CN115333538A - Signal detection circuit - Google Patents
Signal detection circuit Download PDFInfo
- Publication number
- CN115333538A CN115333538A CN202110506904.1A CN202110506904A CN115333538A CN 115333538 A CN115333538 A CN 115333538A CN 202110506904 A CN202110506904 A CN 202110506904A CN 115333538 A CN115333538 A CN 115333538A
- Authority
- CN
- China
- Prior art keywords
- switch
- voltage
- input
- circuit
- output terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 66
- 230000010354 integration Effects 0.000 claims abstract description 11
- 239000003990 capacitor Substances 0.000 claims description 25
- 238000005070 sampling Methods 0.000 claims description 24
- 238000009825 accumulation Methods 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 6
- 230000005669 field effect Effects 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/124—Sampling or signal conditioning arrangements specially adapted for A/D converters
- H03M1/1245—Details of sampling arrangements or methods
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/25—Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/1205—Multiplexed conversion systems
- H03M1/122—Shared using a single converter or a part thereof for multiple channels, e.g. a residue amplifier for multiple stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0602—Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
- H03M1/0604—Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic at one point, i.e. by adjusting a single reference value, e.g. bias or gain error
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manipulation Of Pulses (AREA)
Abstract
本发明公开一种信号检测电路,其包括输入开关电路、振幅检测电路、时钟产生电路及积分电路。输入开关电路接收参考电压及输入电压,且由切换信号组控制,以选择性地输出参考电压或输入电压。振幅检测电路对输入开关电路的输出进行检测,以对应产生振幅电压。时钟产生电路产生切换信号组,用于控制输入开关电路交替进入第一阶段及第二阶段,且输入开关电路经控制以在第一阶段输出参考电压,且在第二阶段输出该输入电压。积分电路经配置以将振幅电压作为输入并进行累计,并在预定时间区间内产生对应累计结果的积分电压。其中,预定时间区间包括以第一阶段及第二阶段为循环的多个周期。
The invention discloses a signal detection circuit, which comprises an input switch circuit, an amplitude detection circuit, a clock generation circuit and an integration circuit. The input switch circuit receives the reference voltage and the input voltage, and is controlled by the switch signal group to selectively output the reference voltage or the input voltage. The amplitude detection circuit detects the output of the input switch circuit to generate an amplitude voltage correspondingly. The clock generation circuit generates a switch signal group for controlling the input switch circuit to alternately enter the first stage and the second stage, and the input switch circuit is controlled to output the reference voltage in the first stage and output the input voltage in the second stage. The integrating circuit is configured to take the amplitude voltage as an input and accumulate, and generate an integrated voltage corresponding to the accumulated result within a predetermined time interval. Wherein, the predetermined time interval includes a plurality of cycles with the first stage and the second stage as a cycle.
Description
技术领域technical field
本发明涉及一种信号检测电路,特别是涉及一种可降低制程偏移影响的信号检测电路。The invention relates to a signal detection circuit, in particular to a signal detection circuit capable of reducing the influence of process deviation.
背景技术Background technique
在现有的检测信号电路中,为了检测待测信号的大小,经常为待测信号与参考电压设置两个独立的电流路径,经过振幅检测器分别滤成直流电压后,再通过比较器来比较信号大小。In the existing detection signal circuit, in order to detect the magnitude of the signal to be measured, two independent current paths are often set up for the signal to be measured and the reference voltage, which are filtered into DC voltages by the amplitude detector, and then compared by a comparator signal size.
然而,在上述的架构中,在制作两个独立的电流路径时,常因制程偏移量的不同而造成比较器比较后的误差量较大的问题。However, in the above architecture, when manufacturing two independent current paths, the difference in process offset often causes a problem that the comparator has a relatively large error after comparison.
因此,如何通过电路设计的改良,来降低制程偏移影响,以克服上述缺陷,已成为该领域内所需要解决的重要课题之一。Therefore, how to reduce the influence of process skew by improving the circuit design to overcome the above defects has become one of the important issues to be solved in this field.
发明内容Contents of the invention
本发明所要解决的技术问题在于,针对现有技术的不足提供一种可降低制程偏移影响的信号检测电路。The technical problem to be solved by the present invention is to provide a signal detection circuit capable of reducing the influence of manufacturing process deviation in view of the deficiencies of the prior art.
为了解决上述的技术问题,本发明所采用的一种技术方案是提供一种信号检测电路,其包括输入开关电路、振幅检测电路、时钟产生电路及积分电路。输入开关电路经配置以接收参考电压及输入电压,且由切换信号组控制,以选择性地输出该参考电压或该输入电压。振幅检测电路经配置以对该输入开关电路的输出进行检测,以对应产生振幅电压。时钟产生电路经配置以产生该切换信号组。其中,该切换信号组用于控制该输入开关电路交替进入一第一阶段及一第二阶段,且该输入开关电路经控制以在该第一阶段输出该参考电压,且在该第二阶段输出该输入电压。积分电路经配置以将该振幅电压作为输入并进行累计,并在一预定时间区间内产生对应一累计结果的一积分电压。其中,该预定时间区间包括以该第一阶段及该第二阶段为循环的多个周期。In order to solve the above technical problems, a technical solution adopted by the present invention is to provide a signal detection circuit, which includes an input switch circuit, an amplitude detection circuit, a clock generation circuit and an integration circuit. The input switch circuit is configured to receive a reference voltage and an input voltage, and is controlled by a switching signal group to selectively output the reference voltage or the input voltage. The amplitude detection circuit is configured to detect the output of the input switch circuit to generate an amplitude voltage correspondingly. The clock generation circuit is configured to generate the set of switching signals. Wherein, the switch signal group is used to control the input switch circuit to alternately enter a first stage and a second stage, and the input switch circuit is controlled to output the reference voltage in the first stage, and output the reference voltage in the second stage the input voltage. The integration circuit is configured to take the amplitude voltage as an input and accumulate it, and generate an integration voltage corresponding to an accumulation result within a predetermined time interval. Wherein, the predetermined time interval includes a plurality of cycles with the first stage and the second stage as cycles.
本发明的一个有益效果在于,本发明所提供的信号检测电路,通过使用输入开关电路选择让输入信号以及参考电压在不同阶段进入振幅检测电路与积分电路,由于共用后端的电路,输入信号与参考电压将经历相同的电路偏移量,因此,可以减少采用不同路径时,因制程偏压产生的误差。A beneficial effect of the present invention is that the signal detection circuit provided by the present invention uses the input switch circuit to select the input signal and the reference voltage to enter the amplitude detection circuit and the integration circuit at different stages. The voltages will experience the same amount of circuit offset, thus reducing errors due to process biasing when different paths are taken.
为了能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与图示,然而所提供的图示仅用于提供参考与说明,并非用来对本发明加以限制。In order to further understand the features and technical contents of the present invention, please refer to the following detailed description and illustrations of the present invention, however, the provided illustrations are only for reference and illustration, and are not intended to limit the present invention.
附图说明Description of drawings
图1为本发明实施例的信号检测电路的功能模块图。FIG. 1 is a functional block diagram of a signal detection circuit according to an embodiment of the present invention.
图2为本发明实施例的信号检测电路的电路布局图。FIG. 2 is a circuit layout diagram of a signal detection circuit according to an embodiment of the present invention.
图3为本发明实施例的信号检测电路的第一信号时序图。FIG. 3 is a first signal timing diagram of the signal detection circuit of the embodiment of the present invention.
图4为本发明实施例的信号检测电路的第二信号时序图。FIG. 4 is a second signal timing diagram of the signal detection circuit of the embodiment of the present invention.
图5为本发明另一实施例的信号检测电路的电路布局图。FIG. 5 is a circuit layout diagram of a signal detection circuit according to another embodiment of the present invention.
具体实施方式Detailed ways
以下通过特定的具体实施例来说明本发明所公开的涉及“信号检测电路”的实施方式,本领域技术人员可由本说明书所公开的内容了解本发明的优点与效果。本发明可通过其他不同的具体实施例加以实施或应用,本说明书中的各项细节也可基于不同观点与应用,在不背离本发明的构思下进行各种修改与变更。另外,事先声明,本发明的附图仅为简单示意说明,并非根据实际尺寸所描绘。以下实施例将进一步详细说明本发明的相关技术内容,但所公开的内容并非用以限制本发明的保护范围。另外,本文中所使用的术语“或”,应视实际情况可能包括相关联的列出项目中的任一个或者多个的组合。The implementation of the "signal detection circuit" disclosed in the present invention will be described below through specific specific examples. Those skilled in the art can understand the advantages and effects of the present invention from the content disclosed in this specification. The present invention can be implemented or applied through other different specific embodiments, and various modifications and changes can be made to the details in this specification based on different viewpoints and applications without departing from the concept of the present invention. In addition, it is stated in advance that the drawings of the present invention are only for simple illustration, and are not drawn according to the actual size. The following examples will further describe the relevant technical content of the present invention in detail, but the disclosed content is not intended to limit the protection scope of the present invention. In addition, the term "or" used herein may include any one or a combination of more of the associated listed items depending on the actual situation.
图1为本发明实施例的信号检测电路的功能模块图。参阅图1所示,本发明实施例提供一种信号检测电路1,其包括输入开关电路10、振幅检测电路12、时钟产生电路14及积分电路16。FIG. 1 is a functional block diagram of a signal detection circuit according to an embodiment of the present invention. Referring to FIG. 1 , an embodiment of the present invention provides a signal detection circuit 1 , which includes an
输入开关电路10经配置以接收参考电压VREF及输入电压VIN,且由切换信号组SS控制,以选择性地输出参考电压VREF或输入电压VIN。The
请先参阅图2,图2为本发明实施例的信号检测电路的电路布局图。举例而言,参考电压VREF为一对差分参考电压,包括第一参考电压VREFP及第二参考电压VREFN,且输入电压VIN为一对差分输入电压,包括第一输入电压VINP及第二输入电压VINN。Please refer to FIG. 2 first. FIG. 2 is a circuit layout diagram of a signal detection circuit according to an embodiment of the present invention. For example, the reference voltage VREF is a pair of differential reference voltages, including a first reference voltage VREFP and a second reference voltage VREFN, and the input voltage VIN is a pair of differential input voltages, including a first input voltage VINP and a second input voltage VINN .
在图2的实施例中,响应于输入电压VIN为差分信号,输入开关电路10可例如为一复用器,其电路简化后可如图2所示包括第一开关S1、第二开关S2、第三开关S3及第四开关S4,且具有第一输出端o1及第二输出端o2。第一开关S1、第二开关S2、第三开关S3及第四开关S4可分别为N型或P型的金属氧化物半导体场效电晶体(Metal Oxide SemiconductorField Effect Transistor,MOSFET),但本发明不限于此。In the embodiment of FIG. 2, in response to the input voltage VIN being a differential signal, the
其中,第一开关S1连接于第一输出端o1且接收第一参考电压VREFP,第二开关S2连接于第一输出端o1且接收第一输入电压VINP,第三开关S3连接于第二输出端o2且接收第二输入电压VINN,第四开关S4连接于第二输入端o2且接收第二参考电压VREFN。Wherein, the first switch S1 is connected to the first output terminal o1 and receives the first reference voltage VREFP, the second switch S2 is connected to the first output terminal o1 and receives the first input voltage VINP, and the third switch S3 is connected to the second output terminal o2 and receives the second input voltage VINN, the fourth switch S4 is connected to the second input terminal o2 and receives the second reference voltage VREFN.
请再次参考图1,振幅检测电路12用于对输入开关电路10的输出进行检测,以对应产生振幅电压VA。举例而言,振幅检测电路12可为图2的整流器120,或是任何能将输入信号依据其大小转换成单纯输出高电位或低电位的电路,但本发明不限于此。Please refer to FIG. 1 again, the
如图2所示,整流器120可具有第一检测输出端do1及第二检测输出端do2,且经配置以对应第一输出端o1及第二输出端o2的输出于第一检测输出端do1及第二检测输出端do2产生包括第一振幅电压Va1及第二振幅电压Va2的振幅电压VA。As shown in FIG. 2, the
另一方面,时钟产生电路14用以产生切换信号组SS(如图1所示)。切换信号组SS主要用于控制输入开关电路10交替进入第一阶段及第二阶段。详细而言,在第一阶段下,输入开关电路10经控制以输出参考电压VREF,且在第二阶段输出输入电压VIN。On the other hand, the
此外,当上述切换方式应用于图2的实施例时,切换信号组SS可包括第一切换信号φ1及第二切换信号φ2,且第一切换信号φ1用于控制第一开关S1及第四开关S4在第一阶段导通,第二切换信号φ2用于控制第二开关S2及第三开关S3在第二阶段导通,以使输入开关电路10在第一阶段于第一输出端o1及第二输出端o2分别输出第一参考电压VREFP及第二参考电压VREFN,以及在第二阶段于第一输出端o1及第二输出端o2分别输出第一输入电压VINP及第二输入电压VINN。In addition, when the above switching method is applied to the embodiment of FIG. 2, the switching signal set SS may include a first switching signal φ1 and a second switching signal φ2, and the first switching signal φ1 is used to control the first switch S1 and the fourth switch S4 is turned on in the first stage, and the second switching signal φ2 is used to control the second switch S2 and the third switch S3 to be turned on in the second stage, so that the
请再次参考图1,积分电路16用以将振幅电压VA作为输入并进行累计,并在预定时间区间内产生对应累计结果的积分电压VINT。其中,预定时间区间涵盖以第一阶段及第二阶段为循环的多个周期。Please refer to FIG. 1 again, the
举例而言,积分电路16可在单一周期中,分别对第一阶段下的振幅电压VA(该阶段为根据参考电压VREF产生)及第二阶段下的振幅电压VA(该阶段为根据输入电压VIN产生)采样后执行减法处理。因此,经过相当于该预定时间区间的多个周期后,即可依据所累计的积分电压VINT判断输入电压VIN是高于或低于参考电压VREF。For example, the integrating
以此方式,请参考图2,积分电路16可包括采样电路160及积分放大器162。其中,采样电路160用以在第一阶段对第一振幅电压Va1及第二振幅电压Va2采样。In this way, please refer to FIG. 2 , the
如图2所示,采样电路160可包括第一采样电容C1、第二采样电容C2、第五开关S5、第六开关S6、第七开关S7及第八开关S8。第五开关S5、第六开关S6、第七开关S7及第八开关S8可分别为N型或P型的金属氧化物半导体场效电晶体(Metal Oxide SemiconductorField Effect Transistor,MOSFET),但本发明不限于此。As shown in FIG. 2 , the
第一采样电容C1连接于第一检测输出端do1及第一节点N1之间,第二采样电容C2连接于第二检测输出端do2及第二节点N2之间。第五开关S5的一端连接于第一节点N1,另一端接收共模电压Vcm。第六开关S6一端连接于第二节点N2,另一端接收共模电压Vcm。第七开关S7连接于第一节点N1及第三节点N3之间,第八开关S8连接于第二节点N2及第四节点N4之间。The first sampling capacitor C1 is connected between the first detection output terminal do1 and the first node N1, and the second sampling capacitor C2 is connected between the second detection output terminal do2 and the second node N2. One end of the fifth switch S5 is connected to the first node N1, and the other end receives the common-mode voltage Vcm. One end of the sixth switch S6 is connected to the second node N2, and the other end receives the common-mode voltage Vcm. The seventh switch S7 is connected between the first node N1 and the third node N3, and the eighth switch S8 is connected between the second node N2 and the fourth node N4.
另一方面,积分放大器162用于在第二阶段将采样电路160采样的第一振幅电压Va1及第二振幅电压Va2进行保持以分别进行累计。On the other hand, the integrating
因此,如图2所示,积分放大器162可包括全差分放大器FDA、第一反馈电容Cfb1及第二反馈电容Cfb2。Therefore, as shown in FIG. 2 , the integrating
全差分放大器FDA具有一非反转输入端(左侧+端)、一反转输入端(左侧-端)、一反转输出端(右侧+端)及一非反转输出端(右侧-端),其中,非反转输入端连接于第三节点N3,且反转输入端连接于第四节点N4。第一反馈电容Cfb1连接于非反转输入端及反转输出端之间,第二反馈电容Cfb2连接于反转输入端及非反转输出端之间。A fully differential amplifier FDA has a non-inverting input (left + terminal), an inverting input (left - terminal), an inverting output (right + terminal), and a non-inverting output (right side-terminal), wherein the non-inverting input terminal is connected to the third node N3, and the inverting input terminal is connected to the fourth node N4. The first feedback capacitor Cfb1 is connected between the non-inverting input terminal and the inverting output terminal, and the second feedback capacitor Cfb2 is connected between the inverting input terminal and the non-inverting output terminal.
如图2所示,第五开关S5及第六开关S6由第一切换信号φ1控制,以在第一阶段导通,在第二阶段关断,第七开关S7及第八开关S8由第二切换信号φ2控制,以在第二阶段导通,在第一阶段关断。在本发明的实施例中,积分电路16可用低通滤波器或是电容来进行替换,但本发明不限于此。As shown in Figure 2, the fifth switch S5 and the sixth switch S6 are controlled by the first switching signal φ1 to be turned on in the first stage and turned off in the second stage, and the seventh switch S7 and the eighth switch S8 are controlled by the second The switching signal φ2 is controlled to be turned on in the second stage and turned off in the first stage. In the embodiment of the present invention, the integrating
以下将参阅图3说明图2的信号检测电路的检测机制。图3为本发明实施例的信号检测电路的第一信号时序图。如图所示,示出了包括时间点t1至时间点t9在内的时序图。其中,在图3的实施例中,参考电压VREF在时间点t1至t5的区间内小于输入电压VIN,在时间点t5至时间点t9的区间内大于输入电压VIN。The detection mechanism of the signal detection circuit in FIG. 2 will be described below with reference to FIG. 3 . FIG. 3 is a first signal timing diagram of the signal detection circuit of the embodiment of the present invention. As shown in the figure, a timing chart including time point t1 to time point t9 is shown. Wherein, in the embodiment of FIG. 3 , the reference voltage VREF is lower than the input voltage VIN during the interval from time point t1 to t5 , and greater than the input voltage VIN during the interval from time point t5 to time point t9 .
以下以时间点t2作为起始点,在时间点t2至t3之间,进入第一阶段,第一切换信号φ1为高电位,第二切换信号φ2为低电位,代表第一开关S1、第四开关S4、第五开关S5及第六开关S6均导通,第二开关S2、第三开关S3、第七开关S7及第八开关S8均关断,此时,参考电压VREF输入整流器120,产生低电位的振幅电压VA。针对此振幅电压VA,第一采样电容C1对第一振幅电压Va1及共模电压Vcm之间的差值采样,第二采样电容C2对第二振幅电压Va2及共模电压Vcm之间的差值采样,据此可对振幅电压VA采样。In the following, time point t2 is taken as the starting point, between time point t2 and t3, the first stage is entered, the first switching signal φ1 is high potential, and the second switching signal φ2 is low potential, representing the first switch S1, the fourth switch S4, the fifth switch S5, and the sixth switch S6 are all turned on, and the second switch S2, the third switch S3, the seventh switch S7, and the eighth switch S8 are all turned off. At this time, the reference voltage VREF is input into the
接着,在时间点t3至t4之间,进入第二阶段,第一切换信号φ1为低电位,第二切换信号φ2为高电位,代表第一开关S1、第四开关S4、第五开关S5及第六开关S6均关断,第二开关S2、第三开关S3、第七开关S7及第八开关S8均导通,此时,输入电压VIN输入整流器120,产生高电位的振幅电压VA。此高电位的振幅电压VA将与第一阶段已经采样的低电位的振幅电压VA相减,进而将相减的结果经由全差分放大器FDA放大后保持于第一反馈电容Cfb1及第二反馈电容Cfb2,以产生积分电压VINT。Then, between the time point t3 and t4, enter the second stage, the first switching signal φ1 is low potential, the second switching signal φ2 is high potential, representing the first switch S1, the fourth switch S4, the fifth switch S5 and The sixth switch S6 is turned off, and the second switch S2 , the third switch S3 , the seventh switch S7 and the eighth switch S8 are all turned on. At this time, the input voltage VIN is input to the
由图3可知,由于参考电压VREF在时间点t2至t5的区间内小于输入电压VIN,因此积分电压VINT由时间点t2至t5逐渐递减,据此,在以第一阶段及第二阶段为循环的多个周期后,例如时间点t5,可将积分电压VINT输出作为累计结果,据此判定参考电压VREF与输入电压VIN之间的大小关系。It can be seen from Fig. 3 that since the reference voltage VREF is lower than the input voltage VIN during the period from time point t2 to t5, the integrated voltage VINT gradually decreases from time point t2 to t5. After several cycles, such as time point t5, the integrated voltage VINT can be output as the cumulative result, and the magnitude relationship between the reference voltage VREF and the input voltage VIN can be determined accordingly.
另一方面,由于参考电压VREF在时间点t6至t9的区间内大于输入电压VIN,因此积分电压VINT由时间点t6至t9逐渐递增,也可在多个周期后将递增后的积分电压VINT输出作为累计结果。On the other hand, since the reference voltage VREF is greater than the input voltage VIN during the time point t6 to t9, the integrated voltage VINT gradually increases from the time point t6 to t9, and the increased integrated voltage VINT can also be output after several cycles. as a cumulative result.
另外,需要说明的是,图2的积分放大器162还包括第一重置开关Sr1、第二重置开关Sr2及第三重置开关Sr3。第一重置开关Sr1连接于全差分放大器FDA的非反转输入端及反转输出端之间,第二重置开关Sr2连接于全差分放大器FDA的反转输入端及非反转输出端之间,第三重置开关Sr3连接于第三节点N3及第四节点N4之间。In addition, it should be noted that the integrating
相应的,时钟产生电路14还产生一重置信号Rst,以在预定时间区间之前及之后的一重置时间区间内控制第一重置开关Sr1、第二重置开关Sr2及第三重置开关Sr3导通,且在预定时间区间内关断。例如,重置时间区间可为图3的时间点t1至t2之间以及t5至t6之间,预定时间区间可例如为时间点t2至t5之间。在第一重置开关Sr1、第二重置开关Sr2及第三重置开关Sr3导通后,将可重置所保持的积分电压VINT,以重新进行检测。Correspondingly, the
以下将参阅图4,以另一实施例说明图2的信号检测电路的检测机制。图4为本发明实施例的信号检测电路的第二信号时序图。如图所示,示出了包括时间点t1至时间点t9在内的时序图。其中,在图4的实施例中,参考电压VREF不变,而输入电压在时间点t1至t5的区间内小于参考电压VREF,在时间点t5至t9的区间内大于参考电压VREF。Referring to FIG. 4 , the detection mechanism of the signal detection circuit in FIG. 2 will be described in another embodiment. FIG. 4 is a second signal timing diagram of the signal detection circuit of the embodiment of the present invention. As shown in the figure, a timing chart including time point t1 to time point t9 is shown. Wherein, in the embodiment of FIG. 4 , the reference voltage VREF remains unchanged, and the input voltage is lower than the reference voltage VREF during the interval from time point t1 to t5 , and greater than the reference voltage VREF during the interval from time point t5 to t9 .
以下以时间点t2作为起始点,在时间点t2至t3之间,进入第一阶段,第一切换信号φ1为高电位,第二切换信号φ2为低电位,代表第一开关S1、第四开关S4、第五开关S5及第六开关S6均导通,第二开关S2、第三开关S3、第七开关S7及第八开关S8均关断,此时,参考电压VREF输入整流器120,产生高电位的振幅电压VA。针对此振幅电压VA,第一采样电容C1对第一振幅电压Va1及共模电压Vcm之间的差值采样,第二采样电容C2对第二振幅电压Va2及共模电压Vcm之间的差值采样,据此可对振幅电压VA采样。In the following, time point t2 is taken as the starting point, between time point t2 and t3, the first stage is entered, the first switching signal φ1 is high potential, and the second switching signal φ2 is low potential, representing the first switch S1, the fourth switch S4, the fifth switch S5 and the sixth switch S6 are all turned on, and the second switch S2, the third switch S3, the seventh switch S7 and the eighth switch S8 are all turned off. At this time, the reference voltage VREF is input into the
接着,在时间点t3至t4之间,进入第二阶段,第一切换信号φ1为低电位,第二切换信号φ2为高电位,代表第一开关S1、第四开关S4、第五开关S5及第六开关S6均关断,第二开关S2、第三开关S3、第七开关S7及第八开关S8均导通,此时,输入电压VIN输入整流器120,产生低电位的振幅电压VA。此低电位的振幅电压VA将与第一阶段已经采样的高电位的振幅电压VA相减,进而将相减的结果经由全差分放大器FDA放大后保持于第一反馈电容Cfb1及第二反馈电容Cfb2,以产生积分电压VINT。Then, between the time point t3 and t4, enter the second stage, the first switching signal φ1 is low potential, the second switching signal φ2 is high potential, representing the first switch S1, the fourth switch S4, the fifth switch S5 and The sixth switch S6 is turned off, and the second switch S2 , the third switch S3 , the seventh switch S7 and the eighth switch S8 are all turned on. At this time, the input voltage VIN is input to the
由图4可知,由于参考电压VREF在时间点t2至t5的区间内大于输入电压VIN,因此积分电压VINT由时间点t2至t5逐渐递增,据此,在以第一阶段及第二阶段为循环的多个周期后,例如时间点t5,可将积分电压VINT输出作为累计结果,据此判定参考电压VREF与输入电压VIN之间的大小关系。It can be seen from Figure 4 that since the reference voltage VREF is greater than the input voltage VIN during the period from time point t2 to t5, the integrated voltage VINT gradually increases from time point t2 to t5. After several cycles, such as time point t5, the integrated voltage VINT can be output as the accumulation result, and the magnitude relationship between the reference voltage VREF and the input voltage VIN can be determined accordingly.
因此,上述实施例使用输入开关电路10选择让输入电压VIN以及参考电压VREF在不同阶段进入振幅检测电路12与积分电路16,由于共用后端的电路,输入电压VIN与参考电压VREF将经历相同的电路偏移量,因此,可以减少采用不同路径时,因制程偏压产生的误差。Therefore, the above-mentioned embodiment uses the
在一些实施例中,信号检测电路1还选择性地包括比较器电路18,经配置以通过其之第一输入端及第二输入端接收积分电路16产生的积分电压VINT(即图2中反转输出端及非反转输出端的电压)并进行比较,以产生比较结果信号Vcomp作为累计结果。相应的,在此实施例中,时钟产生电路14还用以产生比较时钟信号comclk,以在预定时间区间(例如图3、4的时间点t2至t5)结束时控制比较器电路18产生并输出比较结果信号Vcomp。In some embodiments, the signal detection circuit 1 further optionally includes a
请先参阅图5,图5为本发明另一实施例的信号检测电路的电路布局图。在另一实施例中,积分放大器162还选择性地包括斩波电路(chopping circuit),例如分别连接于全差分放大器FDA的输入端及输出端的第一斩波电路CC1及第二斩波电路CC2,其可被设计在特定时间点作动。第一斩波电路CC1具有分别连接第三节点N3及第四节点N4的二输入端,及分别连接非反转输入端(左侧+端)及反转输入端(左侧-端)的二输出端。第二斩波电路CC2具有分别连接反转输出端(右侧-端)及非反转输出端(右侧+端)的二输入端及分别连接比较器电路18的第一输入端及第二输入端的二输出端。Please refer to FIG. 5 first. FIG. 5 is a circuit layout diagram of a signal detection circuit according to another embodiment of the present invention. In another embodiment, the integrating
例如,第一斩波电路CC1及第二斩波电路CC2可于预定数量的多个周期内一起作动,使比较器电路18可将信号传输路径上的偏移量抵消,使比较结果信号Vcomp最佳化。For example, the first chopping circuit CC1 and the second chopping circuit CC2 can operate together within a predetermined number of cycles, so that the
举例而言,上述偏移量可为全差分放大器FDA所产生的偏移量,而特定数量的多个周期可为4个周期。在4个周期中的第一区间,例如,前两个周期中,第一斩波电路CC1及第二斩波电路CC2可经配置以依据第一切换信号φ1及第二切换信号φ2,使比较器电路18比较反转输出端(右侧-端)的信号与非反转输出端(右侧+端)的信号,而在4个周期中的第二区间,例如,后两个周期中,第一斩波电路CC1及第二斩波电路CC2经配置以依据第一切换信号φ1及第二切换信号φ2,使比较器电路18转换为比较非反转输出端(右侧+端)的信号与反转输出端(右侧-端)的信号,可达成平均抵消两输出端偏移量的效果,使比较结果信号Vcomp最佳化。For example, the aforementioned offset may be the offset generated by the fully differential amplifier FDA, and the specific number of cycles may be 4 cycles. In the first interval of 4 cycles, for example, in the first two cycles, the first chopping circuit CC1 and the second chopping circuit CC2 can be configured to make the comparison according to the first switching signal φ1 and the second switching signal φ2 The
实施例的有益效果:The beneficial effect of embodiment:
本发明的一个有益效果在于,本发明所提供的信号检测电路,通过使用输入开关电路选择让输入信号以及参考电压在不同阶段进入振幅检测电路与积分电路,由于共用后端的电路,输入信号与参考电压将经历相同的电路偏移量,因此,可以减少采用不同路径时,因制程偏压产生的误差。A beneficial effect of the present invention is that the signal detection circuit provided by the present invention uses the input switch circuit to select the input signal and the reference voltage to enter the amplitude detection circuit and the integration circuit at different stages. The voltages will experience the same amount of circuit offset, thus reducing errors due to process biasing when different paths are taken.
另一方面,本发明所提供的信号检测电路可选择性地包括比较器电路及斩波电路,以实现平均抵消两输出端偏移量的效果,并产生最佳化的比较结果信号Vcomp作为累计结果。On the other hand, the signal detection circuit provided by the present invention can optionally include a comparator circuit and a chopping circuit to achieve the effect of offsetting the offsets of the two output terminals on average, and generate an optimized comparison result signal Vcomp as an accumulated result.
以上所公开的内容仅为本发明的优选实施例,本发明所要求的专利保护范围并不以此为限,所以凡是运用本发明说明书及图示内容所做的等效技术变化,均在本发明所要求的专利保护范围内。The content disclosed above is only a preferred embodiment of the present invention, and the scope of patent protection required by the present invention is not limited thereto. Therefore, all equivalent technical changes made by using the description and illustrations of the present invention are included in this document. within the scope of patent protection required by the invention.
附图标记说明:Explanation of reference signs:
1:信号检测电路1: Signal detection circuit
10:输入开关电路10: Input switch circuit
12:振幅检测电路12: Amplitude detection circuit
120:整流器120: rectifier
14:时钟产生电路14: Clock generation circuit
16:积分电路16: Integrator circuit
18:比较器电路18: Comparator circuit
160:采样电路160: Sampling circuit
162:积分放大器162: Integral amplifier
C1:第一采样电容C1: first sampling capacitor
C2:第二采样电容C2: Second sampling capacitor
CC1:第一斩波电路CC1: First chopper circuit
CC2:第二斩波电路CC2: Second chopper circuit
Cfb1:第一反馈电容Cfb1: first feedback capacitor
Cfb2:第二反馈电容Cfb2: Second feedback capacitor
comclk:比较时钟信号comclk: compare clock signal
do1:第一检测输出端do1: first detection output terminal
do2:第二检测输出端do2: the second detection output
FDA:全差分放大器FDA: Fully Differential Amplifier
N1:第一节点N1: the first node
N2:第二节点N2: second node
N3:第三节点N3: the third node
N4:第四节点N4: the fourth node
o1:第一输出端o1: first output terminal
o2:第二输出端o2: second output terminal
Rst:重置信号Rst: reset signal
S1:第一开关S1: first switch
S2:第二开关S2: second switch
S3:第三开关S3: the third switch
S4:第四开关S4: Fourth switch
S5:第五开关S5: fifth switch
S6:第六开关S6: Sixth switch
S7:第七开关S7: Seventh switch
S8:第八开关S8: Eighth switch
Sr1:第一重置开关Sr1: First reset switch
Sr2:第二重置开关Sr2: Second reset switch
Sr3:第三重置开关Sr3: Third reset switch
SS:切换信号组SS: switch signal group
t1至t9:时间t1 to t9: time
VA:振幅电压VA: amplitude voltage
Va1:第一振幅电压Va1: first amplitude voltage
Va2:第二振幅电压Va2: second amplitude voltage
Vcm:共模电压Vcm: common mode voltage
Vcomp:比较结果信号Vcomp: comparison result signal
VIN:输入电压VIN: input voltage
VINN:第二输入电压VINN: second input voltage
VINP:第一输入电压VINP: first input voltage
VINT:积分电压VINT: integral voltage
VREF:参考电压VREF: reference voltage
VREFN:第二参考电压VREFN: second reference voltage
VREFP:第一参考电压VREFP: first reference voltage
φ1:第一切换信号φ1: the first switching signal
φ2:第二切换信号φ2: Second switching signal
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110506904.1A CN115333538A (en) | 2021-05-10 | 2021-05-10 | Signal detection circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110506904.1A CN115333538A (en) | 2021-05-10 | 2021-05-10 | Signal detection circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115333538A true CN115333538A (en) | 2022-11-11 |
Family
ID=83912090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110506904.1A Pending CN115333538A (en) | 2021-05-10 | 2021-05-10 | Signal detection circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115333538A (en) |
-
2021
- 2021-05-10 CN CN202110506904.1A patent/CN115333538A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5244242B2 (en) | Automatic correction feedback loop for offset and ripple suppression in chopper stabilized amplifiers | |
CN103516364B (en) | System and method for switched capacitor circuit | |
JP4564559B2 (en) | Differential amplifier circuit and AD converter using the same | |
US8004435B2 (en) | Discrete-time circuit | |
US7649486B2 (en) | Flash A/D converter | |
US20140062569A1 (en) | Continuously self-calibrated latched comparator | |
JP5695764B2 (en) | Magnetic detection device and magnetic detection method | |
CN101783660B (en) | Flip-Flops and Pipelined Analog-to-Digital Converters | |
CN104601908B (en) | Difference amplifier and the double mode comparator for using difference amplifier | |
CN105871376A (en) | Voltage sampling and driver amplifier flicker noise cancellation in a switched capacitor analog-to-digital converter | |
JP3439322B2 (en) | Differential input chopper type voltage comparison circuit | |
JP4694214B2 (en) | Comparator, AD conversion circuit, semiconductor device, and imaging device | |
US9979382B1 (en) | Programmable duty-cycle low jitter differential clock buffer | |
JP5551626B2 (en) | Operational amplifier circuit | |
US9729162B1 (en) | Flexible signal chain processing circuits and method | |
TWI779595B (en) | Signal detection circuit | |
CN105099451A (en) | Differential amplification circuit and assembly line analog to digital converter (ADC) with differential amplification circuit | |
US9543961B2 (en) | Current detection circuit and pile-up detection circuit | |
JP4727511B2 (en) | High-speed analog / digital converter | |
TW494643B (en) | Current comparator and method therefor | |
WO2022083749A1 (en) | Comparator and successive-approximation analog-to-digital converter | |
JP5891811B2 (en) | Fully differential amplifier circuit, comparator circuit, A / D converter circuit, and electronic equipment | |
US9013344B2 (en) | High speed dynamic comparator | |
CN115333538A (en) | Signal detection circuit | |
EP3661054B1 (en) | Preamplifier circuit with floating transconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |