[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN115340574A - 一种反应型阻燃剂、阻燃环氧树脂及其制备方法和应用 - Google Patents

一种反应型阻燃剂、阻燃环氧树脂及其制备方法和应用 Download PDF

Info

Publication number
CN115340574A
CN115340574A CN202211057311.2A CN202211057311A CN115340574A CN 115340574 A CN115340574 A CN 115340574A CN 202211057311 A CN202211057311 A CN 202211057311A CN 115340574 A CN115340574 A CN 115340574A
Authority
CN
China
Prior art keywords
flame retardant
epoxy resin
retardant
reactive flame
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211057311.2A
Other languages
English (en)
Inventor
蔡浩鹏
李伯伦
黄欣
茆阳雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202211057311.2A priority Critical patent/CN115340574A/zh
Publication of CN115340574A publication Critical patent/CN115340574A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/657163Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom
    • C07F9/657172Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom the ring phosphorus atom and one oxygen atom being part of a (thio)phosphinic acid ester: (X = O, S)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1477Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1488Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种反应型阻燃剂、阻燃环氧树脂及其制备方法和应用。反应型阻燃剂的制备包括如下步骤:将2,4,6‑三氨基嘧啶和苯甲醛溶解在有机溶剂中,在80~100℃下反应,得到均匀淡黄色液体;反应体系冷却至室温后,加入DOPO并升温至120~140℃搅拌反应3~5h,得到均匀橘红色液体;将得到的橘红色液体减压蒸馏,得到淡黄色粉末固体;将淡黄色粉末真空干燥,除去剩余的有机溶剂,即得到所述反应型阻燃剂(记为TBD)。本发明提供的反应型阻燃剂与环氧树脂有很好的相容性,能赋予环氧树脂优异的阻燃性能,环氧树脂的阻燃性能与力学性能均有较大的提升。无需催化剂,原料简单,工艺简单易行,低毒低污染,易于工业化。

Description

一种反应型阻燃剂、阻燃环氧树脂及其制备方法和应用
技术领域
本发明属于环氧树脂阻燃技术领域,尤其涉及一种反应型阻燃剂、阻燃环氧树脂及其制备方法和应用。
背景技术
限制环氧树脂在实际应用中使用的主要因素之一是其高可燃性,然而,随着人们对环保问题的日益重视,含卤阻燃剂的弊端已得到深刻认识。有机卤素化合物在高温下可转化为有毒的二恶英。同时,这些有毒有害物质不能被生物降解,会导致它们暴露在环境中并在生物体内蓄积,对环境和健康造成极大危害。因此,为适应环保要求,无卤阻燃剂相关研究的重要性日益凸显。
近年来,DOPO的研究在环氧树脂无卤阻燃剂的研究中最为突出,由于其特殊的磷杂菲DOPO的结构赋予环氧树脂良好的耐热性和阻燃性。同时,分子中的活性P-H键可以参与反应获得含有不同官能团的衍生物。然而,单一的仅含磷元素的基于DOPO的阻燃剂需要大量添加以确保优异的阻燃性。因此,其他元素已被引入磷化合物的分子结构中以提高阻燃性能,包括氮、硫、硅、硼。DOPO及相关衍生物与其他元素具有令人满意的相互促进作用,在保证阻燃性能的前提下减少了阻燃添加剂的用量。
然而,在大多数情况下,阻燃剂的加入带来了优异的阻燃效果,同时对其他性能产生了不利影响,如机械性能急剧恶化和耐热性下降,这将限制材料的应用范围。因此,合成一种高效的环氧树脂阻燃剂对于在保持环氧树脂优良的机械性能的同时提高阻燃性具有重要意义。
发明内容
针对上述现有技术问题,本发明的目的在于提供一种反应型阻燃剂、阻燃环氧树脂及其制备方法和应用。本发明提供了一种基于2,4,6-三氨基嘧啶的反应型阻燃剂及其在环氧树脂中的应用,本发明阻燃剂具有原料毒性小、价格便宜、合成单体来源广泛、阻燃效率高,本发明制备方法简单易行,便于工业化生产,同时制备过程中使用的溶剂无毒,气味小,可回收利用。阻燃剂能使环氧树脂达到很好的阻燃性能,且能降低环氧树脂燃烧过程中的热释放速率,并能增强环氧树脂的力学性能。
本发明的目的通过以下技术方案实现:
一种反应型阻燃剂,其化学结构式如下:
Figure BDA0003825679180000021
上述反应型阻燃剂的制备方法,包括如下步骤:
(1)将2,4,6-三氨基嘧啶和苯甲醛溶解在有机溶剂中,在80~100℃下搅拌反应4~6h,得到均匀淡黄色液体;
(2)待步骤(1)反应体系冷却至室温后,加入DOPO并升温至120~140℃搅拌反应3~5h,得到均匀橘红色液体;
(3)将步骤(2)中得到的橘红色液体减压蒸馏,得到淡黄色粉末固体;
(4)将步骤(3)中淡黄色粉末真空干燥,除去剩余的有机溶剂,即得到所述反应型阻燃剂。
优选的,步骤(1)所述2,4,6-三氨基嘧啶和苯甲醛与步骤(2)所述DOPO的摩尔比为1:(2.8~3.2):(2.9~3.1)。
优选的,步骤(1)所述有机溶剂为DMF、四氢呋喃、二氧六环和丙酮中的至少一种。
优选的,步骤(3)所述减压蒸馏的方式为:采用旋转蒸发仪,在125℃下以80rpm的旋转速度蒸发。
优选的,步骤(3)所述减压蒸馏的时间为1~2h。
优选的,步骤(4)所述真空干燥的温度为100~110℃,真空干燥的时间为10~12h。
一种阻燃环氧树脂,其由包含如下质量份的组分制备得到:100份双酚F环氧树脂、8~10份所述反应型阻燃剂和29~31份固化剂。
优选的,所述双酚F环氧树脂的环氧值为0.58~0.6。
优选的,所述固化剂为4.4'-二氨基二苯基甲烷(DDM)、DDS(二氨基二苯基砜)、2-甲基咪唑和双氰胺中的至少一种。
所述阻燃环氧树脂的制备方法,包括如下步骤:先将环氧树脂加热至120~150℃,再加入上述反应型阻燃剂,并混合均匀,然后冷却至温度为70~90℃,再加入固化剂,混合均匀后真空脱泡,再依次进行浇注模具,先在80~90℃下保温2-3h,再在120~130℃下保温2-3h,最后在150~160℃下保温5-6h,自然冷却后,制得所述阻燃环氧树脂。
上述阻燃环氧树脂在装饰涂料、轨道交通和电子封装方面的应用。
本发明的反应原理为:反应的第一步是通过2,4,6-三氨基嘧啶的氨基和苯甲醛中的活性羰基缩合生成含有-C=N-双键的席夫碱,第二部是用第一步得到的席夫碱和DOPO中的活泼-P-H-键发生加成反应,最后得到目标产物。选择2,4,6-三氨基嘧啶的原因有两点:1.最后得到的目标产物是一种对称结构,具有较好的热稳定性;2.作为一种富氮杂环,可以有效降低产物中磷的含量,进一步提高热稳定性。
与现有技术相比,本发明的有益效果包括:
(1)本发明合成的一种基于2,4,6-三氨基嘧啶的阻燃剂比传统卤素阻燃剂环保,无污染,无腐蚀性气体产生,反应条件易控制,反应过程无危险产物生成,阻燃效率更高。
(2)本发明的阻燃环氧树脂可根据阻燃要求的不同,通过改变阻燃剂添加量,制备得到不同情况下使用的阻燃环氧树脂,有利于节省成本。
(3)本发明的阻燃剂包含的-NH-化学键能与环氧树脂的环氧基反应,与环氧树脂有很好的结合性,且阻燃剂的结构中有较高的磷含量和较多的芳构型碳,阻燃剂的对称结构使其具有更高的热稳定性。
(4)本发明合成的阻燃环氧树脂过程设备简单,步骤简单,无高温高压,制备过程安全,原料无有害物质,工业化生产价值高。
(5)本发明合成的阻燃环氧树脂由于具有多苯环的刚性结构,其力学性能相较于纯树脂有很大提高。在低添加量下,TBD可以催化环氧树脂的固化反应,从而提高交联密度,提高环氧树脂的力学性能。
附图说明
图1为对比例1制备所得的纯环氧树脂EP锥形量热后的残碳拉曼光谱图。
图2为实施例4制备的阻燃环氧树脂EP/TBD锥形量热后的残碳拉曼光谱图。
图3为对比例1制备所得的纯环氧树脂EP锥形量热测试后的数码照片图。
图4为实施例4制备的阻燃环氧树脂EP/TBD锥形量热测试后的数码照片图。
图5为对比例1制备所得的纯环氧树脂EP锥形量热测试后的残碳扫描电镜图。
图6为实施例4制备的阻燃环氧树脂EP/TBD锥形量热测试后的残碳扫描电镜图。
图7为实施例1的目标产物的元素含量与计算含量对比数据。
图8为实施例2的目标产物的元素含量与计算含量对比数据。
图9为实施例3的目标产物的元素含量与计算含量对比数据。
图10为实施例1制备的产物TBD、苯甲醛、2,4,6-三氨基嘧啶和DOPO的红外光谱图对比图。
图11为本发明实施例的化学反应式示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例所述的双酚F环氧树脂购买于荷兰皇家壳牌集团,环氧当量为158~172g/mol。
所述旋转蒸发仪购买于郑州长城科工贸有限公司,型号为R-1001VN。
实施例1
一种反应型阻燃剂的制备方法,步骤如下:
(1)将0.05mol 2,4,6-三氨基嘧啶和0.15mol苯甲醛加入到250mL三颈烧瓶中,再加入70mL DMF溶剂,搅拌至固体溶解后,升温至100℃搅拌反应6h,得到均匀淡黄色液体。
(2)待反应体系冷却至室温后,加入0.15mol DOPO升温至120℃搅拌反应3h,得到均匀橘红色液体;
(3)液体在旋转蒸发仪中减压蒸馏1h,得到淡黄色粉末固体;
(4)将淡黄色粉末放置于真空烘箱中除去剩余的DMF溶剂,温度调节为100℃,设定10h,即得到所述阻燃剂,记为TBD。
实施例2
一种反应型阻燃剂的制备方法,步骤如下:
(1)将0.05mol 2,4,6-三氨基嘧啶和0.14mol苯甲醛加入到250mL三颈烧瓶中,再加入70mL DMF溶剂,搅拌至固体溶解后,升温至100℃搅拌反应6h,得到均匀淡黄色液体。
(2)待反应体系冷却至室温后,加入0.145mol DOPO升温至120℃搅拌反应3h,得到均匀橘红色液体;
(3)液体在旋转蒸发仪中减压蒸馏1h,得到淡黄色粉末固体;
(4)将淡黄色粉末放置于真空烘箱中除去剩余的DMF溶剂,温度调节为100℃,设定10h,即得到所述阻燃剂。
实施例3
一种反应型阻燃剂的制备方法,步骤如下:
(1)将0.05mol 2,4,6-三氨基嘧啶和0.16mol苯甲醛加入到250mL三颈烧瓶中,再加入70mL DMF溶剂,搅拌至固体溶解后,升温至100℃搅拌反应6h,得到均匀淡黄色液体。
(2)待反应体系冷却至室温后,加入0.155mol DOPO升温至120℃搅拌反应3h,得到均匀橘红色液体;
(3)液体在旋转蒸发仪中减压蒸馏1h,得到淡黄色粉末固体;
(4)将淡黄色粉末放置于真空烘箱中除去剩余的DMF溶剂,温度调节为100℃,设定10h,即得到所述阻燃剂。
实施例4
一种阻燃环氧树脂的制备方法,步骤如下:
原料组成为:双酚F环氧树脂、实施例1制备的阻燃剂和固化剂DDM的质量比为100:10:29。
先将双酚F环氧树脂加热至140℃,再加入上述反应型阻燃剂,并混合均匀,然后冷却至温度为80℃,再加入固化剂,混合均匀后真空脱泡10min,再依次进行浇注模具,先在90℃下保温2h,再在120℃下保温2h,最后在150℃下保温6h,自然冷却后,制得所述阻燃环氧树脂,样品记为EP/TBD。
实施例5
一种阻燃环氧树脂的制备方法,步骤如下:
原料组成为:双酚F环氧树脂、实施例2制备的阻燃剂和固化剂DDM的质量比为100:8:30。
先将双酚F环氧树脂加热至140℃,再加入上述反应型阻燃剂,并混合均匀,然后冷却至温度为80℃,再加入固化剂,混合均匀后真空脱泡10min,再依次进行浇注模具,先在90℃下保温2h,再在120℃下保温2h,最后在150℃下保温6h,自然冷却后,制得所述阻燃环氧树脂,样品记为EP/TBD-1。
实施例6
一种阻燃环氧树脂的制备方法,步骤如下:
原料组成为:双酚F环氧树脂、实施例3制备的阻燃剂和固化剂DDM的质量比为100:9:31。
先将双酚F环氧树脂加热至140℃,再加入上述反应型阻燃剂,并混合均匀,然后冷却至温度为80℃,再加入固化剂,混合均匀后真空脱泡10min,再依次进行浇注模具,先在90℃下保温2h,再在120℃下保温2h,最后在150℃下保温6h,自然冷却后,制得所述阻燃环氧树脂,样品记为EP/TBD-2。
对比例1
纯环氧树脂的制备方法,步骤如下:
向100g的双酚F环氧树脂中加入29g的固化剂DDM,机械搅拌均匀后在真空下脱泡10min,最后将其倒入模具中,先在90℃下保温2h,再在120℃下保温2h,最后在150℃下保温6h,自然冷却后,样品记为EP。
图1为对比例1制备所得的纯环氧树脂EP锥形量热后的残碳拉曼光谱图。图2为实施例4制备的阻燃环氧树脂EP/TBD锥形量热后的残碳拉曼光谱图。
采用拉曼光谱仪表征碳质材料的石墨化程度,可以看到两个光谱图均在1360cm-1和1590cm-1处出现峰形,分别为D带和G带。D带和G带分别为无定形碳的振动和有序碳的振动。而残炭的石墨化程度可以通过两个谱带的积分强度比(R=ID/IG)来进行评估。很明显R值越高,残炭的石墨化程度也就越低。D和G是先确定EP曲线的峰值,然后用origin对两个峰值进行匹配分峰拟合操作得到的,fitting曲线是拟合后的EP曲线,和曲线EP几乎重合。
两个谱带的积分强度比(ID/IG)可以表征炭层的石墨化程度,较低的ID/IG值表示较高的石墨化程度。EP/TBD试样残炭的ID/IG值(2.09)比纯EP试样残炭的ID/IG值(2.52)低得多,这表明TBD的添加提高了炭层的石墨化程度。这意味着阻燃环氧树脂在燃烧过程中能形成更加热稳定的炭层。
图3为对比例1制备所得的纯环氧树脂EP锥形量热测试后的数码照片图。图4为实施例4制备的阻燃环氧树脂EP/TBD锥形量热测试后的数码照片图。从图3~4可以看出,纯环氧树脂EP基本已经燃烧殆尽,只有极小的残炭残留。而EP/TBD的残炭是蓬松的,有利于阻碍燃烧。
图5为对比例1制备所得的纯环氧树脂EP锥形量热测试后的残碳扫描电镜图。图6为实施例4制备的阻燃环氧树脂EP/TBD锥形量热测试后的残碳扫描电镜图。在图5中纯EP的SEM图像中可以清楚地观察到断裂、穿孔和沟槽表面。残炭表面的缺陷降低了炭层的稳定性,导致阻燃性能下降。随着TBD的加入,从图6可以看出残渣表面变得致密和完整,这对阻碍环氧树脂燃烧起到了重要作用。
表1为对比例1和实施例4~6制备得到的产物的锥形量热(采用英国FTT公司,型号0007锥形量热仪)的数据,从表1可以看出:EP的点火时间(TTI)为28s,而EP/TBD的TTI增加到66s,表明TBD阻燃剂改性树脂后可以增加环氧树脂的点燃时间。此外,峰值放热率(PHRR)从EP的1395.6kW/m2降低到EP/TBD的1063.2kW/m2。同样,总放热量(THR)从EP的75.0MJ/m2下降到EP/TBD的50.7MJ/m2,降低了33%,平均有效燃烧热(av-EHC)也从22.6MJ/kg下降至17.7MJ/kg。这些参数都表明改性环氧树脂的阻燃性得到了很大的提高。
表1锥形量热数据
Figure BDA0003825679180000071
表2为对比例1和实施例4~6制备得到的产物的极限氧指数(LOI)统计数据,从表2可以看到,TBD改性后,LOI有大幅度提高,表明环氧树脂的阻燃性变好。
表2极限氧指数(LOI)数据
Figure BDA0003825679180000081
表3为对比例1和实施例4~6制备得到的产物的力学性能数据,弯曲强度和模量参考GB/T 2567-1995。从表3可以发现:EP/TBD的弯曲强度和模量,分别比EP高102.1%和3.4%,这表明磷/氮协同(2,4,6-三氨基嘧啶中含有N元素)也可以提高环氧树脂的韧性。
元素分析计算值是通过实施例1的化学反应方程式比例计算各种元素相对原子质量得到的,实验室是通过以下仪器对实施例进行测试得到的:
Vario EL cube Elemental Analyzer(Elementar,德国)用于分析实施例制备的产物TBD中的元素含量(C,H,N,P)。在该测试中使用了20mg TBD粉末。
为了确认TBD的化学结构,对元素含量进行了分析。结果如图7所示:C,70.13%;H,4.41%;N,6.78%;P,9.41%。计算值:C,70.59%;H,4.44%;N,6.75%;P,9.35%。它清楚地表明TBD的元素含量分析值与计算值基本一致。这也证明TBD的成功合成。
同样的方法对实施例2制备的产物的化学结构进行元素分析,其结果见图8:C,70.08%;H,4.11%;N,6.44%;P,9.03%。计算值:C,70.59%;H,4.44%;N,6.75%;P,9.35%。它清楚地表明样品的元素含量分析值与计算值基本一致。这也证明目标产物的成功合成。
同样的方法对实施例3制备的产物的化学结构进行元素分析,其结果见图9:C,70.65%;H,4.48%;N,6.82%;P,9.67%。计算值:C,70.59%;H,4.44%;N,6.75%;P,9.35%。它清楚地表明样品的元素含量分析值与计算值基本一致。这也证明目标产物的成功合成。
图10为实施例1制备的产物TBD、苯甲醛、2,4,6-三氨基嘧啶和DOPO的红外光谱图对比图。从图10可以看出:苯甲醛中对应C=O的吸收峰1700cm-1和DOPO中对应的P-H的2430cm-1吸收峰在TBD的谱图中消失,表明苯甲醛与DOPO均参与了反应,此外,DOPO中的主要特征吸收峰1230cm-1(P=O)和754cm-1(P-C)依旧出现在TBD谱图中。此外,2,4,6-三氨基嘧啶中对应的嘧啶环特征吸收峰1500cm-1仍在TBD曲线中保留下来。这些都表明了TBD的成功合成。
以上所述本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所做出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。

Claims (10)

1.一种反应型阻燃剂,其特征在于,具有如下的化学结构式:
Figure FDA0003825679170000011
2.权利要求1所述一种反应型阻燃剂的制备方法,其特征在于,包括如下步骤:
(1)将2,4,6-三氨基嘧啶和苯甲醛溶解在有机溶剂中,在80~100℃下搅拌反应4~6h,得到均匀淡黄色液体;
(2)待步骤(1)反应体系冷却至室温后,加入DOPO并升温至120~140℃搅拌反应3~5h,得到均匀橘红色液体;
(3)将步骤(2)中得到的橘红色液体减压蒸馏,得到淡黄色粉末固体;
(4)将步骤(3)中淡黄色粉末真空干燥,除去剩余的有机溶剂,即得到所述反应型阻燃剂。
3.根据权利要求2所述的一种反应型阻燃剂的制备方法,其特征在于,步骤(1)所述2,4,6-三氨基嘧啶和苯甲醛与步骤(2)所述DOPO的摩尔比为1:2.8~3.2:2.9~3.1。
4.根据权利要求2或3所述的一种反应型阻燃剂的制备方法,其特征在于,步骤(4)所述真空干燥的温度为100~110℃,真空干燥的时间为10~12h。
5.根据权利要求4所述的种反应型阻燃剂的制备方法,其特征在于,步骤(3)所述减压蒸馏的方式为:采用旋转蒸发仪,在125℃下以80rpm的旋转速度蒸发。
6.根据权利要求5所述的种反应型阻燃剂的制备方法,其特征在于,步骤(1)所述有机溶剂为DMF、四氢呋喃、二氧六环和丙酮中的至少一种;
步骤(3)所述减压蒸馏的时间为1~2h。
7.一种阻燃环氧树脂,其特征在于,其由包含如下质量份的组分制备得到:100份双酚F环氧树脂、8~10份权利要求1所述的反应型阻燃剂和29~31份固化剂。
8.根据权利要求7所述一种阻燃环氧树脂,其特征在于,所述双酚F环氧树脂的环氧值为0.58~0.6;
所述固化剂为4.4'-二氨基二苯基甲烷、(二氨基二苯基砜)、2-甲基咪唑和双氰胺中的至少一种。
9.权利要求7~8任一项所述一种阻燃环氧树脂的制备方法,其特征在于,包括如下步骤:先将双酚F环氧树脂加热至120~150℃,再加入反应型阻燃剂,并混合均匀,然后冷却至温度为70~90℃,再加入固化剂,混合均匀后真空脱泡,再依次进行浇注模具,先在80~90℃下保温2-3h,再在120~130℃下保温2-3h,最后在150~160℃下保温5~6h,自然冷却后,制得所述阻燃环氧树脂。
10.权利要求7~8任一项所述一种阻燃环氧树脂在装饰涂料、轨道交通和电子封装方面的应用。
CN202211057311.2A 2022-08-31 2022-08-31 一种反应型阻燃剂、阻燃环氧树脂及其制备方法和应用 Pending CN115340574A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211057311.2A CN115340574A (zh) 2022-08-31 2022-08-31 一种反应型阻燃剂、阻燃环氧树脂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211057311.2A CN115340574A (zh) 2022-08-31 2022-08-31 一种反应型阻燃剂、阻燃环氧树脂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN115340574A true CN115340574A (zh) 2022-11-15

Family

ID=83955885

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211057311.2A Pending CN115340574A (zh) 2022-08-31 2022-08-31 一种反应型阻燃剂、阻燃环氧树脂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115340574A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116355284A (zh) * 2023-03-28 2023-06-30 福州大学 一种用于阻燃环氧树脂的dopo基反应型阻燃剂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116355284A (zh) * 2023-03-28 2023-06-30 福州大学 一种用于阻燃环氧树脂的dopo基反应型阻燃剂及其制备方法
CN116355284B (zh) * 2023-03-28 2024-06-07 福州大学 一种用于阻燃环氧树脂的dopo基反应型阻燃剂及其制备方法

Similar Documents

Publication Publication Date Title
Qian et al. Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: Preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system
Chen et al. Synthesis of chitosan-based flame retardant and its fire resistance in epoxy resin
Cheng et al. Aminobenzothiazole-substituted cyclotriphosphazene derivative as reactive flame retardant for epoxy resin
Zhu et al. Influence of a novel P/N-containing oligomer on flame retardancy and thermal degradation of intumescent flame-retardant epoxy resin
Zhang et al. Facile construction of one-component intrinsic flame-retardant epoxy resin system with fast curing ability using imidazole-blocked bismaleimide
Sun et al. Effect of additive phosphorus-nitrogen containing flame retardant on char formation and flame retardancy of epoxy resin
Huo et al. Flame‐retardant performance and mechanism of epoxy thermosets modified with a novel reactive flame retardant containing phosphorus, nitrogen, and sulfur
Huo et al. Thermal properties and flame retardancy of an intumescent flame-retarded epoxy system containing phosphaphenanthrene, triazine-trione and piperidine
Liu Epoxy resins from novel monomers with a bis‐(9, 10‐dihydro‐9‐oxa‐10‐oxide‐10‐phosphaphenanthrene‐10‐yl‐) substituent
Jin et al. Epoxy thermoset with enhanced flame retardancy and physical-mechanical properties based on reactive phosphaphenanthrene compound
Yi et al. Effects of common synergistic agents on intumescent flame retardant polypropylene with a novel charring agent
Peng et al. A bio-based phosphaphenanthrene-containing derivative modified epoxy thermosets with good flame retardancy, high mechanical properties and transparency
Xu et al. Small change, big impact: Simply changing the substitute on Si atom towards significant improvement of flame retardancy and toughness of epoxy resins
Qian et al. Novel DOPO-based epoxy curing agents: synthesis and the structure–property relationships of the curing agents on the fire safety of epoxy resins
CN113968878B (zh) 超支化硼酸改性的酞腈单体及其制备方法与应用
Zhou et al. High residue bio-based structural–functional integration epoxy and intrinsic flame retardant mechanism study
Niu et al. A furan-based phosphaphenanthrene-containing derivative as a highly efficient flame-retardant agent for epoxy thermosets without deteriorating thermomechanical performances
Qi et al. Facile and scalable fabrication of bioderived flame retardant based on adenine for enhancing fire safety of fully biodegradable PLA/PBAT/TPS ternary blends
Nabipour et al. Improvement of the flame retardant and thermomechanical properties of epoxy resins by a vanillin-derived cyclotriphosphazene-cored triazole compound
CN111303483A (zh) 含对羟基苯甲醛和色胺结构的氮-磷系高效阻燃剂、制备方法及应用
CN115340574A (zh) 一种反应型阻燃剂、阻燃环氧树脂及其制备方法和应用
Chen et al. Preparation of flame-retardant cyanate ester with low dielectric constants and dissipation factors modified with novel phosphorus-contained Schiff base
CN110563944B (zh) 一种聚磷腈共价三嗪聚合物及其制备方法和应用
CN113234228B (zh) 一种高效阻燃抑烟的含硼聚磷酰胺阻燃剂及其制备方法和应用
CN110746577A (zh) 一种本征阻燃的结构阻尼一体化树脂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination