CN115260567B - Method for preparing micrometer/nanometer pore polymer film - Google Patents
Method for preparing micrometer/nanometer pore polymer film Download PDFInfo
- Publication number
- CN115260567B CN115260567B CN202211022533.0A CN202211022533A CN115260567B CN 115260567 B CN115260567 B CN 115260567B CN 202211022533 A CN202211022533 A CN 202211022533A CN 115260567 B CN115260567 B CN 115260567B
- Authority
- CN
- China
- Prior art keywords
- micron
- polymer film
- nanoparticles
- micro
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920006254 polymer film Polymers 0.000 title claims abstract description 122
- 238000000034 method Methods 0.000 title claims description 25
- 239000011148 porous material Substances 0.000 title abstract description 6
- 239000002105 nanoparticle Substances 0.000 claims abstract description 138
- 239000011859 microparticle Substances 0.000 claims abstract description 35
- 238000005530 etching Methods 0.000 claims abstract description 26
- 239000000725 suspension Substances 0.000 claims abstract description 20
- 230000000149 penetrating effect Effects 0.000 claims abstract description 12
- 239000011248 coating agent Substances 0.000 claims abstract description 3
- 238000000576 coating method Methods 0.000 claims abstract description 3
- 239000006070 nanosuspension Substances 0.000 claims description 31
- 239000000243 solution Substances 0.000 claims description 25
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 15
- 238000004528 spin coating Methods 0.000 claims description 13
- 239000002904 solvent Substances 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000011259 mixed solution Substances 0.000 claims description 7
- 238000009210 therapy by ultrasound Methods 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- 239000012895 dilution Substances 0.000 claims description 3
- 238000010790 dilution Methods 0.000 claims description 3
- 229920006290 polyethylene naphthalate film Polymers 0.000 claims description 3
- -1 polyethylene terephthalate Polymers 0.000 claims description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 3
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 238000007865 diluting Methods 0.000 claims description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 abstract description 15
- 239000010408 film Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000002086 nanomaterial Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000002679 ablation Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 2
- 229920006289 polycarbonate film Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002090 nanochannel Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/26—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/04—Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
- C08J2201/044—Elimination of an inorganic solid phase
- C08J2201/0442—Elimination of an inorganic solid phase the inorganic phase being a metal, its oxide or hydroxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2369/00—Characterised by the use of polycarbonates; Derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2379/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
- C08J2379/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08J2379/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Abstract
Description
技术领域technical field
本发明涉及微米/纳米材料技术领域,具体地,涉及一种微米/纳米孔聚合物薄膜的制备方法。The invention relates to the technical field of micron/nano materials, in particular to a method for preparing a micron/nanoporous polymer film.
背景技术Background technique
使用微米/纳米孔对纳米材料和生物分子进行易位检测,在确定易位粒子的数量、DNA测序、蛋白质识别、微米/纳米颗粒大小测定和表面电荷检测等有广泛的应用。在带有微米/纳米孔的薄膜两端施加偏置电压产生电场时,带负电荷的纳米材料通过微米/纳米孔移动到正极,导致离子电流发生变化。离子电流的变化直接反映了纳米材料在迁移过程中体积和电荷对离子环境的影响,持续时间反映了纳米材料的长度。Translocation detection of nanomaterials and biomolecules using micro/nanopores has a wide range of applications in determining the number of translocated particles, DNA sequencing, protein identification, micro/nanoparticle size determination, and surface charge detection. When a bias voltage is applied across the film with micro/nanopores to generate an electric field, negatively charged nanomaterials move through the micro/nanopores to the positive electrode, resulting in a change in the ionic current. The change of ionic current directly reflects the impact of the volume and charge of the nanomaterial on the ionic environment during migration, and the duration reflects the length of the nanomaterial.
目前,制备微米/纳米孔聚合物薄膜的方法包括聚焦电子束/离子束、受控介质击穿、化学蚀刻、激光拉制玻璃或适应移液管等,但是,这些方法都会存在加工设备昂贵、制备时间长、无法大面积制备等问题。Currently, methods for preparing micro/nanoporous polymer films include focused electron beam/ion beam, controlled dielectric breakdown, chemical etching, laser drawn glass, or adapting pipettes, etc., but these methods all suffer from expensive processing equipment, There are problems such as long preparation time and inability to prepare large areas.
发明内容Contents of the invention
有鉴于此,本发明提出了一种微米/纳米孔聚合物薄膜的制备方法,以解决上述至少之一的技术问题,实现低成本、大面积、快速制备微米/纳米孔聚合物薄膜。In view of this, the present invention proposes a method for preparing a micron/nanoporous polymer film to solve at least one of the above-mentioned technical problems and realize low-cost, large-area, rapid preparation of a micron/nanoporous polymer film.
为了实现上述目的,本发明提出了一种微米/纳米孔聚合物薄膜的制备方法,该方法包括:将微米/纳米颗粒悬浊液涂覆在聚合物薄膜上,得到具有微米/纳米颗粒的聚合物薄膜;对具有微米/纳米颗粒的聚合物薄膜进行光脉冲处理,以使微米/纳米颗粒穿透聚合物薄膜;对穿透聚合物薄膜的微米/纳米颗粒进行刻蚀,得到微米/纳米孔聚合物薄膜。In order to achieve the above object, the present invention proposes a method for preparing a micron/nanoporous polymer film, the method comprising: coating the micron/nanoparticle suspension on the polymer film to obtain a polymeric film with micron/nanoparticles Thin films of objects; light pulse treatment of polymer films with micron/nanoparticles to allow micron/nanoparticles to penetrate the polymer film; etching of micron/nanoparticles penetrating the polymer film to obtain micron/nanopores polymer film.
根据本发明的实施例,其中,将微米/纳米颗粒悬浊液涂覆在聚合物薄膜上,得到具有微米/纳米颗粒的聚合物薄膜,包括:对微米/纳米悬浊液进行预处理,得到预处理后的微米/纳米悬浊液;利用匀胶机,将预处理后的微米/纳米悬浊液旋涂在聚合物薄膜上;将聚合物薄膜上的预处理后的微米/纳米悬浊液的溶剂挥发后,得到具有微米/纳米颗粒的聚合物薄膜。According to an embodiment of the present invention, wherein the micron/nanoparticle suspension is coated on the polymer film to obtain a polymer film with micron/nanoparticles, including: pretreating the micron/nanoparticle suspension to obtain The pretreated micron/nano suspension; using a homogenizer, spin-coat the pretreated micron/nano suspension on the polymer film; the pretreated micron/nano suspension on the polymer film After the solvent of the liquid evaporates, a polymer film with micro/nanoparticles is obtained.
根据本发明的实施例,其中,旋涂的旋涂速度为500~4000转/分钟。According to an embodiment of the present invention, wherein, the spin coating speed of the spin coating is 500-4000 rpm.
根据本发明的实施例,其中,对微米/纳米悬浊液进行预处理,得到预处理后的微米/纳米悬浊液,包括:利用预设体积比的稀释溶液对微米/纳米悬浊液进行稀释,得到稀释后的微米/纳米悬浊液;对稀释后的微米/纳米悬浊液进行超声处理,得到预处理后的微米/纳米悬浊液。According to an embodiment of the present invention, wherein the micron/nano suspension is pretreated to obtain the pretreated micron/nano suspension, which includes: using a dilution solution with a preset volume ratio to process the micron/nano suspension Dilute to obtain a diluted micron/nano suspension; ultrasonicate the diluted micron/nano suspension to obtain a pretreated micron/nano suspension.
根据本发明的实施例,其中,预设体积比的稀释溶液为水与乙醇的混合溶液,预设体积比为1∶2~2∶1;稀释后的微米/纳米悬浊液的浓度为0.1μg/mL~10mg/mL。According to an embodiment of the present invention, wherein the diluted solution with a preset volume ratio is a mixed solution of water and ethanol, and the preset volume ratio is 1:2 to 2:1; the concentration of the diluted micron/nano suspension is 0.1 μg/mL~10mg/mL.
根据本发明的实施例,其中,对具有微米/纳米颗粒的聚合物薄膜进行光脉冲处理,包括:在满足预设光脉冲条件的情况下,利用脉冲光对具有微米/纳米颗粒的聚合物薄膜进行光脉冲照射处理。According to an embodiment of the present invention, performing light pulse treatment on the polymer film with micron/nanoparticles includes: using pulsed light to treat the polymer film with micron/nanoparticles under the condition of satisfying the preset light pulse condition Light pulse irradiation treatment was performed.
根据本发明的实施例,其中,满足预设光脉冲条件包括:光脉冲电压为1800V~3000V;光脉冲施加时间为1~4ms;光脉冲施加次数为1~30次;光脉冲间隔时间为0.5~2s。According to an embodiment of the present invention, wherein satisfying the preset light pulse conditions includes: the light pulse voltage is 1800V-3000V; the light pulse application time is 1-4ms; the light pulse application times is 1-30 times; the light pulse interval time is 0.5 ~2s.
根据本发明的实施例,其中,对穿透聚合物薄膜的微米/纳米颗粒进行刻蚀,得到微米/纳米孔聚合物薄膜,包括:利用刻蚀溶液对穿透聚合物薄膜的微米/纳米颗粒进行刻蚀预设时间,去除掉微米/纳米颗粒,得到微米/纳米孔聚合物薄膜。According to an embodiment of the present invention, wherein, etching the micron/nanoparticles penetrating the polymer film to obtain the micron/nanoporous polymer film includes: using an etching solution to etch the micron/nanoparticles penetrating the polymer film Perform etching for a preset time to remove micron/nanoparticles to obtain a micron/nanoporous polymer film.
根据本发明的实施例,其中,微米/纳米颗粒包括以下至少之一:银微米/纳米颗粒、金微米/纳米颗粒、铜微米/纳米颗粒、四氧化三铁微米/纳米颗粒;微米/纳米颗粒的粒径为1nm~1000μm。According to an embodiment of the present invention, wherein the micron/nanoparticles include at least one of the following: silver micron/nanoparticles, gold micron/nanoparticles, copper micron/nanoparticles, ferric oxide micron/nanoparticles; micron/nanoparticles The particle size is from 1nm to 1000μm.
根据本发明的实施例,其中,聚合物薄膜包括以下至少之一:聚碳酸薄膜、聚酰亚胺薄膜、聚萘二甲酸二醇酯薄膜、聚对苯二甲酸乙二醇酯薄膜。According to an embodiment of the present invention, wherein the polymer film includes at least one of the following: polycarbonate film, polyimide film, polyethylene naphthalate film, polyethylene terephthalate film.
根据本发明的实施例,通过将微米/纳米颗粒分散在聚合物薄膜上,对具有微米/纳米颗粒的聚合物薄膜进行光脉冲处理,光脉冲照射时,微米/纳米颗粒会吸收一部分脉冲光,微米/纳米颗粒由于光热效应会发生光热转化,使得微米/纳米颗粒的温度迅速升高,热量经过传递扩散到周围的聚合物薄膜上,当温度达到或超过聚合物薄膜的热分解温度时,微米/纳米颗粒周围的聚合物薄膜会被烧蚀,在重力作用下,微米/纳米颗粒逐渐下降穿透到聚合物薄膜底部,对聚合物薄膜底部的微米/纳米颗粒进行刻蚀,去除掉微米/纳米颗粒,形成微米/纳米孔,得到微米/纳米孔聚合物薄膜。解决了传统制备方法中制备设备成本高,制备时间长,无法大面积制备的技术问题,实现低成本、大面积且快速制备微米/纳米孔聚合物薄膜,此外,还可以实现通过控制微米/纳米颗粒的尺寸及密度,对微米/纳米孔聚合物薄膜的微米/纳米孔的尺寸及密度进行调整的技术效果。According to an embodiment of the present invention, by dispersing the micron/nanoparticles on the polymer film, the polymer film with micron/nanoparticles is subjected to light pulse treatment, and when the light pulse is irradiated, the micron/nanoparticles will absorb a part of the pulsed light, Due to the photothermal effect, the micron/nanoparticles will undergo photothermal conversion, so that the temperature of the micron/nanoparticles will rise rapidly, and the heat will diffuse to the surrounding polymer film through transfer. When the temperature reaches or exceeds the thermal decomposition temperature of the polymer film, The polymer film around the micron/nanoparticles will be ablated, and under the action of gravity, the micron/nanoparticles will gradually descend and penetrate to the bottom of the polymer film, etch the micron/nanoparticles at the bottom of the polymer film to remove the micron /nanoparticles, forming micro/nanopores, resulting in micro/nanoporous polymer films. It solves the technical problems of high cost of preparation equipment, long preparation time, and impossibility of large-area preparation in traditional preparation methods, and realizes low-cost, large-area and rapid preparation of micro/nanoporous polymer films. Particle size and density, the technical effect of adjusting the size and density of micro/nanoporous polymer films.
附图说明Description of drawings
图1示意性示出了根据本发明实施例的微米/纳米孔聚合物薄膜的制备方法的流程图;Fig. 1 schematically shows the flow chart of the preparation method of the micron/nanoporous polymer film according to the embodiment of the present invention;
图2示意性示出了根据本发明实施例的微米/纳米孔聚合物薄膜的制备方法的示意图;Fig. 2 schematically shows a schematic diagram of a method for preparing a micron/nanoporous polymer film according to an embodiment of the present invention;
图3示意性示出了根据本发明实施例的微米/纳米孔聚合物薄膜的SEM图。Fig. 3 schematically shows a SEM image of a micro/nanoporous polymer film according to an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
在相关技术中,相关技术人员采用以金属微米/纳米颗粒为模板,氮化硅或二氧化硅为基底薄膜,通过高温热退火处理数个小时后,微米/纳米颗粒能够穿透到基底薄膜底部;此外,相关技术人员将金属微米/纳米线在聚合物薄膜表面进行光脉冲烧结后,金属微米/纳米线有部分可以嵌入到聚合物薄膜中,并通过热传递使得聚合物薄膜部分熔融。In the related technology, the relevant technicians use metal micro/nano particles as the template, silicon nitride or silicon dioxide as the base film, and after several hours of high-temperature thermal annealing, the micro/nano particles can penetrate to the bottom of the base film ; In addition, after the relevant technical personnel sintered the metal micro/nano wires with light pulses on the surface of the polymer film, some of the metal micro/nano wires can be embedded in the polymer film, and the polymer film is partially melted by heat transfer.
基于上述相关技术,本发明提出了一种通过光脉冲加热微米/纳米颗粒制备微米/纳米孔聚合物薄膜的制备方法,以实现能够通过控制微米/纳米颗粒的尺寸及密度对微米/纳米孔的尺寸及密度的调整的技术效果,同时能够实现低成本、快速且大面积制备微米/纳米孔金属薄膜。Based on the above-mentioned related technologies, the present invention proposes a method for preparing micro/nanoporous polymer films by heating micron/nanoparticles with light pulses, so as to achieve the effect of controlling the size and density of micron/nanoparticles on the size and density of micron/nanopores. The technical effect of size and density adjustment can realize low-cost, rapid and large-area preparation of micro/nanoporous metal films.
图1示意性示出了根据本发明实施例的微米/纳米孔聚合物薄膜的制备方法的流程图。Fig. 1 schematically shows a flow chart of a method for preparing a micro/nanoporous polymer film according to an embodiment of the present invention.
如图1所示,该方法可以包括操作S101~S103。As shown in FIG. 1, the method may include operations S101-S103.
在操作S101,将微米/纳米颗粒悬浊液涂覆在聚合物薄膜上,得到具有微米/纳米颗粒的聚合物薄膜。In operation S101, a suspension of micron/nanoparticles is coated on a polymer film to obtain a polymer film with micron/nanoparticles.
在操作S102,对具有微米/纳米颗粒的聚合物薄膜进行光脉冲处理,以使微米/纳米颗粒穿透聚合物薄膜。In operation S102, light pulse processing is performed on the polymer film having micro/nano particles, so that the micro/nano particles penetrate the polymer film.
在操作S103,对穿透聚合物薄膜的微米/纳米颗粒进行刻蚀,得到微米/纳米孔聚合物薄膜。In operation S103, the micro/nano particles penetrating the polymer film are etched to obtain a micro/nanoporous polymer film.
根据本发明的实施例,微米/纳米颗粒可以为微米颗粒,也可以为纳米颗粒,或者可以为微米颗粒与纳米颗粒的混合颗粒。微米/纳米颗粒可以包括但不限于:银微米/纳米颗粒、金微米/纳米颗粒、铜微米/纳米颗粒、四氧化三铁微米/纳米颗粒。According to an embodiment of the present invention, the micro/nanoparticles may be microparticles, may also be nanoparticles, or may be mixed particles of microparticles and nanoparticles. Micro/nanoparticles may include, but are not limited to: silver micro/nanoparticles, gold micro/nanoparticles, copper micro/nanoparticles, ferroferric oxide micro/nanoparticles.
根据本发明的实施例,微米/纳米颗粒的粒径可以为1nm~1000μm。According to an embodiment of the present invention, the particle size of the micro/nano particles may be 1 nm˜1000 μm.
根据本发明的实施例,聚合物薄膜可以包括但不限于:聚碳酸薄膜、聚酰亚胺薄膜、聚萘二甲酸二醇酯薄膜、聚对苯二甲酸乙二醇酯薄膜。According to an embodiment of the present invention, the polymer film may include but not limited to: polycarbonate film, polyimide film, polyethylene naphthalate film, polyethylene terephthalate film.
根据本发明的实施例,该操作S101可以包括:对微米/纳米颗粒悬浊液进行预处理,得到预处理后的微米/纳米悬浊液。利用匀胶机,将预处理后的微米/纳米悬浊液旋涂在聚合物薄膜上;将聚合物薄膜上的预处理后的微米/纳米悬浊液的溶剂挥发后,得到具有微米/纳米颗粒的聚合物薄膜。According to an embodiment of the present invention, the operation S101 may include: performing pretreatment on the micron/nanoparticle suspension to obtain a pretreated micron/nanoparticle suspension. Using a homogenizer, the pretreated micron/nano suspension is spin-coated on the polymer film; after the solvent of the pretreated micron/nano suspension on the polymer film is volatilized, a micron/nano Polymer films of particles.
根据本发明的实施例,对微米/纳米颗粒悬浊液进行预处理,得到预处理后的微米/纳米悬浊液可以包括:利用预设体积比的稀释溶液对微米/纳米悬浊液进行稀释,得到稀释后的微米/纳米悬浊液。对稀释后的微米/纳米悬浊液进行超声处理,得到预处理后的微米/纳米悬浊液。According to an embodiment of the present invention, pretreating the micron/nanoparticle suspension to obtain the pretreated micron/nanosuspension may include: diluting the micron/nanosuspension with a dilution solution of a preset volume ratio , to obtain a diluted micro/nano suspension. Ultrasonic treatment is performed on the diluted micro/nano suspension to obtain a pretreated micro/nano suspension.
根据本发明的实施例,稀释溶液可以是水与乙醇的混合溶液,预设体积比可以包括水与乙醇的混合溶液的体积比可以为1∶2~2∶1;稀释后的微米/纳米悬浊液的浓度可以为0.1μg/mL~10mg/mL。超声处理的时间可以为10~30分钟。According to an embodiment of the present invention, the diluted solution may be a mixed solution of water and ethanol, and the preset volume ratio may include that the volume ratio of the mixed solution of water and ethanol may be 1:2 to 2:1; the diluted micron/nano suspension The concentration of the turbid solution may be 0.1 μg/mL˜10 mg/mL. The time of ultrasonic treatment may be 10-30 minutes.
根据本发明的实施例,水与乙醇的混合溶液的体积比可以为1∶2,1∶1,2∶1。稀释后的微米/纳米悬浊液的浓度可以为0.1μg/mL、1μg/mL、10μg/mL、30μg/mL、50μg/mL、70μg/mL、90μg/mL、100μg/mL、1mg/mL、10mg/mL。超声处理的时间可以为10分钟、20分钟、30分钟。According to an embodiment of the present invention, the volume ratio of the mixed solution of water and ethanol may be 1:2, 1:1, or 2:1. The concentration of the diluted micro/nano suspension can be 0.1 μg/mL, 1 μg/mL, 10 μg/mL, 30 μg/mL, 50 μg/mL, 70 μg/mL, 90 μg/mL, 100 μg/mL, 1 mg/mL, 10mg/mL. The time of ultrasonic treatment can be 10 minutes, 20 minutes, 30 minutes.
根据本发明的实施例,微米/纳米颗粒悬浊液的浓度越大,说明微米/纳米颗粒的密度越大,颗粒在旋涂过程中也易发生团聚,团聚的微米/纳米颗粒在脉冲光的照射下会产生尺寸及密度较大的微米/纳米孔。同理,微米/纳米颗粒悬浊液的浓度越小,说明微米/纳米颗粒的密度越小,颗粒在旋涂过程中发生团聚的可能性降低,微米/纳米颗粒在脉冲光的照射下生成的微米/纳米孔的尺寸较小,密度较低。According to an embodiment of the present invention, the greater the concentration of the micron/nanoparticle suspension, the greater the density of the micron/nanoparticles, and the particles are also prone to agglomeration during the spin coating process. Irradiation produces micro/nano pores of larger size and density. Similarly, the smaller the concentration of micron/nanoparticle suspension, the smaller the density of micron/nanoparticles, the lower the possibility of particle agglomeration during spin coating, and the micron/nanoparticles generated under the irradiation of pulsed light Micro/nanopores are smaller in size and lower in density.
根据本发明的实施例,水与乙醇的体积比可以优选为1∶1,由于聚合物薄膜表面会疏水,微米/纳米颗粒悬浊液无法在聚合物薄膜表面展开,而微米/纳米颗粒在乙醇中容易团聚,所以可以采用水与乙醇的混合液,可以降低微米/纳米颗粒的团聚,优选比例可以使得微米/纳米颗粒分散较好。超声处理可以使得微米/纳米颗粒在水与乙醇的混合溶液中分散更均匀。According to an embodiment of the present invention, the volume ratio of water and ethanol can be preferably 1: 1, because the surface of the polymer film will be hydrophobic, the suspension of micron/nanoparticles cannot be spread on the surface of the polymer film, and the micron/nanoparticles in ethanol It is easy to agglomerate in the medium, so the mixed solution of water and ethanol can be used to reduce the agglomeration of micron/nanoparticles, and the optimal ratio can make the micron/nanoparticles disperse better. Ultrasonic treatment can make micro/nanoparticles more uniformly dispersed in the mixed solution of water and ethanol.
根据本发明的实施例,旋涂的旋涂速度可以为500~4000转/分钟,可以包括500转/分钟、1000转/分钟、1500转/分钟、2000转/分钟、2500转/分钟、3000转/分钟、3500转/分钟、4000转/分钟。According to an embodiment of the present invention, the spin coating speed of spin coating may be 500-4000 rpm, including 500 rpm, 1000 rpm, 1500 rpm, 2000 rpm, 2500 rpm, 3000 rpm RPM, 3500 RPM, 4000 RPM.
根据本发明的实施例,稀释后的不同浓度的微米/纳米悬浊液具有不同的旋涂速度。旋涂速度是影响微米/纳米颗粒分布的一个重要因素。快速旋涂可以使得微米/纳米颗粒以一个一个颗粒单独分散在聚合物薄膜上,同时快速旋涂可以去除大量的微米/纳米颗粒悬浊液中的溶剂,缩短了溶剂挥发后时间。According to an embodiment of the present invention, the diluted micro/nano suspensions with different concentrations have different spin coating speeds. Spin coating speed is an important factor affecting the micro/nanoparticle distribution. Fast spin coating can make micro/nano particles dispersed on the polymer film one by one, and fast spin coating can remove a large amount of solvent in the micro/nano particle suspension, shortening the time after solvent volatilization.
根据本发明的实施例,将聚合物薄膜上的预处理后的微米/纳米悬浊液的溶剂挥发,可以包括:将预处理后的微米/纳米颗粒悬浊液旋涂在聚合物薄膜上之后,置于低温热板上放置30分钟进行低温加热,使得预处理后的微米/纳米颗粒悬浊液中的溶剂充分挥发,低温温度可以为50~70℃。According to an embodiment of the present invention, volatilizing the solvent of the pretreated micro/nano particle suspension on the polymer film may include: after spin coating the pretreated micro/nano particle suspension on the polymer film , placed on a low-temperature hot plate for 30 minutes for low-temperature heating, so that the solvent in the pretreated micron/nanoparticle suspension is fully volatilized, and the low temperature can be 50-70°C.
根据本发明的实施例,对具有微米/纳米颗粒的聚合物薄膜进行光脉冲处理,包括:在满足光脉冲条件的情况下,利用脉冲光对具有微米/纳米颗粒的聚合物薄膜进行光脉冲照射处理。According to an embodiment of the present invention, performing light pulse treatment on the polymer film with micron/nanoparticles includes: irradiating the polymer film with micron/nanoparticles with pulsed light under the condition of satisfying the light pulse condition deal with.
根据本发明的实施例,预设光脉冲条件可以包括:光脉冲电压为1800V~3000V;光脉冲施加时间为1~4ms;光脉冲施加次数为1~30次;光脉冲间隔时间为0.5~2s。According to an embodiment of the present invention, the preset light pulse conditions may include: the light pulse voltage is 1800V-3000V; the light pulse application time is 1-4ms; the number of light pulse applications is 1-30 times; the light pulse interval time is 0.5-2s .
根据本发明的实施例,光脉冲电压可以为1800V、1900V、2000V、2100V、2200V、2300V、2400V、2500V、2600V、2700V、2800V、2900V、3000V;光脉冲施加时间可以为1ms、2ms、3ms、4ms;光脉冲施加次数可以为1次、5次、10次、15次、20次、25次、30次;光脉冲间隔时间可以为0.5s、1s、1.5s、2s。According to the embodiment of the present invention, the light pulse voltage can be 1800V, 1900V, 2000V, 2100V, 2200V, 2300V, 2400V, 2500V, 2600V, 2700V, 2800V, 2900V, 3000V; the light pulse application time can be 1ms, 2ms, 3ms, 4ms; the number of light pulse applications can be 1 time, 5 times, 10 times, 15 times, 20 times, 25 times, 30 times; the light pulse interval time can be 0.5s, 1s, 1.5s, 2s.
根据本发明的实施例,利用脉冲光对具有微米/纳米颗粒的聚合物薄膜进行光脉冲照射处理时,由于光脉冲照射时达到聚合物薄膜熔融的温度远远小于微米/纳米颗粒熔融的温度,因此,可以认为脉冲光对具有微米/纳米颗粒的聚合物薄膜进行照射处理时,当达到聚合物薄膜熔融的温度时,不予考虑微米/纳米颗粒的熔融。According to an embodiment of the present invention, when using pulsed light to perform light pulse irradiation treatment on a polymer film with micron/nanoparticles, since the melting temperature of the polymer film is much lower than the melting temperature of the micron/nanoparticles during light pulse irradiation, Therefore, it can be considered that when the polymer film with micro/nano particles is irradiated with pulsed light, the melting of micro/nano particles is not considered when the melting temperature of the polymer film is reached.
根据本发明的实施例,对具有微米/纳米颗粒的聚合物薄膜进行光脉冲处理时,在脉冲光的照射下,微米/纳米颗粒吸收脉冲光的部分光后,微米/纳米颗粒由于光热效应发生光热转换,将光能转换成热能,在局域表面等离子体共振效应下,电子吸收光子后,开始振荡,并跃迁到高能态。不稳定的电子与金属晶格碰撞,将热能传递给晶格,微米/纳米颗粒的温度会迅速升高,热量传递扩散到微米/纳米颗粒周围的聚合薄膜,当温度达到或大于聚合薄膜熔融的熔融温度时,微米/纳米颗粒周围的聚合物薄膜被熔融,微米/纳米颗粒逐渐穿透聚合物薄膜,到达聚合物薄膜底部,即基底上。According to an embodiment of the present invention, when a polymer film with micron/nanoparticles is subjected to light pulse treatment, under the irradiation of pulsed light, after the micron/nanoparticles absorb part of the light of the pulsed light, the micron/nanoparticles will be generated due to the photothermal effect. Photothermal conversion converts light energy into heat energy. Under the localized surface plasmon resonance effect, after electrons absorb photons, they start to oscillate and transition to a high-energy state. The unstable electrons collide with the metal lattice and transfer heat energy to the lattice, the temperature of the micron/nanoparticles will rise rapidly, and the heat transfer diffuses to the polymeric film around the micron/nanoparticles, when the temperature reaches or exceeds the melting point of the polymeric film At the melting temperature, the polymer film around the micron/nanoparticles is melted, and the micron/nanoparticles gradually penetrate the polymer film and reach the bottom of the polymer film, that is, the substrate.
根据本发明的实施例,对穿透聚合物薄膜的微米/纳米颗粒进行刻蚀,得到微米/纳米孔聚合物薄膜,可以包括:利用微米/纳米颗粒刻蚀溶液对穿透聚合物薄膜的微米/纳米颗粒进行刻蚀,去除掉微米/纳米颗粒,得到微米/纳米孔聚合物薄膜。According to an embodiment of the present invention, etching the micron/nanoparticles penetrating the polymer film to obtain the micron/nanoporous polymer film may include: using a micron/nanoparticle etching solution to etch the micron penetrating the polymer film /nanoparticles are etched to remove micron/nanoparticles to obtain micron/nanoporous polymer films.
根据本发明的实施例,刻蚀的预设时间可以为3~10分钟。刻蚀溶液的浓度可以根据实际需求进行设置,在本发明中不作具体限定。According to an embodiment of the present invention, the preset time for etching may be 3-10 minutes. The concentration of the etching solution can be set according to actual needs, and is not specifically limited in the present invention.
根据本发明的实施例,刻蚀的预设时间可以为3分钟、5分钟、8分钟、10分钟,可以优选为5分钟。According to an embodiment of the present invention, the preset etching time may be 3 minutes, 5 minutes, 8 minutes, 10 minutes, preferably 5 minutes.
根据本发明的实施例,可以利用刻蚀溶液刻蚀穿透到聚合物薄膜底部的微米/纳米颗粒,去除掉微米/纳米颗粒,在聚合物薄膜上形成微米/纳米孔,最终得到微米/纳米孔聚合薄膜。According to an embodiment of the present invention, the micron/nanoparticles penetrating to the bottom of the polymer film can be etched with an etching solution to remove the micron/nanoparticles, form micron/nanopores on the polymer film, and finally obtain a micron/nano porous polymeric film.
根据本发明的实施例,不同的刻蚀溶液刻蚀不同的微米/纳米颗粒。例如,刻蚀银微米/纳米颗粒的刻蚀溶液可以选择为过氧化氢溶液,刻蚀金微米/纳米颗粒的刻蚀溶液可以选择为碘化钾溶液或碘溶液,刻蚀铜微米/纳米颗粒的刻蚀溶液可以选择为氯化铁溶液,刻蚀四氧化三铁微米/纳米颗粒的刻蚀溶液可以选择为盐酸溶液。According to an embodiment of the present invention, different etching solutions etch different micro/nanoparticles. For example, the etching solution for etching silver micron/nanoparticles can be selected as hydrogen peroxide solution, the etching solution for etching gold micron/nanoparticles can be selected as potassium iodide solution or iodine solution, and the etching solution for etching copper micron/nanoparticles can be selected as hydrogen peroxide solution. The etching solution may be selected as ferric chloride solution, and the etching solution for etching ferric oxide micro/nano particles may be selected as hydrochloric acid solution.
图2示意性示出了根据本发明实施例的微米/纳米孔聚合物薄膜的制备方法的示意图。Fig. 2 schematically shows a schematic diagram of a method for preparing a micro/nanoporous polymer film according to an embodiment of the present invention.
如图2所示,将微米/纳米颗粒悬浊液进行稀释并超声处理后,利用匀胶机将微米/纳米颗粒悬浊液快速旋涂在聚合物薄膜上,待微米/纳米颗粒悬浊液中的溶剂挥发后,微米/纳米颗粒1分散在聚合物薄膜2上(如图2中S1所示),利用脉冲光3照射具有微米/纳米颗粒1的聚合物薄膜2,(如图2中S2所示),微米/纳米颗粒吸收部分脉冲光,发生光热转化,将脉冲光的光能转换成热能,微米/纳米颗粒的温度迅速升高,热量经过微米/纳米颗粒传递扩散到周围的聚合物薄膜上,当温度达到或超过聚合物薄膜的熔融温度是,微米/纳米颗粒1周围的聚合物薄膜2被熔融分解,在重力作用下,微米/纳米颗粒1逐渐穿透聚合物薄膜1,到达聚合物薄膜1的底部(如图2中S3所示),利用刻蚀溶液刻蚀穿透到聚合物薄膜2底部的微米/纳米颗粒1,去除掉微米/纳米颗粒1,形成微米/纳米通道4,即形成微米/纳米孔,最终得到微米/纳米孔聚合物薄膜(如图2中S4)。As shown in Figure 2, after the micron/nanoparticle suspension is diluted and ultrasonically treated, the micron/nanoparticle suspension is quickly spin-coated on the polymer film by using a homogenizer, and the micron/nanoparticle suspension is After the solvent in the solvent evaporates, the micron/nanoparticles 1 are dispersed on the polymer film 2 (as shown in S1 in Figure 2), and the polymer film 2 with the micron/nanoparticles 1 is irradiated with pulsed light 3, (as shown in Figure 2 As shown in S2), the micron/nanoparticle absorbs part of the pulsed light, undergoes photothermal conversion, and converts the light energy of the pulsed light into thermal energy, the temperature of the micron/nanoparticle rises rapidly, and the heat spreads to the surrounding area through the micron/nanoparticle On the polymer film, when the temperature reaches or exceeds the melting temperature of the polymer film, the polymer film 2 around the micron/nanoparticle 1 is melted and decomposed, and under the action of gravity, the micron/nanoparticle 1 gradually penetrates the polymer film 1 , reaching the bottom of the polymer film 1 (as shown in S3 in Figure 2), utilizing an etching solution to etch the micron/nanoparticle 1 penetrating through to the bottom of the polymer film 2, removing the micron/nanoparticle 1 to form a micron/nanoparticle 1 The nanochannel 4 is to form a micro/nano hole, and finally obtain a micro/nano hole polymer film (S4 in FIG. 2 ).
图3示意性示出了根据本发明实施例的微米/纳米孔聚合物薄膜的SEM图。Fig. 3 schematically shows a SEM image of a micro/nanoporous polymer film according to an embodiment of the present invention.
如图3所示,从图中可以看出带有微米/纳米孔聚合物薄膜的微观形貌以及微米/纳米孔的尺寸大小及孔密度。从图3可以看出,带有微米/纳米孔聚合物薄膜上随机分不了几个尺寸在15~60nm的纳米孔,孔的位置由颗粒的位置决定,不同的孔径尺寸,是由不同直径的纳米颗粒为模板烧蚀而成,小尺寸的孔主要由单个颗粒烧蚀产生,大尺寸的孔由大的单个颗粒或多个颗粒烧蚀而成。As shown in Figure 3, it can be seen from the figure the microscopic morphology of the polymer film with micron/nanopores and the size and pore density of the micron/nanopores. It can be seen from Figure 3 that several nanopores with a size of 15-60nm cannot be randomly divided on the polymer film with micro/nanopores, and the position of the pores is determined by the position of the particles. Nanoparticles are formed by template ablation, small-sized holes are mainly produced by ablation of single particles, and large-sized holes are formed by ablation of large single particles or multiple particles.
根据本发明的实施例,通过将微米/纳米颗粒分散在聚合物薄膜上,对具有微米/纳米颗粒的聚合物薄膜进行光脉冲处理,光脉冲照射时,微米/纳米颗粒会吸收一部分脉冲光,微米/纳米颗粒由于光热效应会发生光热转化,使得微米/纳米颗粒的温度迅速升高,热量经过传递扩散到周围的聚合物薄膜上,当温度达到或超过聚合物薄膜的热分解温度时,微米/纳米颗粒周围的聚合物薄膜会被烧蚀,在重力作用下,微米/纳米颗粒逐渐下降穿透到聚合物薄膜底部,对聚合物薄膜底部的微米/纳米颗粒进行刻蚀,去除掉微米/纳米颗粒,形成微米/纳米孔,得到微米/纳米孔聚合物薄膜。解决了传统制备方法中制备设备成本高,制备时间长,无法大面积制备的技术问题,实现低成本、大面积且快速制备微米/纳米孔聚合物薄膜,此外,还可以实现通过控制微米/纳米颗粒的尺寸及密度,对微米/纳米孔聚合物薄膜的微米/纳米孔的尺寸及密度进行调整的技术效果。According to an embodiment of the present invention, by dispersing the micron/nanoparticles on the polymer film, the polymer film with micron/nanoparticles is subjected to light pulse treatment, and when the light pulse is irradiated, the micron/nanoparticles will absorb a part of the pulsed light, Due to the photothermal effect, the micron/nanoparticles will undergo photothermal conversion, so that the temperature of the micron/nanoparticles will rise rapidly, and the heat will diffuse to the surrounding polymer film through transfer. When the temperature reaches or exceeds the thermal decomposition temperature of the polymer film, The polymer film around the micron/nanoparticles will be ablated, and under the action of gravity, the micron/nanoparticles will gradually descend and penetrate to the bottom of the polymer film, etch the micron/nanoparticles at the bottom of the polymer film to remove the micron /nanoparticles, forming micro/nanopores, resulting in micro/nanoporous polymer films. It solves the technical problems of high cost of preparation equipment, long preparation time, and impossibility of large-area preparation in traditional preparation methods, and realizes low-cost, large-area and rapid preparation of micro/nanoporous polymer films. Particle size and density, the technical effect of adjusting the size and density of micro/nanoporous polymer films.
以上的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above specific embodiments have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above are only specific embodiments of the present invention and are not intended to limit the present invention. Within the spirit and principles, any modifications, equivalent replacements, improvements, etc., shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211022533.0A CN115260567B (en) | 2022-08-24 | 2022-08-24 | Method for preparing micrometer/nanometer pore polymer film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211022533.0A CN115260567B (en) | 2022-08-24 | 2022-08-24 | Method for preparing micrometer/nanometer pore polymer film |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115260567A CN115260567A (en) | 2022-11-01 |
CN115260567B true CN115260567B (en) | 2023-05-05 |
Family
ID=83753045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211022533.0A Active CN115260567B (en) | 2022-08-24 | 2022-08-24 | Method for preparing micrometer/nanometer pore polymer film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115260567B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009018403A (en) * | 2007-07-13 | 2009-01-29 | Toyota Central R&D Labs Inc | Precious metal nanoparticle-dispersed thin film and method for producing the same |
CN102795596A (en) * | 2011-05-27 | 2012-11-28 | 中国科学院物理研究所 | Ultrafast laser pulse method for forming nanopores with diameters of 2 nanometers |
CN103531360A (en) * | 2013-10-08 | 2014-01-22 | 天津大学 | Sintering method for nanoscale semiconductor porous electrode material on flexible substrate |
WO2017159973A2 (en) * | 2016-03-18 | 2017-09-21 | 한국과학기술원 | Thin film manufacturing method using light |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2803237A1 (en) * | 1999-12-29 | 2001-07-06 | Iniversite Catholique De Louva | METHOD FOR CREATING PORES IN A POLYMER MATERIAL IN SHEETS OR A POLYMERIC LAYER SUCH AS A THIN FILM OF THICKNESS EQUIVALENT TO ONE HUNDRED NANOMETERS, PREMISELY DEPOSITED ON A METAL SUPPORT |
KR101977457B1 (en) * | 2017-02-28 | 2019-05-10 | 고려대학교 산학협력단 | Method for forming nanopore |
-
2022
- 2022-08-24 CN CN202211022533.0A patent/CN115260567B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009018403A (en) * | 2007-07-13 | 2009-01-29 | Toyota Central R&D Labs Inc | Precious metal nanoparticle-dispersed thin film and method for producing the same |
CN102795596A (en) * | 2011-05-27 | 2012-11-28 | 中国科学院物理研究所 | Ultrafast laser pulse method for forming nanopores with diameters of 2 nanometers |
CN103531360A (en) * | 2013-10-08 | 2014-01-22 | 天津大学 | Sintering method for nanoscale semiconductor porous electrode material on flexible substrate |
WO2017159973A2 (en) * | 2016-03-18 | 2017-09-21 | 한국과학기술원 | Thin film manufacturing method using light |
Also Published As
Publication number | Publication date |
---|---|
CN115260567A (en) | 2022-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Mask‐free patterning of high‐conductivity metal nanowires in open air by spatially modulated femtosecond laser pulses | |
JP4528302B2 (en) | How to classify carbon nanotubes | |
CN109071211A (en) | nanoengine propulsion | |
CN102781660A (en) | Producing nanoparticle solutions based on pulsed laser ablation | |
CN106365111B (en) | A kind of preparation method of the controllable Pt disk time micron electrodes of geometry | |
Ali et al. | Optical and structural properties of the gold nanoparticles ablated by laser ablation in ethanol for biosensors | |
CN115260567B (en) | Method for preparing micrometer/nanometer pore polymer film | |
Torrisi et al. | Biocompatible nanoparticles production by pulsed laser ablation in liquids | |
McCarthy et al. | Silver nanocolloid generation using dynamic Laser Ablation Synthesis in Solution system and drop-casting | |
CN100999019A (en) | Device of preparing metal nanometer particle colloid by liquid phase medium pulse laser ablation | |
Yang et al. | Asymmetric coupling of Au nanospheres on TiO 2 nanochannel membranes for NIR-gated artificial ionic nanochannels | |
CN106248999B (en) | A preparation method of gold disc submicron electrode with controllable geometry | |
CN108793067B (en) | Non-thermal fusion of parallel nanowires and series structure forming and processing method thereof | |
US10801779B2 (en) | Method for forming nanopores | |
CN212967604U (en) | System for forming ohmic contacts on silicon carbide substrates | |
CN101172607A (en) | A kind of preparation method of amorphous silicon nanoparticles | |
US9128117B2 (en) | Laser-enhanced chemical etching of nanotips | |
JP2004034270A (en) | Method for manufacturing semiconductor member formed with recessed structure and semiconductor member formed with recessed structure | |
CN104743527B (en) | Preparation method of bismuth selenide nano-particles | |
Ismael et al. | Characterization of Silver Nanoparticles on Porous silicon by Laser ablation in Liquid | |
Salim et al. | Laser pulses effect on the structural and optical properties of ZnO Nano particles prepared by laser ablation in water | |
CN114515901A (en) | Preparation method of silicon nanospheres | |
Ibrahim et al. | Improvement Silicon Nanostructured Surface by Laser Induced Etching Process | |
Ghalot et al. | Obtaining Nanoparticles by Underwater Laser Ablation–A Brief Review | |
Khitous et al. | Experimental observation of thermoplasmonic heat transfer at the nanoscale by polymerization. A step towards nanoscale heat sources. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |