CN115412413A - A radar clutter suppression method for external radiation sources based on 5G OFDM signals - Google Patents
A radar clutter suppression method for external radiation sources based on 5G OFDM signals Download PDFInfo
- Publication number
- CN115412413A CN115412413A CN202210833711.1A CN202210833711A CN115412413A CN 115412413 A CN115412413 A CN 115412413A CN 202210833711 A CN202210833711 A CN 202210833711A CN 115412413 A CN115412413 A CN 115412413A
- Authority
- CN
- China
- Prior art keywords
- clutter
- signal
- ofdm
- external radiation
- subspace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000001629 suppression Effects 0.000 title claims abstract description 24
- 238000012544 monitoring process Methods 0.000 claims abstract description 40
- 238000001514 detection method Methods 0.000 claims abstract description 8
- 238000012545 processing Methods 0.000 claims abstract description 7
- 239000011159 matrix material Substances 0.000 claims description 15
- 238000001914 filtration Methods 0.000 claims description 7
- 125000004122 cyclic group Chemical group 0.000 claims description 6
- 230000010363 phase shift Effects 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000002592 echocardiography Methods 0.000 abstract 1
- 238000004891 communication Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2626—Arrangements specific to the transmitter only
- H04L27/2627—Modulators
- H04L27/2628—Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Discrete Mathematics (AREA)
- Mathematical Physics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Power Engineering (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明涉及外辐射源雷达探测技术领域,具体是一种基于5GOFDM信号的外辐射源雷达杂波抑制方法,包括以下步骤:获取5G信号直达波作为参考信号和目标回波作为监测信号;利用5G信号OFDM特性,将参考信号和监测信号从时域转换到子载波域;在子载波域中抑制零多普勒频移的多径杂波;将每个载波的杂波子空间扩大为两个参考载波的副本;抑制带多普勒频移的多径杂波;作距离‑多普勒处理,获取目标信息。该方法利用ECA‑C算法抑制零多普勒频移的杂波分量,再引入了在子载波域中将每个载波的杂波子空间扩展为两个参考载波的副本,抑制带多普勒频移的杂波分量,该方法能够对5G OFDM信号的外辐射源雷达杂波进行抑制,提高信噪比,实现目标信息有效检测。
The present invention relates to the field of external radiation source radar detection technology, in particular to a method for suppressing external radiation source radar clutter based on 5GOFDM signals, comprising the following steps: obtaining 5G signal direct waves as reference signals and target echoes as monitoring signals; using 5G Signal OFDM characteristics, convert reference signal and monitoring signal from time domain to subcarrier domain; suppress multipath clutter with zero Doppler shift in subcarrier domain; expand the clutter subspace of each carrier to two reference Carrier copy; suppression of multipath clutter with Doppler shift; range-Doppler processing to obtain target information. This method uses the ECA-C algorithm to suppress the clutter component with zero Doppler frequency shift, and then introduces the expansion of the clutter subspace of each carrier into two copies of the reference carrier in the subcarrier domain to suppress the clutter components with Doppler frequency shift. This method can suppress the radar clutter of the external radiation source of the 5G OFDM signal, improve the signal-to-noise ratio, and realize the effective detection of target information.
Description
技术领域technical field
本发明涉及外辐射源雷达探测技术领域,具体是一种基于5GOFDM信号的外辐射源雷达杂波抑制方法。The invention relates to the technical field of external radiation source radar detection, in particular to a method for suppressing external radiation source radar clutter based on 5GOFDM signals.
背景技术Background technique
雷达是利用电磁波探测目标的电子设备。雷达发射电磁波信号对目标进行照射并接收其反射回波信号,由此获得目标至电磁波发射点的距离、方位、高度等信息。外辐射雷达属于雷达设备的一种,但是与传统雷达的区别是其本身并不需要发射电磁波,而是利用第三方非合作无线电发射设备发射的电磁波信号对目标探测。第三方非合作无线电发射设备一般为民用广播、电视发射台、导航卫星、通信基站等等。Radar is an electronic device that uses electromagnetic waves to detect objects. The radar emits electromagnetic wave signals to irradiate the target and receives its reflected echo signal, thereby obtaining the distance, azimuth, height and other information from the target to the electromagnetic wave emission point. External radiation radar is a kind of radar equipment, but the difference from traditional radar is that it does not need to emit electromagnetic waves, but uses electromagnetic wave signals emitted by third-party non-cooperative radio transmitting equipment to detect targets. Third-party non-cooperative radio transmission equipment is generally civil broadcasting, TV transmitting stations, navigation satellites, communication base stations, etc.
外辐射源雷达设有参考天线和监测天线作为接收信号的设备,参考天线截获非合作辐射源发射的直达波信号为参考信号;非合作辐射源发射的信号照射到目标,然后目标反射回波信号被监测天线所截获为监测信号。由于外部环境错综复杂,获取的目标反射回波信号往往会包含干扰目标反射的多径杂波信号,多径杂波信号含有运动干扰目标和静止干扰目标的回波,对于运动的干扰目标,多径杂波信号还带有由于目标运动导致的多普勒频移。多径杂波信号往往强于目标回波信号,会对目标回波信号遮掩,从而影响对目标的检测性能。The external radiation source radar is equipped with a reference antenna and a monitoring antenna as the equipment for receiving signals. The reference antenna intercepts the direct wave signal emitted by the non-cooperative radiation source as the reference signal; the signal emitted by the non-cooperative radiation source irradiates the target, and then the target reflects the echo signal The intercepted by the monitoring antenna is the monitoring signal. Due to the complexity of the external environment, the acquired target reflection echo signal often contains the multipath clutter signal reflected by the interference target. The multipath clutter signal contains the echo of the moving interference target and the static interference target. Clutter signals also carry Doppler shifts due to target motion. The multipath clutter signal is often stronger than the target echo signal, which will cover the target echo signal, thus affecting the detection performance of the target.
常规外辐射源雷达杂波抑制方法是采用时域杂波抑制算法,主要包括最小均方误差(Least Man Square,LMS)算法、递归最小二乘(Recursive least squares,RLS)算法、扩展相消(Extensive Cancellation Algorithm,ECA)算法;这些算法虽然能够抑制杂波干扰,但是存在收敛速度慢、滤波阶数高、计算量大等问题。随着越来越多的民用通信信号采用OFDM调制,基于子载波域的多径杂波抑制方法受到了研究者的关注,子载波域多径杂波抑制算法主要包括子载波域扩展相消(Extensive Cancellation Algorithm onsubCarrier,ECA-C)算法,ECA-C算法是ECA算法在子载波域中的应用,ECA-C算法利用了同一子载波上多径杂波之间的时间相关性,将监测信号投影到正交杂波子空间中滤除零多普勒频移的杂波分量。基于子载波域的杂波抑制方法在减少运算复杂度方面具有优势,但在滤除带有多普勒频移的杂波干扰没有优势。Conventional external radiation source radar clutter suppression methods use time-domain clutter suppression algorithms, mainly including least mean square error (Least Man Square, LMS) algorithm, recursive least squares (Recursive least squares, RLS) algorithm, extended cancellation ( Extensive Cancellation Algorithm (ECA) algorithms; although these algorithms can suppress clutter interference, they have problems such as slow convergence speed, high filtering order, and large amount of calculation. As more and more civilian communication signals adopt OFDM modulation, the multipath clutter suppression method based on the subcarrier domain has attracted the attention of researchers. The subcarrier domain multipath clutter suppression algorithm mainly includes subcarrier domain expansion and cancellation ( Extensive Cancellation Algorithm onsubCarrier, ECA-C) algorithm, ECA-C algorithm is the application of ECA algorithm in the subcarrier domain, ECA-C algorithm uses the time correlation between multipath clutter on the same subcarrier, the monitoring signal Projected into the orthogonal clutter subspace to filter out clutter components with zero Doppler shift. The clutter suppression method based on the subcarrier domain has advantages in reducing computational complexity, but has no advantage in filtering clutter interference with Doppler frequency shift.
发明内容Contents of the invention
本发明的目的在于提供一种基于5G OFDM信号的外辐射源雷达杂波抑制方法,以解决上述背景技术中提出的问题。The purpose of the present invention is to provide a method for suppressing radar clutter of external radiation sources based on 5G OFDM signals, so as to solve the problems raised in the above-mentioned background technology.
本发明的技术方案是:一种基于5G OFDM信号的外辐射源雷达杂波抑制方法,包括以下步骤:The technical solution of the present invention is: a method for suppressing radar clutter of external radiation sources based on 5G OFDM signals, comprising the following steps:
S1、获取5G OFDM外辐射源雷达参考天线接收的5G OFDM参考信号Sref(t)和监测天线接收的5G OFDM监测信号Ssurv(t);S1. Obtain the 5G OFDM reference signal S ref (t) received by the 5G OFDM external radiation source radar reference antenna and the 5G OFDM monitoring signal S surv (t) received by the monitoring antenna;
S2、将获取的参考信号Sref(t)和监测信号Ssurv(t)划分成一系列OFDM符号,在去除循环前缀(CP)之后对有用数据部分进行离散傅里叶变换(DFT)得到子载波域的参考信号Sref(n)和监测信号Ssurv(n);S2. Divide the obtained reference signal S ref (t) and monitoring signal S surv (t) into a series of OFDM symbols, and perform discrete Fourier transform (DFT) on the useful data part after removing the cyclic prefix (CP) to obtain subcarriers Domain reference signal S ref (n) and monitoring signal S surv (n);
S3、将子载波域中的监测信号投影到正交杂波子空间中,滤除零多普勒频移的多径杂波分量;S3. Project the monitoring signal in the subcarrier domain to the orthogonal clutter subspace, and filter out the multipath clutter components with zero Doppler frequency shift;
S4、在子载波域中将每个载波的杂波子空间扩展,每个载波的杂波子空间为两个复制的参考信号的子载波;S4. Expand the clutter subspace of each carrier in the subcarrier domain, where the clutter subspace of each carrier is the subcarriers of the two copied reference signals;
S5、将滤除零多普勒频移多径杂波的监测信号投影到扩展后的正交杂波子空间中,滤除去带多普勒频移的多径杂波分量;S5. Projecting the monitoring signal of the filtered multipath clutter with zero Doppler frequency shift into the expanded orthogonal clutter subspace, and filtering out the multipath clutter components with Doppler frequency shift;
S6、对杂波抑制后的监测信号与参考信号作距离-多普勒处理,提高目标检测的信噪比,实现目标检测。S6. Perform range-Doppler processing on the monitoring signal after the clutter suppression and the reference signal, improve the signal-to-noise ratio of the target detection, and realize the target detection.
优选的,所述S4中,扩展后的第k个子载波构成杂波子空间表示为:Preferably, in said S4, the extended kth subcarrier constitutes a clutter subspace expressed as:
C′k=[ΛHCkCkΛCk];C' k = [Λ H C k C k Λ C k ];
式中,上标H表示共轭转置,Λ是相移对角矩阵,表示为:In the formula, the superscript H represents the conjugate transpose, and Λ is the phase-shifted diagonal matrix, which is expressed as:
式中,fdm为多普勒频率,Ts为OFDM符号持续时间,L为并行处理的OFDM符号数量,从而构造一个新的杂波子空间表示为:where f dm is the Doppler frequency, T s is the OFDM symbol duration, and L is the number of OFDM symbols processed in parallel, thus constructing a new clutter subspace expressed as:
式中,上标H表示共轭转置,上标“-1”表示逆矩阵。In the formula, the superscript H represents the conjugate transpose, and the superscript "-1" represents the inverse matrix.
优选的,所述S5中,将监测信号上每一个子载波沿着由T′k所构成的杂波子空间进行正交投影,从而得到滤除带多普勒频移的多径杂波分量监测信号为:Preferably, in said S5, each subcarrier on the monitoring signal is orthogonally projected along the clutter subspace formed by T'k , so as to obtain the multipath clutter component monitoring with Doppler frequency shift filtering The signal is:
Y′k=Yk(I-T′k);Y′ k =Y k (IT′ k );
其中,称为监测信号垂直于T′k所构成杂波子空间的正交投影矩阵;in, is called the orthogonal projection matrix of the clutter subspace formed by the monitoring signal perpendicular to T′ k ;
式中,I为单位矩阵,Yk为抑制零多普勒频移的多径杂波的监测信号。In the formula, I is the identity matrix, and Y k is the monitoring signal for suppressing multipath clutter with zero Doppler shift.
优选的,所述S6中,利用参考信号Sref(n)与杂波抑制后的目标回波信号Y′k进行距离-多普勒二维相关处理:Preferably, in said S6, range-Doppler two-dimensional correlation processing is performed using the reference signal S ref (n) and the target echo signal Y′ k after clutter suppression:
式中,Sref(n)为参考信号,上标*表示复共轭,Y′k表示杂波抑制后的目标回波信号,N表示总接收数据长度,n=1,2,3...N,τ表示时延,f表示多普勒频移。In the formula, S ref (n) is the reference signal, the superscript * means the complex conjugate, Y′ k means the target echo signal after clutter suppression, N means the total received data length, n=1,2,3.. .N, τ represent time delay, and f represent Doppler frequency shift.
本发明通过改进,在此提供一种基于5G OFDM信号的外辐射源雷达杂波抑制方法,与现有技术相比,具有如下改进及优点:Through improvement, the present invention provides a method for suppressing radar clutter of external radiation sources based on 5G OFDM signals. Compared with the prior art, it has the following improvements and advantages:
本发明利用5G信号的CP-OFDM特性,综合考虑提出基于5G OFDM信号的外辐射源雷达的杂波抑制方法,该方法与常规子载波域多径杂波抑制算法处理不同,利用ECA-C算法抑制零多普勒频移的杂波分量,再引入了在子载波域中将每个载波的杂波子空间扩展为两个参考载波的副本,对带有多普勒频移的杂波分量进行抑制;此方法能够有效的抑制多径杂波干扰,相对于常规外辐射源雷达的杂波抑制方法有着独特优势。The present invention utilizes the CP-OFDM characteristics of 5G signals, comprehensively considers and proposes a clutter suppression method for external radiation source radar based on 5G OFDM signals. This method is different from the conventional multipath clutter suppression algorithm in the subcarrier domain. Suppress the clutter component with zero Doppler frequency shift, and then introduce the expansion of the clutter subspace of each carrier into two copies of the reference carrier in the subcarrier domain, and carry out the clutter component with Doppler frequency shift Suppression: This method can effectively suppress multipath clutter interference, and has unique advantages compared with the clutter suppression method of conventional external radiation source radar.
附图说明Description of drawings
下面结合附图和实施例对本发明作进一步解释:Below in conjunction with accompanying drawing and embodiment the present invention will be further explained:
图1为本发明的实施流程框图;Fig. 1 is the implementation flow block diagram of the present invention;
图2为本发明的5G OFDM信号的外辐射源雷达结构示意图;Fig. 2 is a schematic structural diagram of the external radiation source radar of the 5G OFDM signal of the present invention;
图3为本发明的OFDM信号结构示意图;Fig. 3 is a schematic diagram of OFDM signal structure of the present invention;
图4为本发明的时域转换到子载波域流程图。Fig. 4 is a flow chart of the conversion from the time domain to the subcarrier domain in the present invention.
具体实施方式Detailed ways
下面对本发明进行详细说明,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The present invention will be described in detail below, and the technical solutions in the embodiments of the present invention will be clearly and completely described. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
随着第五代移动通信技术(5G)的推广和普及,5G民用通信信号会成为城市中最广泛的电磁资源,在复杂城市环境下的5G信号具有发射基站数量多、基站布设密集等优势,并且5G信号具有带宽宽,循环前缀正交频分复用(Cyclic Prefix Orthogonal FrequencyDivision Multiplexing,CP-OFDM)等特性,CP是将OFDM符号尾部的一部分复制放到前面,以便消除符号干扰和信道间干扰;OFDM是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输,如图3所示,其中,CP:循环前缀(将OFDM符号尾部一部分复制到头部构成);符号*:有效数据。因此采用5G信号作为外辐射源获取目标距离、速度、角度等信息具有优势;本发明通过改进在此提供一种基于5GOFDM信号的外辐射源雷达杂波抑制方法,本发明的技术方案是:With the promotion and popularization of the fifth-generation mobile communication technology (5G), 5G civilian communication signals will become the most extensive electromagnetic resources in cities. 5G signals in complex urban environments have the advantages of a large number of transmitting base stations and dense base station deployment. And the 5G signal has the characteristics of wide bandwidth, cyclic prefix orthogonal frequency division multiplexing (Cyclic Prefix Orthogonal Frequency Division Multiplexing, CP-OFDM), CP is to copy a part of the OFDM symbol tail to the front, so as to eliminate symbol interference and inter-channel interference ; OFDM divides the channel into several orthogonal sub-channels, converts high-speed data signals into parallel low-speed sub-data streams, and modulates them to transmit on each sub-channel, as shown in Figure 3, wherein, CP: cyclic prefix (OFDM Part of the tail of the symbol is copied to the head); symbol *: valid data. Therefore, it is advantageous to use the 5G signal as the external radiation source to obtain information such as target distance, speed, and angle; the present invention provides a method for suppressing radar clutter based on the external radiation source of the 5GOFDM signal through improvement, and the technical solution of the present invention is:
如图1所示,一种基于5G OFDM信号的外辐射源雷达杂波抑制方法,包括以下步骤:As shown in Figure 1, a radar clutter suppression method for external radiation sources based on 5G OFDM signals includes the following steps:
S1、获取5G OFDM外辐射源雷达(如图2所示)参考天线接收的5G OFDM参考信号Sref(t)和监测天线接收的5G OFDM监测信号Ssurv(t);S1, obtain the 5G OFDM reference signal S ref (t) received by the 5G OFDM external radiation source radar (as shown in Figure 2) reference antenna and the 5G OFDM monitoring signal S surv (t) received by the monitoring antenna;
S2、如图4所示,将获取的参考信号Sref(t)和监测信号Ssurv(t)划分成一系列OFDM符号,在去除循环前缀(CP)之后对有用数据部分进行离散傅里叶变换(DFT)得到子载波域的参考信号Sref(n)和监测信号Ssurv(n);S2, as shown in Figure 4, the obtained reference signal S ref (t) and monitoring signal S surv (t) are divided into a series of OFDM symbols, after removing the cyclic prefix (CP), the useful data part is subjected to discrete Fourier transform (DFT) to obtain the reference signal S ref (n) and the monitoring signal S surv (n) of the subcarrier domain;
具体的,监测信号Ssurv(n)可以表示为:Specifically, the monitoring signal S surv (n) can be expressed as:
式中,Yl,k代表监测信号中第l个OFDM符号中第k个子载波上的数据,L代表OFDM符号总数,K代表每个OFDM符号中子载波总数;In the formula, Y1 , k represent the data on the kth subcarrier in the lth OFDM symbol in the monitoring signal, L represents the total number of OFDM symbols, and K represents the total number of subcarriers in each OFDM symbol;
将参考信号Sref(n)中L个符号上的第k个载波表示为:Express the k-th carrier on the L symbols in the reference signal S ref (n) as:
Ck=[Ck,1…Ck,l…Ck,L];C k = [C k,1 ... C k, l ... C k, L ];
式中,Ck,l为第l个符号中第k个子载波的数据;In the formula, C k,l is the data of the kth subcarrier in the lth symbol;
S3、将子载波域中的监测信号投影到正交杂波子空间中,滤除零多普勒频移的多径杂波分量;S3. Project the monitoring signal in the subcarrier domain to the orthogonal clutter subspace, and filter out the multipath clutter components with zero Doppler frequency shift;
具体的,将监测信号上每一个子载波沿着由Ck所构成的杂波子空间进行正交投影,第k个载波的杂波子空间投影矩阵为:Specifically, each subcarrier on the monitoring signal is orthogonally projected along the clutter subspace formed by C k , and the clutter subspace projection matrix of the kth carrier is:
式中,I为单位矩阵,上标H表示共轭转置,上标“-1”表示逆矩阵,从而得到抑制零多普勒频移的多径杂波分量的监测信号为:In the formula, I is the identity matrix, the superscript H represents the conjugate transpose, and the superscript "-1" represents the inverse matrix, so that the monitoring signal of the multipath clutter component suppressing the zero-Doppler frequency shift can be obtained as follows:
Yk=TkY;Y k = T k Y;
式中,Y为子载波域中的监测信号;In the formula, Y is the monitoring signal in the subcarrier domain;
S4、在子载波域中将每个载波的杂波子空间扩展,每个载波的杂波子空间为两个复制的参考信号的子载波,扩展后的第k个子载波构成杂波子空间表示:S4. Expand the clutter subspace of each carrier in the subcarrier domain. The clutter subspace of each carrier is the subcarriers of the two replicated reference signals, and the extended kth subcarrier constitutes the clutter subspace representation:
C′k=[ΛHCkCkΛCk];C' k = [Λ H C k C k Λ C k ];
式中,上标H表示共轭转置,Λ是相移对角矩阵,表示为:In the formula, the superscript H represents the conjugate transpose, and Λ is the phase-shifted diagonal matrix, which is expressed as:
式中,fdm为多普勒频率,Ts为OFDM符号持续时间,L为并行处理的OFDM符号数量;从而构造一个新的杂波子空间表示为:where f dm is the Doppler frequency, T s is the OFDM symbol duration, and L is the number of OFDM symbols processed in parallel; thus constructing a new clutter subspace is expressed as:
式中,上标H表示共轭转置,上标“-1”表示逆矩阵;In the formula, the superscript H represents the conjugate transpose, and the superscript "-1" represents the inverse matrix;
S5、将滤除零多普勒频移多径杂波的监测信号投影到扩展后的正交杂波子空间中,滤除去带多普勒频移的多径杂波分量;S5. Projecting the monitoring signal of the filtered multipath clutter with zero Doppler frequency shift into the expanded orthogonal clutter subspace, and filtering out the multipath clutter components with Doppler frequency shift;
具体的,将监测信号上每一个子载波沿着由Tk′所构成的杂波子空间进行正交投影,从而得到滤除带多普勒频移的多径杂波分量监测信号为:Specifically, each subcarrier on the monitoring signal is orthogonally projected along the clutter subspace formed by T k ′, so that the filtered multipath clutter component monitoring signal with Doppler frequency shift is obtained as:
Y′k=Yk(I-T′k);Y′ k =Y k (IT′ k );
其中,称为监测信号垂直于Tk′所构成杂波子空间的正交投影矩阵;in, is called the orthogonal projection matrix of the clutter subspace formed by the monitoring signal perpendicular to T k ′;
式中,I为单位矩阵,Yk为抑制零多普勒频移的多径杂波的监测信号;In the formula, I is the identity matrix, and Y k is the monitoring signal for suppressing the multipath clutter of zero Doppler frequency shift;
S6、经过杂波抑制后,目标回波信号仍然较弱,不能够直接进行目标的检测,所以采用距离-多普勒二维相关处理,来提高目标回波的信号强度,获取目标信息,也就是利用参考信号Sref(n)与杂波抑制后的目标回波信号Yk′进行距离-多普勒二维相关处理:S6. After clutter suppression, the target echo signal is still weak, and the target cannot be detected directly. Therefore, range-Doppler two-dimensional correlation processing is used to improve the signal strength of the target echo and obtain target information. It is to use the reference signal S ref (n) and the target echo signal Y k ′ after clutter suppression to perform range-Doppler two-dimensional correlation processing:
式中,Sref(n)为参考信号,上标*表示复共轭,Y′k表示杂波抑制后的目标回波信号,N为总接收数据长度,n=1,2,3...N,τ表示时延,f表示多普勒频移。In the formula, S ref (n) is the reference signal, the superscript * means the complex conjugate, Y′ k means the target echo signal after clutter suppression, N is the total received data length, n=1,2,3.. .N, τ represent time delay, and f represent Doppler frequency shift.
相较于现有技术,本发明利用5G信号的CP-OFDM特性,综合考虑提出基于5G OFDM信号的外辐射源雷达的杂波抑制方法,该方法与常规子载波域多径杂波抑制算法处理不同,利用ECA-C算法抑制零多普勒频移的杂波分量,再引入了在子载波域中将每个载波的杂波子空间扩展为两个参考载波的副本,对带有多普勒频移的杂波分量进行抑制;此方法能够有效的抑制多径杂波干扰,相对于常规外辐射源雷达的杂波抑制方法有着独特优势。Compared with the prior art, the present invention utilizes the CP-OFDM characteristics of 5G signals, comprehensively considers and proposes a clutter suppression method for external radiation source radar based on 5G OFDM signals. Different, the ECA-C algorithm is used to suppress the clutter component of zero Doppler frequency shift, and then the clutter subspace of each carrier is expanded into two copies of the reference carrier in the subcarrier domain, and the Doppler The frequency-shifted clutter component is suppressed; this method can effectively suppress multipath clutter interference, and has unique advantages over the clutter suppression method of conventional external radiation source radar.
上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description enables those skilled in the art to realize or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210833711.1A CN115412413B (en) | 2022-07-14 | 2022-07-14 | A 5G OFDM signal-based radar clutter suppression method for external radiation sources |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210833711.1A CN115412413B (en) | 2022-07-14 | 2022-07-14 | A 5G OFDM signal-based radar clutter suppression method for external radiation sources |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115412413A true CN115412413A (en) | 2022-11-29 |
CN115412413B CN115412413B (en) | 2023-07-25 |
Family
ID=84157605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210833711.1A Active CN115412413B (en) | 2022-07-14 | 2022-07-14 | A 5G OFDM signal-based radar clutter suppression method for external radiation sources |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115412413B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116184346A (en) * | 2022-12-27 | 2023-05-30 | 南京信息工程大学 | 5G downlink signal external radiation source radar coherent accumulation processing method |
CN116660856A (en) * | 2023-08-02 | 2023-08-29 | 南京信息工程大学 | A radar signal processing method for external radiation sources based on 5G time slot synchronization |
EP4421516A3 (en) * | 2023-02-24 | 2024-11-13 | Nokia Solutions and Networks Oy | Clutter removal |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6137439A (en) * | 1998-09-08 | 2000-10-24 | Lockheed Martin Corporation | Continuous wave doppler system with suppression of ground clutter |
CN1601298A (en) * | 2003-09-26 | 2005-03-30 | 清华大学 | A Modeled Clutter Doppler Parameter Estimation Method for Airborne Radar |
JP2012154887A (en) * | 2011-01-28 | 2012-08-16 | Furuno Electric Co Ltd | Clutter eliminator, radar device, clutter elimination method and clutter elimination program |
CN103926572A (en) * | 2014-03-28 | 2014-07-16 | 西安电子科技大学 | Clutter rejection method of self-adaption subspace for non-sidelooking airborne array radar |
CN106226745A (en) * | 2016-08-04 | 2016-12-14 | 武汉大学 | A kind of external illuminators-based radar clutter suppression method based on sub-band processing and device |
CN106872968A (en) * | 2017-03-14 | 2017-06-20 | 南昌大学 | A kind of external illuminators-based radar Weak target detecting method based on ofdm signal |
CN107367719A (en) * | 2017-08-14 | 2017-11-21 | 南昌大学 | A kind of clutter suppression method based on DRM signal external illuminators-based radars |
CN111965612A (en) * | 2020-07-08 | 2020-11-20 | 西安电子科技大学 | A clutter suppression method based on subspace projection |
CN112068083A (en) * | 2020-09-11 | 2020-12-11 | 中国航空工业集团公司雷华电子技术研究所 | Signal reconstruction method and device and radar |
-
2022
- 2022-07-14 CN CN202210833711.1A patent/CN115412413B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6137439A (en) * | 1998-09-08 | 2000-10-24 | Lockheed Martin Corporation | Continuous wave doppler system with suppression of ground clutter |
CN1601298A (en) * | 2003-09-26 | 2005-03-30 | 清华大学 | A Modeled Clutter Doppler Parameter Estimation Method for Airborne Radar |
JP2012154887A (en) * | 2011-01-28 | 2012-08-16 | Furuno Electric Co Ltd | Clutter eliminator, radar device, clutter elimination method and clutter elimination program |
CN103926572A (en) * | 2014-03-28 | 2014-07-16 | 西安电子科技大学 | Clutter rejection method of self-adaption subspace for non-sidelooking airborne array radar |
CN106226745A (en) * | 2016-08-04 | 2016-12-14 | 武汉大学 | A kind of external illuminators-based radar clutter suppression method based on sub-band processing and device |
CN106872968A (en) * | 2017-03-14 | 2017-06-20 | 南昌大学 | A kind of external illuminators-based radar Weak target detecting method based on ofdm signal |
CN107367719A (en) * | 2017-08-14 | 2017-11-21 | 南昌大学 | A kind of clutter suppression method based on DRM signal external illuminators-based radars |
CN111965612A (en) * | 2020-07-08 | 2020-11-20 | 西安电子科技大学 | A clutter suppression method based on subspace projection |
CN112068083A (en) * | 2020-09-11 | 2020-12-11 | 中国航空工业集团公司雷华电子技术研究所 | Signal reconstruction method and device and radar |
Non-Patent Citations (4)
Title |
---|
Z. WANG, W. XIE, K. DUAN, F. GAO AND Y. WANG: "Short-range clutter suppression based on subspace projection preprocessing for airborne radar", 《2016 CIE INTERNATIONAL CONFERENCE ON RADAR (RADAR)》 * |
李骁等: "基于时频域深度网络的海面小目标特征检测", 《雷达科学与技术》, vol. 20, no. 2 * |
赵志欣;朱斯航;徐超;陈良兵;: "DRM外辐射源雷达多普勒扩展杂波抑制算法研究", 现代雷达, no. 5 * |
赵志欣;朱斯航;洪升;周新华;王玉;: "基于数字调幅广播外辐射源雷达的弱目标检测", 兵工学报, no. 11 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116184346A (en) * | 2022-12-27 | 2023-05-30 | 南京信息工程大学 | 5G downlink signal external radiation source radar coherent accumulation processing method |
CN116184346B (en) * | 2022-12-27 | 2023-11-03 | 南京信息工程大学 | A coherent accumulation processing method for 5G downlink signal external radiation source radar |
EP4421516A3 (en) * | 2023-02-24 | 2024-11-13 | Nokia Solutions and Networks Oy | Clutter removal |
CN116660856A (en) * | 2023-08-02 | 2023-08-29 | 南京信息工程大学 | A radar signal processing method for external radiation sources based on 5G time slot synchronization |
CN116660856B (en) * | 2023-08-02 | 2023-11-21 | 南京信息工程大学 | 5G time slot synchronization-based external radiation source radar signal processing method |
Also Published As
Publication number | Publication date |
---|---|
CN115412413B (en) | 2023-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115412413B (en) | A 5G OFDM signal-based radar clutter suppression method for external radiation sources | |
Del Arroyo et al. | WiMAX OFDM for passive SAR ground imaging | |
CN103852759A (en) | Scanning radar super-resolution imaging method | |
CN105445707B (en) | A kind of clutter suppression method of airborne external illuminators-based radar | |
CN111650563B (en) | System and method for quickly estimating co-channel interference time delay and energy of external radiation source radar | |
CN106872968A (en) | A kind of external illuminators-based radar Weak target detecting method based on ofdm signal | |
Hakobyan | Orthogonal frequency division multiplexing multiple-input multiple-output automotive radar with novel signal processing algorithms | |
CN105676215A (en) | Moving target detection method of airborne external radiation source radar | |
CN113884989A (en) | External radiation source radar time-varying clutter suppression method based on OFDM signals | |
CN111580063B (en) | Radar Target Detection Method Based on Generalized Demodulation Frequency-Wedge Transform | |
CN113419219B (en) | Cascade Cancellation Method for Co-channel Interference of External Radiator Radar Based on Airspace Characteristic Cognition | |
CN113885002A (en) | Coherent accumulation method for external radiation source radar frequency agile signals based on scale transformation | |
CN113093141A (en) | Multi-carrier frequency LFMCW radar signal synthesis processing method | |
CN108919206B (en) | A Polarization Filtering Method for External Radiator Radar Based on Subcarrier Processing | |
CN116184346B (en) | A coherent accumulation processing method for 5G downlink signal external radiation source radar | |
CN112731304A (en) | Arc array radar clutter suppression method based on azimuth angle domain filtering | |
Liu et al. | Leveraging a variety of anchors in cellular network for ubiquitous sensing | |
del Arroyo et al. | Collecting and processing WiMAX ground returns for SAR imaging | |
Koizumi et al. | Experimental evaluations on learning-based inter-radar wideband interference mitigation method | |
CN116755044A (en) | A frequency domain sliding expansion cancellation method for external radiation source radar | |
CN114397649A (en) | A Target Matching Method Based on Subcarriers | |
Nundu | Direct path interference suppression and received signal processing for OFDM passive radar | |
Kong et al. | Sparse representation based range‐Doppler processing for integrated OFDM radar‐communication networks | |
CN104931964B (en) | A Radar Imaging Method Based on OFDM Waveforms | |
CN115291226B (en) | A method and device for dense target detection based on low intercept waveform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |