽管43;中压汽包74的进水口连通有与第九管之间连通有第二十五管,第二十五管依次连通有第二水泵76和第十八阀41,中压汽包74把其内的水加热成饱和蒸汽,中压汽包74的蒸汽出口与中压过热器73的蒸汽进口连通有第二十六管,中压过热器73的蒸汽出口与汽轮机低压缸106的蒸汽进口连通有中压进汽管44;从而熔盐从高压过热器71,然后分两路进入高压汽包72和中压过热器73,再汇集到中压汽包74,经过三次换热,加热循环水为高压蒸汽和中压蒸汽,充分使得熔盐与水或者蒸汽进行换热,高压蒸汽从高压过热器71出来经高压进汽管43进入汽轮机中高压缸105,中压蒸汽从中压过热器73经中压进汽管44进入汽轮机低压缸106,共同带动第二发电机107发电;通过合理设置高压过热器71、高压汽包72、中压过热器73和中压汽包74之间的熔盐循环管路和蒸汽循环管路,既实现了高温熔盐热的梯级高效利用,大大降低了换热温差,很大程度上减少了不可逆损失,又增加了高品质蒸汽的输出量,大大提升了汽轮机做功能力。Specifically, the molten salt steam heat exchange mechanism 7 includes a high-
综上所述,一种高温熔盐储热耦合燃气发电调峰系统的运行方法,包括:In summary, an operating method of a high-temperature molten salt heat storage coupled gas-fired power generation peak-shaving system includes:
当热电厂不参与电力调峰时,燃气轮发电机组1与汽轮机发电机组10均保持高负荷运行,以保证热电厂高效率运行,而高温熔盐储罐5不进行储热与放热,只进行换热,此时:来自燃气轮机透平103的高温烟气加热熔盐后全部用于加热给水来生产蒸汽,然后分别进入汽轮机发电机组10做功,即运行回路一,第四阀27、第六阀29、和低温熔盐泵4开启,熔盐低温加热器202、熔盐高温加热器203、高温熔盐旁路管9、熔盐蒸汽换热机构7和低温熔盐旁路管8形成闭合回路,低温熔盐储罐3和高温熔盐储罐5不参与使用,具体的,同时打开第十三阀36、第十四阀37、第十五阀38和第十六阀39,来自熔盐高温加热器203的高温熔盐直接进入高压过热器71进行第一级降温,然后分两路分别进入高压汽包72和中压过热器73进行第二级降温,经高压汽包72和中压过热器73降温后的高温熔盐汇合后再进入中压汽包74进行第三级降温,最后形成低温熔盐并返回至熔盐式余热锅炉201,依次经过熔盐低温加热器202和熔盐高温加热器203进行加热后形成高温熔盐,再返回至高压过热器71,依次往复进行熔盐换热。When the thermal power plant does not participate in power peak regulation, both the gas turbine generator set 1 and the steam turbine generator set 10 maintain high-load operation to ensure the high-efficiency operation of the thermal power plant, while the high-temperature molten
同时打开第十七阀40和第十八阀41,来自给水预热器15的高温给水由第一水泵75输送至高压汽包72被加热后形成高压饱和蒸汽,高压饱和蒸汽再进入高压过热器71被进一步加热后形成高压过热蒸汽,然后高压过热蒸汽经高压进汽管43依次进入汽轮机中高压缸105和汽轮机低压缸106进行做功,来驱动第二发电机107进行发电,同时来自给水预热器15的高温给水由第二水泵76输送至中压汽包74被加热后形成中压饱和蒸汽,中压饱和蒸汽再进入中压过热器73被进一步加热后形成中压过热蒸汽,然后中压过热蒸汽经中压进汽管44进入汽轮机低压缸106进行做功,来驱动第二发电机107进行发电,经过汽轮机发电机组10做功后排出的乏汽进入凝汽器11凝结成凝结水,然后通过凝结水泵12输送至除氧器14进行加热,再由第五水泵23输送至给水预热器15被来自低压蒸汽发生器18的烟气余热进一步加热后形成高温给水,同时打开第七阀30,补水管16进行补水。Open the seventeenth valve 40 and the eighteenth valve 41 at the same time, the high-temperature feed water from the feed water preheater 15 is transported by the first water pump 75 to the high-pressure steam drum 72 to be heated to form high-pressure saturated steam, and then the high-pressure saturated steam enters the high-pressure superheater 71 is further heated to form high-pressure superheated steam, and then the high-pressure superheated steam enters the middle and high-pressure cylinder 105 of the steam turbine and the low-pressure cylinder 106 of the steam turbine through the high-pressure steam inlet pipe 43 to perform work to drive the second generator 107 to generate electricity, and at the same time, it comes from the feed water preheating The high-temperature feed water of the device 15 is sent to the medium-pressure steam drum 74 by the second water pump 76 to be heated to form medium-pressure saturated steam, and the medium-pressure saturated steam enters the medium-pressure superheater 73 to be further heated to form medium-pressure superheated steam, and then medium-pressure The superheated steam enters the low-pressure cylinder 106 of the steam turbine through the medium-pressure steam inlet pipe 44 to perform work to drive the second generator 107 to generate electricity. The
同时打开第八阀31、第九阀32和第十阀33,来自给水预热器15的高温给水还输送至低压蒸汽发生器18被来自低压蒸汽过热器19的烟气余热进一步加热后形成低压饱和蒸汽,然后分为两路分别进入除氧器14和低压蒸汽过热器19,低压饱和蒸汽进入除氧器14用于加热来自凝汽器11的凝结水和来自补水管16的补水,低压饱和蒸汽进入低压蒸汽过热器19后被来自于熔盐式余热锅炉201的烟气余热进一步加热成低压过热蒸汽,然后输送至工业蒸汽用户20对外供热,同时利用第三水泵13为除氧器14补水,来补充为工业蒸汽用户20进行供热所需的给水量。Simultaneously open the eighth valve 31, the
当热电厂参与电力调峰且需要降低上网电负荷时,燃气轮机组仍保持高负荷运行,降低汽轮机发电机组10运行负荷来降低上网电负荷,而高温熔盐储罐5进行储热和换热,由此引起熔盐式余热锅炉201输出的多余高温熔盐利用高温熔盐储罐5进行储热,此时:即运行回路二,第一阀24、第二阀25、第四阀27、第六阀29和低温熔盐泵4开启,熔盐低温加热器202、熔盐高温加热器203、高温熔盐旁路管9、熔盐蒸汽换热机构7和低温熔盐旁路管8形成闭合回路,低温熔盐储罐3和高温熔盐储罐5参与使用,具体的,同时打开第十三阀36、第十四阀37、第十五阀38和第十六阀39,来自熔盐高温加热器203的高温熔盐分两路,一路进入高温熔盐储罐5进行储热,可以通过控制增加进入高温熔盐储罐5的量,从而控制减少输送至熔盐蒸汽换热机构7的高温熔盐量,来更一步降低熔盐蒸汽换热机构7输送至汽轮机发电机组10的过热蒸汽量,进一步减少汽轮机发电机组10运行负荷,从而可以进行更深度的调峰,另一路进入高压过热器71进行第一级降温,然后分两路分别进入高压汽包72和中压过热器73进行第二级降温,经高压汽包72和中压过热器73降温后的高温熔盐汇合后再进入中压汽包74进行第三级降温,最后形成低温熔盐且与低温熔盐储罐3输出的低温熔盐汇合后再返回至熔盐式余热锅炉201,依次经过熔盐低温加热器202和熔盐高温加热器203进行加热后形成高温熔盐,往复循环,多余的高温熔盐全部进入高温熔盐储罐5储存起来。When the thermal power plant participates in power peak regulation and needs to reduce the on-grid power load, the gas turbine unit still maintains high-load operation, and reduces the operating load of the steam turbine generator set 10 to reduce the on-grid power load, while the high-temperature molten
同时打开第十七阀40和第十八阀41,来自给水预热器15的高温给水由第一水泵75输送至高压汽包72被加热后形成高压饱和蒸汽,高压饱和蒸汽再进入高压过热器71被进一步加热后形成高压过热蒸汽,然后高压过热蒸汽经高压进汽管43依次进入汽轮机中高压缸105和汽轮机低压缸106进行做功,来驱动第二发电机107进行发电,同时来自给水预热器15的高温给水由第二水泵76输送至中压汽包74被加热后形成中压饱和蒸汽,中压饱和蒸汽再进入中压过热器73被进一步加热后形成中压过热蒸汽,然后中压过热蒸汽经中压进汽管44进入汽轮机低压缸106进行做功,来驱动第二发电机107进行发电,此时进入汽轮机发电机组10的高压过热蒸汽流量和低压过热蒸汽流量均减少,由此减少汽轮机发电机组10运行负荷,经过汽轮机发电机组10做功后排出的乏汽进入凝汽器11凝结成凝结水,然后通过凝结水泵12输送至除氧器14进行加热,再由第五水泵23输送至给水预热器15被来自低压蒸汽发生器18的烟气余热进一步加热后形成高温给水。Open the seventeenth valve 40 and the eighteenth valve 41 at the same time, the high-temperature feed water from the feed water preheater 15 is transported by the first water pump 75 to the high-pressure steam drum 72 to be heated to form high-pressure saturated steam, and then the high-pressure saturated steam enters the high-pressure superheater 71 is further heated to form high-pressure superheated steam, and then the high-pressure superheated steam enters the middle and high-pressure cylinder 105 of the steam turbine and the low-pressure cylinder 106 of the steam turbine through the high-pressure steam inlet pipe 43 to perform work to drive the second generator 107 to generate electricity, and at the same time, it comes from the feed water preheating The high-temperature feed water of the device 15 is sent to the medium-pressure steam drum 74 by the second water pump 76 to be heated to form medium-pressure saturated steam, and the medium-pressure saturated steam enters the medium-pressure superheater 73 to be further heated to form medium-pressure superheated steam, and then medium-pressure The superheated steam enters the low-pressure cylinder 106 of the steam turbine through the medium-pressure steam inlet pipe 44 to perform work, and drives the second generator 107 to generate electricity. The steam turbine generator set 10 is operating under load. After the steam turbine generator set 10 does work, exhausted steam enters the
具体的,当汽轮机发电机组10降低运行负荷对蒸汽所需量减少而产生多余的给水量,大于为工业蒸汽用户20进行供热所需的给水量,打开第十二阀门35,利用热水储罐21将给水预热器15多输出的高温给水进行储存;当汽轮机发电机组10降低运行负荷对蒸汽所需量减少而产生多余的给水量,小于为工业蒸汽用户20进行供热所需的给水量,打开第四水泵22和第十一阀34,与(或)打开第七阀30,利用热水储罐21与(或)补水管16来补充所缺少的给水量。Specifically, when the steam turbine generator set 10 reduces the operating load and reduces the required amount of steam to generate excess water supply, which is greater than the water supply required for heating the
同时打开第八阀31、第九阀32和第十阀33,来自给水预热器15的高温给水还输送至低压蒸汽发生器18被来自低压蒸汽过热器19的烟气余热进一步加热后形成低压饱和蒸汽,然后分为两路分别进入除氧器14和低压蒸汽过热器19,低压饱和蒸汽进入除氧器14用于加热来自凝汽器11的凝结水和来自补水管16的补水,低压饱和蒸汽进入低压蒸汽过热器19后被来自于熔盐式余热锅炉201的烟气余热进一步加热成低压过热蒸汽,然后输送至工业蒸汽用户20对外供热,同时利用第三水泵13为除氧器14补水,来补充为工业蒸汽用户20进行供热所需的给水量。Simultaneously open the eighth valve 31, the
当热电厂参与电力调峰且需要增加上网电负荷时,燃气轮机组与汽轮机发电机组10均保持高负荷运行,且通过熔盐储热装置进行放热来不断提高汽轮机发电机组10运行负荷,由此增加上网电负荷,而高温熔盐储罐5内的熔盐进行放热,也进行换热,此时:运行回路三,第三阀26、第四阀27、第五阀28、第六阀29、低温熔盐泵4和高温熔盐泵6开启,熔盐低温加热器202、熔盐高温加热器203、高温熔盐旁路管9、熔盐蒸汽换热机构7和低温熔盐旁路管8形成闭合回路,低温熔盐储罐3和高温熔盐储罐5参与使用,具体的,同时打开第十三阀36、第十四阀37、第十五阀38和第十六阀39,来自熔盐高温加热器203的高温熔盐与来自高温熔盐储罐5的高温熔盐汇合后进入熔盐蒸汽换热机构7,此通过进行放热来增加输送至熔盐蒸汽换热机构7的高温熔盐量,从而增加熔盐蒸汽换热机构7输送至汽轮机发电机组10的过热蒸汽量,来进一步增加汽轮机发电机组10运行负荷,经过高压过热器71降温后的高温熔盐分两路分别进入高压汽包72和中压过热器73进行第二级降温,经高压汽包72和中压过热器73降温后的高温熔盐汇合后再进入中压汽包74进行第三级降温,最后形成低温熔盐分为两路,一路返回至低温熔盐储罐3进行储存,另一路返回至熔盐式熔盐式余热锅炉201,依次经过熔盐低温加热器202和熔盐高温加热器203进行加热后形成高温熔盐在与高温熔盐储罐5输出的高温熔盐汇合再返回至高压过热器71。When the thermal power plant participates in power peak regulation and needs to increase the grid-connected power load, both the gas turbine unit and the steam turbine generator set 10 maintain high-load operation, and the operating load of the steam turbine generator set 10 is continuously increased through the heat release of the molten salt heat storage device, thereby increasing On-grid electricity load, while the molten salt in the high-temperature molten
同时打开第十七阀40和第十八阀41,来自给水预热器15的高温给水由第一水泵75输送至高压汽包72被加热后形成高压饱和蒸汽,高压饱和蒸汽再进入高压过热器71被进一步加热后形成高压过热蒸汽,然后高压过热蒸汽经高压进汽管43依次进入汽轮机中高压缸105和汽轮机低压缸106进行做功,来驱动第二发电机107进行发电,同时来自给水预热器15的高温给水由第二水泵76输送至中压汽包74被加热后形成中压饱和蒸汽,中压饱和蒸汽再进入中压过热器73被进一步加热后形成中压过热蒸汽,然后中压过热蒸汽经中压进汽管44进入汽轮机低压缸106进行做功,来驱动第二发电机107进行发电,此时进入汽轮机发电机组10的高压过热蒸汽流量和低压过热蒸汽流量均增加,由此增加汽轮机发电机组10运行负荷,经过汽轮机发电机组10做功后排出的乏汽进入凝汽器11凝结成凝结水,然后通过凝结水泵12输送至除氧器14进行加热,再由第五水泵23输送至给水预热器15被来自低压蒸汽发生器18的烟气余热进一步加热后形成高温给水,当循环水量不够的时候,打开同时打开第七阀30,补水管16进行补水。Open the seventeenth valve 40 and the eighteenth valve 41 at the same time, the high-temperature feed water from the feed water preheater 15 is transported by the first water pump 75 to the high-pressure steam drum 72 to be heated to form high-pressure saturated steam, and then the high-pressure saturated steam enters the high-pressure superheater 71 is further heated to form high-pressure superheated steam, and then the high-pressure superheated steam enters the middle and high-pressure cylinder 105 of the steam turbine and the low-pressure cylinder 106 of the steam turbine through the high-pressure steam inlet pipe 43 to perform work to drive the second generator 107 to generate electricity, and at the same time, it comes from the feed water preheating The high-temperature feed water of the device 15 is sent to the medium-pressure steam drum 74 by the second water pump 76 to be heated to form medium-pressure saturated steam, and the medium-pressure saturated steam enters the medium-pressure superheater 73 to be further heated to form medium-pressure superheated steam, and then medium-pressure The superheated steam enters the low-pressure cylinder 106 of the steam turbine through the medium-pressure steam inlet pipe 44 and performs work to drive the second generator 107 to generate electricity. The steam turbine generator set 10 is operating under load. After the steam turbine generator set 10 does work, exhausted steam enters the
具体的,打开第四水泵22和第十一阀34,与(或)打开第七阀30,利用热水储罐21与(或)补水管16来补充为工业蒸汽用户20进行供热所需的给水量与汽轮机发电机组10增加运行负荷对蒸汽所需量增加而所需的给水量。Specifically, the fourth water pump 22 and the eleventh valve 34 are opened, and (or) the seventh valve 30 is opened, and the hot
同时打开第八阀31、第九阀32和第十阀33,来自给水预热器15的高温给水还输送至低压蒸汽发生器18被来自低压蒸汽过热器19的烟气余热进一步加热后形成低压饱和蒸汽,然后分为两路分别进入除氧器14和低压蒸汽过热器19,低压饱和蒸汽进入除氧器14用于加热来自凝汽器11的凝结水和来自补水管16的补水,低压饱和蒸汽进入低压蒸汽过热器19后被来自于熔盐式余热锅炉201的烟气余热进一步加热成低压过热蒸汽,然后输送至工业蒸汽用户20对外供热,同时利用第三水泵13为除氧器14补水,来补充为工业蒸汽用户20进行供热所需的给水量。Simultaneously open the eighth valve 31, the
还有一种特殊情况,当热电厂参与电力调峰且需要深度降低上网电负荷时,燃气轮发电机组1仍保持高负荷运行,汽轮机发电机组10运行负荷为零,在运行过程中,熔盐储热换热装置不参与换热过程,只进行储热,吸收烟气余热的熔盐全部储存起来;具体的,运行回路四,第一阀24、第二阀25和低温熔盐泵4开启,低温熔盐储罐3、熔盐低温加热器202、熔盐高温加热器203和高温熔盐储罐5形成单向回路,熔盐只参与储热过程,汽轮机发电机组10不运行,给水预热器15、低压蒸汽发生器18和低压蒸汽过热器19运行,仍为工业蒸汽用户20供汽。There is also a special case, when the thermal power plant participates in power peak regulation and needs to deeply reduce the grid load, the gas turbine generator set 1 still maintains high-load operation, and the steam turbine generator set 10 operates at zero load. During the operation, the molten salt heat storage The heat exchange device does not participate in the heat exchange process, but only stores heat, and all the molten salt that absorbs the waste heat of the flue gas is stored; specifically, in the fourth operation circuit, the
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。The above-mentioned embodiment is only a preferred embodiment of the present invention, and cannot be used to limit the protection scope of the present invention. Any insubstantial changes and substitutions made by those skilled in the art on the basis of the present invention belong to the scope of the present invention. Scope of protection claimed.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211505466.8A CN115750089B (en) | 2022-11-28 | High-temperature molten salt heat storage coupling gas power generation peak regulation system and operation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211505466.8A CN115750089B (en) | 2022-11-28 | High-temperature molten salt heat storage coupling gas power generation peak regulation system and operation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115750089A true CN115750089A (en) | 2023-03-07 |
CN115750089B CN115750089B (en) | 2025-07-08 |
Family
ID=
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118463681A (en) * | 2024-05-29 | 2024-08-09 | 华北电力大学 | A system and method for improving the flexibility of thermal power units using molten salt heat storage |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4094148A (en) * | 1977-03-14 | 1978-06-13 | Stone & Webster Engineering Corporation | Thermal storage with molten salt for peaking power |
CN106123086A (en) * | 2016-07-06 | 2016-11-16 | 华北电力大学 | Cogeneration units and peak regulating method thereof with regenerative apparatus |
CN210197259U (en) * | 2019-04-18 | 2020-03-27 | 北京工业大学 | A deep peak shaving device for thermal power plant |
CN216691333U (en) * | 2022-01-27 | 2022-06-07 | 重庆赛迪热工环保工程技术有限公司 | Steel industry gas power generation system coupling wind power and fused salt energy storage |
CN115076678A (en) * | 2022-05-13 | 2022-09-20 | 华电电力科学研究院有限公司 | Combined cycle coupling fused salt energy storage deep peak regulation system and method thereof |
CN115930205A (en) * | 2022-11-28 | 2023-04-07 | 杭州华电能源工程有限公司 | Fused salt heat storage coupling thermal power peak regulation system and method based on multi-parameter heat supply |
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4094148A (en) * | 1977-03-14 | 1978-06-13 | Stone & Webster Engineering Corporation | Thermal storage with molten salt for peaking power |
CN106123086A (en) * | 2016-07-06 | 2016-11-16 | 华北电力大学 | Cogeneration units and peak regulating method thereof with regenerative apparatus |
CN210197259U (en) * | 2019-04-18 | 2020-03-27 | 北京工业大学 | A deep peak shaving device for thermal power plant |
CN216691333U (en) * | 2022-01-27 | 2022-06-07 | 重庆赛迪热工环保工程技术有限公司 | Steel industry gas power generation system coupling wind power and fused salt energy storage |
CN115076678A (en) * | 2022-05-13 | 2022-09-20 | 华电电力科学研究院有限公司 | Combined cycle coupling fused salt energy storage deep peak regulation system and method thereof |
CN115930205A (en) * | 2022-11-28 | 2023-04-07 | 杭州华电能源工程有限公司 | Fused salt heat storage coupling thermal power peak regulation system and method based on multi-parameter heat supply |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118463681A (en) * | 2024-05-29 | 2024-08-09 | 华北电力大学 | A system and method for improving the flexibility of thermal power units using molten salt heat storage |
CN118463681B (en) * | 2024-05-29 | 2024-11-01 | 华北电力大学 | System and method for improving flexibility of thermal power generating unit by utilizing molten salt heat storage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108561282B (en) | Trough type direct steam and molten salt combined thermal power generation system | |
CN108625911A (en) | A kind of therrmodynamic system promoting thermal power plant unit electricity output regulating power | |
CN115059525B (en) | A heating unit coupled molten salt energy storage deep peak regulation system and method | |
CN114992619B (en) | A combined heat and power unit based on molten salt heat storage | |
CN113090352A (en) | Machine-furnace decoupling system and method for improving peak regulation capability of pure condensation thermal power generating unit | |
CN115075902A (en) | Thermal power generating unit coupling molten salt energy storage deep peak regulation system and method thereof | |
CN216381531U (en) | Molten salt heat storage coupling supercritical thermal power unit system with main steam as heat storage heat source | |
CN109869205A (en) | It is a kind of for the heat accumulation of cogeneration units, power generation and heating system | |
CN215174935U (en) | High-low temperature heat storage peak shaving system of thermal power plant | |
CN117090647A (en) | SOEC-coupled coal-fired power generation system and unit depth peak regulation operation method | |
CN117606000A (en) | Flexible and efficient coal-fired power generation system with multi-heat source step heating function and operation method | |
CN115727311A (en) | Peak regulation system and method for high-temperature molten salt heat storage coupling gas cogeneration | |
CN108843417A (en) | The co-generation unit of complete thermoelectricity decoupling based on supercritical carbon dioxide circulation | |
CN114592933B (en) | Combined molten salt energy storage peak shaving system and method utilizing exhaust steam and heat storage of medium-pressure cylinder | |
CN208123012U (en) | A kind of slot type direct steam and fuse salt combined thermal power generating system | |
CN219433368U (en) | A gas-steam combined cycle exhaust steam heating system | |
CN115750089A (en) | A high-temperature molten salt heat storage coupled gas-fired power generation peak-shaving system and its operation method | |
CN115929427A (en) | Thermal power unit thermoelectric decoupling system and method for steam-coupled molten salt energy storage | |
CN115749998A (en) | Device system and application method for heating molten salt coupled with flue gas and new energy waste electricity | |
CN115750089B (en) | High-temperature molten salt heat storage coupling gas power generation peak regulation system and operation method | |
CN115306502A (en) | Thermal power generation system and operation method thereof | |
CN221879514U (en) | Carnot battery coal-fired unit using exhaust steam as heat source | |
CN115076678A (en) | Combined cycle coupling fused salt energy storage deep peak regulation system and method thereof | |
CN115076678B (en) | Combined cycle coupling fused salt energy storage depth peak shaving system and method thereof | |
CN217357015U (en) | Multi-unit cooperative combined heat and power generation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |