[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN115501897A - 纳米复合材料及制备方法与其在可见光催化产氢中的应用 - Google Patents

纳米复合材料及制备方法与其在可见光催化产氢中的应用 Download PDF

Info

Publication number
CN115501897A
CN115501897A CN202211121451.1A CN202211121451A CN115501897A CN 115501897 A CN115501897 A CN 115501897A CN 202211121451 A CN202211121451 A CN 202211121451A CN 115501897 A CN115501897 A CN 115501897A
Authority
CN
China
Prior art keywords
zns
cus
nanocomposite
preparing
ethanolamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211121451.1A
Other languages
English (en)
Other versions
CN115501897B (zh
Inventor
刘海霞
林本盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN202211121451.1A priority Critical patent/CN115501897B/zh
Publication of CN115501897A publication Critical patent/CN115501897A/zh
Application granted granted Critical
Publication of CN115501897B publication Critical patent/CN115501897B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于先进材料及新能源技术领域,涉及光催化产氢的方法,具体涉及纳米复合材料及制备方法与其在可见光催化产氢中的应用。其制备方法为:将乙醇胺进行光处理,将光处理后的乙醇胺与水混合形成混合溶剂,将锌盐、硫脲和PVP加入至混合溶剂中,然后进行溶剂热反应获得具有缺陷的ZnS,采用阳离子交换法将具有缺陷的ZnS与铜盐制成ZnS/CuS,将ZnS/CuS加入至g‑C3N4的分散液中进行分散处理,使得ZnS/CuS与g‑C3N4复合,即得。本发明提供的纳米复合材料具有更强的光响应,同时具有更大的可见光吸收强度和范围,因而能够显著提高光催化分解水产氢的性能。

Description

纳米复合材料及制备方法与其在可见光催化产氢中的应用
技术领域
本发明属于先进材料及新能源技术领域,涉及光催化产氢的方法,具体涉及纳米复合材料及制备方法与其在可见光催化产氢中的应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
ZnS作为一种无害无毒的半导体纳米材料,可以进行光催化产氢。然而,ZnS的禁带宽度较宽(3.7eV),致使其只能利用紫外光(<400nm),而紫外线仅占到达地球表面的太阳能的5%,不能对可见光响应。同时,由于ZnS的禁带宽度较宽,因而纯ZnS不利于光响应,因而ZnS在进行光催化产氢的性能较差。
发明内容
为了解决现有技术的不足,本发明的目的是提供纳米复合材料及制备方法与其在可见光催化产氢中的应用,相比ZnS,本发明提供的纳米复合材料具有更强的光响应,同时具有更大的可见光吸收强度和范围,因而能够显著提高光催化分解水产氢的性能。
为了实现上述目的,本发明的技术方案为:
一方面,一种纳米复合材料的制备方法,将乙醇胺进行光处理,将光处理后的乙醇胺与水混合形成混合溶剂,将锌盐、硫脲和聚乙烯吡咯烷酮(PVP)加入至混合溶剂中,然后进行溶剂热反应获得具有缺陷的ZnS,采用阳离子交换法将具有缺陷的ZnS与铜盐制成ZnS/CuS,将ZnS/CuS加入至g-C3N4的分散液中进行分散处理,使得ZnS/CuS与g-C3N4复合,即得。
本发明通过对乙醇胺进行光处理,使其内部形成带正离子的铵盐,从而让产生的ZnS具有独特的缺陷。再通过离子交换获得ZnS/CuS异质结,使得电子和空穴不容易复合且基带宽度变小,有利于光响应性。然后通过负载g-C3N4,降低禁带宽度,从而更好地吸收可见光,进而显著提高光催化分解水产氢的性能。
另一方面,一种纳米复合材料,由上述制备方法获得。
第三方面,一种上述纳米复合材料在光催化产氢或在可见光催化产氢中的应用。
本发明的有益效果为:
1.本发明通过对乙醇胺进行光处理,使得制备的ZnS产生独特的缺陷,从而增加最终形成纳米复合材料的光催化产氢性能。
2.本发明在溶剂热反应体系中添加PVP不仅具有凝聚作用,能够吸附在纳米颗粒表面形成保护,阻止纳米颗粒聚沉,而且能够促进纳米颗粒的生长,从而协同光处理的乙醇胺,使得制备的ZnS产生独特的缺陷。
3.本发明通过阳离子交换法使得ZnS与CuS结合产生ZnS/CuS异质结,不仅能够有利于光响应性的增加,而且保证ZnS产生独特缺陷的保留,从而增加最终形成纳米复合材料的光催化产氢性能。
4.本发明将带有缺陷的ZnS/CuS负载g-C3N4,使两者之间形成Z型光催化机制,有利于电子和空穴的分离,同时降低了复合材料的禁带宽度,能够更好地吸收可见光,实现光催化分解水产氢的性能的显著提高。
实验表明,本发明制备的具有独特缺陷ZnS具有更高的光催化分解水的产氢性能,其产氢量为普通ZnS产氢量的2.5倍左右,而利用该独特缺陷ZnS形成的ZnS/CuS以及最终的纳米复合材料具有更高的产氢量。另外,研究表明,本发明制备的最终的纳米复合材料在可见光条件下,能够实现可见光催化分解水产氢。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1制备的ZnS、ZnS/CuS和CuS/ZnS/g-C3N4纳米复合材料的X-射线衍射图(XRD),a为ZnS的XRD,b为ZnS/CuS的XRD,c为CuS/ZnS/g-C3N4纳米复合材料的XRD;
图2为本发明实施例1制备的ZnS/CuS和CuS/ZnS/g-C3N4纳米复合材料的扫描电镜图(SEM),a、b为ZnS/CuS的SEM,c、d为CuS/ZnS/g-C3N4的SEM;
图3为本发明实施例1制备的ZnS的透射电镜图(TEM);
图4为本发明实施例1制备的CuS/ZnS/g-C3N4纳米复合材料的XPS图,a为C1s的XPS图,b为N1s的XPS图;
图5为本发明实施例1制备的ZnS、ZnS/CuS和CuS/ZnS/g-C3N4纳米复合材料在紫外-可见光下分解水制备氢气的产氢量柱状图;
图6为本发明实施例1制备的ZnS、ZnS/CuS和CuS/ZnS/g-C3N4纳米复合材料在可见光下分解水制备氢气的产氢量柱状图。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
鉴于目前ZnS存在在进行光催化产氢的性能较差,本发明提出了纳米复合材料及制备方法与其在可见光催化产氢中的应用。
本发明的一种典型实施方式,提供了一种纳米复合材料的制备方法,将乙醇胺进行光处理,将光处理后的乙醇胺与水混合形成混合溶剂,将锌盐、硫脲和PVP加入至混合溶剂中,然后进行溶剂热反应获得具有缺陷的ZnS,采用阳离子交换法将具有缺陷的ZnS与铜盐制成ZnS/CuS,将ZnS/CuS加入至g-C3N4的分散液中进行分散处理,使得ZnS/CuS与g-C3N4复合,即得。
本发明添加乙醇胺是乳化剂同时促进ZnS进行结晶生长。
本发明所述的锌盐是指阳离子为锌离子的化合物,例如硝酸锌、氯化锌、硫酸锌等。
本发明所述的铜盐是指阳离子为铜离子的化合物,例如硝酸铜、氯化铜、硫酸铜等。
该实施方式的一些实施例中,对乙醇胺进行光处理的过程为:将乙醇胺放置到光照下处理,直至溶液泛黄。
该实施方式的一些实施例中,锌盐、硫脲、PVP和乙醇胺的添加比例为7~8:10:450~550:9~11,mol:mol:g:L。
该实施方式的一些实施例中,乙醇胺与水的体积比为0.9~1.1:3。
该实施方式的一些实施例中,溶剂热反应过程中,水的体积为反应容器容积的25~35%。该条件制备的纳米复合材料的光催化性能更好。
该实施方式的一些实施例中,溶剂热反应中,反应温度为170~190℃,反应时间为3~5h。
该实施方式的一些实施例中,溶剂热反应后的物料用蒸馏水和无水乙醇进行洗涤,烘干。
该实施方式的一些实施例中,采用阳离子交换法将具有缺陷的ZnS与铜盐制成ZnS/CuS的过程为:将具有缺陷的ZnS和铜盐加入至水中持续混合分散。较为具体地,先进行超声分散,然后搅拌。超声分散的时间为25~35min。搅拌的时间为5~7h。
该实施方式的一些实施例中,g-C3N4的分散液的制备过程为:将g-C3N4加入至乙醇与水的混合溶液中,超声处理。超声处理的目的是使大块状的g-C3N4分层且分散均匀,使其形成褶皱状。超声处理的时间为25~35min。
该实施方式的一些实施例中,将ZnS/CuS加入至g-C3N4的分散液中进行分散处理的过程为:将ZnS/CuS加入至g-C3N4的分散液中进行持续搅拌。搅拌时间为5~7h。能够使g-C3N4能够分散充分负载在ZnS/CuS上。
该实施方式的一些实施例中,g-C3N4的制备方法为:将三聚氰胺进行煅烧获得。煅烧温度为450~550℃,煅烧时间为3~4h。该条件能够使三聚氰胺充分煅烧不含有其它官能团。
该实施方式的一些实施例中,ZnS/CuS与g-C3N4的质量比为18~20:1。
本发明的另一种实施方式,提供了一种纳米复合材料,由上述制备方法获得。
本发明的第三种实施方式,提供了一种上述纳米复合材料在光催化产氢或在可见光催化产氢中的应用。
该实施方式的一些实施例中,将纳米复合材料加入至水中进行光照处理。
为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例详细说明本发明的技术方案。
实施例1
(1)将三聚氰胺加入到坩埚中盖上盖子,置于程序升温马弗炉中以5℃每分的速率升至500℃,保持3小时煅烧,待马弗炉自然降温后,获得的样品即为g-C3N4,将样品取出,放在研钵中研磨成粉状,然后收集粉状样品待用。所制备的g-C3N4为淡黄色固体,以下步骤中采用的g-C3N4均为粉状。
(2)将100mL的乙醇胺放入250mL烧杯中,然后用保鲜膜封口,并用针管插上小口,保证其透气性,在阳光下进行自然氧化,直至溶液微微变黄,即为光处理成功。
(3)室温下,将2.23g六水合硝酸锌和0.76g硫脲加入到30mL去离子水和10mL步骤(2)获得的乙醇胺中,用磁力搅拌器搅拌至六水合硝酸锌完全溶解。然后向上述搅拌溶液中加入0.5g PVP,持续搅拌30min使溶液混合均匀。随后,将所得溶液倒入100mL聚四氟乙烯反应釜中,放入烘箱中180℃热反应4h。待反应釜自然冷却后将所得物质进行离心,并用蒸馏水和无水乙醇洗涤3次,以出去可溶性杂质并提高固体分散性。离心后所得样品放入烘箱中70℃烘干。最后收集最终产物。所得样品的XRD图如图1a所示,从图中可以看出其为六方纤锌矿结构,没有杂质峰产生。SEM图(图2a)表明ZnS是球型结构并且尺寸在200nm,表面平整光滑,晶面完整。图3的TEM图表明,制备的ZnS存在弯曲界面,即表明通过光处理乙醇胺制备的ZnS存在较为独特的缺陷,这种结构与普通硫化锌的结构不同。
(4)在装有40mL去离子水的玻璃烧杯中加入0.4628g的ZnS和0.0604g的三水合硝酸铜,并在超声波机中超声分散30min,然后搅拌6h。随后,将所得溶液离心,经过无水乙醇的多次洗涤,将产物在70℃下在烘箱中干燥12h,获得CuS/ZnS。
(5)称取0.015g的g-C3N4加入到装有20mL无水乙醇和20mL去离子水的烧杯中,并在超声波机中超声分散30min,然后加入0.285g的ZnS/CuS,放在磁力搅拌器上搅拌6h,然后将所得的溶液进行离心洗涤3次,放在70℃的烘箱中干燥12h。得到样品CuS/ZnS/g-C3N4。通过SEM图(图2b和2d)可以看出g-C3N4负载在球形的ZnS/CuS,从图2c中可以看出,g-C3N4以块状附着在球状ZnS/CuS上。在图4a中,以观察到两个积分峰,含有C-C单键和含SP2-杂化碳含N芳环的N-C=N,在图4b中,通过观察可以确认存在C-NH、N-(C)3和C-N-C基团。
将本实施例步骤(3)制备的ZnS、步骤(4)制备的CuS/ZnS和步骤(5)制备的CuS/ZnS/g-C3N4加入至水中,在紫外-可见光条件下进行分解水制氢,结果如图5所示。在紫外-可见光下,其中具有缺陷的ZnS的产氢量为3128μmol/g·h,约为普通ZnS的2.5倍左右,其中通过阳离子交换法制备的CuS/ZnS,其产氢量为5221μmol/g·h,在负载了g-C3N4之后产氢量进一步提升为6206μmol/g·h。
将本实施例步骤(3)制备的ZnS、步骤(4)制备的CuS/ZnS和步骤(5)制备的CuS/ZnS/g-C3N4加入至水中,在可见光条件下进行分解水制氢,结果如图6所示,表明:ZnS产氢量为0,而进行了阳离子交换之后,CuS/ZnS的产氢量实现了0的突破,产量为1784μmol/g·h,在负载了g-C3N4之后产氢量进一步提升为2266μmol/g·h。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种纳米复合材料的制备方法,其特征是,将乙醇胺进行光处理,将光处理后的乙醇胺与水混合形成混合溶剂,将锌盐、硫脲和PVP加入至混合溶剂中,然后进行溶剂热反应获得具有缺陷的ZnS,采用阳离子交换法将具有缺陷的ZnS与铜盐制成ZnS/CuS,将ZnS/CuS加入至g-C3N4的分散液中进行分散处理,使得ZnS/CuS与g-C3N4复合,即得。
2.如权利要求1所述的纳米复合材料的制备方法,其特征是,对乙醇胺进行光处理的过程为:将乙醇胺放置到光照下处理,直至溶液泛黄。
3.如权利要求1所述的纳米复合材料的制备方法,其特征是,锌盐、硫脲、PVP和乙醇胺的添加比例为7~8:10:450~550:9~11,mol:mol:g:L。
4.如权利要求1所述的纳米复合材料的制备方法,其特征是,溶剂热反应过程中,水的体积为反应容器容积的25~35%。
5.如权利要求1所述的纳米复合材料的制备方法,其特征是,溶剂热反应中,反应温度为170~190℃,反应时间为3~5h。
6.如权利要求1所述的纳米复合材料的制备方法,其特征是,采用阳离子交换法将具有缺陷的ZnS与铜盐制成ZnS/CuS的过程为:将具有缺陷的ZnS和铜盐加入至水中持续混合分散。
7.如权利要求1所述的纳米复合材料的制备方法,其特征是,g-C3N4的分散液的制备过程为:将g-C3N4加入至乙醇与水的混合溶液中,超声处理。
8.如权利要求1所述的纳米复合材料的制备方法,其特征是,将ZnS/CuS加入至g-C3N4的分散液中进行分散处理的过程为:将ZnS/CuS加入至g-C3N4的分散液中进行持续搅拌。
9.一种纳米复合材料,其特征是,由权利要求1~8任一所述的制备方法获得。
10.一种权利要求9所述的纳米复合材料在光催化产氢或在可见光催化产氢中的应用。
CN202211121451.1A 2022-09-15 2022-09-15 纳米复合材料及制备方法与其在可见光催化产氢中的应用 Active CN115501897B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211121451.1A CN115501897B (zh) 2022-09-15 2022-09-15 纳米复合材料及制备方法与其在可见光催化产氢中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211121451.1A CN115501897B (zh) 2022-09-15 2022-09-15 纳米复合材料及制备方法与其在可见光催化产氢中的应用

Publications (2)

Publication Number Publication Date
CN115501897A true CN115501897A (zh) 2022-12-23
CN115501897B CN115501897B (zh) 2023-06-27

Family

ID=84502991

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211121451.1A Active CN115501897B (zh) 2022-09-15 2022-09-15 纳米复合材料及制备方法与其在可见光催化产氢中的应用

Country Status (1)

Country Link
CN (1) CN115501897B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990584A (zh) * 2022-06-22 2022-09-02 江西八六三实业有限公司 一种用于二氧化碳电化学还原的铜基催化剂的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144304A (ja) * 2005-11-28 2007-06-14 Tokyo Univ Of Science 硫黄化合物を含む水溶液から太陽光照射下で水素生成に高活性を示すZnS−CuX固溶体光触媒
CN102515255A (zh) * 2012-01-09 2012-06-27 西南大学 硫化锌纳米球的制备方法
CN108786882A (zh) * 2018-05-30 2018-11-13 常州科力尔环保科技有限公司 CuS/ZnS/g-C3N4三元复合光催化剂的制备方法
CN108927174A (zh) * 2018-07-20 2018-12-04 济南大学 一种ZnS/rGO/CuS纳米光催化剂及其制备方法
CN109746019A (zh) * 2018-12-28 2019-05-14 西安交通大学 一种镓铟锌三元氮氧化物的制备方法及其应用
CN111036249A (zh) * 2019-12-23 2020-04-21 华南理工大学 一种FexP/Mn0.3Cd0.7S复合光催化剂及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144304A (ja) * 2005-11-28 2007-06-14 Tokyo Univ Of Science 硫黄化合物を含む水溶液から太陽光照射下で水素生成に高活性を示すZnS−CuX固溶体光触媒
CN102515255A (zh) * 2012-01-09 2012-06-27 西南大学 硫化锌纳米球的制备方法
CN108786882A (zh) * 2018-05-30 2018-11-13 常州科力尔环保科技有限公司 CuS/ZnS/g-C3N4三元复合光催化剂的制备方法
CN108927174A (zh) * 2018-07-20 2018-12-04 济南大学 一种ZnS/rGO/CuS纳米光催化剂及其制备方法
CN109746019A (zh) * 2018-12-28 2019-05-14 西安交通大学 一种镓铟锌三元氮氧化物的制备方法及其应用
CN111036249A (zh) * 2019-12-23 2020-04-21 华南理工大学 一种FexP/Mn0.3Cd0.7S复合光催化剂及其制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAIRUS ABDULLAH ET AL.: "Hydrazine-modified Zn-oxysulfide nanoparticles for CO2 reduction under low UV-light illumination", 《J. PHYS.: CONF. SER.》 *
R. RAMESHBABU ET AL.: "Cauliflower-like CuS/ZnS nanocomposites decorated g-C3N4 nanosheets as noble metal-free photocatalyst for superior photocatalytic water splitting", 《CHEMICAL ENGINEERING JOURNAL》 *
ZHIBIN FANG ET AL.: "Defect Engineering and Phase Junction Architecture of Wide-Bandgap ZnS for Conflicting Visible Light Activity in Photocatalytic H2 Evolution", 《APPL. MATER. INTERFACES》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990584A (zh) * 2022-06-22 2022-09-02 江西八六三实业有限公司 一种用于二氧化碳电化学还原的铜基催化剂的制备方法

Also Published As

Publication number Publication date
CN115501897B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
Geetha et al. High performance photo-catalyst based on nanosized ZnO–TiO2 nanoplatelets for removal of RhB under visible light irradiation
Kallawar et al. Bismuth titanate based photocatalysts for degradation of persistent organic compounds in wastewater: A comprehensive review on synthesis methods, performance as photocatalyst and challenges
Cheng et al. One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties
Yang et al. Controllable synthesis of Bi2MoO6 nanosheets and their facet-dependent visible-light-driven photocatalytic activity
Prabhakar Vattikuti et al. ZrO 2/MoS 2 heterojunction photocatalysts for efficient photocatalytic degradation of methyl orange
CN113649052B (zh) 一种石墨相氮化碳基光催化复合材料及其制备和应用
Li et al. Novel VO 2 (M)–ZnO heterostructured dandelions with combined thermochromic and photocatalytic properties for application in smart coatings
CN112588283A (zh) 一种碳量子点/介孔层状二氧化钛及其制备方法和应用
Selim et al. Controlled-synthesis of β-MnO2 nanorods through a γ-manganite precursor route
CN108187687B (zh) 一种光芬顿催化剂的制备方法
Zhang et al. Uniform hollow TiO2: Sm3+ spheres: Solvothermal synthesis and luminescence properties
Xu et al. Tuning the morphology, stability and photocatalytic activity of TiO2 nanocrystal colloids by tungsten doping
Sedlak et al. Contributions of morphological and structural parameters at different hierarchical morphology levels to photocatalytic activity of mesoporous nanostructured ZnO
CN108033432A (zh) 一种笼状结构材料g-C3N4的制备方法及其应用
CN104891567A (zh) 管状TiO2/还原氧化石墨烯复合材料的制备方法
Zhou et al. Modification of BiOBr with cellulose nanocrystals to improve the photocatalytic performance under visible light
Feng et al. Preparation of novel porous hydroxyapatite sheets with high Pb2+ adsorption properties by self-assembly non-aqueous precipitation method
CN115501897B (zh) 纳米复合材料及制备方法与其在可见光催化产氢中的应用
Zhang et al. Sandwich-like SnO 2/MoO 3− x prepared by electrostatic self-assembly for high-performance photocatalysis
Wu et al. Preparation of polymeric carbon nitride/TiO2 heterostructure with NH4Cl as template: Structural and photocatalytic studies
Xing et al. Influence of calcination temperature on the microstructure and photocatalysis performance of B/Sm-TiO2 nanomaterials
Yadav et al. Preparation of controlled lotus like structured ZnO decorated reduced graphene oxide nanocomposites to obtain enhanced photocatalytic properties
CN110227515B (zh) Bi2MoO6/BiPO4p-n异质结光催化剂、制备方法及其应用
Wang et al. Facile cetyltrimethylammonium bromide (CTAB)-assisted synthesis of calcium bismuthate nanoflakes with solar light photocatalytic performance
Hyam et al. Synthesis of copper hydroxide and oxide nanostructures via anodization technique for efficient photocatalytic application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 250353 University Road, Changqing District, Ji'nan, Shandong Province, No. 3501

Patentee after: Qilu University of Technology (Shandong Academy of Sciences)

Country or region after: China

Address before: 250353 University Road, Changqing District, Ji'nan, Shandong Province, No. 3501

Patentee before: Qilu University of Technology

Country or region before: China

CP03 Change of name, title or address