CN115206687A - A kind of super ionic liquid rich microporous nanofiber electrode material and its preparation method and application - Google Patents
A kind of super ionic liquid rich microporous nanofiber electrode material and its preparation method and application Download PDFInfo
- Publication number
- CN115206687A CN115206687A CN202210838934.7A CN202210838934A CN115206687A CN 115206687 A CN115206687 A CN 115206687A CN 202210838934 A CN202210838934 A CN 202210838934A CN 115206687 A CN115206687 A CN 115206687A
- Authority
- CN
- China
- Prior art keywords
- carbon
- electrode material
- super
- ionic liquid
- nanofiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007772 electrode material Substances 0.000 title claims abstract description 55
- 239000002121 nanofiber Substances 0.000 title claims abstract description 53
- 239000002608 ionic liquid Substances 0.000 title claims abstract description 42
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 79
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 44
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 31
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 31
- 239000002134 carbon nanofiber Substances 0.000 claims abstract description 28
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000011258 core-shell material Substances 0.000 claims abstract description 18
- 229920001568 phenolic resin Polymers 0.000 claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims abstract description 11
- 229910003481 amorphous carbon Inorganic materials 0.000 claims abstract description 9
- 239000012298 atmosphere Substances 0.000 claims abstract description 9
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 9
- 239000010439 graphite Substances 0.000 claims abstract description 9
- 239000008367 deionised water Substances 0.000 claims abstract description 8
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 8
- 239000003990 capacitor Substances 0.000 claims abstract description 5
- 238000009833 condensation Methods 0.000 claims abstract description 5
- 230000005494 condensation Effects 0.000 claims abstract description 5
- 238000005406 washing Methods 0.000 claims abstract description 5
- 238000003756 stirring Methods 0.000 claims abstract description 4
- 238000000967 suction filtration Methods 0.000 claims abstract description 4
- 230000003213 activating effect Effects 0.000 claims abstract 5
- 238000010000 carbonizing Methods 0.000 claims abstract 4
- 239000003795 chemical substances by application Substances 0.000 claims abstract 3
- 238000002156 mixing Methods 0.000 claims abstract 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 27
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 20
- 238000003763 carbonization Methods 0.000 claims description 19
- CWLKGDAVCFYWJK-UHFFFAOYSA-N 3-aminophenol Chemical compound NC1=CC=CC(O)=C1 CWLKGDAVCFYWJK-UHFFFAOYSA-N 0.000 claims description 16
- 238000001994 activation Methods 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 15
- 230000004913 activation Effects 0.000 claims description 14
- 229940018563 3-aminophenol Drugs 0.000 claims description 8
- 239000012190 activator Substances 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 7
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical compound NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 claims description 6
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 claims description 6
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000011149 active material Substances 0.000 claims description 4
- 238000006482 condensation reaction Methods 0.000 claims description 3
- 230000035484 reaction time Effects 0.000 claims description 3
- 239000011736 potassium bicarbonate Substances 0.000 claims description 2
- 235000015497 potassium bicarbonate Nutrition 0.000 claims description 2
- 229910000028 potassium bicarbonate Inorganic materials 0.000 claims description 2
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 claims description 2
- 102000020897 Formins Human genes 0.000 claims 2
- 108091022623 Formins Proteins 0.000 claims 2
- -1 phenolic aldehyde Chemical class 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 14
- 239000007788 liquid Substances 0.000 abstract description 9
- 229920000049 Carbon (fiber) Polymers 0.000 abstract description 6
- 239000004917 carbon fiber Substances 0.000 abstract description 6
- 230000001351 cycling effect Effects 0.000 abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 4
- 238000011065 in-situ storage Methods 0.000 abstract description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 abstract description 3
- 239000003792 electrolyte Substances 0.000 description 16
- 239000003575 carbonaceous material Substances 0.000 description 15
- 239000004005 microsphere Substances 0.000 description 14
- 238000001878 scanning electron micrograph Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- 239000000835 fiber Substances 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 7
- 239000012299 nitrogen atmosphere Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000003917 TEM image Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000005011 phenolic resin Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000002484 cyclic voltammetry Methods 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 238000005056 compaction Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000001523 electrospinning Methods 0.000 description 2
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000005087 graphitization Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000002336 sorption--desorption measurement Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- AAMATCKFMHVIDO-UHFFFAOYSA-N azane;1h-pyrrole Chemical compound N.C=1C=CNC=1 AAMATCKFMHVIDO-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000002133 porous carbon nanofiber Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
技术领域technical field
本发明涉及电化学储能技术领域,具体而言,涉及一种超亲离子液体富微孔纳米纤维电极材料及其制备方法与应用。The invention relates to the technical field of electrochemical energy storage, in particular to a super-ionic liquid-rich microporous nanofiber electrode material and a preparation method and application thereof.
背景技术Background technique
为适应现代智能电子设备的发展,设计兼具高比能量密度和高比功率密度的超级电容器刻不容缓。作为碳家族一员,一维碳纳米管具有高的机械强度、卓越的导电性,在超级电容器中能实现快速的轴向电子传输,展现出高的频率响应;然而,其比表面积一般低于1000m2 g-1,很少简单用作电容器电极材料。同时,一维碳纳米纤维表面具有丰富的缺陷活性位点,在超级电容器中能实现快速的径向离子扩散,展现出优异的电极/电解液界面润湿性。因此,现有技术中多采用碳纳米管@碳纳米纤维的复合结构,以在充放电过程中可满足高效的电子离子双传导,然而,碳纳米纤维用作超级电容器电极材料普遍存在压实密度较低的问题。In order to adapt to the development of modern smart electronic devices, it is imperative to design supercapacitors with both high specific energy density and high specific power density. As a member of the carbon family, one-dimensional carbon nanotubes have high mechanical strength, excellent electrical conductivity, fast axial electron transport in supercapacitors, and exhibit high frequency response; however, their specific surface area is generally lower than 1000m 2 g -1 , which is seldom simply used as a capacitor electrode material. At the same time, the surface of 1D carbon nanofibers has abundant defect active sites, which can realize fast radial ion diffusion in supercapacitors and exhibit excellent electrode/electrolyte interface wettability. Therefore, the composite structure of carbon nanotubes@carbon nanofibers is mostly used in the prior art to satisfy the efficient double conduction of electrons and ions during the charging and discharging process. lower problem.
目前,碳纳米纤维主要通过模板法和静电纺丝法获得。余承忠老师课题组(Small2019,1904310)以间苯二酚和甲醛为碳源,硅酸四乙酯为硅源,在碳纳米管上共组装得到复合碳纳米纤维,其中硅模板需后续刻蚀移除。周亮老师课题组(Sci.Bull.2019,64,1617-1624)以十六烷基三甲基溴化铵为软模板兼诱导剂,在85℃下水热反应得到碳纳米纤维,在6M KOH电解液中,1A g-1电流密度下比电容为380F g-1,能量密度为12.4Wh kg-1,功率密度为130W kg-1。但无论是软模板法还是硬模板法均涉及模板的制备成本及移除成本,且过程繁琐、耗时耗力。楼雄文老师课题组(Energy Environ.Sci.,2017,10,1777--1783)通过静电纺丝将咪唑分子筛包埋于聚丙烯腈得到了多孔碳纳米纤维,在2M的H2SO4电解液中,1A g-1电流密度下比容量为307F g-1,能量密度为10.96W h kg-1,功率密度为25000W kg-1,但是其合成复杂、纺丝效率低、成本高、污染大,不适合大范围推广。At present, carbon nanofibers are mainly obtained by template method and electrospinning method. Yu Chengzhong's research group (Small2019, 1904310) used resorcinol and formaldehyde as carbon sources, tetraethyl silicate as silicon source, and co-assembled composite carbon nanofibers on carbon nanotubes. The silicon template needs to be etched and removed later. remove. Professor Zhou Liang's research group (Sci.Bull.2019,64,1617-1624) used cetyltrimethylammonium bromide as a soft template and inducer to obtain carbon nanofibers by hydrothermal reaction at 85 °C, and electrolyzed in 6M KOH In liquid, the specific capacitance is 380F g -1 , the energy density is 12.4Wh kg -1 , and the power density is 130W kg -1 at a current density of 1A g-1 . However, both the soft template method and the hard template method involve the preparation cost and removal cost of the template, and the process is cumbersome, time-consuming and labor-intensive. Lou Xiongwen's research group (Energy Environ.Sci., 2017,10,1777--1783) obtained porous carbon nanofibers by embedding imidazole molecular sieves in polyacrylonitrile by electrospinning, and in 2M H 2 SO 4 electrolyte Among them, the specific capacity is 307F g -1 under the current density of 1A g -1 , the energy density is 10.96W h kg -1 , and the power density is 25000W kg -1 , but its synthesis is complicated, the spinning efficiency is low, the cost is high, and the pollution is large. , not suitable for large-scale promotion.
基于此,设计合成兼具简易合成策略、高压实密度和高电化学性能的复合碳纳米纤维电极材料具有重要意义。Based on this, it is of great significance to design and synthesize composite carbon nanofiber electrode materials with a simple synthesis strategy, high compaction density and high electrochemical performance.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明提供了一种超亲离子液体富微孔纳米纤维电极材料及其制备方法与应用,以解决现有复合碳纳米纤维作用电极时压实密度较低、电化学性能不好的问题。In view of this, the present invention provides a super ionic liquid rich microporous nanofiber electrode material and a preparation method and application thereof, so as to solve the problem of low compaction density and poor electrochemical performance when the existing composite carbon nanofibers are used as electrodes. The problem.
为达到上述目的,本发明的技术方案是这样实现的:In order to achieve the above object, the technical scheme of the present invention is achieved in this way:
一种超亲离子液体富微孔纳米纤维电极材料的制备方法,包括如下步骤:A preparation method of a super ionic liquid rich microporous nanofiber electrode material, comprising the following steps:
S1、将碳纳米管超声分散于去离子水中,加入酚源搅拌溶解后投入醛源进行酚醛缩合,经抽滤洗涤后得到核壳结构的石墨碳@酚醛树脂纳米纤维;S1, ultrasonically dispersing carbon nanotubes in deionized water, adding a phenol source, stirring and dissolving, then adding an aldehyde source to carry out phenolic condensation, and obtaining core-shell structure graphitic carbon@phenolic resin nanofibers after washing with suction;
S2、惰性气氛下,将所述石墨碳@酚醛树脂纳米纤维碳化得到石墨碳@无定型碳纳米纤维;S2, under inert atmosphere, carbonize described graphitic carbon@phenolic resin nanofibers to obtain graphitic carbon@amorphous carbon nanofibers;
S3、惰性气氛下,将所述石墨碳@无定型碳纳米纤维和活化剂混合,碳化活化得到超亲离子液体富微孔纳米纤维电极材料。S3. In an inert atmosphere, the graphitic carbon@amorphous carbon nanofibers are mixed with an activator, and activated by carbonization to obtain a super-ionic liquid-rich microporous nanofiber electrode material.
按上述方案,步骤S1中,所述碳纳米管、所述酚源和所述醛源的质量比为(0.005-0.05):1:1.5。According to the above scheme, in step S1, the mass ratio of the carbon nanotubes, the phenol source and the aldehyde source is (0.005-0.05):1:1.5.
按上述方案,所述酚源包括间氨基苯酚、邻氨基苯酚和对氨基苯酚中的一种,所述醛源包括甲醛或乙醛。According to the above scheme, the phenol source includes one of m-aminophenol, o-aminophenol and p-aminophenol, and the aldehyde source includes formaldehyde or acetaldehyde.
按上述方案,步骤S1中,所述酚醛缩合反应的反应温度为20-100℃,反应时间为10-60min。According to the above scheme, in step S1, the reaction temperature of the phenolic condensation reaction is 20-100° C., and the reaction time is 10-60 min.
按上述方案,步骤S2中,所述碳化的条件包括:500-1400℃、碳化时间100-200min、升温速率2-10℃min-1。According to the above scheme, in step S2, the carbonization conditions include: 500-1400°C, carbonization time 100-200min, and heating rate 2-10°Cmin -1 .
按上述方案,步骤S3中,所述碳纳米纤维和所述活化剂的质量比在1:2至1:5范围内。According to the above scheme, in step S3, the mass ratio of the carbon nanofibers and the activator is in the range of 1:2 to 1:5.
按上述方案,所述活化剂包括氢氧化钾或碳酸氢钾。According to the above scheme, the activator includes potassium hydroxide or potassium bicarbonate.
按上述方案,步骤S3中,所述碳化活化的条件包括:活化温度为700-800℃、时间为60-180min,升温速率为2-5℃min-1。According to the above scheme, in step S3, the carbonization activation conditions include: activation temperature of 700-800°C, time of 60-180min, and heating rate of 2-5°Cmin -1 .
在上述方案基础上,本发明第二目的在于提供一种超亲离子液体富微孔纳米纤维电极材料,采用上述所述的超亲离子液体富微孔纳米纤维电极材料的制备方法制得。On the basis of the above scheme, the second object of the present invention is to provide a super ionic liquid rich microporous nanofiber electrode material, which is obtained by the above-mentioned preparation method of the super ionic liquid rich microporous nanofiber electrode material.
在上述方案基础上,本发明第三目的在于提供上述所述超亲离子液体富微孔纳米纤维电极材料作为超级电容器活性材料的应用。On the basis of the above scheme, the third object of the present invention is to provide the application of the above-mentioned super ionic liquid-rich microporous nanofiber electrode material as an active material for supercapacitors.
相对于现有技术,本发明具有以下优势:Compared with the prior art, the present invention has the following advantages:
(1)本发明超亲离子液体富微孔纳米纤维电极材料具有密实的3D骨架、压实密度高,以碳纳米管作为导电内核,富微孔碳作为电容外壳,能实现快速的电子离子双传导;同时,富微孔碳纤维具有超亲离子液体表面,接触角几乎为零,且微孔尺寸略微大于离子液体电解液中离子尺寸,作为超级电容器电极材料时表现出高比电容、高比能量密度、优异的倍率性能和循环稳定性。(1) The super-ionic liquid-rich microporous nanofiber electrode material of the present invention has a dense 3D skeleton, high compaction density, carbon nanotubes are used as the conductive core, and the microporous carbon is used as the capacitor shell, which can realize rapid electronic ion dual At the same time, the microporous carbon fiber has a super ionic liquid surface, the contact angle is almost zero, and the micropore size is slightly larger than the ion size in the ionic liquid electrolyte, showing high specific capacitance and high specific energy when used as supercapacitor electrode material density, excellent rate capability and cycling stability.
(2)本发明提供的制备方法操作简单、制备时间短、成本低,合成工艺简单绿色,无需去除模板;此外反应在纯水体系中进行,无有机溶剂的添加,适合工业化生产。(2) The preparation method provided by the present invention has the advantages of simple operation, short preparation time, low cost, simple and green synthesis process, and no need to remove templates; in addition, the reaction is carried out in a pure water system, without the addition of organic solvents, and is suitable for industrial production.
附图说明Description of drawings
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一些简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the present invention or the technical solutions in the prior art more clearly, the following briefly introduces some drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are the For some embodiments of the invention, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为本发明所述超亲离子液体富微孔纳米纤维电极材料的合成机理图;Fig. 1 is the synthesis mechanism diagram of super ionic liquid rich microporous nanofiber electrode material according to the present invention;
图2为本发明实施例1所述核壳结构石墨碳@酚醛树脂纳米纤维SEM图(a)和TEM图(b,c),核壳结构石墨碳@无定型氮掺杂碳纳米纤维SEM图(d)和TEM图(e,f),超亲离子液体富微孔纳米纤维SEM图(g)、TEM图(h,i)和EDS能谱(j);2 is the SEM images (a) and TEM images (b, c) of the core-shell structure graphitic carbon@phenolic resin nanofibers according to Example 1 of the present invention, and the SEM images of the core-shell structure graphitic carbon@amorphous nitrogen-doped carbon nanofibers (d) and TEM images (e, f), SEM images (g), TEM images (h, i) and EDS spectra (j) of superionic liquid-rich microporous nanofibers;
图3为本发明实施例1、2和3所述氮掺杂多孔碳材料的XRD图谱;3 is the XRD patterns of the nitrogen-doped porous carbon materials described in Examples 1, 2 and 3 of the present invention;
图4为本发明实施例1、2和3所述氮掺杂多孔碳材料的Raman图谱;4 is the Raman spectrum of the nitrogen-doped porous carbon materials described in Examples 1, 2 and 3 of the present invention;
图5为本发明实施例1、2和3所述氮掺杂多孔碳材料的吸脱附曲线和孔径分布曲线图;Fig. 5 is the adsorption-desorption curve and pore size distribution curve diagram of the nitrogen-doped porous carbon materials described in Examples 1, 2 and 3 of the present invention;
图6为本发明实施例1所述超亲离子液体富微孔纳米纤维电极材料的XPS能谱;6 is the XPS spectrum of the superionic liquid-rich microporous nanofiber electrode material according to Example 1 of the present invention;
图7为本发明实施例1、2和3所述氮掺杂多孔碳材料的润湿性测试图;7 is a wettability test chart of the nitrogen-doped porous carbon materials described in Examples 1, 2 and 3 of the present invention;
图8为本发明实施例1所述超亲离子液体富微孔纳米纤维电极材料的循环伏安曲线图;8 is a cyclic voltammetry diagram of the superionic liquid-rich microporous nanofiber electrode material according to Example 1 of the present invention;
图9为本发明实施例1、2和3所述氮掺杂多孔碳材料的循环伏安曲线图;9 is a cyclic voltammetry diagram of the nitrogen-doped porous carbon materials described in Examples 1, 2 and 3 of the present invention;
图10为本发明实施例1所述超亲离子液体富微孔纳米纤维电极材料在不同电流密度下的充放电曲线图;10 is a charge-discharge curve diagram of the super-ionic liquid-rich microporous nanofiber electrode material according to Example 1 of the present invention under different current densities;
图11为本发明实施例1、2和3所述氮掺杂多孔碳材料的倍率曲线;FIG. 11 is the rate curve of the nitrogen-doped porous carbon materials described in Examples 1, 2 and 3 of the present invention;
图12为本发明实施例1所述超亲离子液体富微孔纳米纤维电极材料的循环曲线;12 is a cycle curve of the super-ionic liquid-rich microporous nanofiber electrode material according to Example 1 of the present invention;
图13为本发明实施例3所述酚醛树脂微球SEM图(a,d),氮掺杂碳微球SEM图(b,e),富微孔氮掺杂碳微球SEM图(c,f);13 is the SEM images of the phenolic resin microspheres according to Example 3 of the present invention (a, d), the SEM images of the nitrogen-doped carbon microspheres (b, e), and the SEM images of the rich microporous nitrogen-doped carbon microspheres (c, d). f);
图14为本发明实施例4所述碳化活化后碳纳米管的充放电曲线图。14 is a charge-discharge curve diagram of carbon nanotubes after carbonization and activation according to Example 4 of the present invention.
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例作详细的说明。In order to make the above-mentioned objects, features and advantages of the present invention more clearly understood, specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
应当说明的是,在本申请实施例的描述中,术语“一些具体实施例”的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。It should be noted that, in the description of the embodiments of the present application, the description of the term "some specific embodiments" means that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one embodiment of the present invention or in the example. In this specification, schematic representations of the above terms do not necessarily refer to the same implementation or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
本实施例的“在...范围内”包括两端的端值,如“在1至100范围内”,包括1与100两端数值。In this embodiment, "within the range" includes the terminal values at both ends, for example, "within the range of 1 to 100" includes the values at both ends of 1 and 100.
本发明实施例提供了一种超亲离子液体富微孔纳米纤维电极材料的制备方法,包括如下步骤:An embodiment of the present invention provides a method for preparing a super-ionic liquid-rich microporous nanofiber electrode material, comprising the following steps:
S1、在纯水体系下,将碳纳米管超声分散于去离子水中,加入少量酚源搅拌溶解后投入醛源进行酚醛缩合,经抽滤洗涤后得到灰色的核壳结构的石墨碳@酚醛树脂纳米纤维;S1. Under the pure water system, ultrasonically disperse carbon nanotubes in deionized water, add a small amount of phenol source and stir to dissolve, then put into aldehyde source for phenolic condensation, after suction filtration and washing, a gray core-shell structure graphitic carbon@phenolic resin is obtained Nanofibers;
S2、惰性气氛下,将核壳结构的石墨碳@酚醛树脂纳米纤维一步碳化得到黑色的核壳结构石墨碳@无定型碳纳米纤维;S2. In an inert atmosphere, carbonize the core-shell structure graphitic carbon@phenolic resin nanofibers in one step to obtain black core-shell structure graphitic carbon@amorphous carbon nanofibers;
S3、惰性气氛下,将黑色的核壳结构石墨碳@无定型碳纳米纤维和活化剂混合,碳化活化得到黑色核壳结构石墨碳@富微孔碳纳米纤维,也即超亲离子液体富微孔纳米纤维电极材料。S3. In an inert atmosphere, mix the black core-shell structure graphitic carbon@amorphous carbon nanofibers with an activator, and carbonize and activate to obtain black core-shell structure graphitic carbon@microporous carbon nanofibers, that is, super ionic liquid rich microporous carbon nanofibers. Porous Nanofiber Electrode Materials.
结合图1所示,超亲离子液体富微孔纳米纤维电极材料合成机理为:表面氧官能团修饰的碳纳米管,由于氢键作用,可在水溶液中均匀分散,当加入间氨基苯酚和甲醛时,均匀分散的表面氧官能团修饰的碳纳米管,作为异质成核位点能有效降低酚醛缩合核化位垒,在氢键作用力下,沿碳纳米管表面包覆生长成核壳结构石墨碳@酚醛树脂纳米纤维;由于纤维表面富含氨基和羟基官能团,在碳化过程中受氢键作用力支配,三维纤维框架被压缩而变得密实,最后经活化即可得到经压缩的富微孔三维碳框架纳米纤维电极材料。Combining with Fig. 1, the synthesis mechanism of super ionic liquid-rich microporous nanofiber electrode material is as follows: carbon nanotubes modified with surface oxygen functional groups can be uniformly dispersed in aqueous solution due to hydrogen bonding, when m-aminophenol and formaldehyde are added. , The carbon nanotubes modified by the uniformly dispersed surface oxygen functional groups can effectively reduce the nucleation barrier of phenolic condensation as a heterogeneous nucleation site. Carbon@phenolic resin nanofibers; because the fiber surface is rich in amino and hydroxyl functional groups, it is dominated by hydrogen bond forces during the carbonization process, and the three-dimensional fiber frame is compressed and becomes dense, and finally compressed micropore-rich can be obtained after activation Three-dimensional carbon frame nanofiber electrode material.
具体地,步骤S1中,碳纳米管、酚源和醛源的质量比为(0.005-0.05):1:1.5。酚源包括间氨基苯酚、邻氨基苯酚和对氨基苯酚中的一种,醛源包括甲醛或乙醛。进一步,酚源优选为间氨基苯酚,醛源优选为甲醛。Specifically, in step S1, the mass ratio of carbon nanotubes, phenol source and aldehyde source is (0.005-0.05):1:1.5. The phenol source includes one of m-aminophenol, o-aminophenol and p-aminophenol, and the aldehyde source includes formaldehyde or acetaldehyde. Further, the phenol source is preferably m-aminophenol, and the aldehyde source is preferably formaldehyde.
其中,为提高反应效率,酚醛缩合反应的反应温度为20-100℃,反应时间为10-60min。Wherein, in order to improve the reaction efficiency, the reaction temperature of the phenolic condensation reaction is 20-100° C., and the reaction time is 10-60 min.
核-壳结构为微孔纳米结构,比表面积大大提高,提高电解液与电极材料之间的浸润性;此外,核-壳结构形成三维交织网状结构,有利于氧还过程中电极材料内部电子以及离子的快速传输,进一步提高电极材料的比电容量。The core-shell structure is a microporous nanostructure, which greatly increases the specific surface area and improves the wettability between the electrolyte and the electrode material; in addition, the core-shell structure forms a three-dimensional interwoven network structure, which is beneficial to the electrons inside the electrode material during the redox process. As well as the rapid transport of ions, the specific capacitance of the electrode material is further improved.
具体地,步骤S2中,一步碳化的条件包括:500-1400℃、碳化时间100-200min、升温速率2-10℃min-1。优选地,碳化温度为800℃、碳化时间120min、升温速率2℃min-1。Specifically, in step S2, the conditions for one-step carbonization include: 500-1400° C., carbonization time 100-200 min, and heating rate 2-10° C. min −1 . Preferably, the carbonization temperature is 800° C., the carbonization time is 120 min, and the heating rate is 2° C. min −1 .
氮元素的掺杂,可以提高活性位点,表现出更好的性能,导电内核碳纳米管和原位掺杂的氮原子协同提升材料的导电性和电化学性能。The doping of nitrogen elements can improve the active sites and show better performance. The conductive core carbon nanotubes and in-situ doped nitrogen atoms synergistically improve the electrical conductivity and electrochemical performance of the material.
步骤S3中,碳纳米纤维和活化剂的质量比在1:2至1:5范围内,其中,活化剂优选为氢氧化钾。In step S3, the mass ratio of the carbon nanofibers and the activator is in the range of 1:2 to 1:5, wherein the activator is preferably potassium hydroxide.
进一步地,碳化活化的条件包括:活化温度为700-800℃、时间为60-180min,升温速率为2-5℃min-1。优选地,活化温度为750℃、时间为120min,升温速率为3℃min-1。Further, the conditions for carbonization activation include: activation temperature of 700-800° C., time of 60-180 min, and heating rate of 2-5° C. min −1 . Preferably, the activation temperature is 750° C., the time is 120 min, and the heating rate is 3° C. min −1 .
由此,本发明提供的制备工艺简单绿色,无需去除模板,成本低廉;此外反应在纯水体系中进行,无有机溶剂的添加,适合工业化生产。Therefore, the preparation process provided by the present invention is simple and green, does not need to remove the template, and has low cost; in addition, the reaction is carried out in a pure water system without the addition of an organic solvent, which is suitable for industrial production.
在上述方案基础上,本发明另一实施例提供了一种超亲离子液体富微孔纳米纤维电极材料,采用上述的超亲离子液体富微孔纳米纤维电极材料的制备方法制得。On the basis of the above scheme, another embodiment of the present invention provides a super ionic liquid rich microporous nanofiber electrode material, which is prepared by the above-mentioned preparation method of the super ionic liquid rich microporous nanofiber electrode material.
在上述方案基础上,本发明又一实施例提供了上述超亲离子液体富微孔纳米纤维电极材料作为超级电容器活性材料的应用。On the basis of the above solution, another embodiment of the present invention provides the application of the above-mentioned super ionic liquid rich microporous nanofiber electrode material as an active material of a supercapacitor.
本发明提供的超亲离子液体富微孔纳米纤维电极材料具有密实的3D骨架、压实密度高,以碳纳米管作为导电内核,富微孔碳作为电容外壳,导电内核碳纳米管和原位掺杂的氮原子协同提升材料的导电性和电化学性,能实现快速的电子离子双传导;同时,富微孔碳纤维具有发达的微孔和介孔,且微孔尺寸略微大于离子液体电解液中离子尺寸,与电解液的接触角几乎为零,具有超亲离子液体表面,作为超级电容器电极材料时表现出高比电容、高比能量密度、优异的倍率性能和稳定的循环性能。The super ionic liquid rich microporous nanofiber electrode material provided by the invention has a dense 3D skeleton and high compaction density, and uses carbon nanotubes as a conductive core, microporous carbon as a capacitor shell, and the conductive core carbon nanotubes and in-situ The doped nitrogen atoms synergistically enhance the electrical conductivity and electrochemical properties of the material, and can achieve fast electron-ion double conduction; at the same time, the microporous carbon fiber has well-developed micropores and mesopores, and the size of the micropores is slightly larger than that of the ionic liquid electrolyte. The medium ion size, the contact angle with the electrolyte is almost zero, and it has a super ionic liquid surface, which shows high specific capacitance, high specific energy density, excellent rate performance and stable cycling performance as a supercapacitor electrode material.
在上述实施方式的基础上,本发明给出如下具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按质量计算。On the basis of the above embodiments, the present invention provides the following specific examples to further illustrate the present invention. It should be understood that these examples are only used to illustrate the present invention and not to limit the scope of the present invention. In the following examples, the experimental methods without specific conditions are generally in accordance with the conditions suggested by the manufacturer. Unless otherwise stated, percentages and parts are by mass.
实施例1Example 1
本实施例提供了一种超亲离子液体富微孔纳米纤维电极材料的制备方法,包括以下步骤:This embodiment provides a method for preparing a super-ionic liquid-rich microporous nanofiber electrode material, comprising the following steps:
1)将25mg碳纳米管分散在300mL去离子水中,加入2.475g间氨基苯酚溶解后加入3.42mL甲醛反应0.5h,经抽滤洗涤干燥后得到灰色的核壳结构石墨碳@酚醛树脂纳米纤维(CNT@APF);1) Disperse 25mg carbon nanotubes in 300mL deionized water, add 2.475g m-aminophenol to dissolve, add 3.42mL formaldehyde to react for 0.5h, and obtain gray core-shell structure graphite carbon@phenolic resin nanofibers ( CNT@APF);
2)将干燥好的CNT@APF在氮气气氛下800℃碳化2h,升温速率为2℃min-1,得到黑色的核壳结构石墨碳@无定型氮掺杂碳纳米纤维(CNT@NC);2) The dried CNT@APF was carbonized at 800 °C for 2 h under nitrogen atmosphere, and the heating rate was 2 °C min -1 to obtain black core-shell structure graphitic carbon@amorphous nitrogen-doped carbon nanofibers (CNT@NC);
3)将CNT@NC和KOH按照质量比为1:4混合,在氮气气氛下750℃活化1h,升温速率为2℃min-1,将活化后的样品用稀盐酸洗涤除去杂质,随后水洗至中性,得到超亲离子液体富微孔纳米纤维电极材料-黑色核壳结构石墨碳@富微孔氮掺杂碳纳米纤维(CNT@NC-A)。3) Mix CNT@NC and KOH according to the mass ratio of 1:4, activate at 750 °C for 1 h under nitrogen atmosphere, and the heating rate is 2 °C min -1 . The activated sample is washed with dilute hydrochloric acid to remove impurities, and then washed with water until Neutral, the super ionic liquid microporous-rich nanofiber electrode material-black core-shell structure graphitic carbon@microporous-rich nitrogen-doped carbon nanofibers (CNT@NC-A) was obtained.
实施例2Example 2
本实施例提供了一种纳米纤维电极材料的制备方法,包括以下步骤:This embodiment provides a method for preparing a nanofiber electrode material, comprising the following steps:
1)将25mg碳纳米管分散在300mL去离子水中,加入2.475g间氨基苯酚溶解后加入3.42mL甲醛反应0.5h,经抽滤洗涤干燥后得到灰色的核壳结构石墨碳@酚醛树脂纳米纤维(CNT@APF);1) Disperse 25mg carbon nanotubes in 300mL deionized water, add 2.475g m-aminophenol to dissolve, add 3.42mL formaldehyde to react for 0.5h, and obtain gray core-shell structure graphite carbon@phenolic resin nanofibers ( CNT@APF);
2)将干燥好的CNT@APF在氮气气氛下800℃碳化2h,升温速率为2℃min-1,得到黑色的核壳结构石墨碳@无定型氮掺杂碳纳米纤维(CNT@NC)。2) The dried CNT@APF was carbonized at 800 °C for 2 h under nitrogen atmosphere with a heating rate of 2 °C min -1 to obtain black core-shell structured graphitic carbon@amorphous nitrogen-doped carbon nanofibers (CNT@NC).
本实施例与实施例1制备的电极材料区别在于,本实施例核壳结构石墨碳@无定型氮掺杂碳纳米纤维未经氢氧化钾活化。The difference between this example and the electrode material prepared in Example 1 is that the core-shell structure graphitic carbon@amorphous nitrogen-doped carbon nanofiber in this example is not activated by potassium hydroxide.
实施例3Example 3
本实施例提供了一种纳米纤维电极材料的制备方法,包括以下步骤:This embodiment provides a method for preparing a nanofiber electrode material, comprising the following steps:
1)在300mL去离子水中,加入2.475g间氨基苯酚溶解后加入3.42mL甲醛反映0.5h,经抽滤洗涤干燥后得到黄色的酚醛树脂微球(APF);1) In 300mL deionized water, add 2.475g m-aminophenol to dissolve, add 3.42mL formaldehyde to react for 0.5h, and obtain yellow phenolic resin microspheres (APF) after suction filtration, washing and drying;
2)将干燥好的APF在氮气气氛下800℃碳化2h,升温速率为2℃min-1,得到黑色的氮掺杂碳微球(NCS);2) The dried APF was carbonized at 800 °C for 2 h in a nitrogen atmosphere, and the heating rate was 2 °C min -1 to obtain black nitrogen-doped carbon microspheres (NCS);
3)将NCS和KOH按照质量比为1:4混合,在氮气气氛下750℃活化1h,升温速率为2℃min-1,将活化后的样品用稀盐酸洗涤除去杂质,随后水洗至中性,得到黑色富微孔氮掺杂碳微球(NCS-A)。3) Mix NCS and KOH according to a mass ratio of 1:4, activate at 750 °C for 1 h under nitrogen atmosphere, and the heating rate is 2 °C min -1 , wash the activated sample with dilute hydrochloric acid to remove impurities, and then wash with water until neutral , black microporous nitrogen-doped carbon microspheres (NCS-A) were obtained.
以实施例1制得超亲离子液体富微孔纳米纤维电极材料为例,对CNT@APF、CNT@NC和CNT@NC-A进行形貌与结构表征,得到图2-7所示的结果图。Taking the super ionic liquid microporous nanofiber electrode material prepared in Example 1 as an example, the morphology and structure of CNT@APF, CNT@NC and CNT@NC-A were characterized, and the results shown in Figures 2-7 were obtained. picture.
图2为CNT@APF的SEM图(a)和TEM图(b,c),CNT@NC的SEM图(d)和TEM图(e,f),CNT@NC-A的SEM图(g)、TEM图(h,i)和EDS能谱(j),从图2可以看出,合成的石墨碳@酚醛树脂纳米纤维CNT@APF呈相互交联状态,纤维尺寸在60nm左右,核层碳纳米管直径在5-10nm,且此时三维网络疏松孔隙较大。碳化过程中相邻纤维在氢键作用力下相互靠近,减小无用空腔占比,提高网络密实度,纤维直径略有缩小。活化处理后,由于酚醛树脂基碳优异的热稳定性和耐蚀刻性,纤维直径变化不大,但在纤维内部形成了丰富的微孔结构。纤维上C、O元素均匀分布,而N元素在碳纳米管处分布于相对较少,反映了纤维中碳纳米管的分布。Figure 2 shows the SEM images (a) and TEM images (b, c) of CNT@APF, the SEM images (d) and TEM images (e, f) of CNT@NC, and the SEM images (g) of CNT@NC-A. , TEM images (h, i) and EDS spectrum (j), it can be seen from Fig. 2 that the synthesized graphitic carbon@phenolic resin nanofibers CNT@APF are in a state of mutual cross-linking, the fiber size is about 60nm, and the core layer carbon The diameter of the nanotubes is 5-10 nm, and the three-dimensional network is loose and porous at this time. During the carbonization process, the adjacent fibers approached each other under the force of hydrogen bonding, which reduced the proportion of useless cavities, improved the network density, and slightly reduced the fiber diameter. After the activation treatment, due to the excellent thermal stability and etching resistance of phenolic resin-based carbon, the fiber diameter did not change much, but a rich microporous structure was formed inside the fiber. The C and O elements are uniformly distributed on the fiber, while the N element is relatively less distributed in the carbon nanotubes, which reflects the distribution of carbon nanotubes in the fiber.
为进一步说明碳纳米管加入对超亲离子液体富微孔纳米纤维电极材料的影响,通过多孔碳球和多孔碳纤维的合成产率、碳化产率、活化产率的对比,得到表1数据。In order to further illustrate the effect of carbon nanotubes on superionic liquid-rich microporous nanofiber electrode materials, the data in Table 1 were obtained by comparing the synthesis yield, carbonization yield, and activation yield of porous carbon spheres and porous carbon fibers.
表1氮掺杂多孔碳材料产率表Table 1 Yield table of nitrogen-doped porous carbon materials
从表1可以看出,相对于未加入碳纳米管的样品,微量碳纳米管的加入不仅增加了材料导电性,诱导树脂成核生长从三维到一维的转变,而且提高了前驱体的产率,增加了树脂材料抗热稳定性和耐蚀刻性,相对于多孔碳球(NCS-A)在相同条件下多孔碳纤维(CNT@NC-A)终产物产率提升43.1%。It can be seen from Table 1 that, compared with the samples without carbon nanotubes, the addition of trace carbon nanotubes not only increases the electrical conductivity of the material, induces the transformation of resin nucleation growth from three-dimensional to one-dimensional, but also improves the production of precursors. Compared with porous carbon spheres (NCS-A), the final product yield of porous carbon fibers (CNT@NC-A) was increased by 43.1% under the same conditions.
图3为实施例1、2和3所述氮掺杂多孔碳材料的XRD图,从图3可以看出,实施例1制备的CNT@NC-A、实施例2制备的CNT@NC、实施例3制备的NCS-A在24°和43°的两个大包峰对应无定型碳在(002)和(100)晶面的衍射情况,说明其无定型结构。相对于CNT@NC,经活化处理的NCS-A和CNT@NC-A的衍射峰强度减弱。FIG. 3 is the XRD patterns of the nitrogen-doped porous carbon materials described in Examples 1, 2 and 3. It can be seen from FIG. 3 that the CNT@NC-A prepared in Example 1, the CNT@NC prepared in Example 2, the The two large envelope peaks at 24° and 43° of NCS-A prepared in Example 3 correspond to the diffraction patterns of amorphous carbon at (002) and (100) crystal planes, indicating its amorphous structure. Compared with CNT@NC, the diffraction peak intensities of the activated NCS-A and CNT@NC-A are weakened.
图4为实施例1、2和3所述氮掺杂多孔碳材料的Raman图,从图4可以看出,实施例1制备的CNT@NC-A和实施例2制备的CNT@NC在1360cm-1和1580cm-1处对应碳材料典型的无定形峰和石墨化峰,其中由于碳纳米管的存在使得G峰强度高,且在2700cm-1处存在典型的2D峰。实施例3制备的NCS-A在1360cm-1和1580cm-1处对应碳材料典型的无定形峰(D峰)和石墨化(G峰),由于没有碳纳米管的存在,D峰和G峰的比值约为1,表明活化后的材料在保持无定型结构的同时具有一定的石墨化程度。Figure 4 is the Raman diagram of the nitrogen-doped porous carbon materials described in Examples 1, 2 and 3. It can be seen from Figure 4 that the CNT@NC-A prepared in Example 1 and the CNT@NC prepared in Example 2 are at 1360 cm -1 and 1580 cm -1 correspond to the typical amorphous and graphitized peaks of carbon materials, wherein the G peak intensity is high due to the existence of carbon nanotubes, and there is a typical 2D peak at 2700 cm -1 . The NCS-A prepared in Example 3 corresponds to the typical amorphous peaks (D peaks) and graphitization (G peaks) of carbon materials at 1360 cm -1 and 1580 cm -1 . Due to the absence of carbon nanotubes, D peaks and G peaks The ratio is about 1, indicating that the activated material has a certain degree of graphitization while maintaining the amorphous structure.
图5为实施例1、2和3所述氮掺杂多孔碳材料的吸脱附曲线和孔径分布曲线图,从图5可以看出,实施例1制备的CNT@NC-A材料的比表面积达到2059m2g-1,微孔孔容为0.69cm3g-1,具有丰富的微孔和介孔结构,且微孔尺寸略微大于离子液体电解液中离子尺寸,所有孔道均为离子可达有效孔。实施例2制备的CNT@NC料的比表面积达到358m 2g-1,微孔孔容为0.04cm 3g-1,说明没有经过活化,微孔不发达。实施例3制备的NCS-A材料的比表面积达到770m2g-1,微孔孔容为0.24cm3g-1,具有丰富的微孔。Figure 5 shows the adsorption-desorption curves and pore size distribution curves of the nitrogen-doped porous carbon materials described in Examples 1, 2 and 3. It can be seen from Figure 5 that the specific surface area of the CNT@NC-A material prepared in Example 1 It reaches 2059m2g -1 , the micropore volume is 0.69cm3g -1 , has abundant micropore and mesopore structure, and the micropore size is slightly larger than the ion size in the ionic liquid electrolyte, and all the pores are ion-reachable effective pores. The specific surface area of the CNT@NC material prepared in Example 2 reached 358 m 2g -1 , and the micropore volume was 0.04 cm 3g -1 , indicating that the micropores were not developed without activation. The specific surface area of the NCS-A material prepared in Example 3 reaches 770m2g -1 , the micropore volume is 0.24cm3g -1 , and it has abundant micropores.
图6为实施例1制备的超亲离子液体富微孔纳米纤维电极材料CNT@NC-A的XPS能谱,从图6可以看出,CNT@NC-A材料组成为C(91.80at.%)、N(3.24at.%)和O(4.96at.%),高的氮含量将大幅提高电化学性能,此外经过分峰拟合,N物种中主要以吡咯氮形式存在。Figure 6 is the XPS energy spectrum of the super ionic liquid-rich microporous nanofiber electrode material CNT@NC-A prepared in Example 1. It can be seen from Figure 6 that the composition of the CNT@NC-A material is C (91.80 at.% ), N (3.24 at.%) and O (4.96 at.%), high nitrogen content will greatly improve the electrochemical performance, in addition, through peak fitting, N species mainly exist in the form of pyrrole nitrogen.
图7和图9分别为实施例1、2和3所述氮掺杂多孔碳材料的润湿性测试图循环伏安曲线图,从图7可以看出,实施例1制备的CNT@NC-A材料和电解液接触的初始接触角为39.6°,4min后接触角为0°,处于完全润湿状态,良好的界面润湿性将大大有利于电化学性能的发挥。实施例2制备的CNT@NC材料和电解液接触的初始接触角为59.9°,4min后接触角变化不大,表明该实施例的电极材料在本质上和电解液是润湿的,但由于微孔不发达,浸润性有限,表现出不太理想的电容性能(附图9)。实施例3制备的NCS-A材料和电解液接触的初始接触角为85.3°,4min后接触角为58.0°,表明该实施例的电极材料在本质上和电解液是润湿的,但由于球形结构与电解液浸润性逊色于三维网络结构,且比表面积不到,表现出逊色于实施例1的电容性能(附图9)。Fig. 7 and Fig. 9 are cyclic voltammetry graphs of the wettability test charts of the nitrogen-doped porous carbon materials described in Examples 1, 2 and 3, respectively. It can be seen from Fig. 7 that the CNT@NC- The initial contact angle of material A and the electrolyte is 39.6°, and the contact angle after 4 min is 0°, which is in a fully wetted state. Good interface wettability will greatly benefit the electrochemical performance. The initial contact angle of the CNT@NC material prepared in Example 2 in contact with the electrolyte was 59.9°, and the contact angle changed little after 4 min, indicating that the electrode material of this example was essentially wet with the electrolyte, but due to the microscopic The pores are underdeveloped and have limited wettability, exhibiting less than ideal capacitive performance (Figure 9). The initial contact angle of the NCS-A material prepared in Example 3 in contact with the electrolyte was 85.3°, and the contact angle after 4 min was 58.0°, indicating that the electrode material of this example is essentially wet with the electrolyte, but due to the spherical shape The structure and electrolyte wettability are inferior to the three-dimensional network structure, and the specific surface area is less than that, showing the capacitance performance inferior to that of Example 1 (Fig. 9).
将实施例1制备的超亲离子液体富微孔碳纳米纤维电极材料作为超级电容器电极材料的应用如下:电极片的制作过程采用超亲离子液体富微孔碳纳米纤维作为活性材料,乙炔黑作为导电剂,PTFE作为粘结剂,三者按照质量比为8:1:1研钵混合,并压辊制作成电极片,以离子液体EMIMBF4作为电解液,采用纤维素隔膜,组装成扣式电池。以此类推,将实施例2、3制备的电极材料也组装成电池。分别对组装的扣式电池进行电化学测试,得到图8-12所示的结果图。The application of the super ionic liquid microporous carbon nanofiber electrode material prepared in Example 1 as the supercapacitor electrode material is as follows: the production process of the electrode sheet uses the super ionic liquid microporous carbon nanofiber as the active material, and acetylene black as the Conductive agent, PTFE as binder, the three are mixed in a mortar with a mass ratio of 8:1:1, and pressed into a roller to make an electrode sheet, ionic liquid EMIMBF 4 is used as the electrolyte, and a cellulose diaphragm is used to assemble into a button-type Battery. By analogy, the electrode materials prepared in Examples 2 and 3 were also assembled into batteries. Electrochemical tests were performed on the assembled button cells, respectively, and the result diagrams shown in Figures 8-12 were obtained.
图8为实施例1制备的超亲离子液体富微孔纳米纤维电极材料CNT@NC-A的循环伏安曲线图,从图8可以看出,超亲离子液体富微孔碳纳米纤维在不同扫速下表现出类矩形形状,表明其电化学电容行为。Figure 8 is a cyclic voltammetry diagram of the superionic liquid microporous-rich nanofiber electrode material CNT@NC-A prepared in Example 1. It can be seen from Figure 8 that the superionic liquid microporous-rich carbon nanofibers in different It exhibits a rectangular-like shape at scan rate, indicating its electrochemical capacitive behavior.
图9为实施例1、2和3所述氮掺杂多孔碳材料的循环伏安曲线图,从图9可以看出,从循环伏安曲线面积来看,实施例1制备的CNT@NC-A组装的电池的电容远高予为活化的实施例2制备CNT@NC组装的电池的电容,且高于未添加碳纳米管的实施例3制备的NCS-A。Fig. 9 is the cyclic voltammetry curves of the nitrogen-doped porous carbon materials described in Examples 1, 2 and 3. It can be seen from The capacitance of the battery assembled with A is much higher than that of the CNT@NC-assembled battery prepared in Example 2, which was pre-activated, and higher than that of the NCS-A prepared in Example 3 without the addition of carbon nanotubes.
图10、12分别为实施例1制备的超亲离子液体富微孔纳米纤维电极材料CNT@NC-A的在不同电流密度下的充放电曲线图和循环曲线,从图10可以看出,在1A g-1电流密度下,超亲离子液体富微孔碳纳米纤维具有高达219F g-1的比电容,在10A g-1的电流密度下,循环20000圈后容量保持率高达95%(附图12),这得益于电极/电解液界面良好的润湿性。根据进一步换算,其能量密度为108.8Wh kg-1,功率密度可以达到946.3W kg-1。Figures 10 and 12 are respectively the charge-discharge curves and cycle curves of the super-ionic liquid-rich microporous nanofiber electrode material CNT@NC-A prepared in Example 1 at different current densities. At a current density of 1A g -1 , the superionic liquid microporous carbon nanofibers have a specific capacitance as high as 219F g -1 , and at a current density of 10A g -1 , the capacity retention rate is as high as 95% after 20000 cycles (attached). Figure 12), which benefits from the good wettability of the electrode/electrolyte interface. According to further conversion, its energy density is 108.8Wh kg -1 , and the power density can reach 946.3W kg -1 .
图11为实施例1、2和3所述氮掺杂多孔碳材料的倍率曲线,从图11可以看出,实施例1制备的CNT@NC-A电池在50A g-1电流密度下比电容仍高达160F g-1,远高于实施例2制备CNT@NC电池和实施例3制备的NCS-A电池,该优异的倍率性能得益于氮掺杂及该结构高效的电子离子双传导作用。Figure 11 shows the rate curves of the nitrogen-doped porous carbon materials described in Examples 1, 2 and 3. It can be seen from Figure 11 that the specific capacitance of the CNT@NC-A battery prepared in Example 1 is at a current density of 50A g -1 It is still as high as 160F g -1 , which is much higher than that of the CNT@NC battery prepared in Example 2 and the NCS-A battery prepared in Example 3. The excellent rate performance is due to nitrogen doping and the efficient electron-ion dual conduction of the structure. .
图13为实施例3所述酚醛树脂微球APF的SEM图(a,d),氮掺杂碳微球NCS的SEM图(b,e),富微孔氮掺杂碳微球NCS-A的SEM图(c,f),从图13中可以看出,酚醛树脂微球为直径在600nm的单分散小球,碳化过程中小分子前体逸出,树脂收缩得到直径在500nm的单分散碳微球,氮掺杂碳微球,活化过程中在碱的蚀刻作用下,富微孔氮掺杂碳微球保持稳定的单分散状态,尺寸在450nm。Fig. 13 is the SEM images (a, d) of the phenolic resin microspheres APF described in Example 3, the SEM images (b, e) of the nitrogen-doped carbon microspheres NCS, and the rich microporous nitrogen-doped carbon microspheres NCS-A The SEM images (c, f) of the phenolic resin microspheres are shown in Figure 13. The phenolic resin microspheres are monodisperse spheres with a diameter of 600 nm. During the carbonization process, the small molecule precursors escape, and the resin shrinks to obtain monodisperse carbons with a diameter of 500 nm. Microspheres, nitrogen-doped carbon microspheres, under the action of alkali etching during the activation process, the rich microporous nitrogen-doped carbon microspheres maintain a stable monodisperse state with a size of 450nm.
综上分析,本发明制备的超亲离子液体富微孔纳米纤维电极材料,富微孔碳纤维尺寸在40nm,比表面积可达2059m2 g-1,制备的电极片面密度为2.6g cm-2,对离子液体电解液表现出极佳的浸润性(θ-0°),作为超级电容器电极材料表现出高比电容、高比能量-功率密度、极佳的倍率性能和稳定的循环性能。In summary, the super ionic liquid microporous nanofiber electrode material prepared by the present invention has a microporous-rich carbon fiber size of 40 nm, a specific surface area of up to 2059m2 g -1 , and an electrode sheet density of 2.6 g cm -2 . The ionic liquid electrolyte exhibits excellent wettability (θ-0°), and as a supercapacitor electrode material exhibits high specific capacitance, high specific energy-power density, excellent rate capability and stable cycling performance.
实施例4Example 4
本实施例提供了一种碳纳米管的制备方法,包括以下步骤:The present embodiment provides a method for preparing carbon nanotubes, comprising the following steps:
将100mg碳纳米管分散在1200mL去离子水中,经抽滤洗涤干燥后在氮气气氛下800℃碳化2h,升温速率为2℃min-1,随后和KOH按照质量比为1:4混合,在氮气气氛下750℃活化1h,升温速率为2℃min-1。将活化后的样品用稀盐酸洗涤除去杂质,随后水洗至中性,得到黑色活化后的碳纳米管(CNT-A)。100 mg of carbon nanotubes were dispersed in 1200 mL of deionized water, washed and dried by suction, carbonized at 800 °C for 2 h under nitrogen atmosphere, and the heating rate was 2 °C min -1 , and then mixed with KOH according to the mass ratio of 1:4, under nitrogen atmosphere Activated at 750℃ for 1h under the atmosphere, the heating rate was 2℃min -1 . The activated sample was washed with dilute hydrochloric acid to remove impurities, and then washed with water until neutral to obtain black activated carbon nanotubes (CNT-A).
图14为实施例4所述碳化活化后碳纳米管CNT-A的充放电曲线图,从图14可以看出,在1A g-1电流密度下,经活化后的碳纳米管比电容为25.2F g-1,表现出极其有限的电容性能。Fig. 14 is the charge-discharge curve of carbon nanotubes CNT-A after carbonization and activation described in Example 4. It can be seen from Fig. 14 that under the current density of 1A g -1 , the specific capacitance of the activated carbon nanotubes is 25.2 F g -1 , which exhibits extremely limited capacitive performance.
虽然本发明公开披露如上,但本发明公开的保护范围并非仅限于此。本领域技术人员在不脱离本发明公开的精神和范围的前提下,可进行各种变更与修改,这些变更与修改均将落入本发明的保护范围。Although the disclosure of the present invention is as above, the protection scope of the disclosure of the present invention is not limited thereto. Those skilled in the art can make various changes and modifications without departing from the spirit and scope of the present disclosure, and these changes and modifications will fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210838934.7A CN115206687A (en) | 2022-07-18 | 2022-07-18 | A kind of super ionic liquid rich microporous nanofiber electrode material and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210838934.7A CN115206687A (en) | 2022-07-18 | 2022-07-18 | A kind of super ionic liquid rich microporous nanofiber electrode material and its preparation method and application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115206687A true CN115206687A (en) | 2022-10-18 |
Family
ID=83582296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210838934.7A Pending CN115206687A (en) | 2022-07-18 | 2022-07-18 | A kind of super ionic liquid rich microporous nanofiber electrode material and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115206687A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115986085A (en) * | 2023-01-06 | 2023-04-18 | 四川物科金硅新材料科技有限责任公司 | Three-dimensional carbon skeleton silicon-based negative electrode material and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102151529A (en) * | 2011-02-11 | 2011-08-17 | 许昌学院 | Phenolic resin coated carbon nanotube composite material and chemical preparation method thereof |
CN109087814A (en) * | 2018-08-06 | 2018-12-25 | 武汉理工大学 | Situ Nitrogen Doping porous carbon nanofiber electrode material and its magnanimity preparation method and application |
-
2022
- 2022-07-18 CN CN202210838934.7A patent/CN115206687A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102151529A (en) * | 2011-02-11 | 2011-08-17 | 许昌学院 | Phenolic resin coated carbon nanotube composite material and chemical preparation method thereof |
CN109087814A (en) * | 2018-08-06 | 2018-12-25 | 武汉理工大学 | Situ Nitrogen Doping porous carbon nanofiber electrode material and its magnanimity preparation method and application |
Non-Patent Citations (1)
Title |
---|
姚园园: "碳纳米管/微孔碳核壳结构的设计制备及其性能研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》, 15 December 2015 (2015-12-15), pages 020 - 138 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115986085A (en) * | 2023-01-06 | 2023-04-18 | 四川物科金硅新材料科技有限责任公司 | Three-dimensional carbon skeleton silicon-based negative electrode material and preparation method thereof |
CN115986085B (en) * | 2023-01-06 | 2024-01-26 | 四川物科金硅新材料科技有限责任公司 | Three-dimensional carbon skeleton silicon-based anode material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ni et al. | Nitrogen-doped asphaltene-based porous carbon fibers as supercapacitor electrode material with high specific capacitance | |
CN109087814B (en) | In-situ nitrogen-doped porous carbon nanofiber electrode material and its macro-fabrication method and application | |
CN110611092B (en) | Preparation method of nano silicon dioxide/porous carbon lithium ion battery cathode material | |
CN113135568A (en) | Nitrogen-doped porous carbon material and preparation method and application thereof | |
CN106517133B (en) | Ultra-thin layer of charcoal of nitrating three-dimensional co-continuous porous structure and its preparation method and application | |
CN103762091A (en) | Cellular porous manganese dioxide nanofiber preparing method and application of cellular porous manganese dioxide nanofiber in supercapacitor | |
CN107541811B (en) | A kind of carbon nano rod composite material and preparation method and application | |
CN113035578A (en) | Graphene/carbon aerogel composite material and preparation method thereof | |
CN111320172A (en) | A kind of directional synthesis method and application of biomass activated carbon-based electrode material containing micropore-mesoporous channels | |
CN111293301A (en) | Soft and hard carbon composite porous negative electrode material for sodium ion battery and preparation method thereof | |
CN106683891A (en) | High-conductivity flexible graphite/mesoporous graphitized carbon composite membrane electrode preparation method | |
Xu et al. | Facile hydrothermal synthesis of tubular kapok fiber/MnO 2 composites and application in supercapacitors | |
CN111900417A (en) | A kind of preparation method of carbon paper for gas diffusion layer of fuel cell with high carbon content | |
CN110517900A (en) | Preparation method of nitrogen-doped low-temperature carbon nanofiber electrode material for supercapacitor | |
CN108950738A (en) | A kind of preparation method of sisal hemp activated carbon fibre | |
CN115206687A (en) | A kind of super ionic liquid rich microporous nanofiber electrode material and its preparation method and application | |
CN110240143A (en) | A nitrogen-doped carbon aerogel material for supercapacitor, preparation method and application | |
CN112320784B (en) | Sulfur-doped iron-nitrogen-carbon supercapacitor electrode material and preparation method and application thereof | |
CN114590808A (en) | Preparation method of three-dimensional grading porous spherical activated carbon material | |
CN110844903A (en) | Preparation method of bacterial cellulose-based composite porous carbon material | |
CN115285991B (en) | Method to generate hierarchical porous carbon based on self-assembly of biomass derivatives and its application | |
CN118083952A (en) | A method for preparing biomass-based sodium ion battery negative electrode hard carbon material | |
CN113120897B (en) | Method for preparing nitrogen-doped microporous carbon electrode material by solvent-free method | |
Sun et al. | Rice straw-derived lignin-based carbon nanofibers as self-supporting electrodes for supercapacitors and lithium-ion batteries | |
CN109103026A (en) | A kind of preparation method of the derivative carbon nanofiber membrane of fluorine, nitrogen co-doped bacteria cellulose |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |