CN115425094A - Perovskite/crystalline silicon tandem solar cell and preparation method thereof - Google Patents
Perovskite/crystalline silicon tandem solar cell and preparation method thereof Download PDFInfo
- Publication number
- CN115425094A CN115425094A CN202210942321.8A CN202210942321A CN115425094A CN 115425094 A CN115425094 A CN 115425094A CN 202210942321 A CN202210942321 A CN 202210942321A CN 115425094 A CN115425094 A CN 115425094A
- Authority
- CN
- China
- Prior art keywords
- layer
- transport layer
- perovskite
- carrier
- crystalline silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910021419 crystalline silicon Inorganic materials 0.000 title claims abstract description 61
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- 238000002161 passivation Methods 0.000 claims abstract description 77
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 51
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 51
- 239000010703 silicon Substances 0.000 claims abstract description 51
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 238000010521 absorption reaction Methods 0.000 claims abstract description 16
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 38
- 239000000463 material Substances 0.000 claims description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 29
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 28
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 26
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 20
- 238000000151 deposition Methods 0.000 claims description 19
- 229920005591 polysilicon Polymers 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 15
- 230000005525 hole transport Effects 0.000 claims description 12
- 239000011787 zinc oxide Substances 0.000 claims description 10
- 238000005516 engineering process Methods 0.000 claims description 9
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 8
- 150000001768 cations Chemical class 0.000 claims description 7
- 239000004408 titanium dioxide Substances 0.000 claims description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 6
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 6
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 5
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 4
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 4
- 229910003472 fullerene Inorganic materials 0.000 claims description 4
- 239000006096 absorbing agent Substances 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 150000001450 anions Chemical class 0.000 claims description 3
- 229910052593 corundum Inorganic materials 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical class 0.000 claims description 3
- 229910003437 indium oxide Inorganic materials 0.000 claims description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 3
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 238000013082 photovoltaic technology Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 302
- 238000010586 diagram Methods 0.000 description 23
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 9
- 229910052738 indium Inorganic materials 0.000 description 7
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 7
- 230000008021 deposition Effects 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 239000010949 copper Substances 0.000 description 5
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 230000005641 tunneling Effects 0.000 description 5
- PNKUSGQVOMIXLU-UHFFFAOYSA-N Formamidine Chemical compound NC=N PNKUSGQVOMIXLU-UHFFFAOYSA-N 0.000 description 4
- BAVYZALUXZFZLV-UHFFFAOYSA-O Methylammonium ion Chemical compound [NH3+]C BAVYZALUXZFZLV-UHFFFAOYSA-O 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910003087 TiOx Inorganic materials 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 229910052701 rubidium Inorganic materials 0.000 description 2
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- IXHWGNYCZPISET-UHFFFAOYSA-N 2-[4-(dicyanomethylidene)-2,3,5,6-tetrafluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile Chemical compound FC1=C(F)C(=C(C#N)C#N)C(F)=C(F)C1=C(C#N)C#N IXHWGNYCZPISET-UHFFFAOYSA-N 0.000 description 1
- KIMPAVBWSFLENS-UHFFFAOYSA-N 2-carbazol-9-ylethylphosphonic acid Chemical compound C1=CC=CC=2C3=CC=CC=C3N(C1=2)CCP(O)(O)=O KIMPAVBWSFLENS-UHFFFAOYSA-N 0.000 description 1
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 1
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- 229920001167 Poly(triaryl amine) Polymers 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- PDZKZMQQDCHTNF-UHFFFAOYSA-M copper(1+);thiocyanate Chemical compound [Cu+].[S-]C#N PDZKZMQQDCHTNF-UHFFFAOYSA-M 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- OCVXZQOKBHXGRU-UHFFFAOYSA-N iodine(1+) Chemical compound [I+] OCVXZQOKBHXGRU-UHFFFAOYSA-N 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/93—Interconnections
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种钙钛矿/晶硅叠层太阳能电池及其制备方法,其涉及光伏技术领域,该钙钛矿/晶硅叠层太阳能电池包括顶部子电池和底部子电池,其中:按照入射光线顺序,所述顶部子电池包括:顶电极、窗口层、第一载流子传输层、吸收层、第二载流子传输层;按照入射光线顺序,所述底部子电池包括:上层载流子传输结构、硅衬底、下层载流子传输结构、底部钝化层、底电极。本发明通过改良的硅电池制备方法,减少了叠层电池工艺制备流程,从而满足钙钛矿/晶硅叠层太阳能电池的产业化应用需求。
The invention discloses a perovskite/crystalline silicon stacked solar cell and a preparation method thereof, which relate to the field of photovoltaic technology. The perovskite/crystalline silicon stacked solar cell includes a top sub-cell and a bottom sub-cell, wherein: according to In the order of incident light, the top sub-cell includes: a top electrode, a window layer, a first carrier transport layer, an absorption layer, and a second carrier transport layer; in accordance with the order of incident light, the bottom sub-cell includes: an upper layer carrying A carrier transport structure, a silicon substrate, a lower carrier transport structure, a bottom passivation layer, and a bottom electrode. The invention reduces the manufacturing process of stacked cells through the improved silicon cell preparation method, thereby meeting the industrial application requirements of perovskite/crystalline silicon stacked solar cells.
Description
技术领域technical field
本发明涉及太阳能技术领域,尤其涉及一种钙钛矿/晶硅叠层太阳能电池及其制备方法。The invention relates to the technical field of solar energy, in particular to a perovskite/crystalline silicon stacked solar cell and a preparation method thereof.
背景技术Background technique
光伏电池或太阳能电池,是推动可再生能源革命的最重要技术之一。如今人们对太阳能电池的研究已经在转换效率方面取得了重大进展。然而,提高光伏组件的效率仍然是必要的。更高的光伏组件可以使系统更加紧凑,从而降低系统的成本。Photovoltaic cells, or solar cells, are one of the most important technologies driving the renewable energy revolution. Today's research on solar cells has made significant progress in terms of conversion efficiency. However, improving the efficiency of photovoltaic modules is still necessary. Taller photovoltaic modules can make the system more compact, thereby reducing the cost of the system.
一般来说,在维持或提高光伏电池的电压的同时,减少吸收损失是必要的。此外,单结太阳能电池有一个效率上限(Shockley-Queisser极限),单结电池的效率并不能超越这个极限。鉴于此,提高光伏电池效率的策略之一是使用叠层电池。In general, it is necessary to reduce absorption losses while maintaining or increasing the voltage of photovoltaic cells. In addition, single-junction solar cells have an efficiency upper limit (Shockley-Queisser limit), and the efficiency of single-junction cells cannot exceed this limit. In view of this, one of the strategies to improve the efficiency of photovoltaic cells is to use tandem cells.
叠层电池包括由具有不同吸收特性的材料组成的多个子电池,允许从太阳光谱中更有效的利用不同波段的光能。叠层电池将具有高效宽带隙的上层太阳能电池与具有低带隙的下层太阳能电池相结合,以提高整体效率。叠层允许高能光子在上部子电池中被吸收,这可以产生高电压以减少热化损失,并允许下部子电池吸收低能光子(已通过上部子电池传输),允许更广泛的能量收集。A tandem cell consists of multiple sub-cells composed of materials with different absorption properties, allowing for more efficient utilization of light energy in different wavelengths of the solar spectrum. Tandem cells combine an upper solar cell with a high-efficiency wide bandgap with a lower solar cell with a lower bandgap to increase overall efficiency. The stack allows high-energy photons to be absorbed in the upper sub-cell, which can generate a high voltage to reduce thermalization losses, and allows the lower sub-cell to absorb lower-energy photons (which have been transported through the upper sub-cell), allowing broader energy harvesting.
由于其带隙特性,硅太阳能电池经常被用作叠层中的底电池。目前,硅异质结(SHJ)底电池在叠层研究中占主导地位。为了开发适合商业规模生产的叠层结构,需要底电池的性能和成本,以及它与形成叠层结构的后续工艺步骤的兼容性。例如,异质结电池往往采用双面氧化铟锡作为透明导电层,而铟在地壳中的分布量比较小,又很分散,它被列入稀有金属,其会钙钛矿/晶硅叠层太阳能电池的使用,钙钛矿/晶硅叠层太阳能电池中的晶硅底电池中会涉及对铟材料的使用,因此十分有必要采用不同的钙钛矿/晶硅叠层太阳能电池的方案。Silicon solar cells are often used as the bottom cell in stacks due to their bandgap properties. Silicon heterojunction (SHJ) bottom cells currently dominate stack research. In order to develop a stack structure suitable for commercial-scale production, the performance and cost of the bottom cell, as well as its compatibility with subsequent process steps to form the stack structure, are required. For example, heterojunction cells often use double-sided indium tin oxide as the transparent conductive layer, and the distribution of indium in the earth's crust is relatively small and scattered. It is listed as a rare metal, and it will be perovskite/crystalline silicon stack The use of solar cells, the crystalline silicon bottom cell in perovskite/crystalline silicon stacked solar cells will involve the use of indium materials, so it is very necessary to adopt different perovskite/crystalline silicon stacked solar cell solutions.
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足,本发明提供了一种钙钛矿/晶硅叠层太阳能电池及其制备方法,其通过减少硅底电池铟材料的投入,从而满足钙钛矿/晶硅叠层太阳能电池的应用需求。The purpose of the present invention is to overcome the deficiencies of the prior art. The present invention provides a perovskite/crystalline silicon stacked solar cell and a preparation method thereof, which meets the requirements of the perovskite/crystalline silicon solar cell by reducing the input of indium material for the silicon bottom cell. Application requirements of crystalline silicon tandem solar cells.
为了解决上述问题,本发明提出了一种钙钛矿/晶硅叠层太阳能电池,包括顶部子电池和底部子电池,其中:In order to solve the above problems, the present invention proposes a perovskite/crystalline silicon tandem solar cell, comprising a top subcell and a bottom subcell, wherein:
按照入射光线顺序,所述顶部子电池包括:顶电极、窗口层、第一载流子传输层、吸收层、第二载流子传输层;According to the order of incident light, the top sub-cell includes: a top electrode, a window layer, a first carrier transport layer, an absorption layer, and a second carrier transport layer;
按照入射光线顺序,所述底部子电池包括:In the order of incident light, the bottom subcell includes:
上层传输结构、硅衬底、下层传输结构、底部钝化层、底电极;Upper transmission structure, silicon substrate, lower transmission structure, bottom passivation layer, bottom electrode;
所述上传传输结构包括:上层载流子选择传输层和上层钝化层,所述上层载流子选择传输层为掺杂多晶硅,所述上层钝化层为氧化硅,所述上层传输结构为掺杂多晶硅及氧化硅组成的POLO结构;The upload transmission structure includes: an upper carrier selective transport layer and an upper passivation layer, the upper carrier selective transport layer is doped polysilicon, the upper passivation layer is silicon oxide, and the upper transport structure is POLO structure composed of doped polysilicon and silicon oxide;
所述下层传输结构包括:下层钝化层和下层载流子选择传输层,所述下层传输结构为掺杂多晶硅及氧化硅组成的POLO结构或者扩散掺杂层;The lower transport structure includes: a lower passivation layer and a lower carrier selective transport layer, and the lower transport structure is a POLO structure or a diffused doped layer composed of doped polysilicon and silicon oxide;
所述第二载流子传输层包括氧化钛材料,所述底部钝化层包括氧化钛材料。The second carrier transport layer includes a titanium oxide material, and the bottom passivation layer includes a titanium oxide material.
所述第二载流子传输层中的材料包括:SnO2、TiO2、ZnO、ZrO2、富勒烯及衍生物中的一种或几种;所述底部钝化层包括:Al2O3或者TiO2。The material in the second carrier transport layer includes: one or more of SnO2, TiO2, ZnO, ZrO2, fullerene and derivatives; the bottom passivation layer includes: Al2O3 or TiO2.
所述窗口层为透明导电层,材料包括掺杂氧化铟、掺杂氧化锌及氧化铟锌中的一种或几种堆砌而成,所述窗口层的厚度范围为50-200nm。The window layer is a transparent conductive layer made of one or more of doped indium oxide, doped zinc oxide and indium zinc oxide, and the thickness of the window layer is in the range of 50-200nm.
所述顶部子电池还包括缓冲层,所述缓冲层位于窗口层与第一载流子传输层之间,所述缓冲层材料包括MoO3、WO3、V2O5、SnO2、TiO2、ZnO中的一种或者多种。The top sub-cell further includes a buffer layer located between the window layer and the first carrier transport layer, and the material of the buffer layer includes MoO 3 , WO 3 , V 2 O 5 , SnO 2 , TiO 2 , one or more of ZnO.
所述第一载流子传输层为电子传输层,所述第二载流子传输层为空穴传输层;或者The first carrier transport layer is an electron transport layer, and the second carrier transport layer is a hole transport layer; or
所述第二载流子传输层是电子传输层,所述第一载流子传输层是空穴传输层。The second carrier transport layer is an electron transport layer, and the first carrier transport layer is a hole transport layer.
所述吸收层由钙钛矿材料组成,所述钙钛矿材料具有化学式表达为:ABX3,其中A为一价阳离子,B为二价金属阳离子,X为一价卤素或类卤素阴离子;所述吸光层的厚度为0.1um-2um。The absorbing layer is composed of a perovskite material, and the perovskite material has a chemical formula expressed as: ABX3, wherein A is a monovalent cation, B is a divalent metal cation, and X is a monovalent halogen or a halogen-like anion; the The thickness of the light absorbing layer is 0.1um-2um.
所述硅衬底为电阻率范围在0.5-20ohm·cm的N型硅片或P型硅片,所述硅衬底的厚度范围为100um-300um,所述硅衬底表面为抛光面或制绒面。The silicon substrate is an N-type silicon wafer or a P-type silicon wafer with a resistivity in the range of 0.5-20ohm·cm, the thickness of the silicon substrate is in the range of 100um-300um, and the surface of the silicon substrate is a polished surface or Suede.
所述上层载流子选择传输层为n型掺杂层时,则所述下层载流子选择传输层为p型掺杂层;所述上层载流子选择传输层为p型掺杂层时,则所述下层载流子选择传输层为n型掺杂层。When the upper carrier selective transport layer is an n-type doped layer, the lower carrier selective transport layer is a p-type doped layer; when the upper carrier selective transport layer is a p-type doped layer , then the lower carrier selective transport layer is an n-type doped layer.
相应的,本发明还提出了一种钙钛矿/晶硅叠层太阳能电池的制备方法,包括底部子电池的制备方法及在底部子电池上制备顶部子电池并完成叠层电池制备的方法,所述方法包括:Correspondingly, the present invention also proposes a method for preparing a perovskite/crystalline silicon stacked solar cell, including a method for preparing a bottom sub-cell and a method for preparing a top sub-cell on the bottom sub-cell and completing the preparation of the stacked cell, The methods include:
对硅基片进行湿法处理;Wet processing of silicon substrates;
在硅基片正表面沉积上层钝化层,所述上层钝化层为氧化硅;An upper passivation layer is deposited on the front surface of the silicon substrate, and the upper passivation layer is silicon oxide;
在上层钝化层正表面沉积上层载流子选择传输层,所述上层载流子选择传输层为掺杂的多晶硅,所述上层载流子选择传输层和所述上层钝化层成型为POLO结构;An upper carrier selective transport layer is deposited on the front surface of the upper passivation layer, the upper carrier selective transport layer is doped polysilicon, and the upper carrier selective transport layer and the upper passivation layer are shaped as POLO structure;
在硅基片下表面沉积下层钝化层;Depositing a lower passivation layer on the lower surface of the silicon substrate;
在下层钝化层下表面沉积下层载流子选择传输层;Depositing a lower layer carrier selective transport layer on the lower surface of the lower passivation layer;
利用ALD技术在所述下层载流子选择传输层下表面沉积二氧化钛,并形成底部钝化层,同时利用ALD技术在所述上层载流子选择传输层上表面沉积二氧化钛,并形成第二载流子传输层;ALD technology is used to deposit titanium dioxide on the lower surface of the lower carrier selective transport layer, and form a bottom passivation layer, and at the same time, use ALD technology to deposit titanium dioxide on the upper surface of the upper carrier selective transport layer, and form a second carrier sub-transport layer;
在底部钝化层下表面制备底电极;preparing a bottom electrode on the lower surface of the bottom passivation layer;
在第二载流子传输层上制备钙钛矿吸收层;preparing a perovskite absorption layer on the second carrier transport layer;
在钙钛矿吸收层上制备第一载流子传输层;preparing a first carrier transport layer on the perovskite absorber layer;
在第一载流子传输层上沉积缓冲层;depositing a buffer layer on the first carrier transport layer;
在缓冲层上制备窗口层;preparing a window layer on the buffer layer;
在窗口层上制备金属栅线顶电极。A metal grid line top electrode is prepared on the window layer.
所述下层钝化层和下层载流子选择传输层组成了POLO结构;或者由扩散掺杂层成型所述下层钝化层和下层载流子选择传输层。The lower passivation layer and the lower carrier selective transport layer form a POLO structure; or the lower passivation layer and the lower carrier selective transport layer are formed by a diffused doping layer.
本发明实施例中的钙钛矿/晶硅叠层太阳能电池及其制备方法,通过减少双面氧化铟锡作为透明导电层底部子电池中的应用,可以减少铟材料的使用,从而可以促进钙钛矿/晶硅叠层太阳能电池的使用,使得商业化效率提高较高提升,使得硅晶底电池的吸收能力得到增强。这种结构的晶硅底电池都是采用常规材料制备而成,可以减少贵金属铟材料的使用,降低了晶硅底电池的成本,也普及了晶硅底电池在钙钛矿/晶硅叠层太阳能电池中的应用,也使得形成叠层结构的后续工艺步骤具有更强的兼容性。这里通过改良硅电池制备方法,减少了叠层电池工艺制备流程,从而满足钙钛矿/晶硅叠层太阳能电池的产业化应用需求。The perovskite/crystalline silicon stacked solar cell and its preparation method in the embodiment of the present invention can reduce the use of indium material by reducing the application of double-sided indium tin oxide as a transparent conductive layer bottom subcell, thereby promoting calcium The use of titanium ore/crystalline silicon stacked solar cells has greatly improved the commercial efficiency and enhanced the absorption capacity of silicon bottom cells. The crystalline silicon bottom cells of this structure are all made of conventional materials, which can reduce the use of precious metal indium materials, reduce the cost of crystalline silicon bottom cells, and also popularize the perovskite/crystalline silicon stacking of crystalline silicon bottom cells. The application in solar cells also makes the subsequent process steps of forming the stacked structure more compatible. Here, by improving the preparation method of silicon cells, the preparation process of stacked cells is reduced, so as to meet the industrial application requirements of perovskite/crystalline silicon stacked solar cells.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见的,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1是本发明实施例中的钙钛矿/晶硅叠层太阳能电池的第一结构示意图;Fig. 1 is the first structure schematic diagram of the perovskite/crystalline silicon laminated solar cell in the embodiment of the present invention;
图2是本发明实施例中的钙钛矿/晶硅叠层太阳能电池中顶部子电池的第一结构示意图;Fig. 2 is the first schematic structural view of the top sub-cell in the perovskite/crystalline silicon tandem solar cell in the embodiment of the present invention;
图3是本发明实施例中的钙钛矿/晶硅叠层太阳能电池中顶部子电池的第二结构示意图;Fig. 3 is the second structural schematic view of the top sub-cell in the perovskite/crystalline silicon tandem solar cell in the embodiment of the present invention;
图4是本发明实施例中的钙钛矿/晶硅叠层太阳能电池中顶部子电池的第三结构示意图;4 is a schematic diagram of the third structure of the top sub-cell in the perovskite/crystalline silicon tandem solar cell in the embodiment of the present invention;
图5是本发明实施例中的钙钛矿/晶硅叠层太阳能电池中底部子电池的第一结构示意图;5 is a schematic diagram of the first structure of the bottom sub-cell in the perovskite/crystalline silicon tandem solar cell in the embodiment of the present invention;
图6是本发明实施例中的钙钛矿/晶硅叠层太阳能电池中底部子电池的第二结构示意图;Fig. 6 is a second structural schematic diagram of the bottom sub-cell in the perovskite/crystalline silicon tandem solar cell in the embodiment of the present invention;
图7是本发明实例中的钙钛矿/晶硅叠层太阳能电池中底部子电池的第三结构示意图;7 is a schematic diagram of the third structure of the bottom sub-cell in the perovskite/crystalline silicon tandem solar cell in the example of the present invention;
图8是本发明实施例的钙钛矿/晶硅叠层太阳能电池中顶部子电池的第二结构示意图;8 is a schematic diagram of the second structure of the top sub-cell in the perovskite/crystalline silicon tandem solar cell according to the embodiment of the present invention;
图9是本发明实施例的钙钛矿/晶硅叠层太阳能电池中顶部子电池的第三结构示意图;9 is a schematic diagram of the third structure of the top sub-cell in the perovskite/crystalline silicon tandem solar cell according to the embodiment of the present invention;
图10是本发明实施例中的钙钛矿/晶硅叠层太阳能电池的制备方法流程图;Fig. 10 is a flow chart of a method for preparing a perovskite/crystalline silicon stacked solar cell in an embodiment of the present invention;
图11是本发明实施例中的双面POLO结构示意图;Figure 11 is a schematic diagram of the double-sided POLO structure in the embodiment of the present invention;
图12是本发明实施例中的单面POLO结构示意图;Fig. 12 is a schematic diagram of the single-sided POLO structure in the embodiment of the present invention;
图13为本发明实施例中的双面POLO的半成品硅电池结构示意图;FIG. 13 is a schematic structural diagram of a semi-finished silicon cell of a double-sided POLO in an embodiment of the present invention;
图14是本发明实施例中的覆膜后的双面POLO的半成品硅电池结构示意图;Fig. 14 is a schematic structural diagram of a semi-finished silicon cell of a double-sided POLO covered with a film in an embodiment of the present invention;
图15是本发明实施例中的双面POLO的硅电池结构示意图。Fig. 15 is a schematic diagram of the silicon cell structure of the double-sided POLO in the embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
具体的,图1示出了本发明实施例中的钙钛矿/晶硅叠层太阳能电池的第一结构示意图,按照入射光线顺序,包括顶部子电池和底部子电池。Specifically, FIG. 1 shows a schematic diagram of the first structure of a perovskite/crystalline silicon tandem solar cell in an embodiment of the present invention, including a top sub-cell and a bottom sub-cell according to the order of incident light.
需要说明的是,钙钛矿/晶硅叠层太阳能电池可以由顶部子电池与底部子电池直接连接,也可以由顶部子电池与底部子电池通过中间连接层连接于一体。It should be noted that the perovskite/crystalline silicon tandem solar cell can be directly connected by the top sub-cell and the bottom sub-cell, or can be integrated by connecting the top sub-cell and the bottom sub-cell through an intermediate connection layer.
具体的,图2示出了本发明实施例中的钙钛矿/晶硅叠层太阳能电池中顶部子电池的第一结构示意图,按照入射光线顺序,该顶部子电池包括顶电极、窗口层、缓冲层、第一载流子传输层、吸收层、第二载流子传输层。Specifically, Fig. 2 shows a schematic diagram of the first structure of the top sub-cell in the perovskite/crystalline silicon tandem solar cell in the embodiment of the present invention. According to the order of incident light, the top sub-cell includes a top electrode, a window layer, A buffer layer, a first carrier transport layer, an absorption layer, and a second carrier transport layer.
这里的顶电极为金属或合金材料制成的栅线结构,该制备顶电极可以采用金、银、铜、镍、铬、铝中的一种或几种堆砌或混合而成,顶电极厚度范围为0.5-50um,比如取值0.5um、1um、2um、5um、10um、20um、30um、40un、50um等等。The top electrode here is a grid line structure made of metal or alloy materials. The prepared top electrode can be stacked or mixed with one or more of gold, silver, copper, nickel, chromium, and aluminum. The thickness of the top electrode ranges from 0.5-50um, such as 0.5um, 1um, 2um, 5um, 10um, 20um, 30um, 40un, 50um, etc.
这里的窗口层为透明导电层(TCO),材料包括掺杂氧化铟(ITO、IWO、ICO、IZO)、掺杂氧化锌(AZO)及氧化铟锌(IZO)中的一种或几种堆砌而成,窗口层的厚度范围为50-200nm,比如取值50nm、55nm、60nm、65nm、79nm、88nm、99nm、110nn、150nm、180nm、190nm、200nm等等。The window layer here is a transparent conductive layer (TCO), and the material includes one or more of doped indium oxide (ITO, IWO, ICO, IZO), doped zinc oxide (AZO) and indium zinc oxide (IZO). The thickness of the window layer is in the range of 50-200nm, such as 50nm, 55nm, 60nm, 65nm, 79nm, 88nm, 99nm, 110nm, 150nm, 180nm, 190nm, 200nm and so on.
这里的缓冲层位于窗口层与第一载流子传输层之间,可以用来保护底层,以防止通过溅射等工艺进行窗口层透明接触沉积所造成的膜层损伤。该缓冲层材料包括MoO3、WO3、V2O5、SnO2、TiO2、ZnO中的一种或者多种。若窗口层透明接触沉积不会造成膜层损伤,则缓冲层厚度可以为0。The buffer layer here is located between the window layer and the first carrier transport layer, and can be used to protect the bottom layer to prevent film layer damage caused by transparent contact deposition of the window layer by processes such as sputtering. The buffer layer material includes one or more of MoO 3 , WO 3 , V 2 O 5 , SnO 2 , TiO 2 , and ZnO. If the transparent contact deposition of the window layer will not cause film damage, the thickness of the buffer layer can be 0.
需要说明的是,这里的第一载流子传输层与第二载流子传输层可以是电子传输层或空穴传输层。It should be noted that the first carrier transport layer and the second carrier transport layer here may be an electron transport layer or a hole transport layer.
需要说明的是,所述第二载流子传输层中的材料包括:SnO2、TiO2、ZnO、ZrO2、富勒烯及衍生物中的一种或几种;所述底部钝化层包括:Al2O3或者TiO2等等。It should be noted that the material in the second carrier transport layer includes: one or more of SnO2, TiO2, ZnO, ZrO2, fullerene and derivatives; the bottom passivation layer includes: Al2O3 Or TiO2 and so on.
具体的,图3示出了本发明实施例中的钙钛矿/晶硅叠层太阳能电池中顶部子电池的第二结构示意图,该顶部子电池包括顶电极、窗口层、缓冲层、第一载流子传输层、吸收层、第二载流子传输层。即这里的第一载流子传输层是电子传输层,第二载流子传输层是空穴传输层。Specifically, Fig. 3 shows a second schematic structural view of the top subcell in the perovskite/crystalline silicon stacked solar cell in the embodiment of the present invention, the top subcell includes a top electrode, a window layer, a buffer layer, a first Carrier transport layer, absorption layer, second carrier transport layer. That is, the first carrier transport layer here is an electron transport layer, and the second carrier transport layer is a hole transport layer.
具体的,图4示出了本发明实施例中的钙钛矿/晶硅叠层太阳能电池中顶部子电池的第三结构示意图,该顶部子电池包括顶电极、窗口层、缓冲层、第一载流子传输层、吸收层、第二载流子传输层。即这里的第二载流子传输层是电子传输层,第一载流子传输层是空穴传输层。Specifically, FIG. 4 shows a schematic diagram of the third structure of the top subcell in the perovskite/crystalline silicon tandem solar cell in the embodiment of the present invention. The top subcell includes a top electrode, a window layer, a buffer layer, a first Carrier transport layer, absorption layer, second carrier transport layer. That is, the second carrier transport layer here is an electron transport layer, and the first carrier transport layer is a hole transport layer.
需要说明的是,空穴传输层材料为PTAA、NiOx、TaTm、D18、P3HT、V2O5、MoOx、PEDOT:PSS、WOx、Sprio-OMeTAD、CuSCN、Cu2O、CuI、Spiro-TTB、F4-TCNQ、F6-TCNNQ、m-MTDATA、2PACz、meo-2PACz、4PACz或TAPC中的一种或几种,空穴传输层的厚度为0-100nm,其可以取值为1nm、2nm、10nm、20nm、30nm、50nm、70nm、100nm等等。It should be noted that the material of the hole transport layer is PTAA, NiO x , TaTm, D18, P3HT, V 2 O 5 , MoO x , PEDOT:PSS, WO x , Sprio-OMeTAD, CuSCN, Cu 2 O, CuI, Spiro -One or more of TTB, F4-TCNQ, F6-TCNNQ, m-MTDATA, 2PACz, meo-2PACz, 4PACz or TAPC, the thickness of the hole transport layer is 0-100nm, which can be 1nm, 2nm, 10nm, 20nm, 30nm, 50nm, 70nm, 100nm, etc.
需要说明的是,电子传输层材料为SnO2、TiO2、ZnO、ZrO2、富勒烯及衍生物(C60、C70、PCBM)中的一种或几种,厚度为0-500nm,其可以取值为1nm、2nm、10nm、20nm、30nm、50nm、70nm、100nm、200nm、300nm、400nm、500nm等等。It should be noted that the electron transport layer material is one or more of SnO 2 , TiO 2 , ZnO, ZrO 2 , fullerene and its derivatives (C60, C70, PCBM), with a thickness of 0-500nm, which can be The values are 1nm, 2nm, 10nm, 20nm, 30nm, 50nm, 70nm, 100nm, 200nm, 300nm, 400nm, 500nm and so on.
需要说明的是,吸收层由钙钛矿材料组成,钙钛矿材料可以由以下化学式表达:ABX3,其中A为一价阳离子,包括但不限于甲铵(MA)、甲脒(FA)、铯(Cs),或铷(Rb)或其任何组合;B为二价金属阳离子,包括但不限于铅(Pb)、锡(Sn)、钨(W)、铜(Cu)、锌(Zn)、镓(Ga)或其任意组合;X为一价卤素或类卤素阴离子,包括但不限于碘(I)、溴(Br)、氯(Cl)、硫氰根(SCN)或其任何组合。该吸光层的厚度为0.1um-2um,其可以取值为0.1um、0.5um、1um、1.5um、2um等等。It should be noted that the absorbing layer is composed of perovskite materials, which can be expressed by the following chemical formula: ABX3, where A is a monovalent cation, including but not limited to methylammonium (MA), formamidine (FA), cesium (Cs), or rubidium (Rb) or any combination thereof; B is a divalent metal cation, including but not limited to lead (Pb), tin (Sn), tungsten (W), copper (Cu), zinc (Zn), Gallium (Ga) or any combination thereof; X is a monovalent halogen or halide-like anion, including but not limited to iodine (I), bromine (Br), chlorine (Cl), thiocyanate (SCN) or any combination thereof. The thickness of the light absorbing layer is 0.1um-2um, which can be 0.1um, 0.5um, 1um, 1.5um, 2um and so on.
需要说明的是,吸收层中的溴(Br):碘(I)的比例在0:1到1:1的范围内。A包括一个或多个一价阳离子,其选择方式是A的摩尔百分比为:甲脒(FA)从0%到100%;甲铵(MA)从0%到100%;铯(Cs)从0%到30%;铷(Rb)从0%到30%。It should be noted that the ratio of bromine (Br): iodine (I) in the absorbing layer is in the range of 0:1 to 1:1. A includes one or more monovalent cations, and the selection method is that the molar percentage of A is: formamidine (FA) from 0% to 100%; methylammonium (MA) from 0% to 100%; cesium (Cs) from 0% to 100%. % to 30%; rubidium (Rb) from 0% to 30%.
具体的,图5示出了本发明实施例中的钙钛矿/晶硅叠层太阳能电池中底部子电池的第一结构示意图,按照入射光线顺序,底部子电池包括:上层传输结构、硅衬底、下层传输结构、底部钝化层、底电极。所述上传传输结构包括:上层载流子选择传输层和上层钝化层,所述上层传输结构为掺杂多晶硅及氧化硅组成的POLO结构;所述下层传输结构包括:下层钝化层和下层载流子选择传输层,所述下层传输结构为掺杂多晶硅及氧化硅组成的POLO结构或者扩散掺杂层。Specifically, Fig. 5 shows a schematic diagram of the first structure of the bottom sub-cell in the perovskite/crystalline silicon tandem solar cell in the embodiment of the present invention. According to the order of incident light, the bottom sub-cell includes: an upper layer transmission structure, a silicon substrate Bottom, bottom layer transfer structure, bottom passivation layer, bottom electrode. The upload transmission structure includes: an upper carrier selective transport layer and an upper passivation layer, the upper transport structure is a POLO structure composed of doped polysilicon and silicon oxide; the lower transport structure includes: a lower passivation layer and a lower passivation layer The carrier selects the transport layer, and the transport structure of the lower layer is a POLO structure composed of doped polysilicon and silicon oxide or a diffused doped layer.
该金属底电极层可以是全覆盖结构,也可以是栅线结构,如图5中所示的为全覆盖结构的金属底电极层,金属底电极层也可以参考图1至4所示的栅线结构成型。金属底电极层材料包括金、银、铜、镍、铬、铝中的一种或几种堆砌或混合而成,厚度范围为0.5-50um。The metal bottom electrode layer can be a full-coverage structure or a grid line structure, as shown in Figure 5, which is a metal bottom electrode layer with a full-coverage structure, and the metal bottom electrode layer can also refer to the gate line structure shown in Figures 1 to 4. Line structure molding. The material of the metal bottom electrode layer includes one or more of gold, silver, copper, nickel, chromium, aluminum stacked or mixed, and the thickness range is 0.5-50um.
该硅衬底为电阻率范围在0.5-20ohm·cm的N型硅片或P型硅片,厚度范围100um-300um。该底部子电池形貌由硅衬底决定,所述硅衬底表面为抛光面或制绒面,绒面起伏范围应在2um以内。The silicon substrate is an N-type silicon wafer or a P-type silicon wafer with a resistivity range of 0.5-20ohm·cm, and a thickness range of 100um-300um. The shape of the bottom sub-cell is determined by the silicon substrate. The surface of the silicon substrate is a polished surface or a textured surface, and the undulation range of the textured surface should be within 2um.
所述上层载流子选择传输层为掺杂多晶硅层(poly-Si),所述上层钝化层是氧化硅层(SiOx),这里的上层载流子选择传输层和所述上层钝化层成型为POLO结构,即POLO(Poly-si on Oxide)结构。The upper carrier selective transport layer is a doped polysilicon layer (poly-Si), and the upper passivation layer is a silicon oxide layer (SiOx), where the upper carrier selective transport layer and the upper passivation layer Shaped into a POLO structure, that is, a POLO (Poly-sion Oxide) structure.
这里的上层载流子选择传输层是n型掺杂层,则下层载流子选择传输层是p型掺杂层;上层载流子选择传输层是p型掺杂层,则下层载流子选择传输层是n型掺杂层。Here the upper carrier selective transport layer is an n-type doped layer, then the lower carrier selective transport layer is a p-type doped layer; the upper carrier selective transport layer is a p-type doped layer, then the lower carrier selective transport layer The selective transport layer is an n-type doped layer.
具体的,图6示出了本发明实施例中的钙钛矿/晶硅叠层太阳能电池中底部子电池的第二结构示意图,这里的上层载流子选择传输层为n型掺杂层,这里的下层载流子选择传输层为p型掺杂层。Specifically, FIG. 6 shows a schematic diagram of the second structure of the bottom subcell in the perovskite/crystalline silicon stacked solar cell in the embodiment of the present invention, where the upper carrier selective transport layer is an n-type doped layer, Here, the lower carrier selective transport layer is a p-type doped layer.
具体的,图7示出了本发明实例中的钙钛矿/晶硅叠层太阳能电池中底部子电池的第三结构示意图,这里的上层载流子选择传输层为p型掺杂层,这里的下层载流子选择传输层为n型掺杂层。Specifically, FIG. 7 shows a schematic diagram of the third structure of the bottom subcell in the perovskite/crystalline silicon stacked solar cell in the example of the present invention, where the upper carrier selective transport layer is a p-type doped layer, where The lower carrier selective transport layer is an n-type doped layer.
所述底部钝化层被配置为抑制金属从底电极扩散至内层,底部钝化层包括选自以下一组的材料:过渡金属氧化物、金属卤化物、透明导电氧化物和金属氮化物。底部钝化层可以包括选自以下一组的过渡金属氧化物,比如:TiO2、Ta2O3和Ga2O3、LiF、MgF2、TiN、TaN等等单独或者组合成型。The bottom passivation layer is configured to inhibit metal diffusion from the bottom electrode to the inner layer, the bottom passivation layer includes a material selected from the group consisting of transition metal oxides, metal halides, transparent conductive oxides, and metal nitrides. The bottom passivation layer may include transition metal oxides selected from the following group, such as: TiO 2 , Ta 2 O 3 and Ga 2 O 3 , LiF, MgF 2 , TiN, TaN, etc. alone or in combination.
上层钝化层和上层钝化层所使用的材料为:氧化硅层(SiOx),上层钝化层和上层钝化层通过热氧、或者LPCVD、或者PECVD方法成型。The material used for the upper passivation layer and the upper passivation layer is: a silicon oxide layer (SiOx), and the upper passivation layer and the upper passivation layer are formed by thermal oxygen, or LPCVD, or PECVD.
本发明实施例中的钙钛矿/晶硅叠层太阳能电池结构由顶部子电池与底部子电池连接,顶部子电池中的第二载流子传输层与底部子电池中的上层载流子传输层相连,连接方式可通过中间连接层连接或直接连接。The perovskite/crystalline silicon stacked solar cell structure in the embodiment of the present invention is connected by the top sub-cell and the bottom sub-cell, and the second carrier transport layer in the top sub-cell is connected to the upper carrier transport layer in the bottom sub-cell. Layers are connected, and the connection method can be connected through an intermediate connection layer or directly.
具体的,图8示出了本发明实施例的钙钛矿/晶硅叠层太阳能电池中顶部子电池的第二结构示意图,包括:顶部电极也即顶电极、透明窗口层也即窗口层、缓冲保护层也即缓冲层、空穴传输层、吸收层、电子传输层、中间互连层(可选)、P型掺杂层、上层钝化层、硅衬底、下层钝化层、N型掺杂层、底部钝化层、底部电极层也即底电极等。这里第二载流子传输层是电子传输层,第一载流子传输层是空穴传输层,所述上层载流子选择传输层是P型掺杂层,下层载流子选择传输层是N型掺杂层。Specifically, FIG. 8 shows a schematic diagram of the second structure of the top subcell in the perovskite/crystalline silicon tandem solar cell according to the embodiment of the present invention, including: the top electrode is also the top electrode, the transparent window layer is also the window layer, The buffer protection layer is buffer layer, hole transport layer, absorption layer, electron transport layer, intermediate interconnection layer (optional), P-type doped layer, upper passivation layer, silicon substrate, lower passivation layer, N Type doped layer, bottom passivation layer, bottom electrode layer, also known as bottom electrode, etc. Here the second carrier transport layer is an electron transport layer, the first carrier transport layer is a hole transport layer, the upper carrier selective transport layer is a P-type doped layer, and the lower carrier selective transport layer is N-type doped layer.
具体的,图9示出了本发明实施例的钙钛矿/晶硅叠层太阳能电池中顶部子电池的第三结构示意图,包括:顶部电极也即顶电极、透明窗口层也即窗口层、缓冲保护层也即缓冲层、电子传输层、吸收层、空穴传输层、中间互连层(可选)、N型掺杂层、上层钝化层、硅衬底、下层钝化层、P型掺杂层、底部钝化层、底部电极层也即底电极等。这里第一载流子传输层是电子传输层,第二载流子传输层是空穴传输层,所述上层载流子选择传输层是N型掺杂层,下层载流子选择传输层是P型掺杂层。Specifically, FIG. 9 shows a schematic diagram of the third structure of the top sub-cell in the perovskite/crystalline silicon tandem solar cell according to the embodiment of the present invention, including: the top electrode, that is, the top electrode, the transparent window layer, that is, the window layer, The buffer protection layer is buffer layer, electron transport layer, absorption layer, hole transport layer, intermediate interconnection layer (optional), N-type doped layer, upper passivation layer, silicon substrate, lower passivation layer, P Type doped layer, bottom passivation layer, bottom electrode layer, also known as bottom electrode, etc. Here the first carrier transport layer is an electron transport layer, the second carrier transport layer is a hole transport layer, the upper carrier selective transport layer is an N-type doped layer, and the lower carrier selective transport layer is P-type doped layer.
本发明实施例中利用同时ALD技术沉积TiO2形成第二载流子传输层底部钝化层,这样正面的氧化钛就可以作为第二载流子传输层的全部或组成部分,而背面的氧化钛就是可以作为底部钝化层,通过这种方式简化了叠层电池制备的工艺,使得制备过程效率大大提升。本发明实施例中的所涉及的钙钛矿/晶硅叠层太阳能电池的制备方法,包括底部子电池的制备方法及在底部子电池上制备顶部子电池并完成叠层电池制备的方法。In the embodiment of the present invention, use simultaneous ALD technology to deposit TiO2 to form the passivation layer at the bottom of the second carrier transport layer, so that the titanium oxide on the front side can be used as all or part of the second carrier transport layer, and the titanium oxide on the back side That is, it can be used as the bottom passivation layer, which simplifies the manufacturing process of laminated batteries and greatly improves the efficiency of the manufacturing process. The method for preparing a perovskite/crystalline silicon stacked solar cell involved in the embodiment of the present invention includes a method for preparing a bottom sub-cell and a method for preparing a top sub-cell on the bottom sub-cell to complete the preparation of the stacked cell.
具体的,图10示出了本发明实施例中的钙钛矿/晶硅叠层太阳能电池的制备方法流程图,其包括以下步骤:Specifically, FIG. 10 shows a flow chart of a method for preparing a perovskite/crystalline silicon stacked solar cell in an embodiment of the present invention, which includes the following steps:
S101、提供一个硅基片即进行硅衬底成型;S101, providing a silicon substrate to form the silicon substrate;
S102、对硅基片进行湿法处理;S102, performing wet processing on the silicon substrate;
这里进行湿法处理保证硅基片正表面为抛光面或起伏范围小于2um的制绒面。Wet treatment is carried out here to ensure that the front surface of the silicon substrate is a polished surface or a textured surface with a fluctuation range less than 2um.
S103、在硅基片正表面沉积上层钝化层;S103, depositing an upper passivation layer on the front surface of the silicon substrate;
该上层钝化层为氧化硅层(SiOx),制备方法包括但不限于热氧、LPCVD、PECVD方法。The upper passivation layer is a silicon oxide layer (SiOx), and its preparation methods include but not limited to thermal oxygen, LPCVD, and PECVD methods.
S104、在上层钝化层正表面沉积上层载流子选择传输层;S104, depositing an upper carrier selective transport layer on the front surface of the upper passivation layer;
所述沉积上层载流子选择传输层的方法包括:多晶硅层(poly-Si)沉积及元素掺杂,N型掺杂时采用磷(P)元素掺杂,P型掺杂时采用硼(B)元素掺杂,包括但不限于LPCVD+离子注入、LPCVD+热扩散、LPCVD原位掺杂、PECVD原位掺杂方法。The method for depositing the upper carrier selective transport layer includes: polysilicon layer (poly-Si) deposition and element doping, phosphorus (P) element doping is used for N-type doping, and boron (B) is used for P-type doping. ) element doping, including but not limited to LPCVD+ion implantation, LPCVD+thermal diffusion, LPCVD in-situ doping, PECVD in-situ doping methods.
S105、在硅基片下表面沉积下层钝化层;S105, depositing a lower passivation layer on the lower surface of the silicon substrate;
该下层钝化层为氧化硅层(SiOx),下层钝化层制备方法包括但不限于热氧、LPCVD、PECVD方法。The lower passivation layer is a silicon oxide layer (SiOx), and the preparation methods of the lower passivation layer include but not limited to thermal oxygen, LPCVD, and PECVD methods.
S106、在下层钝化层下表面沉积下层载流子选择传输层;S106, depositing a lower carrier selective transport layer on the lower surface of the lower passivation layer;
所述沉积下层载流子选择传输层的方法包括:多晶硅层(poly-Si)沉积及元素掺杂,N型掺杂时采用磷(P)元素掺杂,P型掺杂时采用硼(B)元素掺杂,包括但不限于LPCVD+离子注入、LPCVD+热扩散、LPCVD原位掺杂、PECVD原位掺杂方法。The method for depositing the carrier selection transport layer of the lower layer includes: polysilicon layer (poly-Si) deposition and element doping, phosphorus (P) element doping is used for N-type doping, and boron (B) is used for P-type doping. ) element doping, including but not limited to LPCVD+ion implantation, LPCVD+thermal diffusion, LPCVD in-situ doping, PECVD in-situ doping methods.
S107、利用ALD技术沉积二氧化钛;S107, using ALD technology to deposit titanium dioxide;
这里利用ALD技术在所述下层载流子选择传输层下表面沉积二氧化钛,并形成底部钝化层,同时利用ALD技术在所述上层载流子选择传输层上表面沉积二氧化钛,并形成第二载流子传输层。Here, ALD technology is used to deposit titanium dioxide on the lower surface of the lower carrier selective transport layer to form a bottom passivation layer, and at the same time, ALD technology is used to deposit titanium dioxide on the upper surface of the upper carrier selective transport layer to form a second carrier layer. stream transport layer.
即在下层载流子选择传输层下表面沉积底部钝化层,底钝化层的材料可以为SiOx、Al2O3、AlN、InSb、SiC、TiOx、TiN中的一种或几种,钝化层可以是单层的,也可以是电介质层的堆叠,例如SiOx/AlOx,厚度0-300nm。That is, the bottom passivation layer is deposited on the lower surface of the lower carrier selective transport layer. The material of the bottom passivation layer can be one or more of SiO x , Al 2 O 3 , AlN, InSb, SiC, TiOx, TiN, The passivation layer can be a single layer, or a stack of dielectric layers, such as SiO x /AlO x , with a thickness of 0-300 nm.
这里的底钝化层可以由ALD成型底钝化层。The bottom passivation layer here can be formed by ALD.
S108、在底部钝化层下表面制备底电极;S108, preparing a bottom electrode on the lower surface of the bottom passivation layer;
这里采用但不限于蒸镀、印刷或者电镀方法在底部钝化层上制备金属栅线底电极或者全覆盖底电极,S101至S109步骤为完成底部子电极制备过程。Here, but not limited to evaporation, printing or electroplating methods are used to prepare metal grid line bottom electrodes or fully covered bottom electrodes on the bottom passivation layer. Steps S101 to S109 are to complete the bottom sub-electrode preparation process.
底电极可以用Al背电极,其可以避免对银的损耗,但不限于铝或者银等。The bottom electrode can be Al back electrode, which can avoid the loss of silver, but not limited to aluminum or silver.
需要说明的是,这里的上层载流子选择传输层、上层钝化层为掺杂的多晶硅和氧化硅,这两种组成了POLO结构(poly-Si/SiOx),所述下层钝化层和下层载流子选择传输层组成了POLO结构或者硅异质结结构;或者由扩散掺杂层成型所述下层钝化层和下层载流子选择传输层。如图11所示的这里的上层载流子选择传输层为n型掺杂多晶硅层,上层钝化层为上隧穿氧化硅层,其成型POLO结构,下层载流子选择传输层为p型掺杂多晶硅层,下层钝化层为下隧穿氧化硅层,其成型POLO结构;如图12所示的这里的上层载流子选择传输层为N型掺杂多晶硅层,上层钝化层为上隧穿氧化硅层,其成型POLO结构,下层载流子选择传输层和下层钝化层由P型扩散掺杂层成型。It should be noted that the upper carrier selective transport layer and the upper passivation layer here are doped polysilicon and silicon oxide, which form a POLO structure (poly-Si/SiOx), and the lower passivation layer and The lower carrier selective transport layer forms a POLO structure or a silicon heterojunction structure; or the lower passivation layer and the lower carrier selective transport layer are formed from a diffuse doped layer. As shown in Figure 11, the upper carrier selective transport layer is an n-type doped polysilicon layer, the upper passivation layer is an upper tunneling silicon oxide layer, which forms a POLO structure, and the lower carrier selective transport layer is a p-type Doped polysilicon layer, the lower passivation layer is the lower tunneling silicon oxide layer, which forms a POLO structure; as shown in Figure 12, the upper carrier selective transport layer here is an N-type doped polysilicon layer, and the upper passivation layer is The upper tunneling silicon oxide layer forms a POLO structure, and the lower carrier selective transport layer and lower passivation layer are formed by a P-type diffusion doping layer.
基于图11所示的双面POLO结构,图13示出了本发明实施例中的双面POLO的半成品硅电池结构示意图,其涉及poly-Si(n+)、SiOx、SiOx、poly-Si(p+)等,正反两面都有载流子选择传输层,在不制备中间的隧穿连接层即中间连接层的情况下,可以利用ALD工艺制备了氧化钛层TiO2,由于ALD的特性,可以同时在硅片的正反面都做上膜层,从而实现把硅的制备流程与叠层的制备流程结合在一起,简化了叠层电池工艺制备流程。Based on the double-sided POLO structure shown in Figure 11, Figure 13 shows a schematic diagram of the semi-finished silicon cell structure of the double-sided POLO in the embodiment of the present invention, which involves poly-Si(n+), SiOx, SiOx, poly-Si(p+ ), etc., there are carrier selective transport layers on the front and back sides, and the titanium oxide layer TiO2 can be prepared by the ALD process without preparing the intermediate tunnel connection layer, that is, the intermediate connection layer. Due to the characteristics of ALD, it can be simultaneously Film layers are formed on both the front and back sides of the silicon wafer, so as to realize the combination of the silicon preparation process and the lamination process, and simplify the lamination cell process preparation process.
具体的,图14示出了本发明实施例中的覆膜后的双面POLO的半成品硅电池结构示意图,其涉及TiOx、poly-Si(n+)、SiOx、SiOx、poly-Si(p+)、TiOx等等,这里最下面的氧化钛层就可以当作硅底电池的底部钝化层,最上面一层的氧化钛就可以作为顶部钙钛矿的部分第二载流子传输层(载流子传输层可以为一层或多层),这里的poly-Si/SiOx与TiOx形成了隧穿接触,通过这种方式能完美规避了TCO隧穿层的使用,简化了整个层叠电池结构,提升了成品加工效率。Specifically, FIG. 14 shows a schematic diagram of the semi-finished silicon cell structure of the coated double-sided POLO in the embodiment of the present invention, which involves TiOx, poly-Si(n+), SiOx, SiOx, poly-Si(p+), TiOx, etc., here the bottom titanium oxide layer can be used as the bottom passivation layer of the silicon bottom cell, and the top layer of titanium oxide can be used as part of the second carrier transport layer (carrier transport layer) of the top perovskite The sub-transport layer can be one or more layers), where the poly-Si/SiOx and TiOx form a tunneling contact, which can perfectly avoid the use of the TCO tunneling layer, simplify the entire stacked cell structure, and improve The finished product processing efficiency.
下面介绍在底部子电池上制备顶部子电池并完成叠层电池制备的方法,其具体涉及S109至S113。The method for preparing the top sub-cell on the bottom sub-cell and completing the preparation of the laminated battery is described below, which specifically involves S109 to S113.
S109、在第二载流子传输层上制备钙钛矿吸收层;S109, preparing a perovskite absorption layer on the second carrier transport layer;
具体实施过程中,采用但不限于旋涂、蒸镀、溅射、喷涂、热喷雾分解、刮涂、印刷、喷墨打印或狭缝涂方法在第二载流子传输层上制备钙钛矿吸收层。In the specific implementation process, the perovskite is prepared on the second carrier transport layer by using but not limited to spin coating, evaporation, sputtering, spray coating, thermal spray decomposition, scrape coating, printing, inkjet printing or slit coating absorbent layer.
S110、在钙钛矿吸收层上制备第一载流子传输层;S110, preparing a first carrier transport layer on the perovskite absorption layer;
具体实施过程中,采用但不限于旋涂、蒸镀、溅射、喷涂、热喷雾分解、刮涂、印刷、喷墨打印或狭缝涂方法在钙钛矿吸收层上制备第一载流子传输层。In the specific implementation process, the first carrier is prepared on the perovskite absorbing layer by using but not limited to spin coating, evaporation, sputtering, spray coating, thermal spray decomposition, scraping coating, printing, inkjet printing or slit coating method transport layer.
S111、在第一载流子传输层上沉积缓冲层;S111, depositing a buffer layer on the first carrier transport layer;
具体实施过程中,采用但不限于溅射、原子沉积(ALD)或蒸镀方法在第一载流子传输层上沉积缓冲层。During the specific implementation process, the buffer layer is deposited on the first carrier transport layer by using but not limited to sputtering, atomic deposition (ALD) or evaporation method.
S112、在缓冲层上制备窗口层;S112. Prepare a window layer on the buffer layer;
具体实施过程中,采用但不限于溅射、原子沉积(ALD)或蒸镀方法制备在缓冲层上制备窗口层。During the specific implementation process, the window layer is prepared on the buffer layer by using but not limited to sputtering, atomic deposition (ALD) or evaporation method.
S113、在窗口层上制备金属栅线顶电极。S113 , preparing a top electrode of a metal grid line on the window layer.
具体实施过程中,采用但不限于蒸镀、印刷或者电镀方法在窗口层上制备金属栅线顶电极,从而完成叠层太阳能电池制备。In the specific implementation process, the metal grid wire top electrode is prepared on the window layer by using but not limited to evaporation, printing or electroplating methods, so as to complete the preparation of the laminated solar cell.
结合图11至图14中的说明,双面POLO的硅电池结构示意图如图15所示。Combining the descriptions in Figures 11 to 14, the schematic diagram of the silicon cell structure of the double-sided POLO is shown in Figure 15.
本发明实施例中的钙钛矿/晶硅叠层太阳能电池及其制备方法,通过减少双面氧化铟锡作为透明导电层底部子电池中的应用,可以减少铟材料的使用,从而可以促进钙钛矿/晶硅叠层太阳能电池的使用,使得商业化效率提高较高提升,使得硅晶底电池的吸收能力得到增强。这种结构的晶硅底电池都是采用常规材料制备而成,可以减少贵金属铟材料的使用,降低了晶硅底电池的成本,也普及了晶硅底电池在钙钛矿/晶硅叠层太阳能电池中的应用,也使得形成叠层结构的后续工艺步骤具有更强的兼容性。这里通过改良硅电池制备方法,减少了叠层电池工艺制备流程,从而满足钙钛矿/晶硅叠层太阳能电池的产业化应用需求。The perovskite/crystalline silicon stacked solar cell and its preparation method in the embodiment of the present invention can reduce the use of indium material by reducing the application of double-sided indium tin oxide as a transparent conductive layer bottom subcell, thereby promoting calcium The use of titanium ore/crystalline silicon stacked solar cells has greatly improved the commercial efficiency and enhanced the absorption capacity of silicon bottom cells. The crystalline silicon bottom cells of this structure are all made of conventional materials, which can reduce the use of precious metal indium materials, reduce the cost of crystalline silicon bottom cells, and also popularize the perovskite/crystalline silicon stacking of crystalline silicon bottom cells. The application in solar cells also makes the subsequent process steps of forming the stacked structure more compatible. Here, by improving the preparation method of silicon cells, the preparation process of stacked cells is reduced, so as to meet the industrial application requirements of perovskite/crystalline silicon stacked solar cells.
以上对本发明实施例进行了详细介绍,本文中采用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。The embodiments of the present invention have been described in detail above, and specific examples have been used to illustrate the principles and implementation methods of the present invention. The descriptions of the above embodiments are only used to help understand the method of the present invention and its core idea; at the same time, for Those skilled in the art will have changes in the specific implementation and scope of application according to the idea of the present invention. In summary, the contents of this specification should not be construed as limiting the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210942321.8A CN115425094A (en) | 2022-08-05 | 2022-08-05 | Perovskite/crystalline silicon tandem solar cell and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210942321.8A CN115425094A (en) | 2022-08-05 | 2022-08-05 | Perovskite/crystalline silicon tandem solar cell and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115425094A true CN115425094A (en) | 2022-12-02 |
Family
ID=84195544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210942321.8A Pending CN115425094A (en) | 2022-08-05 | 2022-08-05 | Perovskite/crystalline silicon tandem solar cell and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115425094A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116669443A (en) * | 2023-07-21 | 2023-08-29 | 深圳黑晶光电技术有限公司 | Laminated solar cell of patterned electron transport layer and preparation method thereof |
CN117253927A (en) * | 2023-11-14 | 2023-12-19 | 无锡华晟光伏科技有限公司 | Solar laminated cell and preparation method thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019048839A1 (en) * | 2017-09-07 | 2019-03-14 | Oxford Photovoltaics Limited | Multi-junction photovoltaic device |
CN110246923A (en) * | 2019-06-29 | 2019-09-17 | 深圳黑晶光电科技有限公司 | A kind of tandem type perovskite/homojunction silicon lamination solar cell and preparation method thereof |
CN111081878A (en) * | 2018-10-19 | 2020-04-28 | 君泰创新(北京)科技有限公司 | Perovskite/silicon-based heterojunction laminated solar cell and preparation method thereof |
CN111710746A (en) * | 2020-06-18 | 2020-09-25 | 浙江浙能技术研究院有限公司 | A perovskite/crystalline silicon tandem solar cell structure |
CN113035968A (en) * | 2019-12-25 | 2021-06-25 | 杭州众能光电科技有限公司 | Perovskite/crystalline silicon tandem solar cell based on double-tunneling compound |
CN113471322A (en) * | 2020-03-30 | 2021-10-01 | 隆基绿能科技股份有限公司 | Laminated photovoltaic device and production method |
CN214505521U (en) * | 2021-04-25 | 2021-10-26 | 天合光能股份有限公司 | Laminated solar cell |
CN113629162A (en) * | 2021-08-31 | 2021-11-09 | 晶澳(扬州)太阳能科技有限公司 | Silicon-based solar cell unit and manufacturing method thereof |
CN114530524A (en) * | 2022-01-25 | 2022-05-24 | 深圳黑晶光电技术有限公司 | Solar laminated cell and preparation method thereof |
CN114628438A (en) * | 2022-02-10 | 2022-06-14 | 天合光能股份有限公司 | A tandem solar cell and its application |
-
2022
- 2022-08-05 CN CN202210942321.8A patent/CN115425094A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019048839A1 (en) * | 2017-09-07 | 2019-03-14 | Oxford Photovoltaics Limited | Multi-junction photovoltaic device |
CN111081878A (en) * | 2018-10-19 | 2020-04-28 | 君泰创新(北京)科技有限公司 | Perovskite/silicon-based heterojunction laminated solar cell and preparation method thereof |
CN110246923A (en) * | 2019-06-29 | 2019-09-17 | 深圳黑晶光电科技有限公司 | A kind of tandem type perovskite/homojunction silicon lamination solar cell and preparation method thereof |
CN113035968A (en) * | 2019-12-25 | 2021-06-25 | 杭州众能光电科技有限公司 | Perovskite/crystalline silicon tandem solar cell based on double-tunneling compound |
CN113471322A (en) * | 2020-03-30 | 2021-10-01 | 隆基绿能科技股份有限公司 | Laminated photovoltaic device and production method |
CN111710746A (en) * | 2020-06-18 | 2020-09-25 | 浙江浙能技术研究院有限公司 | A perovskite/crystalline silicon tandem solar cell structure |
CN214505521U (en) * | 2021-04-25 | 2021-10-26 | 天合光能股份有限公司 | Laminated solar cell |
CN113629162A (en) * | 2021-08-31 | 2021-11-09 | 晶澳(扬州)太阳能科技有限公司 | Silicon-based solar cell unit and manufacturing method thereof |
CN114530524A (en) * | 2022-01-25 | 2022-05-24 | 深圳黑晶光电技术有限公司 | Solar laminated cell and preparation method thereof |
CN114628438A (en) * | 2022-02-10 | 2022-06-14 | 天合光能股份有限公司 | A tandem solar cell and its application |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116669443A (en) * | 2023-07-21 | 2023-08-29 | 深圳黑晶光电技术有限公司 | Laminated solar cell of patterned electron transport layer and preparation method thereof |
CN116669443B (en) * | 2023-07-21 | 2023-12-29 | 深圳黑晶光电技术有限公司 | Laminated solar cell of patterned electron transport layer and preparation method thereof |
CN117253927A (en) * | 2023-11-14 | 2023-12-19 | 无锡华晟光伏科技有限公司 | Solar laminated cell and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112204764B (en) | MXene-improved hybrid photoelectric converter | |
CN110246923B (en) | Tandem perovskite/homogeneous junction silicon laminated solar cell and preparation method thereof | |
CN111081878A (en) | Perovskite/silicon-based heterojunction laminated solar cell and preparation method thereof | |
KR102531881B1 (en) | Tandem solar cell | |
CN111430494A (en) | Series perovskite crystalline silicon solar cell and preparation method thereof | |
WO2022073518A1 (en) | Laminated battery and method for fabrication thereof | |
WO2023151604A1 (en) | Laminated solar cell and application thereof | |
WO2019210263A1 (en) | Multi-junction photovoltaic cell having wide bandgap oxide conductor between subcells and method of making same | |
CN115425094A (en) | Perovskite/crystalline silicon tandem solar cell and preparation method thereof | |
WO2024140473A1 (en) | Solar cell and preparation method therefor | |
CN114530524A (en) | Solar laminated cell and preparation method thereof | |
CN117059690A (en) | Solar cell and photovoltaic module | |
CN110767777A (en) | Preparation method of low-cost high-efficiency laminated solar cell | |
CN113471322B (en) | Laminated photovoltaic device and production method | |
CN113690340B (en) | Perovskite crystal silicon laminated solar cell manufacturing method and cell structure | |
JP2018121053A (en) | Solar cell and manufacturing method thereof | |
CN211828772U (en) | Laminated solar cell | |
CN112086534B (en) | Laminated battery and method of making the same | |
CN211980627U (en) | Tandem type perovskite crystalline silicon solar cell | |
WO2025025494A1 (en) | Tandem solar cell and manufacturing method therefor | |
CN115425110B (en) | Perovskite crystalline silicon stacked solar cell crystalline silicon bottom cell manufacturing method and cell | |
CN214753765U (en) | Perovskite tandem solar cell | |
CN115274885A (en) | Solar cell, preparation method thereof and photovoltaic module | |
WO2023143207A1 (en) | Solar cell and preparation method therefor | |
CN114447127A (en) | A kind of solar cell and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |