[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN115377306A - Organic light emitting diode, manufacturing method thereof and display device - Google Patents

Organic light emitting diode, manufacturing method thereof and display device Download PDF

Info

Publication number
CN115377306A
CN115377306A CN202111145421.XA CN202111145421A CN115377306A CN 115377306 A CN115377306 A CN 115377306A CN 202111145421 A CN202111145421 A CN 202111145421A CN 115377306 A CN115377306 A CN 115377306A
Authority
CN
China
Prior art keywords
layer
triplet
light
electron donor
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111145421.XA
Other languages
Chinese (zh)
Other versions
CN115377306B (en
Inventor
苏亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Juhua Printing Display Technology Co Ltd
Original Assignee
Guangdong Juhua Printing Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Juhua Printing Display Technology Co Ltd filed Critical Guangdong Juhua Printing Display Technology Co Ltd
Priority to CN202111145421.XA priority Critical patent/CN115377306B/en
Publication of CN115377306A publication Critical patent/CN115377306A/en
Application granted granted Critical
Publication of CN115377306B publication Critical patent/CN115377306B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种有机发光二极管,包括底电极层、顶电极层以及设置于所述底电极层和所述顶电极层之间的发光层;所述发光层包括电子给体层和三线态‑三线态湮灭层,所述电子给体层和所述三线态‑三线态湮灭层层叠设置;在所述电子给体层和所述三线态‑三线态湮灭层的相对的面之间能够形成用于发黄光的激基复合物,所述三线态‑三线态湮灭层用于发出蓝光,所述三线态‑三线态湮灭层的材料的T1能级<所述激基复合物的T1能级。在发光层的电子给体层和三线态‑三线态湮灭层的相对的面之间累积形成激基复合物,激基复合物产生的黄光与三线态‑三线态湮灭层产生的蓝光互补构成白光,与传统技术相比,本发明的层数更少,制程更简单。

Figure 202111145421

The present invention relates to an organic light-emitting diode, comprising a bottom electrode layer, a top electrode layer, and a light-emitting layer arranged between the bottom electrode layer and the top electrode layer; the light-emitting layer includes an electron donor layer and a triplet-state- The triplet annihilation layer, the electron donor layer and the triplet-triplet annihilation layer are stacked; between the electron donor layer and the opposite surface of the triplet-triplet annihilation layer can be formed For an exciplex that emits yellow light, the triplet-triplet annihilation layer is used to emit blue light, and the T1 energy level of the material of the triplet-triplet annihilation layer is less than the T1 of the exciplex energy level. An exciplex is accumulated between the electron donor layer of the light-emitting layer and the opposite face of the triplet-triplet annihilation layer, and the yellow light generated by the exciplex is complementary to the blue light generated by the triplet-triplet annihilation layer. For white light, compared with the traditional technology, the invention has fewer layers and simpler manufacturing process.

Figure 202111145421

Description

有机发光二极管及其制作方法、显示器件Organic light-emitting diode, manufacturing method thereof, and display device

技术领域technical field

本发明涉及发光领域,特别是涉及一种有机发光二极管及其制作方法、显示器件。The invention relates to the field of light emission, in particular to an organic light emitting diode, a manufacturing method thereof, and a display device.

背景技术Background technique

OLED(有机发光二极管)是一种电流型的有机发光器件,具体是指有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合实现发光的现象。OLED与液晶显示相比,具有更轻薄、亮度高、功耗低、响应快、清晰度高、柔性好、发光效率高等优点,在显示领域的性能优势十分突出。OLED (Organic Light Emitting Diode) is a current-type organic light-emitting device, specifically referring to the phenomenon that organic semiconductor materials and light-emitting materials are driven by an electric field to achieve light emission through carrier injection and recombination. Compared with liquid crystal display, OLED has the advantages of thinner and thinner, high brightness, low power consumption, fast response, high definition, good flexibility, and high luminous efficiency, and its performance advantages in the display field are very prominent.

经过几十年的发展,OLED显示技术正不断取代液晶显示技术,逐渐成为主流。当下,在小尺寸显示场景中,例如:手机、pad等,OLED已经逐步占据高端、中端市场;而在中大尺寸显示领域,例如:台式电脑、电视等,OLED占据份额仍然很小,主要的表层原因是因为价格高昂且产能不足,而更深层次的原因则是因为传统的大尺寸OLED面板主要采用白光OLED与滤波片结构,其中白光OLED是叠层的红、绿、蓝结构,中间以电荷产生层相连,结构复杂、层数众多,制程复杂,且驱动电压大,亮度低。因此,简化大尺寸OLED面板的结构对OLED显示技术的推广应用具有重要意义。After decades of development, OLED display technology is constantly replacing liquid crystal display technology and gradually becoming the mainstream. At present, in small-size display scenarios, such as mobile phones and pads, OLED has gradually occupied the high-end and mid-range markets; while in medium and large-size display fields, such as desktop computers and TVs, OLED still occupies a small share. The superficial reason is that the price is high and the production capacity is insufficient, and the deeper reason is that the traditional large-size OLED panel mainly uses a white light OLED and a filter structure. The white light OLED is a stacked red, green and blue structure. The charge generating layers are connected, the structure is complex, the number of layers is large, the manufacturing process is complex, and the driving voltage is large and the brightness is low. Therefore, simplifying the structure of large-size OLED panels is of great significance to the popularization and application of OLED display technology.

发明内容Contents of the invention

基于此,本发明旨在提供一种可以代替叠层复杂结构的有机发光二极管及其制作方法,并提供一种使用该有机发光二极管的显示器件。Based on this, the present invention aims to provide an organic light-emitting diode that can replace the complex stacked structure and its manufacturing method, as well as a display device using the organic light-emitting diode.

本发明提供一种有机发光二极管,包括底电极层、顶电极层以及设置于所述底电极层和所述顶电极层之间的发光层;所述发光层包括电子给体层和三线态-三线态湮灭层,所述电子给体层和所述三线态-三线态湮灭层层叠设置;在所述电子给体层和所述三线态-三线态湮灭层的相对的面之间能够形成用于发黄光的激基复合物,所述三线态-三线态湮灭层用于发出蓝光,所述三线态-三线态湮灭层的材料的T1能级<所述激基复合物的T1能级。The present invention provides an organic light-emitting diode, comprising a bottom electrode layer, a top electrode layer, and a light-emitting layer disposed between the bottom electrode layer and the top electrode layer; the light-emitting layer includes an electron donor layer and a triplet- The triplet annihilation layer, the electron donor layer and the triplet-triplet annihilation layer are stacked; between the electron donor layer and the opposite surface of the triplet-triplet annihilation layer can be formed For an exciplex emitting yellow light, the triplet-triplet annihilation layer is used to emit blue light, and the T1 energy level of the material of the triplet-triplet annihilation layer is less than the T1 of the exciplex energy level.

在其中一个实施例中,所述电子给体层中电子给体材料的HOMO能级与所述三线态-三线态湮灭层的材料的LUMO能级之间的能级差为2.2eV~2.4eV。In one embodiment, the energy level difference between the HOMO energy level of the electron donor material in the electron donor layer and the LUMO energy level of the triplet-triplet annihilation layer material is 2.2eV-2.4eV.

在其中一个实施例中,所述三线态-三线态湮灭层的发光的波长为460nm~475nm,所述有机发光二极管为发射白光的有机发光二极管。In one embodiment, the emission wavelength of the triplet-triplet annihilation layer is 460nm-475nm, and the organic light emitting diode is an organic light emitting diode emitting white light.

在其中一个实施例中,所述电子给体层的厚度为10nm~50nm,所述三线态-三线态湮灭层的厚度为10nm~30nm。In one embodiment, the electron donor layer has a thickness of 10 nm to 50 nm, and the triplet-triplet annihilation layer has a thickness of 10 nm to 30 nm.

在其中一个实施例中,所述发光层还包括在所述电子给体层和所述三线态-三线态湮灭层之间设置有界面层。In one embodiment, the light emitting layer further includes an interface layer disposed between the electron donor layer and the triplet-triplet annihilation layer.

在其中一个实施例中,所述三线态-三线态湮灭层的材料的T1能级<所述界面层的材料的T1能级<所述激基复合物的T1能级,且所述界面层的材料的S1能级>所述三线态-三线态湮灭层的材料的S1能级。In one of the embodiments, the T 1 energy level of the material of the triplet-triplet annihilation layer < the T 1 energy level of the material of the interface layer < the T 1 energy level of the exciplex, and the The S 1 energy level of the material of the interface layer > the S 1 energy level of the material of the triplet-triplet annihilation layer.

在其中一个实施例中,所述电子给体层的厚度为10nm~50nm,所述界面层的厚度为3nm~5nm,所述三线态-三线态湮灭层的厚度为10nm~20nm。In one embodiment, the thickness of the electron donor layer is 10nm-50nm, the thickness of the interface layer is 3nm-5nm, and the thickness of the triplet-triplet annihilation layer is 10nm-20nm.

在其中一个实施例中,所述电子给体层是由电子给体材料与三线态-三线态湮灭层的材料混合形成的混合材料层。In one embodiment, the electron donor layer is a mixed material layer formed by mixing the electron donor material and the material of the triplet-triplet annihilation layer.

在其中一个实施例中,所述混合材料层中电子给体材料与所述三线态-三线态湮灭层的材料的摩尔比为9:1~6:4。In one embodiment, the molar ratio of the electron donor material in the mixed material layer to the material of the triplet-triplet annihilation layer is 9:1˜6:4.

在其中一个实施例中,还包括位于所述发光层与相应的电极层之间的空穴传输层、空穴注入层电子传输层以及电子注入层中的至少一层。In one embodiment, it further includes at least one of a hole transport layer, a hole injection layer, an electron transport layer and an electron injection layer located between the light emitting layer and the corresponding electrode layer.

本发明还提供一种有机发光二极管的制作方法,包括如下步骤:The present invention also provides a method for manufacturing an organic light emitting diode, comprising the following steps:

于基板上依次形成在厚度方向上层叠设置的底电极层、发光层和顶电极层,所述发光层包括电子给体层和三线态-三线态湮灭层,所述电子给体层和所述三线态-三线态湮灭层层叠设置;在所述电子给体层和所述三线态-三线态湮灭层的相对的面之间能够形成用于发黄光的激基复合物,所述三线态-三线态湮灭层用于发出蓝光,所述三线态-三线态湮灭层的材料的T1能级<所述激基复合物的T1能级。A bottom electrode layer, a light-emitting layer, and a top electrode layer are sequentially formed on the substrate in the thickness direction, the light-emitting layer includes an electron donor layer and a triplet-triplet annihilation layer, the electron donor layer and the A triplet-triplet annihilation layer is stacked; an exciplex for yellow light emission can be formed between the electron donor layer and the opposite faces of the triplet-triplet annihilation layer, the triplet - The triplet annihilation layer is used to emit blue light, the T 1 energy level of the material of the triplet-triplet annihilation layer is < the T 1 energy level of the exciplex.

本发明还提供一种显示器件,包括滤波片以及如上述任一实施例中所述的有机发光二极管,所述滤波片位于所述有机发光二极管的出光侧。The present invention also provides a display device, comprising a filter and the organic light emitting diode as described in any one of the above embodiments, the filter is located on the light emitting side of the organic light emitting diode.

上述有机发光二极管在底电极层和顶电极层之间设置了由电子给体层和三线态-三线态湮灭层构成的发光层。分别从两端的电极层注入的电子和空穴,经传输后,会在发光层的电子给体层和三线态-三线态湮灭层的相对的面之间累积形成激基复合物激子,其中一部分激子发生辐射复合,产生黄光,另一部分激子,由于三线态-三线态湮灭层的材料的T1能级(第一激发三线态能级)比激基复合物的T1能级小,所以会转移到三线态-三线态湮灭层中,在三线态-三线态湮灭层中发生三线态融合产生单线态的过程,产生单线态激子并辐射复合产生蓝光,激基复合物产生的黄光与三线态-三线态湮灭层产生的蓝光互补构成白光。与传统技术中通过R/G/B子发光单元叠层连接的有机发光二极管结构相比,上述的有机发光二极管层数更少,制程更简单。In the above organic light emitting diode, a light emitting layer composed of an electron donor layer and a triplet-triplet annihilation layer is arranged between the bottom electrode layer and the top electrode layer. The electrons and holes injected from the electrode layers at both ends, after being transported, will accumulate between the electron donor layer of the light-emitting layer and the opposite surface of the triplet-triplet annihilation layer to form exciplex excitons, wherein A part of the excitons undergo radiative recombination to produce yellow light, and the other part of the excitons, because the T 1 energy level (the first excited triplet state energy level) of the material of the triplet-triplet annihilation layer is higher than the T 1 energy level of the exciplex Small, so it will be transferred to the triplet-triplet annihilation layer. In the triplet-triplet annihilation layer, the process of triplet fusion to generate a singlet state occurs, and singlet excitons are generated and radiatively recombined to produce blue light. Exciplexes produce The yellow light and the blue light produced by the triplet-triplet annihilation layer complement each other to form white light. Compared with the organic light emitting diode structure connected by R/G/B sub-light-emitting units in the conventional technology, the above-mentioned organic light-emitting diode has fewer layers and a simpler manufacturing process.

附图说明Description of drawings

图1为一实施例的白光有机发光二级管的结构示意图。FIG. 1 is a schematic structural diagram of a white organic light emitting diode according to an embodiment.

图2为一实施例的发光层的结构的示意图。FIG. 2 is a schematic diagram of the structure of a light-emitting layer according to an embodiment.

图3为另一实施例的发光层的结构的示意图。FIG. 3 is a schematic diagram of the structure of the light-emitting layer in another embodiment.

附图标记:Reference signs:

10:有机发光二极管;11:基板12:底电极层;13:顶电极层;14:发光层;141:电子给体层;142:三线态-三线态湮灭层;143:界面层;15:空穴传输层;16:空穴注入层;17:电子传输层。10: organic light-emitting diode; 11: substrate 12: bottom electrode layer; 13: top electrode layer; 14: light-emitting layer; 141: electron donor layer; 142: triplet-triplet annihilation layer; 143: interface layer; 15: Hole transport layer; 16: hole injection layer; 17: electron transport layer.

具体实施方式Detailed ways

为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。In order to facilitate the understanding of the present invention, the present invention will be described more fully below with reference to the associated drawings. Preferred embodiments of the invention are shown in the accompanying drawings. However, the present invention can be embodied in many different forms and is not limited to the embodiments described herein. On the contrary, these embodiments are provided to make the understanding of the disclosure of the present invention more thorough and comprehensive.

除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field of the invention. The terms used herein in the description of the present invention are for the purpose of describing specific embodiments only, and are not intended to limit the present invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

如图1所示,本发明一实施例提供一种有机发光二极管10,包括在基板上11设置的底电极层12、顶电极层13,以及设置于底电极层12和顶电极层13之间的发光层14。As shown in FIG. 1 , an embodiment of the present invention provides an organic light emitting diode 10, including a bottom electrode layer 12, a top electrode layer 13 arranged on a substrate 11, and an organic light emitting diode layer 13 arranged between the bottom electrode layer 12 and the top electrode layer 13. The luminescent layer 14.

如图2所示,发光层14包括电子给体层141和三线态-三线态湮灭层142,电子给体层141和三线态-三线态湮灭层142层叠设置。电子和空穴经电子给体层141和三线态-三线态湮灭层142传输后,在电子给体层141和三线态-三线态湮灭层142的相对的面之间能够形成用于发黄光的激基复合物,三线态-三线态湮灭层142用于发出蓝光,三线态-三线态湮灭层142的材料的T1能级<激基复合物的T1能级。As shown in FIG. 2 , the light-emitting layer 14 includes an electron donor layer 141 and a triplet-triplet annihilation layer 142 , and the electron donor layer 141 and the triplet-triplet annihilation layer 142 are stacked. After the electrons and holes are transported through the electron donor layer 141 and the triplet-triplet annihilation layer 142, a layer for emitting yellow light can be formed between the opposite surfaces of the electron donor layer 141 and the triplet-triplet annihilation layer 142. The triplet-triplet annihilation layer 142 is used to emit blue light, and the T 1 energy level of the material of the triplet-triplet annihilation layer 142 is less than the T 1 energy level of the exciplex.

在一个具体的示例中,电子给体层141中电子给体材料的HOMO能级与三线态-三线态湮灭层142的材料的LUMO能级之间的能极差为2.2eV~2.4eV。在该范围内,能够有效促进电子和空穴快速稳定的向电子给体层141和三线态-三线态湮灭层142的相对的面之间传输,且在此能级差范围内能够使激基复合物发出黄光。In a specific example, the energy range difference between the HOMO energy level of the electron donor material in the electron donor layer 141 and the LUMO energy level of the material of the triplet-triplet annihilation layer 142 is 2.2 eV˜2.4 eV. Within this range, the fast and stable transport of electrons and holes to the opposite faces of the electron donor layer 141 and the triplet-triplet annihilation layer 142 can be effectively promoted, and the excimer recombination can be made within this energy level difference range. The object glows yellow.

在一个具体的示例中,激基复合物的发光的波长为540nm~580nm。在该波长范围内,激基复合物能够发出黄光。三线态-三线态湮灭层142的发光的波长为460nm~475nm。在该波长范围内,三线态-三线态湮灭层142能够发出蓝光。三线态-三线态湮灭层142发出的蓝光与激基复合物发出的黄光互补,使有机发光二极管10发射白光,白光的发射波长为410nm~670nm。In a specific example, the wavelength of the light emitted by the exciplex is 540nm-580nm. In this wavelength range, exciplexes are capable of emitting yellow light. The wavelength of light emitted by the triplet-triplet annihilation layer 142 is 460 nm to 475 nm. In this wavelength range, the triplet-triplet annihilation layer 142 can emit blue light. The blue light emitted by the triplet-triplet annihilation layer 142 is complementary to the yellow light emitted by the exciplex, so that the organic light emitting diode 10 emits white light, and the emission wavelength of the white light is 410nm-670nm.

上述实施例中的发光层14在电子给体层141和三线态-三线态湮灭层142的相对的面之间累积形成的激基复合物激子,其中一部分激子发生辐射复合,产生黄光,另一部分激子,由于三线态-三线态湮灭层142的材料的T1能级比激基复合物的T1能级小,所以会转移到三线态-三线态湮灭层142中,在三线态-三线态湮灭层142中发生三线态融合产生单线态的过程,产生单线态激子并辐射复合产生蓝光,激基复合物产生的黄光与三线态-三线态湮灭层142产生的蓝光互补构成白光。In the light-emitting layer 14 in the above-mentioned embodiment, the excitons of the exciton complex formed by accumulating between the opposite surfaces of the electron donor layer 141 and the triplet-triplet annihilation layer 142, some of the excitons undergo radiative recombination to generate yellow light , another part of excitons, because the T 1 energy level of the material of the triplet-triplet annihilation layer 142 is smaller than the T 1 energy level of the exciplex, so it will be transferred to the triplet-triplet annihilation layer 142, in the triplet In the state-triplet annihilation layer 142, the process of triplet fusion to generate a singlet state occurs, and singlet excitons are generated and radiatively recombined to generate blue light, and the yellow light generated by the exciplex is complementary to the blue light generated by the triplet-triplet annihilation layer 142 constitute white light.

可选地,电子给体层141的材料可以但不限于是m-MTDATA(4,4',4”-Tris[(3-methylphenyl)phenylamino]triphenylamine,HOMO=5.1eV,LUMO=2.0eV)。Optionally, the material of the electron donor layer 141 may be, but not limited to, m-MTDATA (4,4',4"-Tris[(3-methylphenyl)phenylamino]triphenylamine, HOMO=5.1eV, LUMO=2.0eV).

可选地,三线态-三线态湮灭层142的材料可以但不限于是PhPC(9-(4-(10-phenylanthracene-9-yl)phenyl)-9H-carbazole,HOMO=5.8eV,Optionally, the material of the triplet-triplet annihilation layer 142 may be, but not limited to, PhPC(9-(4-(10-phenylanthracene-9-yl)phenyl)-9H-carbazole, HOMO=5.8eV,

LUMO=2.7eV,T1=1.7eV,S1=2.85eV)以及MADN(2-methyl-9,10-bis(naphthalen-2-yl)anthracene,HOMO=5.9eV,LUMO=2.9eV,T1=1.8eV,S1=2.9eV)中的一种或几种混合。LUMO=2.7eV, T 1 =1.7eV, S 1 =2.85eV) and MADN (2-methyl-9,10-bis(naphthalen-2-yl) anthracene, HOMO=5.9eV, LUMO=2.9eV, T 1 =1.8eV, S 1 =2.9eV) or a combination of several.

有机发光二极管10的器件总腔长对发光器件的发光效果具有重要影响,发光层14的中单一功能层厚度对发光效率的影响不大,但会影响发光器件的总腔长。在一个具体的示例中,电子给体层141的厚度为10nm~50nm,三线态-三线态湮灭层142的厚度为10nm~30nm。具体地,电子给体层141的厚度可以但不限于是10nm、15nm、20nm、25nm、30nm、35nm、40nm、45nm、50nm等,三线态-三线态湮灭层142的厚度可以但不限于是10nm、15nm、20nm、25nm、30nm等。The total cavity length of the organic light-emitting diode 10 has an important influence on the luminous effect of the light-emitting device. The thickness of a single functional layer in the light-emitting layer 14 has little effect on the luminous efficiency, but it will affect the total cavity length of the light-emitting device. In a specific example, the electron donor layer 141 has a thickness of 10 nm˜50 nm, and the triplet-triplet annihilation layer 142 has a thickness of 10 nm˜30 nm. Specifically, the thickness of the electron donor layer 141 can be, but not limited to, 10nm, 15nm, 20nm, 25nm, 30nm, 35nm, 40nm, 45nm, 50nm, etc., and the thickness of the triplet-triplet annihilation layer 142 can be, but not limited to, 10nm. , 15nm, 20nm, 25nm, 30nm, etc.

进一步地,本发明发现,虽然通过设置由电子给体层141和三线态-三线态湮灭层142构成的发光层14可以产生白光,但是由于三线态-三线态湮灭层142产生的蓝光激子的能量会反向转移给激基复合物的黄光激子,因此,会导致有机发光二极管10的发光光谱中黄光成份过高,而蓝光成分不足。为了解决这一问题,如图3所示,本发明的另一个实施例中,还在发光层14的电子给体层141和三线态-三线态湮灭层142之间设置了一个界面层143。界面层143不会阻碍在电子给体层141和三线态-三线态湮灭层142的相对的面之间累积形成激基复合物激子,也不会阻碍激基复合物激子向三线态-三线态湮灭层142传递,但是可以阻挡三线态-三线态湮灭层142的激子反向转移给激基复合物,从而有利于提高发光层14的蓝光成分。Further, the present invention finds that although white light can be generated by setting the light-emitting layer 14 composed of the electron donor layer 141 and the triplet-triplet annihilation layer 142, the blue light excitons generated by the triplet-triplet annihilation layer 142 The energy will be reversely transferred to the yellow light excitons of the exciplex, therefore, the yellow light component in the emission spectrum of the organic light emitting diode 10 will be too high and the blue light component will be insufficient. In order to solve this problem, as shown in FIG. 3 , in another embodiment of the present invention, an interface layer 143 is provided between the electron donor layer 141 and the triplet-triplet annihilation layer 142 of the light emitting layer 14 . The interfacial layer 143 does not hinder the accumulation of exciton excitons between the electron donor layer 141 and the opposing faces of the triplet-triplet annihilation layer 142, nor does it impede the exciton exciton transition to the triplet- The triplet annihilation layer 142 transmits, but can block the triplet-triplet annihilation layer 142 excitons reversely transfer to the exciplex, so as to improve the blue light component of the light emitting layer 14 .

在一个具体的示例中,三线态-三线态湮灭层142的材料的T1能级<界面层143的材料的T1能级<激基复合物的T1能级,且界面层143的材料的S1能级>三线态-三线态湮灭层142的材料的S1能级。因此激基复合物的三线态激子可以不受阻碍地传递给三线态-三线态湮灭层142,同时,三线态-三线态湮灭层142的单线态激子受到界面层143的阻挡而被限制,避免了蓝光激子能量向黄光激子的转移,有利于提高发光层14的蓝光成分。In a specific example, the T1 energy level of the material of the triplet-triplet annihilation layer 142 < the T1 energy level of the material of the interface layer 143 < the T1 energy level of the exciplex, and the material of the interface layer 143 The S 1 energy level of > the S 1 energy level of the material of the triplet-triplet annihilation layer 142 . Therefore, the triplet excitons of the exciplex can be transmitted to the triplet-triplet annihilation layer 142 unhindered, and at the same time, the singlet excitons of the triplet-triplet annihilation layer 142 are restricted by the interface layer 143 , avoiding the energy transfer of the blue light excitons to the yellow light excitons, which is beneficial to increase the blue light component of the light emitting layer 14 .

可选地,界面层143的材料可以但不限于是4PPIAN(9,10-bis(2,5-dimethyl-5'-phenyl-[1,1':3'1”-terphenyl]-4-yl)anthracene,HOMO=5.9eV,LUMO=2.8eV,T1=1.84eV,S1=3eV)。Optionally, the material of the interface layer 143 can be, but not limited to, 4PPIAN(9,10-bis(2,5-dimethyl-5'-phenyl-[1,1':3'1"-terphenyl]-4-yl ) anthracene, HOMO=5.9eV, LUMO=2.8eV, T 1 =1.84eV, S 1 =3eV).

在一个具体的示例中,电子给体层141的厚度为10nm~50nm,界面层143的厚度为3nm~5nm,三线态-三线态湮灭层142的厚度为10nm~20nm。因此,具体地,电子给体层141的厚度可以但不限于是10nm、15nm、20nm、25nm、30nm、35nm、40nm、45nm、50nm等,界面层143的厚度可以但不限于是3nm、3.5nm、4nm、4.5nm、5nm等,三线态-三线态湮灭层142的厚度可以但不限于是10nm、13nm、15nm、18nm、20nm等。由于有机发光二极管10的器件总腔长对发光器件的发光效果具有重要影响,虽然发光层中具体的电子给体层141、界面层143、三线态-三线态湮灭层142等单一功能层的厚度对发光效率的影响不大,但会影响发光器件的总腔长。In a specific example, the electron donor layer 141 has a thickness of 10 nm-50 nm, the interface layer 143 has a thickness of 3 nm-5 nm, and the triplet-triplet annihilation layer 142 has a thickness of 10 nm-20 nm. Therefore, specifically, the thickness of the electron donor layer 141 can be, but not limited to, 10nm, 15nm, 20nm, 25nm, 30nm, 35nm, 40nm, 45nm, 50nm, etc., and the thickness of the interface layer 143 can be, but not limited to, 3nm, 3.5nm , 4nm, 4.5nm, 5nm, etc. The thickness of the triplet-triplet annihilation layer 142 can be, but not limited to, 10nm, 13nm, 15nm, 18nm, 20nm, etc. Since the total cavity length of the organic light-emitting diode 10 has an important influence on the luminous effect of the light-emitting device, although the thickness of the single functional layers such as the electron donor layer 141, the interface layer 143, and the triplet-triplet annihilation layer 142 in the light-emitting layer It has little effect on the luminous efficiency, but it will affect the total cavity length of the light emitting device.

由于界面层143的厚度小,从两端电极层注入的空穴和电子依然能够在电子给体层141和三线态-三线态湮灭层142的相对的面之间累积,形成激基复合物,产生黄光,且一部分激基复合物激子的能量转移给三线态-三线态湮灭层142,使三线态-三线态湮灭层142产生蓝光。既不会因界面层143的存在影响电子和空穴的传输,也不会因界面层143的存在影响激基复合物激子能量向三线态-三线态湮灭层142传输。Due to the small thickness of the interface layer 143, the holes and electrons injected from the electrode layers at both ends can still accumulate between the opposite faces of the electron donor layer 141 and the triplet-triplet annihilation layer 142 to form exciplexes, Yellow light is generated, and a part of the energy of the exciplex excitons is transferred to the triplet-triplet annihilation layer 142, so that the triplet-triplet annihilation layer 142 generates blue light. The existence of the interface layer 143 does not affect the transport of electrons and holes, nor does the existence of the interface layer 143 affect the transport of exciton energy of the exciplex to the triplet-triplet annihilation layer 142 .

更进一步地,本发明还发现,虽然上述发明能够制作出可发出发白光的有机发光二极管,但是有机发光二极管10还存在效率滚降和亮度不足的缺陷。为了克服这一技术缺陷,本发明的又一个实施例中,电子给体层141设置成可以是由电子给体材料与三线态-三线态湮灭层142的材料混合形成的混合材料层。采用混合材料层的方法可以宽化激子复合区,可以拓宽形成激基复合物的电子给体层141和三线态-三线态湮灭层142的交界面,有助于减小有机发光二极管10的效率滚降,提高有机发光二极管10的亮度。Furthermore, the present invention also finds that although the above invention can produce an organic light emitting diode that emits white light, the organic light emitting diode 10 still has the defects of efficiency roll-off and insufficient brightness. In order to overcome this technical defect, in another embodiment of the present invention, the electron donor layer 141 is set as a mixed material layer formed by mixing the electron donor material and the material of the triplet-triplet annihilation layer 142 . The method of adopting the mixed material layer can widen the exciton recombination region, can widen the interface between the electron donor layer 141 forming the exciplex and the triplet-triplet annihilation layer 142, and help reduce the organic light emitting diode 10. Efficiency roll-off improves the brightness of the OLED 10 .

具体地,混合材料层中电子给体材料与三线态-三线态湮灭层142的材料的摩尔比为9:1~6:4。在该范围内不仅能够使有机发光二极管10发出白光,还能够提升发光亮度,减小效率滚降。Specifically, the molar ratio of the electron donor material to the material of the triplet-triplet annihilation layer 142 in the mixed material layer is 9:1˜6:4. Within this range, not only can the organic light emitting diode 10 emit white light, but also the luminous brightness can be improved, and the efficiency roll-off can be reduced.

如图1所示的有机发光二极管10还可以包括位于发光层14与相应的电极层之间的空穴传输层15、空穴注入层16、电子传输层17以及电子注入层中的至少一层。例如,可以在上述示例中的底电极层12和发光层14之间设置空穴传输层15,在顶电极层13和发光层14之间设置电子传输层17。还可以在底电极层12和空穴传输层15之间设置空穴注入层16。可理解地,还可以在顶电极层13和电子传输层17之间设置电子注入层。The organic light emitting diode 10 shown in FIG. 1 may further include at least one of a hole transport layer 15, a hole injection layer 16, an electron transport layer 17, and an electron injection layer between the light emitting layer 14 and the corresponding electrode layer. . For example, the hole transport layer 15 may be provided between the bottom electrode layer 12 and the light emitting layer 14 in the above examples, and the electron transport layer 17 may be provided between the top electrode layer 13 and the light emitting layer 14 . A hole injection layer 16 may also be provided between the bottom electrode layer 12 and the hole transport layer 15 . Understandably, an electron injection layer may also be provided between the top electrode layer 13 and the electron transport layer 17 .

本发明还提供一种有机发光二极管10的制作方法,包括如下步骤:The present invention also provides a method for manufacturing an organic light emitting diode 10, comprising the following steps:

于基板11上依次形成在厚度方向上层叠设置的底电极层12、发光层14和顶电极层13,发光层14包括电子给体层141和三线态-三线态湮灭层142,电子给体层141和三线态-三线态湮灭层142层叠设置;在电子给体层141和三线态-三线态湮灭层142的相对的面之间能够形成用于发黄光的激基复合物,三线态-三线态湮灭层142用于发出蓝光,三线态-三线态湮灭层142的材料的T1能级<激基复合物的T1能级。A bottom electrode layer 12, a light-emitting layer 14, and a top electrode layer 13 are sequentially formed on the substrate 11 in the thickness direction. The light-emitting layer 14 includes an electron donor layer 141 and a triplet-triplet annihilation layer 142. The electron donor layer 141 and the triplet-triplet annihilation layer 142 are stacked; between the electron donor layer 141 and the opposite surface of the triplet-triplet annihilation layer 142, an exciplex for yellow light emission can be formed, and the triplet- The triplet annihilation layer 142 is used to emit blue light, and the T 1 energy level of the material of the triplet-triplet annihilation layer 142 is smaller than the T 1 energy level of the exciplex.

在一个具体的示例中,电子给体层141中电子给体材料的HOMO能级与三线态-三线态湮灭层142的材料的LUMO能级之间的能级差为2.2eV~2.4eV。In a specific example, the energy level difference between the HOMO energy level of the electron donor material in the electron donor layer 141 and the LUMO energy level of the material of the triplet-triplet annihilation layer 142 is 2.2 eV˜2.4 eV.

在一个具体的示例中,三线态-三线态湮灭层142的发光的波长为460nm~475nm。In a specific example, the wavelength of the light emitted by the triplet-triplet annihilation layer 142 is 460 nm˜475 nm.

通过上述方法制备的有机发光二极管10,其发光层由激基复合物发光和三线态-三线态湮灭层142发光构成,其中激基复合物发出黄光,三线态-三线态湮灭层142发出蓝光,二者互补,构成白光。The organic light-emitting diode 10 prepared by the above method has a light-emitting layer composed of an exciplex emitting light and a triplet-triplet annihilation layer 142 emitting light, wherein the exciplex emits yellow light, and the triplet-triplet annihilation layer 142 emits blue light , the two complement each other to form white light.

进一步地,为了改进按上述具体示例的方法制备的有机发光二极管10的发光光谱中黄光成分过高,蓝光成分不足的问题,还可以在电子给体层141和三线态-三线态湮灭层142之间设置一个界面层143。该界面层143很薄,依然可以形成激基复合物产生黄光,且还能发生三线态-三线态湮灭过程,使三线态-三线态湮层142产生蓝光,并且能使蓝光基本无损失。Further, in order to improve the problem that the yellow light component is too high and the blue light component is insufficient in the luminescence spectrum of the organic light emitting diode 10 prepared by the above-mentioned specific example method, the electron donor layer 141 and the triplet-triplet annihilation layer 142 can also be An interface layer 143 is provided therebetween. The interface layer 143 is very thin, can still form exciplexes to generate yellow light, and can also undergo a triplet-triplet annihilation process, so that the triplet-triplet annihilation layer 142 can generate blue light without loss of blue light.

再进一步地,还可以在按上述具体示例的方法制备有机发光二极管10的基础上,将电子给体层141进一步优化为由电子给体材料与三线态-三线态湮灭层142的材料混合形成的混合材料层。混合材料层能宽化激子复合区,有利于减小器件的效率滚降并提高亮度。Furthermore, on the basis of preparing the organic light emitting diode 10 according to the above specific example method, the electron donor layer 141 can be further optimized to be formed by mixing the electron donor material and the material of the triplet-triplet annihilation layer 142 Mixed material layers. The mixed material layer can widen the exciton recombination region, which is beneficial to reduce the efficiency roll-off of the device and improve the brightness.

上述任一具体示例中的有机发光二极管10可用于各类发光显示器件中,例如,本发明还提供了一种显示器件,包括滤波片以及上述示例中的有机发光二极管10,滤波片位于有机发光二极管10的出光侧。与传统技术中通过R/G/B子发光单元叠层连接的有机发光二极管结构相比,上述的有机发光二极管10层数更少,制程更简单。The organic light emitting diode 10 in any of the above specific examples can be used in various types of light emitting display devices. For example, the present invention also provides a display device, including a filter and the organic light emitting diode 10 in the above examples. The light-emitting side of the diode 10. Compared with the organic light emitting diode structure in the conventional technology in which R/G/B sub-light-emitting units are stacked and connected, the above-mentioned organic light-emitting diode 10 has fewer layers and a simpler manufacturing process.

以下为具体实施例。The following are specific examples.

实施例1Example 1

(1)以透明导电薄膜ITO作为底电极层,厚度为50nm;(1) Use the transparent conductive film ITO as the bottom electrode layer with a thickness of 50nm;

(2)在ITO上利用蒸镀法沉积MoO3作为空穴注入层,厚度为10nm;(2) Deposit MoO 3 as a hole injection layer on the ITO by evaporation method, with a thickness of 10nm;

(3)在空穴注入层上利用蒸镀法沉积m-MTDATA作为空穴传输层,厚度为40nm;(3) m-MTDATA is deposited as a hole transport layer by vapor deposition on the hole injection layer, with a thickness of 40nm;

(4)在空穴传输层上利用蒸镀法沉积m-MTDATA作为电子给体层,厚度为15nm;(4) m-MTDATA is deposited as an electron donor layer by vapor deposition on the hole transport layer, with a thickness of 15nm;

(5)在电子给体层上利用蒸镀法沉积MADN:BCzVBi(3%)作为三线态-三线态湮灭层,厚度为15nm,其中MADN为三线态-三线态湮灭材料,BCzVBi为荧光客体;(5) Deposit MADN:BCzVBi (3%) on the electron donor layer as a triplet-triplet annihilation layer with a thickness of 15nm, wherein MADN is a triplet-triplet annihilation material, and BCzVBi is a fluorescent object;

(6)在三线态-三线态湮灭层上利用蒸镀法沉积TPBi:Liq作为电子传输层,厚度为30nm;(6) Deposit TPBi:Liq as an electron transport layer by evaporation on the triplet-triplet annihilation layer, with a thickness of 30nm;

(7)在电子传输层上利用蒸镀法沉积Al作为顶电极层,厚度为100nm。(7) Depositing Al as a top electrode layer on the electron transport layer by evaporation method, with a thickness of 100 nm.

实施例2:Example 2:

(1)以透明导电薄膜ITO作为底电极层,厚度为50nm;(1) Use the transparent conductive film ITO as the bottom electrode layer with a thickness of 50nm;

(2)在ITO上利用蒸镀法沉积MoO3作为空穴注入层,厚度为10nm;(2) Deposit MoO 3 as a hole injection layer on the ITO by evaporation method, with a thickness of 10nm;

(3)在空穴注入层上利用蒸镀法沉积m-MTDATA作为空穴传输层,厚度为40nm;(3) m-MTDATA is deposited as a hole transport layer by vapor deposition on the hole injection layer, with a thickness of 40nm;

(4)在空穴传输层上利用蒸镀法沉积m-MTDATA作为电子给体层,厚度为15nm;(4) m-MTDATA is deposited as an electron donor layer by vapor deposition on the hole transport layer, with a thickness of 15nm;

(5)在电子给体层上利用蒸镀法沉积4PPIAN作为界面层,厚度为3nm;(5) Depositing 4PPIAN as an interface layer by vapor deposition on the electron donor layer, with a thickness of 3nm;

(6)在界面层上利用蒸镀法沉积MADN:BCzVBi(3%)作为三线态-三线态湮灭层,厚度为15nm,其中MADN为三线态-三线态湮灭材料,BCzVBi为荧光客体;(6) Deposit MADN:BCzVBi (3%) on the interface layer as a triplet-triplet annihilation layer with a thickness of 15nm, wherein MADN is a triplet-triplet annihilation material, and BCzVBi is a fluorescent object;

(7)在三线态-三线态湮灭层上利用蒸镀法沉积TPBi:Liq作为电子传输层,厚度为30nm;(7) Deposit TPBi:Liq as an electron transport layer by evaporation on the triplet-triplet annihilation layer, with a thickness of 30nm;

(8)在电子传输层上利用蒸镀法沉积Al作为顶电极层,厚度为100nm。(8) Depositing Al as a top electrode layer on the electron transport layer by evaporation method, with a thickness of 100 nm.

实施例3:Example 3:

(1)以透明导电薄膜ITO作为底电极层,厚度为50nm;(1) Use the transparent conductive film ITO as the bottom electrode layer with a thickness of 50nm;

(2)在ITO上利用蒸镀法沉积MoO3作为空穴注入层,厚度为10nm;(2) Deposit MoO 3 as a hole injection layer on the ITO by evaporation method, with a thickness of 10nm;

(3)在空穴注入层上利用蒸镀法沉积m-MTDATA作为空穴传输层,厚度为35nm;(3) Depositing m-MTDATA as a hole transport layer by vapor deposition on the hole injection layer, with a thickness of 35nm;

(4)在空穴传输层上利用蒸镀法沉积m-MTDATA:MADN(摩尔比为7:3)作为混合层,厚度为20nm;(4) Deposit m-MTDATA:MADN (molar ratio is 7:3) on the hole transport layer by evaporation method as a mixed layer with a thickness of 20nm;

(5)在混合层上利用蒸镀法沉积4PPIAN作为界面层,厚度为3nm;(5) Deposit 4PPIAN as an interface layer by evaporation method on the mixed layer, with a thickness of 3nm;

(6)在界面层上利用蒸镀法沉积MADN:BCzVBi(3%)作为三线态-三线态湮灭层,厚度为15nm,其中MADN为三线态-三线态湮灭材料,BCzVBi为荧光客体;(6) Deposit MADN:BCzVBi (3%) on the interface layer as a triplet-triplet annihilation layer with a thickness of 15nm, wherein MADN is a triplet-triplet annihilation material, and BCzVBi is a fluorescent object;

(7)在三线态-三线态湮灭层上利用蒸镀法沉积TPBi:Liq作为电子传输层,厚度为30nm;(7) Deposit TPBi:Liq as an electron transport layer by evaporation on the triplet-triplet annihilation layer, with a thickness of 30nm;

(8)在电子传输层上利用蒸镀法沉积Al作为顶电极层,厚度为100nm。(8) Depositing Al as a top electrode layer on the electron transport layer by evaporation method, with a thickness of 100 nm.

对实施例1~实施例3通过专门的IVL测试系统对器件进行测试,获得器件电流、亮度、色坐标等性能参数,测试结果如下表1:The devices of Embodiment 1 to Embodiment 3 were tested by a special IVL test system to obtain performance parameters such as device current, brightness, and color coordinates. The test results are as follows in Table 1:

其中,色坐标@1000cd/m2:表示1000cd/m2下器件的色坐标;最大亮度(cd/m2):表示器件的最大亮度。Among them, color coordinate @1000cd/m 2 : indicates the color coordinate of the device at 1000cd/m 2 ; maximum brightness (cd/m 2 ): indicates the maximum brightness of the device.

表1Table 1

实施例Example 色坐标@1000cd/m<sup>2</sup>Color coordinates @1000cd/m<sup>2</sup> 最大亮度(cd/m<sup>2</sup>)Maximum Brightness (cd/m<sup>2</sup>) 实施例1Example 1 0.36,0.470.36,0.47 1700017000 实施例2Example 2 0.33,0.350.33,0.35 1300013000 实施例3Example 3 0.34,0.370.34,0.37 2200022000

通过表1可见,实施例2与实施例1相比,在电子给体层和三线态-三线态湮灭层之间增加界面层后,色坐标x轴和y轴的数据都降低,说明蓝光成分提高。实施例3与实施例2相比,电子给体层为电子给体材料与三线态-三线态湮灭层142的材料混合形成的混合材料层时,亮度明显增强。It can be seen from Table 1 that, compared with Example 1, in Example 2, after the interface layer is added between the electron donor layer and the triplet-triplet annihilation layer, the data on the x-axis and y-axis of the color coordinates are both reduced, indicating that the blue light component improve. In Example 3, compared with Example 2, when the electron donor layer is a mixed material layer formed by mixing the electron donor material and the material of the triplet-triplet annihilation layer 142 , the brightness is significantly enhanced.

以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, they should be It is considered to be within the range described in this specification.

以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above examples only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but it should not be construed as limiting the scope of the patent for the invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.

Claims (12)

1. The organic light emitting diode comprises a bottom electrode layer,A top electrode layer and a light emitting layer disposed between the bottom electrode layer and the top electrode layer; the light-emitting layer includes an electron donor layer and a triplet-triplet annihilation layer, the electron donor layer and the triplet-triplet annihilation layer being disposed in a stack; an exciplex for emitting yellow light can be formed between the facing faces of the electron donor layer and the triplet-triplet annihilation layer for emitting blue light, the triplet-triplet annihilation layer being of a material of which T 1 Energy level < T of the exciplex 1 Energy level.
2. The organic light-emitting diode of claim 1, wherein the energy level difference between the HOMO level of the electron donor material in the electron donor layer and the LUMO level of the material of the triplet-triplet annihilation layer is in the range of 2.2eV to 2.4eV.
3. The organic light-emitting diode according to claim 1, wherein the triplet-triplet annihilation layer emits light at a wavelength of 460nm to 475nm, and the organic light-emitting diode is a white light-emitting organic light-emitting diode.
4. The organic light-emitting diode of claim 1, wherein the electron donor layer has a thickness of 10nm to 50nm, and the triplet-triplet annihilation layer has a thickness of 10nm to 30nm.
5. The organic light-emitting diode according to any one of claims 1 to 4, wherein the light-emitting layer further comprises an interface layer disposed between the electron donor layer and the triplet-triplet annihilation layer.
6. The OLED of claim 5, wherein T of the material of the triplet-triplet annihilation layer 1 Energy level < T of the material of the interface layer 1 Energy level < T of the exciplex 1 Energy level, and S of the material of the interface layer 1 Energy level > S of the material of the triplet-triplet annihilation layer 1 Energy level.
7. The OLED as claimed in claim 5, wherein the thickness of the electron donor layer is 10nm to 50nm, the thickness of the interface layer is 3nm to 5nm, and the thickness of the triplet-triplet annihilation layer is 10nm to 20nm.
8. The organic light-emitting diode according to any one of claims 1 to 4 and 6 to 7, wherein the electron donor layer is a mixed material layer formed by mixing an electron donor material with a material of the triplet-triplet annihilation layer.
9. The organic light-emitting diode according to claim 8, wherein the molar ratio of the electron donor material to the material of the triplet-triplet annihilation layer in the mixed material layer is from 9 to 6.
10. The organic light-emitting diode according to any one of claims 1 to 4, 6 to 7 and 9, further comprising at least one of a hole transport layer, a hole injection layer, an electron transport layer and an electron injection layer between the light-emitting layer and the corresponding electrode layer.
11. A manufacturing method of an organic light emitting diode is characterized by comprising the following steps:
sequentially forming a bottom electrode layer, a light-emitting layer and a top electrode layer which are stacked in a thickness direction on a substrate, wherein the light-emitting layer comprises an electron donor layer and a triplet-triplet annihilation layer, and the electron donor layer and the triplet-triplet annihilation layer are stacked; an exciplex for emitting yellow light can be formed between the facing faces of the electron donor layer and the triplet-triplet annihilation layer for emitting blue light, the T of the material of the triplet-triplet annihilation layer 1 Energy level < T of the exciplex 1 Energy level.
12. A display device comprising a filter and the organic light emitting diode according to any one of claims 1 to 10, wherein the filter is located on a light emitting side of the organic light emitting diode.
CN202111145421.XA 2021-09-28 2021-09-28 Organic light emitting diode, manufacturing method thereof and display device Active CN115377306B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111145421.XA CN115377306B (en) 2021-09-28 2021-09-28 Organic light emitting diode, manufacturing method thereof and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111145421.XA CN115377306B (en) 2021-09-28 2021-09-28 Organic light emitting diode, manufacturing method thereof and display device

Publications (2)

Publication Number Publication Date
CN115377306A true CN115377306A (en) 2022-11-22
CN115377306B CN115377306B (en) 2024-12-17

Family

ID=84060178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111145421.XA Active CN115377306B (en) 2021-09-28 2021-09-28 Organic light emitting diode, manufacturing method thereof and display device

Country Status (1)

Country Link
CN (1) CN115377306B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108123047A (en) * 2016-11-30 2018-06-05 财团法人工业技术研究院 Organic light emitting diode and white organic light emitting diode
CN111416047A (en) * 2020-03-30 2020-07-14 华南理工大学 Fluorescence/phosphorescence hybrid white light organic light-emitting diode and preparation method thereof
CN111883680A (en) * 2020-08-06 2020-11-03 京东方科技集团股份有限公司 Organic electroluminescent device and display apparatus
CN112467058A (en) * 2020-11-26 2021-03-09 深圳大学 Ternary exciplex composite material main body and OLED device preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108123047A (en) * 2016-11-30 2018-06-05 财团法人工业技术研究院 Organic light emitting diode and white organic light emitting diode
CN111416047A (en) * 2020-03-30 2020-07-14 华南理工大学 Fluorescence/phosphorescence hybrid white light organic light-emitting diode and preparation method thereof
CN111883680A (en) * 2020-08-06 2020-11-03 京东方科技集团股份有限公司 Organic electroluminescent device and display apparatus
CN112467058A (en) * 2020-11-26 2021-03-09 深圳大学 Ternary exciplex composite material main body and OLED device preparation method thereof

Also Published As

Publication number Publication date
CN115377306B (en) 2024-12-17

Similar Documents

Publication Publication Date Title
TWI661031B (en) Organic electroluminescence device and preparation method thereof
CN101752509B (en) White organic light emitting device and method for manufacturing the same
TWI673894B (en) Organic electroluminescent device
CN108807481B (en) Organic light-emitting display panel and display device
CN104681735B (en) Organic luminescent device
KR20180082519A (en) Organic electroluminescent device
CN108281559B (en) A kind of high efficiency, the low phosphorescence Organic Light Emitting Diode that roll-offs
CN110190200B (en) Efficient pure white light organic electroluminescent device with high color rendering index and preparation method thereof
CN105449108B (en) Hydridization white light organic electroluminescent device and preparation method thereof
CN104167428A (en) Organic light emitting diode array substrate and display device
CN105489783A (en) Non-doped white light organic electroluminescence device
CN102214794A (en) Organic light emitting diode device
CN106784358A (en) A kind of white light organic electroluminescent device
CN110335954B (en) Efficient and stable white light organic electroluminescent device and preparation method thereof
CN114843413A (en) Light-emitting device and display panel
CN106450020A (en) High-efficiency white light OLED device structure based on novel exciplex main body
CN106654050A (en) Organic light-emitting display panel and device
CN112164754B (en) Organic light-emitting device, display panel and display device
CN111864088A (en) An organic light emitting diode device and its display panel
CN107068882A (en) A kind of white color organic electroluminescence device
CN108807710A (en) Undoped organic electroluminescence device and the preparation method of connecting with the complementary white light of doping
CN108682748A (en) A kind of series connection white light organic electroluminescent device
TWI708827B (en) Organic light-emitting diode
CN111864089A (en) An organic light emitting diode device and display panel
CN112909191B (en) Light-emitting device structure and preparation method thereof, display substrate and display device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant