具体实施方式
现在将详细参考示例性实施例,其示例在附图中示出。以下描述参照附图,除非另有说明,其中不同附图中的相同数字表示相同或相似的元件。在示例性实施例的以下描述中阐述的实施方式并不代表与本公开一致的所有实施方式。相反,它们仅是与如所附权利要求中所述的与本公开相关的方面一致的装置和方法的示例。下面更详细地描述本公开的特定方面。如果与通过引用并入的术语和/或定义相冲突的话,以本文提供的术语和定义为准。
ITU-T视频编码专家组(ITU-T VCEG)和ISO/IEC运动图像专家组(ISO/IEC MPEG)的联合视频专家小组(JVET)目前正在开发通用视频编码(VVC/H.266)标准。VVC标准旨在将其前身高效视频编码(HEVC/H.265)标准的压缩效率提高一倍。换句话说,VVC的目标是使用一半的带宽实现与HEVC/H.265相同的主观质量。
为了使用一半的带宽实现与HEVC/H.265相同的主观质量,JVET一直在使用联合探索模型(JEM)参考软件开发HEVC以外的技术。随着编码技术被纳入JEM,JEM实现了比HEVC更高的编码性能。
VVC标准是最近开发的,并且继续包括提供更好压缩性能的更多编码技术。VVC基于与HEVC、H.264/AVC、MPEG2、H.263等现代视频压缩标准中一直使用的混合视频编码系统。
视频是按时间顺序排列以存储视觉信息的一组静态图像(或“帧”)。可以使用视频采集设备(例如,相机)以时间顺序采集和存储这些图像,并且可以使用视频回放设备(例如,电视、计算机、智能手机、平板计算机、视频播放器、或任何具有显示功能的最终用户终端)显示时间序列中的此类图像。此外,在一些应用中,视频采集设备可以实时地将采集的视频发送到视频回放设备(例如,具有监视器的计算机),例如用于监视、会议或现场广播。
为了减少此类应用所需的存储空间和传输带宽,可以在存储和传输之前对视频进行压缩,并在显示之前进行解压缩。可以通过由处理器(例如,通用计算机的处理器)或专用硬件执行的软件来实现压缩和解压缩。用于压缩的模块通常被称为“编码器”,并且用于解压缩的模块通常被称为“解码器”。编码器和解码器可以统称为“编解码器”。编码器和解码器可以被实现为各种合适的硬件、软件、或其组合中的任何一种。例如,编码器和解码器的硬件实现可以包括电路,诸如一个或多个微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、离散逻辑或其任何组合。编码器和解码器的软件实现可以包括固定在计算机可读介质中的程序代码、计算机可执行指令、固件或任何合适的计算机实现的算法或过程。视频压缩和解压缩可以通过各种算法或标准来实现,例如MPEG-1、MPEG-2、MPEG-4、H.26x系列等。在一些应用中,编解码器可以从第一编码标准解压缩视频,并且使用第二编码标准重新压缩解压缩的视频,在这种情况下,编解码器可以被称为“转码器”。
视频编码过程可以识别并保留可用于重建图像的有用信息,并忽略不重要的重建信息。如果忽略不重要的信息不能被完全重建,则这样的编码过程可以被称为“有损”。否则,它可以被称为“无损”。大多数编码过程都是有损的,这是为了减少所需的存储空间和传输带宽的权衡。
被编码的图像(称为“当前图像”)的有用信息包括相对于参考图像(例如,先前编码和重建的图像)的变化。这样的变化可以包括像素的位置变化、亮度变化或颜色变化,其中位置变化是最受关注的。代表对象的一组像素的位置变化可以反映对象在参考图像和当前图像之间的运动。
未参考另一图像而编码的图像(即,它是自己的参考图像)被称为“I-图像”。使用先前图像作为参考图像编码的图像被称为“P-图像”,使用先前图像和将来图像作为参考图像编码的图像称为被称为“B图像”(参考是“双向”的)。
图1示出了根据本公开的一些实施例的示例视频序列100的结构。视频序列100可以是实况视频或已被采集和存档的视频。视频100可以是现实生活中的视频、电脑生成的视频(例如,计算机游戏视频)或二者组合(例如,具有增强现实效果的真实视频)。视频序列100可以从视频采集设备(例如,相机)、包含先前采集的视频档案(例如,存储在存储设备中的视频文件)或从视频内容提供商接收视频的视频馈送接口(例如,视频广播收发器)输入。
如图1所示,视频序列100可以包括沿时间线在时间上布置的一系列图像,包括图像102、104、106和108。图像102-106是连续的,在图像106和108之间有更多的图像。在图1中,图像102是I-图像,其参考图像是图像102本身。图像104是P-图像,其参考图像是图像102,如箭头所示。图像106是B图像,其参考图像是图像104和108,如箭头所示。在一些实施例中,图像的参考图像(例如,图像104)可以不紧接在图像之前或之后。例如,图像104的参考图像可以是图像102之前的图像。需要说明的是,图像102-106的参考图像仅仅是示例,本公开并不限定如图1所示的参考图像的实施例。
通常,由于编解码任务的计算复杂性,视频编解码器不会一次对整个图像进行编码或解码。相反,他们可以将图像分割成基本段,并逐段对图像段进行编码或解码。在本公开中,这样的基本段被称为基本处理单元(“BPU”)。例如,图1中的结构110示出了视频序列100的图像(例如,图像102-108中的任何图像)的示例结构。在结构110中,图像被划分为4×4基本处理单元,其边界被示出为虚线。在一些实施例中,基本处理单元可以在一些视频编码标准(例如,MPEG族、H.261、H.263或H.264/AVC)中被称为“宏块”,或者在一些其它视频编码标准(例如,H.265/HEVC或H.266/VVC)中被称为“编码树单元”(“CTU”)。基本处理单元可以在图像中具有可变的大小,例如128×128、64×64、32×32、16×16、4×8、16×32或任意形状和大小的像素。可以基于编码效率和要保持在基本处理单元中的细节水平的平衡来为图像选择基本处理单元的大小和形状。
基本处理单元可以是逻辑单元,其可以包括存储在计算机存储器中(例如,在视频帧缓冲区中)的一组不同类型的视频数据。例如,彩色图像的基本处理单元可以包括表示消色差亮度信息的亮度分量(Y)、表示颜色信息的一个或多个色度分量(例如,Cb和Cr)以及相关联的语法元素,其中亮度和色度分量可以具有与基本处理单元的相同大小。在一些视频编码标准(例如,H.265/HEVC或H.266/VVC)中,亮度和色度分量可以被称为“编码树块”(“CTB”)。对基本处理单元执行的任何操作都可以对其亮度和色度分量中的每一个重复执行。
视频编码具有多个操作阶段,其示例如图2A-2B和图3A-3B所示。对于每个阶段,基本处理单元的大小对于处理仍然可能太大,因此可以进一步分为在本公开中称为“基本处理子单元”的段。在一些实施例中,基本处理子单元可以在一些视频编码标准(例如,MPEG族、H.261、H.263或H.264/AVC)中被称为“块”,或者作为一些其他视频编码标准(例如,H.265/HEVC或H.266/VVC)中的“编码单元”(“CU”)。基本处理子单元可以具有与基本处理单元相同的大小或具有比基本处理单元更小的大小。与基本处理单元类似,基本处理子单元也是逻辑单元,其可以包括存储在计算机存储器(例如,在视频帧缓冲区中)中的一组不同类型的视频数据(例如,Y、Cb、Cr和相关联的语法元素)。对基本处理子单元执行的任何操作都可以对其亮度和色度分量中的每一个重复执行。应该注意的是,可以根据处理需要将这种划分执行到进一步的级别。还应注意,不同阶段可以使用不同的方案来划分基本处理单元。
例如,在模式决策阶段(其示例在图2B中示出,编码器可以决定对基本处理单元使用什么预测模式(例如,帧内预测或帧间预测),该基本处理单元可能太大而无法做出这样的决定。编码器可以将基本处理单元划分成多个基本处理子单元(例如,如H.265/HEVC或H.266/VVC中的CU),并且决定每个单独的基本处理子单元的预测类型。
对于另一个示例,在预测阶段(其示例在图2A-2B中示出),编码器可以在基本处理子单元(例如,CU)的级别上执行预测操作。但是,在某些情况下,基本处理子单元仍然可能太大而无法处理。编码器可以进一步将基本处理子单元划分成更小的段(例如,在H.265/HEVC或H.266/VVC中称为“预测块”或“PB”),在该级别上可以执行预测操作。
对于另一个示例,在变换阶段(其示例在图2A-2B中示出),编码器可以对残差基本处理子单元(例如,CU)执行变换操作。但是,在某些情况下,基本处理子单元仍然可能太大而无法处理。编码器可以进一步将基本处理子单元分成更小的段(例如,在H.265/HEVC或H.266/VVC中称为“变换块”或“TB”),在该级别上可以执行变换操作。需要注意的是,同一基本处理子单元的划分方案在预测阶段和变换阶段可以不同。例如,在H.265/HEVC或H.266/VVC中,相同CU的预测块和变换块可以具有不同的大小和数量。
在图1的结构110中,将基本处理单元112进一步分为3×3个基本处理子单元,其边界以虚线示出。同一图像的不同基本处理单元可以在不同的方案中划分为基本处理子单元。
在一些实施方式中,为了提供并行处理的能力以及对视频编码和解码的容错能力,可以将图像划分成用于处理的区域,使得对于图像的区域,编码或解码过程可以不依赖于来自图像的任何其他区域的信息。换句话说,图像的每个区域都可以单独处理。通过这样做,编解码器可以并行处理图像的不同区域,从而提高了编码效率。此外,当一区域的数据在处理中被损坏或在网络传输中丢失时,编解码器可以正确地编码或解码同一图像的其他区域而不依赖于被损坏或丢失的数据,从而提供容错能力。在某些视频编码标准中,可以将图像划分为不同类型的区域。例如,H.265/HEVC和H.266/VVC提供两种类型的区域:“条带(slice)”和“块片(tile)”。还应注意的是,视频序列100的不同图像可以具有用于将图像划分为区域的不同划分方案。
例如,在图1中,结构110被划分成三个区域114、116和118,其边界被示为结构110内部的实线。区域114包括四个基本处理单元。区域116和118均包括六个基本处理单元。需要说明的是,图1中110的基本处理单元、基本处理子单元和结构区域仅是示例,本公开不限制其实施例。
图2A示出了根据本公开的实施例的示例性编码过程200A的示意图。例如,编码过程200A可以由编码器执行。如图2A所示,编码器可以根据过程200A将视频序列202编码为视频位流228。类似于图1中的视频序列100,视频序列202可以包括按时间顺序排列的一组图像(称为“原始图像”)。类似于图1中的结构110,视频序列202的每个原始图像可以由编码器划分为基本处理单元、基本处理子单元或区域进行处理。在一些实施例中,编码器可以针对视频序列202的每个原始图像在基本处理单元的级别上执行过程200A。例如,编码器可以以迭代方式执行过程200A,其中编码器可以在过程200A的一次迭代中对基本处理单元进行编码。在一些实施例中,编码器可以针对视频序列202的每个原始图像的区域(例如,区域114-118)并行地执行过程200A。
参考图2A,编码器可以将视频序列202的原始图像的基本处理单元(称为“原始BPU”)馈送到预测阶段204,以生成预测数据206和预测BPU 208。编码器可以从原始BPU减去预测的BPU 208以生成残差BPU 210。编码器可以将残差BPU 210馈送到变换阶段212和量化阶段214以216生成量化变换系数216。编码器可以将预测数据206和量化变换系数216馈送到二进制编码阶段226以生成视频位流228。组件202、204、206、208、210、212、214、216、226和228可以被称为“前向路径”。在过程200A期间,在量化阶段214之后,编码器可以将量化变换系数216馈送到逆量化阶段218和逆变换阶段220以生成重建的残差BPU 222。编码器可以将重建的残差BPU 222添加到预测的BPU 208以生成预测参考224,其用于过程200A的下一次迭代的预测阶段204中。过程200A的组件218、220、222和224可以被称为“重建路径”。重建路径可以用于确保编码器和解码器都使用相同的参考数据进行预测。
编码器可以迭代地执行过程200A以对编码原始图像的每个原始BPU(在前向路径中)进行编码,并生成用于编码原始图像的下一个原始BPU(在重建路径中)的预测参考224。在对原始图像的所有原始BPU进行编码之后,编码器可以继续对视频序列202中的下一个图像进行编码。
参考过程200A,编码器可以接收由视频采集设备(例如,相机)生成的视频序列202。本文使用的术语“接收”可以指以任何方式接收、输入、获取、检索、获取、读取、访问或用于输入数据的任何动作。
在预测阶段204,在当前迭代时,编码器可以接收原始BPU和预测参考224,并执行预测操作以生成预测数据206和预测BPU 208。预测参考224可以从过程200A的先前迭代的重建路径生成。预测阶段204的目的是通过从预测数据206和预测参考224中提取可用于将原始BPU重建为预测BPU 208的预测数据206来减少信息冗余。
理想地,预测的BPU 208可以与原始BPU相同。然而,由于非理想的预测和重建操作,预测的BPU 208通常与原始BPU略有不同。为了记录这些差异,在生成预测BPU 208,编码器可以将其从原始BPU中减去以生成残差BPU 210。例如,编码器可以从原始BPU的像素的值减去预测BPU 208的对应像素的值(例如,灰度值或RGB值)。残差BPU 210的每个像素可以具有残差值作为原始BPU和预测BPU208的相应像素之间的这种相减的结果,与原始BPU相比,预测数据206和残差BPU 210可以具有更少的比特数,但是它们可以用于重建原始BPU,而不会出现明显的质量下降。因此,原始BPU被压缩。
为了进一步压缩残差BPU 210,在变换阶段212,编码器可以通过将残差BPU 210分解为一组二维“基本图案(base pattern)”来减少其空间冗余。每个基本图案与“变换系数”相关联。基本图案可以具有相同的大小(例如,残差BPU 210的大小),每个基本图案可以表示残差BPU 210的变化频率(例如,亮度变化的频率)分量。基本图案中的任何一个都不能从任何其他基本图案的任何组合(例如,线性组合)中再现。换句话说,分解可以将残差BPU210的变化分解到频域中。这种分解类似于函数的离散傅立叶变换,其中,基本图像类似于离散傅立叶变换的基本函数(例如,三角函数),并且变换系数类似于与基本函数相关联的系数。
不同的变换算法可以使用不同的基本图案。在变换阶段212可以使用各种变换算法,例如,离散余弦变换、离散正弦变换等。变换阶段212处的变换是可逆的。也就是说,编码器可以通过变换的逆运算(称为“逆变换”)来恢复残差BPU 210。例如,为了恢复残差BPU210的像素,逆变换可以是将基本图案的对应像素的值乘以相应的相关联系数并将乘积相加以产生加权和。对于视频编码标准,编码器和解码器都可以使用相同的变换算法(因此具有相同的基本图案)。因此,编码器可以仅记录变换系数,解码器可以从中重建残差BPU210,而无需从编码器接收基本图案。与残差BPU 210相比,变换系数可以具有更少的比特,但是它们可以用于重建残差BPU 210而没有显著的质量劣化。因此,残差BPU 210被进一步压缩。
编码器可以进一步在量化阶段214压缩变换系数。在变换过程中,不同的基本图案可以表示不同的变化频率(例如,亮度变化频率)。因为人眼通常更擅长识别低频变化,所以编码器可以忽略高频变化的信息,而不会在解码中引起明显的质量劣化。例如,在量化阶段214,编码器可以通过将每个变换系数除以整数值(称为“量化参数”)并将商四舍五入到其最接近的整数来生成量化的变换系数216。在这样的操作之后,可以将高频基本图案的一些变换系数转换为零,并且可以将低频基本图案的变换系数转换为较小的整数。编码器可以忽略零值的量化变换系数216,由此变换系数被进一步压缩。该量化处理也是可逆的,其中量化变换系数216可以在量化的逆操作(称为“逆量化”)中被重建为变换系数。
因为编码器在舍入操作中忽略了该除法的余数,所以量化阶段214可能是有损的。通常,量化阶段214可以在过程200A中贡献最多的信息损失。信息损失越大,量化变换系数216所需的比特数就越少。为了获得不同级别的信息损失,编码器可以使用不同的量化参数值或量化过程的任何其他参数。
在二进制编码阶段226,编码器可以使用二进制编码技术对预测数据206和量化变换系数216进行编码,二进制编码例如为熵编码、可变长度编码、算术编码、霍夫曼编码、上下文自适应二进制算术编码,或任何其他无损或有损压缩算法。在一些实施例中,除了预测数据206和量化变换系数216之外,编码器可以在二进制编码阶段226编码其他信息,例如,在预测阶段204使用的预测模式、预测操作的参数、在变换阶段212处的变换类型。量化过程的参数(例如,量化参数)、编码器控制参数(例如,比特率控制参数)等。编码器可以使用二进制编码阶段226的输出数据来生成视频位流228。在一些实施例中,视频位流228可以被进一步打包以用于网络传输。
参照过程200A的重建路径,在逆量化阶段218,编码器可以对量化变换系数216执行逆量化,以生成重建的变换系数。在逆变换阶段220,编码器可以基于重建的变换系数生成重建残差BPU 222。编码器可以将重建残差BPU 222添加到预测BPU 208以生成将在过程200A的下一次迭代中使用的预测参考224。
应当注意的是,过程200A的其他变体可用于对视频序列202进行编码。在一些实施例中,过程200A的阶段可以由编码器以不同的顺序执行。在一些实施例中,过程200A的一个或多个阶段可以组合成单个阶段。在一些实施例中,过程200A的单个阶段可以分为多个阶段。例如,变换阶段212和量化阶段214可以组合成单个阶段。在一些实施例中,过程200A可以包括附加的阶段。在一些实施例中,过程200A可以省略图2A中的一个或多个阶段。
图2B示出了根据本公开的实施例的另一示例编码过程200B的示意图。过程200B可以修改自过程200A。例如,过程200B可以由符合混合视频编码标准(例如,H.26x系列)的编码器使用。与过程200A相比,过程200B的前向路径还包括模式决策阶段230,并将预测阶段204分为空间预测阶段2042和时间预测阶段2044,过程200B的重建路径还另外包括环路滤波阶段232和缓冲区234。
通常,预测技术可以分为两种类型:空间预测和时间预测。空间预测(例如,帧内图像预测或“帧内预测”)可以使用来自同一图像中的一个或多个已经编码的相邻BPU的像素来预测当前BPU。也就是说,空间预测中的预测参考224可以包括相邻的BPU。空间预测可以减少图像固有的空间冗余。时间预测(例如,图像间预测或“帧间预测”)可以使用来自一个或多个已经编码的图像的区域来预测当前BPU。也就是说,时间预测中的预测参考224可以包括编码图像。时间预测可以减少图像固有的时间冗余。
参考过程200B,在前向路径中,编码器在空间预测阶段2042和时间预测阶段2044执行预测操作。例如,在空间预测阶段2042,编码器可以执行帧内预测。对于被编码的图像的原始BPU,预测参考224可以包括在同一图像中已经被编码(在前向路径中)和重建(在重建路径中)的一个或多个相邻BPU。编码器可以通过插值相邻的BPU来生成预测的BPU 208。插值技术可以包括例如线性插值或内插、多项式插值或内插等。在一些实施例中,编码器可以在像素级执行插值,例如通过插值预测BPU 208的每个像素的对应像素的值。用于插值的相邻BPU可以位于相对于原始BPU的各个方向,例如在垂直方向(例如,在原始BPU的顶部),水平方向(例如,在原始BPU的左侧),对角线方向(例如,在原始BPU的左下、右下、左上或右上),或在所使用的视频编码标准中定义的任何方向。对于帧内预测,预测数据206可以包括,例如,所使用的相邻BPU的位置(例如,坐标)、所使用的相邻BPU的大小、插值的参数、所使用的相邻BPU相对于原始BPU的方向等。
对于另一个示例,在时间预测阶段2044,编码器可以执行帧间预测。对于当前图像的原始BPU,预测参考224可以包括已经被编码(在前向路径中)和重建(在重建路径中)的一个或多个图像(被称为“参考图像”)。在一些实施例中,可以通过逐个BPU对参考图像进行编码和重建。例如,编码器可以将重建的残差BPU 222添加到预测BPU 208以生成重建BPU。当同一张图像的所有重建的BPU都被生成时,编码器可以生成一重建图像作为参考图像。编码器可以执行“运动估计”的操作以搜索参考图像的范围(称为“搜索窗口”)中的匹配区域。可以基于原始BPU在当前图像中的位置来确定搜索窗口在参考图像中的位置。例如,搜索窗口可以在参考图像中与当前图像中的原始BPU具有相同坐标的位置处为中心,并且可以向外延伸预定距离。当编码器在搜索窗口中识别(例如,通过使用pel递归算法、块匹配算法等)类似于原始BPU的区域时,编码器可以确定这样的区域作为匹配区域。匹配区域可以具有与原始BPU不同的大小(例如,小于、等于、大于或具有不同的形状)。因为参考图像和当前图像在时间线上在时间上分开(例如,如图1所示),所以可以认为匹配区域随着时间的推移“移动”到原始BPU的位置。编码器可以将这种运动的方向和距离记录为“运动矢量”。当使用多个参考图像时(例如,如图1中的图像106),编码器可以搜索匹配区域并为每个参考图像确定其相关联的运动矢量。在一些实施例中,编码器可以将权重分配给各个匹配参考图像的匹配区域的像素值。
运动估计可用于识别各种类型的运动,例如平移、旋转、缩放等。对于帧间预测,预测数据206可以包括例如匹配区域的位置(例如,坐标)、与匹配区域相关联的运动矢量、参考图像的数量、与参考图像相关联的权重等。
为了生成预测的BPU 208,编码器可以执行“运动补偿”的操作。运动补偿可以用于基于预测数据206(例如,运动向量)和预测参考224来重建预测的BPU 208。例如,编码器可以根据运动矢量移动参考图像的匹配区域,其中编码器可以预测当前图像的原始BPU。当使用多个参考图像时(例如,如图1中的图像106),编码器可以根据匹配区域的各个运动矢量和平均像素值来移动参考图像的匹配区域。在一些实施例中,如果编码器已经将权重分配给各个匹配参考图像的匹配区域的像素值,则编码器可以将移动的匹配区域的像素值的加权和相加。
在一些实施例中,帧间预测可以是单向的或双向的。单向帧间预测可以使用相对于当前图像在相同时间方向上的一个或多个参考图像。例如,图1中的图像104是单向帧间预测图像,其中参考图像(即,图像102)在图像04之前。双向帧间预测可以在相对于当前图像的两个时间方向上使用一个或多个参考图像。例如,图1中的图像106是双向帧间预测图像,其中参考图像(即,图像104和08)相对于图像104在两个时间方向上。
仍然参考过程200B的前向路径,在空间预测2042和时间预测阶段2044之后,在模式决策阶段230,编码器可以为过程200B的当前迭代选择预测模式(例如,帧内预测或帧间预测之一)。例如,编码器可以执行速率失真优化技术,其中编码器可以根据候选预测模式的比特率和候选预测模式下的重建参考图像的失真来选择预测模式以最小化成本函数的值。根据所选择的预测模式,编码器可以生成相应的预测BPU 208和预测数据206。
在过程200B的重建路径中,如果在前向路径中已经选择了帧内预测模式,则在生成预测参考224(例如,在当前图像中已经编码和重建的当前BPU)之后,编码器可以将预测参考224直接馈送到空间预测阶段2042以用于以后的使用(例如,用于插值当前图像的下一BPU)。如果在前向路径中已经选择了帧间预测模式,则在生成预测参考224(例如,其中所有BPU都已被编码和重建的当前图像)之后,编码器可以将预测参考224馈送到环路滤波器阶段232。在该阶段,编码器可以将环路滤波器应用于预测参考224,以减少或消除由帧间预测引入的失真(例如,块状伪影)。编码器可以在环路滤波器阶段232处应用各种环路滤波器技术,例如去块、采样自适应补偿、自适应环路滤波器等。可以将经环路滤波的参考图像存储在缓冲区234(或“经解码的图像缓冲区”)中以供以后使用(例如,用作视频序列202的未来图像的帧间预测参考图像)。编码器可以将一个或多个参考图像存储在缓冲区234中,以在时间预测阶段2044处使用。在一些实施例中,编码器可以在二进制编码阶段226处编码环路滤波器的参数(例如,环路滤波器强度)以及量化变换系数216、预测数据206和其他信息。
图3A示出了根据本公开的实施例的示例性解码过程300A的示意图。过程300A可以是对应于图2A中的压缩过程200A的解压缩过程。在一些实施例中,过程300A可以类似于过程200A的重建路径。解码器可以根据过程300A将视频位流228解码成视频流304。视频流304可以非常类似于视频序列202。然而,由于压缩和解压缩过程中的信息丢失(例如,图2A-2B中的量化阶段214),通常,视频流304与视频序列202不同。类似于图2A-2B中的过程200A和200B,解码器可以在基本处理单元(BPU)级别对在视频位流228中编码的每个图像执行过程300A。例如,解码器可以以迭代方式执行过程300A,其中解码器可以在过程300A的一次迭代中对基本处理单元进行解码。在一些实施例中,解码器可以针对在视频位流228中编码的每个图像的区域(例如,区域114-118)并行地执行过程300A。
如图3A所示,解码器可以将与编码图像的基本处理单元(称为“编码BPU”)相关联的视频位流228的一部分馈送到二进制解码阶段302,在二进制解码阶段302,解码器可以将该部分解码成预测数据206和量化变换系数216。解码器可以将量化变换系数216馈送到逆量化阶段218和逆变换阶段220以生成重建残差BPU222。解码器可以将预测数据206馈送到预测阶段204以生成预测BPU 208。解码器可以将重建残差BPU222添加到预测BPU 208以生成预测参考224。在一些实施例中,预测参考224可以存储在缓冲区(例如,计算机存储器中的解码图像缓冲区)中。解码器可以将预测参考224馈送到预测阶段204,用于在过程300A的下一次迭代中执行预测操作。
解码器可以迭代地执行过程300A,以解码编码图像的每个编码BPU,并生成用于编码图像的下一个编码BPU的预测参考224。在解码编码图像的所有编码BPU之后,解码器可以将该图像输出到视频流304以供显示,并且继续解码视频位流228中的下一个编码图像。
在二进制解码阶段302,解码器可以执行编码器使用的二进制编码技术(例如,熵编码、可变长度编码、算术编码、霍夫曼编码、上下文自适应二进制算术编码或任何其他无损压缩算法)的逆运算。在一些实施例中,除了预测数据206和量化的变换系数216,解码器可以在二进制解码阶段302解码其他信息,例如预测模式、预测操作的参数、变换类型、量化过程的参数(例如,量化参数)、编码器控制参数(例如,比特率控制参数)等。在一些实施例中,如果视频位流228通过网络以包的形式传输,则解码器可以在将视频位流228馈送到二进制解码级302之前对其进行解包。
图3B示出了根据本公开的实施例的另一示例解码过程300B的示意图。过程300B可以修改自过程300A。例如,过程300B可以由符合混合视频编码标准(例如,H.26x系列)的解码器使用。与过程300A相比,过程300B额外地将预测阶段204划分为空间预测阶段2042和时间预测阶段2044,并且额外地包括环路滤波阶段232和缓冲区234。
在过程300B中,对于在解码的编码图像(称为“当前图像”)的编码基本处理单元(称为“当前BPU”),由解码器从二进制解码阶段302解码的预测数据206可以包括各种类型的数据,这取决于编码器使用什么预测模式来编码当前BPU。例如,如果编码器使用帧内预测来编码当前BPU,则预测数据206可以包括指示帧内预测、帧内预测操作的参数等的预测模式指示符(例如,标志值)。帧内预测操作的参数可以包括例如用作参考的一个或多个相邻BPU的位置(例如,坐标)、相邻BPU的大小、插值的参数、相邻BPU相对于原始BPU的方向等。对于另一示例,如果由编码器使用的帧间预测来编码当前BPU,则预测数据206可以包括指示帧间预测、帧间预测操作的参数等预测模式指示符(例如,标志值)。帧间预测操作的参数可以包括例如与当前BPU相关联的参考图像的数量、分别与参考图像相关联的权重、相应参考图像中的一个或多个匹配区域的位置(例如,坐标)、分别与所述匹配区域相关联的一个或多个运动矢量等。
基于预测模式指示符,解码器可以决定是在空间预测阶段2042执行空间预测(例如,帧内预测)还是在时间预测阶段2044执行时间预测(例如,帧间预测),执行这种空间预测或时间预测的细节在图2B中描述,其不会在下文中重复。在执行这样的空间预测或时间预测之后,解码器可以生成预测的BPU 208,解码器可以添加预测的BPU 208和重建残差BPU222以生成预测参考224,如图3A中所述。
在过程300B中,解码器可以将预测参考224馈送到空间预测阶段2042或时间预测阶段2044,用于在过程300B的下一次迭代中执行预测操作。例如,如果在空间预测阶段2042使用帧内预测解码当前BPU,则在生成预测参考224(例如,解码的当前BPU)之后,解码器可以将预测参考224直接馈送到空间预测阶段2042以供以后使用(例如,用于插值当前图像的下一个BPU)。如果在时间预测阶段2044使用帧间预测解码当前BPU,则在生成预测参考224(例如,其中所有BPU都被解码的参考图像)之后,编码器可以将预测参考224馈送到环路滤波器阶段232以减少或消除失真(例如,块状伪影)。解码器可以如图2B所示的方式将环路滤波器应用于预测参考224。环路滤波的参考图像可以存储在缓冲区234(例如,计算机存储器中的解码图像缓冲区)中供以后使用(例如,用作视频位流228的未来编码图像的预测间参考图像)。解码器可以将一个或多个参考图像存储在缓冲区234中,以在时间预测阶段2044处使用。在一些实施例中,当预测数据206的预测模式指示符指示帧间预测被用于编码当前BPU时,预测数据可以进一步包括环路滤波器的参数(例如,环路滤波器强度)。
图4是根据本公开的实施例的用于对视频进行编码或解码的示例装置400的框图。如图4所示,装置400可以包括处理器402。当处理器402执行本文所述的指令时,装置400可以成为用于视频编码或解码的专用机器。处理器402可以是能够操纵或处理信息的任何类型的电路。例如,处理器402可以包括任何数量的中央处理单元(或“CPU”)、图形处理单元(或“GPU”)、神经处理单元(“NPU”)、微控制器单元(“MCU”)、光学处理器中、可编程逻辑控制器、微处理器、数字信号处理器、知识产权(IP)核心、可编程逻辑阵列(PLA)、可编程阵列逻辑(PAL)、通用阵列逻辑(GAL)、复杂可编程逻辑器件(CPLD),一种现场可编程门阵列(FPGA)、片上系统(SoC)、专用集成电路(ASIC)等的任意组合。在一些实施例中,处理器402还可以是被分组为单个逻辑组件的一组处理器。例如,如图4所示,处理器402可以包括多个处理器,包括处理器402a、处理器402b和处理器402n。
装置400还可以包括被配置为存储数据(例如,指令集、计算机代码、中间数据等)的存储器404。例如,如图4所示,所存储的数据可以包括程序指令(例如,用于实现过程200A、200B、300A或300B中的阶段)和用于处理的数据(例如,视频序列202、视频位流228或视频流304)。处理器402可以访问用于处理的程序指令和数据(例如,经由总线410),并且执行程序指令以对用于处理的数据执行操作或操纵。存储器404可以包括高速随机存取存储设备或非易失性存储设备。在一些实施例中,存储器404可以包括任意数量的随机存取存储器(RAM)、只读存储器(ROM)、光盘、磁盘、硬盘驱动器、固态驱动器、闪存驱动器、安全数字(SD)卡、记忆棒、紧凑型闪存(CF)卡等的任意组合。存储器404也可以是被分组为单个逻辑组件的一组存储器(图4中未示出)。
总线410可以是在装置400内部的组件之间传输数据的通信设备,诸如内部总线(例如,CPU-存储器总线)、外部总线(例如,通用串行总线端口、外围组件互连快速端口),或者类似物。
为了便于解释而不引起歧义,在本公开中,处理器402和其他数据处理电路统称为“数据处理电路”。数据处理电路可以完全实现为硬件,或者实现为软件、硬件或固件的组合。此外,数据处理电路可以是单个单独模块,或者可以完全或部分地组合到装置400的任何其他部件中。
装置400还可以包括网络接口406,以提供与网络(例如,因特网、内联网、局域网、移动通信网络等)的有线或无线通信。在一些实施例中,网络接口406可以包括任何数量的网络接口控制器(NIC)、射频(RF)模块、应答器、收发器、调制解调器、路由器、网关、有线网络适配器、无线网络适配器、蓝牙适配器、红外适配器、近场通信(“NFC”)适配器、蜂窝网络芯片等的任意组合。
在一些实施例中,可选地,装置400可以进一步包括外围接口408,以提供到一个或多个外围设备的连接。如图4所示,外围设备可以包括,但不限于,光标控制设备(例如,鼠标、触摸板或触摸屏)、键盘、显示器(例如,阴极射线管显示器、液晶显示器、或发光二极管显示器)、视频输入设备(例如,相机或耦合到视频档案的输入接口)等。
应当注意,视频编解码器(例如,执行过程200A、200B、300A或300B的编解码器)可以被实现为装置400中的任何软件或硬件模块的任何组合。例如,过程200A、200B、300A或30013的一些或所有阶段可以被实现为装置400的一个或多个软件模块,诸如可以被加载到存储器404中的程序实例。对于另一示例,过程200A、200B、300A或300B的一些或全部阶段可以被实现为装置400的一个或多个硬件模块,诸如专用数据处理电路(例如,FPGA、ASIC、NPU等)。
在VVC解码过程中,在环路滤波器之前添加被称为具有色度缩放的亮度映射(LMCS)的编码工具作为新的处理块。LMCS有两个主要组件。一个组件是基于自适应分段线性模型的亮度组件的环内映射。亮度组件的环内映射通过跨动态范围重新分配码字来调整输入信号的动态范围,以提高压缩效率。另一个组件将与亮度相关的色度残差缩放应用于色度分量。色度残差缩放旨在补偿亮度信号与其相应的色度信号之间的相互作用。
在VVC草案8中,可以在图像和条带级别控制对具有色度缩放(LMCS)的亮度映射的信号通知。图像头和条带头的LMCS语法分别如图5和图6所示。
如图5所示,当图像级别LMCS标志ph_lmcs_enabled_flag等于0时,它表示与图像关联的所有条带都禁用了亮度映射和色度残差缩放。如果ph_lmcs_enabled_flag等于1并且ChromaArrayType不等于0,则会用信号通知一个附加标志ph_chroma_residual_scale_flag。ph_chroma_residual_scale_flag指定色度残差缩放是否用于解码图像。
如图6所示,如果ph_lmcs_enabled_flag等于1,则用信号通知条带级别LMCS标志slice_lmcs_enabled_flag。条带级别LMCS标志slice_lmcs_enabled_flag等于1指定为与条带头相关联的条带启用亮度映射,并且是否使用色度缩放取决于ph_chroma_residual_scale_flag的值。如果slice_lmcs_enabled_flag等于1,ph_chroma_residual_scale_flag等于1,则为该条带启用色度残差缩放。如果slice_lmcs_enabled_flag等于1,ph_chroma_residual_scale_flag等于0,则该条带的色度残差缩放被禁用。
条带级别LMCS标志slice_lmcs_enabled_flag等于0指定亮度映射和色度残差缩放对当前切片都不启用。
VVC草案8的缺点是,如果图像包含多个条带,则不能针对单个条带独立地控制色度残差缩放。
具体地,使用图5和图6所示的语法,对于给定图像中的所有条带,是否使用残差缩放是一致的。换句话说,这些条带是全部启用或全部禁用残差缩放。考虑一个示例,其中图像中有两个条带,两个条带都启用了LMCS。在此示例中,不支持以下组合:
切片1:亮度映射启用(ON),色度残差缩放禁用(OFF)
切片2:亮度映射启用,色度残差缩放启用
图7示出了条带级LMCS控制的三个示例。图7中示出了示例A、B和C如图所示。在所有三种示例下,sps_lmcs_enabled_flag,ph_lmcs_enabled_flag和slice_lmcs_enabled_flag的值等于1。在示例A中,图像级别色度残差缩放标志等于0,在示例B中,等于1。在示例A中,由于图像级别ph_chroma_residual_scale_flag等于0,因此条带1和条带2的色度残差缩放都禁用。在示例B中,由于ph_chroma_residual_scale_flag等于1,因此两个条带的色度残差缩放均处于ON状态。在示例C中,条带1和2的色度残差缩放分别为OFF和ON。VVC草案8允许示例A和示例B,但不允许示例C。
本公开提供了LMCS方法来解决上述缺点。
在一些实施例中,可以去除(一个或多个)图像级别色度残差缩放标记,并由条带级别色度残差缩放标记代替。所公开的方法允许在单个条带中启用或禁用色度残差缩放,对于该单个条带,LMCS在图像级别中被启用。新添加的条带级别色度残差缩放标志的语义定义如下:slice_chroma_residual_scale_flag等于1指定为条带启用色度残差缩放;slice_chroma_residual_scale_flag等于0指定为条带禁用色度残差缩放。当slice_chroma_residual_scale_flag不存在时,推断其等于0。
图8和图9分别示出了上述方法的示例性图像头语法和条带头语法。如图8中的图像头语法所示,语法元素301(在VVC中)被删除。如图9中的图像头语法所示,语法元素401修改自VVC。
图10示出了根据本公开的一些实施例的上述示例性方法的亮度映射和色度残差缩放的条带级别控制的示意图。示例A、B和C如图10所示。对于所有三种情况,亮度映射都为ON。在示例A中,条带1和条带2的色度残差缩放都为OFF。在示例B中,对于条带1和2,色度残差缩放均为ON。在示例C中,条带1的色度残差编码为OFF,条带2的色度残差缩放为ON。图8和图9中给出的语法允许图10中给出的所有三种示例,而VVC草案8只允许图10中的示例A和示例B。
在一些实施例中,可以同时在图像级别和条带级别控制色度残差缩放。与VVC草案8类似,ph_chroma_residual_scale_flag在图像头中用出信号通知。ph_chroma_residual_scale_flag的语义定义如下:ph_chroma_residual_scale_flag等于1指定可以为与图像头关联的一个或多个条带启用色度残差缩放;ph_chroma_residual_scale_flag等于0指定对于与图像头关联的所有条带禁用色度残差缩放。当ph_chroma_residual_scale_flag不存在时,推断其等于0。
图像头和条带头的语法分别如图图11和图12所示。如图11所示,PH级别语法表与VVC草案8中的相同。如图12中的语法元素601所示,如果满足以下所有条件,则用信号通知slice_chroma_residual_scale_flag:slice_lmcs_enabled_flag等于1;ChromaArrayType不等于0;ph_chroma_residual_scale_flag等于1。
条带级别色度残差缩放标志的语义与上述相同:slice_chroma_residual_scale_flag等于1指定为条带启用色度残差缩放;slice_chroma_residual_scale_flag等于0指定为条带禁用色度残差缩放。当slice_chroma_residual_scale_flag不存在时,推断其等于0。
图11和图12所示实施例的优点是,在关闭与PH关联的所有条带的色度残留缩放的情况下,不需要对条带级别标志进行信号通知,从而节省了信号通知的开销。
上述实施例表明,将LMCS语法移到条带级别允许针对各个条带启用和禁用色度残差缩放,并且因此提高了LMCS控制的粒度级别。根据本公开,在诸如以下描述的实施例的一些情况下,将色度编码的控制语法移动到图像头部是有益的。
在VVC草案8中,即使在图像中没有色度颜色分量,色度去块参数(例如,β偏移和tc偏移)也在图像中或在条带头中被用信号通知。但是,如果图像中没有色度颜色分量,则不需要用信号通知色度去块参数。
本公开的实施例提供了利用色度去块参数的信号通知处理视频内容的方法。
在一些实施例中,如果色度分量存在于视频序列中(即,视频序列不是单色的),则仅用信号通知色度去块参数。图13和图14分别示出了用于用信号通知色度去块参数的示例性图像头语法和条带头语法。如图13和图14所示,VVC草案8中语法的拟议更改由虚线框标记。这些数字表明,Cb和Cr的β偏移量和tc偏移量在ChromaArrayType!=0时仅用信号通知。ChromaArrayType的详细定义可以在VVC草案8中找到,该草案通过引用并入本公开。
在图13和图14所示的实施例中,只有当ChromaArrayType不等于0时,才会用信号通知PPS语法的色度去块参数。因为ChromaArrayType的值仅在解码SPS语法之后才可用,所以对ChromaArrayType的依赖会引入对SPS的额外依赖,这是不期望的。为了避免SPS/PPS依赖,建议不仅在SPS中而且在PPS中发信号通知separate_colour_plane_flag和chroma_format_idc。例如,可以引入两个额外的标志,下面给出它们的语义。
标志pps_separate_colour_plane_flag等于1指定4:4:4色度格式的三个颜色分量分别编码。标志pps_separate_colour_plane_flag等于0指定颜色分量不单独编码。pps_separate_colour_plane_flag的值等于separate_colour_plane_flag的值。
参数pps_chroma_format_idc指定相对于亮度采样的色度采样。pps_chroma_format_idc的值等于chroma_format_idc的值。
根据pps_separate_colour_plane_flag的值,变量ChromaArrayType的值可以如下分配:如果pps_separate_colour_plane_flag等于0,则将ChromaArrayType设置为等于pps_chroma_format_idc;否则(pps_separate_colour_plane_flag等于1),则将ChromaArrayType设置为等于0。
图15示出了用于用信号通知pps_separate_colour_plane_flag和pps_chroma_format_idc的示例性PPS语法。虚线框中显示的语法元素是对VVC草案8中的语法的更改。
在一些实施例中,除了PPS中的用信号通知pps_separate_colour_plane_flag和pps_chroma_format_idc之外,还可以跳过pps_chroma_tool_offsets_present_flag的信号通知。图16示出了不使用pps_chroma_tool_offsets_present_flag的示例性PPS语法。虚线框中显示的语法元素是对VVC草案8中的语法的更改。
在一些实施例中,PPS语法pps_chroma_tool_offsets_present_flag可以被pps_chroma_tool_present_flag替换。在这些实施例中,如果pps_chroma_tool_present_flag等于1,则用信号通知PPS中的所有色度相关语法。与VVC草案8类似,separate_colour_plane_flag和chroma_format_idc仅在SPS中用信号通知,在PPS中不发信号通知。
pps_chroma_tool_present_flag的语义给出如下:标志pps_chroma_tool_present_flag等于1指定与色度工具相关的语法元素存在于PPS原始字节序列有效载荷(RBSP)语法结构中;标志pps_chroma_tool_present_flag等于0,指定PPS RBSP语法结构中不存在色度工具偏移相关语法元素。当ChromaArrayType等于0时,pps_chroma_tool_present_flag的值应等于0。
图17示出了使用建议的pps_chroma_tool_present_flag的示例性PPS语法。虚线框中的语法元素是对VVC草案8中的语法的更改。其显示如果pps_chroma_tool_present_flag不等于0,用信号通知与色度相关的语法。与VVC草案8类似,separate_colour_plane_flag和chroma_format_idc仅在SPS中用信号通知,在PPS中不用信号通知。
在一些实施例中,诸如slice_cb_beta_offset_div2、slice_cb_tc_offset_div2、slice_cr_beta_offset_div2和slice_cb_beta_offset_div2的条带级色度去块参数的信号通知取决于pps_chroma_tool_present_flag的值。如果pps_chroma_tool_present_flag等于0,则不会发信号通知slice_cb_beta_offset_div2,slice_cb_tc_offset_div2,slice_cr_beta_offset_div2和slice_cb_beta_offset_div2。如果pps_chroma_tool_present_flag等于1,则发信号通知slice_cb_beta_offset_div2、slice_cb_tc_offset_div2、slice_cr_beta_offset_div2或slice_cb_beta_offset_div2。
在一些实施例中,诸如ph_cb_beta_offset_div2、ph_cb_tc_offset_div2、ph_cr_beta_offset_div2、ph_cb_beta_offset_div2和ph_cb_beta_offset_div2的图像级色度去块参数的信号通知取决于pps_chroma_tool_present_flag的值。如果pps_chroma_tool_present_flag等于0,则不发信号通知ph_cb_beta_offset_div2,ph_cb_tc_offset_div2,ph_cr_beta_offset_div2和ph_cb_beta_offset_div2。如果pps_chroma_tool_present_flag等于1,则用信号通知ph_cb_beta_offset_div2、ph_cb_tc_offset_div2、ph_cr_beta_offset_div2或ph_cb_beta_offset_div2。
图18是与结合图5至图12描述的实施例一致的用于发信号通知LMCS参数的示例性方法1800的流程图。在一些实施例中,方法1800可以由解码器,以及装置(例如,图4的装置400)的一个或多个软件或硬件组件来执行。例如,处理器(例如,图4的处理器402)可以执行方法1800。在一些实施例中,方法1800可以由包含在计算机可读介质中的计算机程序产品来实现,所述计算机程序产品包括由计算机(例如,图4的装置400)执行的计算机可执行指令,诸如程序代码。如图18所示,该方法可以包括以下步骤。
在步骤1801中,接收包括编码视频数据的位流。所述位流包括至少一个序列参数集(SPS)。
在步骤1803中,基于在所接收的SPS中发信号通知的SPS级别色度缩放标志(例如,slice_chroma_residual_scale_flag),确定对于与SPS相关联的条带启用还是禁用色度残差缩放。如果标志的值等于1,则确定为条带启用色度残差缩放。如果该标志的值等于0,则确定该条带的色度残差缩放被禁用。
图19是与结合图5-12描述的实施例一致的用于发信号通知LMCS参数的示例性方法1900的流程图。。在一些实施例中,方法1900可以由编码器,以及装置(例如,图4的装置400)的一个或多个软件或硬件组件来执行。例如,处理器(例如,图4的处理器402)可以执行方法1900。在一些实施例中,方法1900可以由包含在计算机可读介质中的计算机程序产品来实现,所述计算机程序产品包括由计算机(例如,图4的装置400)执行的计算机可执行指令,诸如程序代码。如图19所示,方法1900可以包括以下步骤。
在步骤1901中,确定对于条带是启用还是禁用色度残差缩放。
在步骤1903中,基于确定的结果,在与条带相关联的序列参数集(SPS)中用信号通知标志(例如,slice_chroma_residual_scale_flag),以指示对于条带是启用还是禁用色度残差缩放。如果为条带启用了色度残差缩放,则该标志的值设置为1。如果为条带禁用了色度残差缩放,则该标志的值设置为0。
图20是与结合图13至图17所描述的实施例一致的用于发信号通知色度去块参数的示例性方法2000的流程图。在一些实施例中,方法2000可以由编码器、解码器以及装置(例如,图4的装置400)一个或多个软件或硬件组件来执行。例如,处理器(例如,图4的处理器402)可以执行方法2000。在一些实施例中,方法2000可以由包含在计算机可读介质中的计算机程序产品来实现,所述计算机程序产品包括由计算机(例如,图4的装置400)执行的计算机可执行指令,诸如程序代码。如图20所示,方法2000可以包括以下步骤。
在步骤2001中,确定视频序列是否是单色的。
在步骤2003中,如果视频序列不是单色的,则确定在与视频序列相关联的位流中用信号通知色度去块参数;而如果视频序列是单色的,则确定在位流中不用信号通知色度去块参数。
可以使用以下条款进一步描述实施例:
1、一种计算机实现的视频解码方法,包括:
接收序列参数集(SPS);以及
基于在所述SPS中发信号通知的第一标志,确定对于与所述SPS相关联的条带是启用或禁用色度残差缩放。
2、根据条款1所述的方法,还包括:
响应于所述第一标志的值等于1,确定对所述条带启用所述色度残差缩放。
3、根据条款1和2中任一项所述的方法,还包括:
响应于所述第一标志的值等于0,确定对所述条带禁用所述色度残差缩放。
4、根据条款1-3中任一项所述的方法,还包括:
接收第二SPS;以及
当所述第二SPS中不存在所述第一标志时,确定对于与所述第二SPS相关联的条带禁用所述色度残差缩放。
5、根据条款1-4中任一项所述的方法,其中,基于在与所述条带相关联的图像头中用信号通知的第二标志来用信号通知所述第一标志。
6、根据条款5所述的方法,其中:
所述第二标志的第一值指示对于与所述图像头相关联的一个或多个条带启用所述色度残差缩放;以及
所述第二标志的第二值指示对于与所述图像头相关联的所有条带禁用所述色度残差缩放。
7、根据条款1-4中任一项所述的方法,包括:
接收图像头;以及
响应于在所述图像头中用信号通知的具有第一值的第二标志,确定对于与所述图像头相关联的所有条带禁用所述色度残差缩放。
8、根据条款1-4中任一项所述的方法,包括:
基于在所述SPS中用信号通知的第二标志,确定对于所述条带是否启用或禁用亮度映射。
9、一种计算机实现的视频编码方法,包括:
在与条带相关联的序列参数集(SPS)中用信号通知第一标志,所述第一标志指示对于所述条带是否启用或禁用色度残差缩放。
10、根据条款9所述的方法,包括:
响应于对于所述条带启用所述色度残差缩放,将所述第一标志的值设置为1。
11、根据条款9和10中任一项所述的方法,包括:
响应于对于所述条带禁用所述色度残差缩放,将所述第一标志的值设置为0。
12、根据条款9-11中任一项所述的方法,还包括:
在图像头中,用信号通知第二标志,所述第二标志指示是否针对与所述图像头相关联的图像启用所述色度残差缩放。
13、根据条款12所述的方法,其中所述条带是所述图像的一部分,并且所述第一标志的所述信号通知是响应于所述第二标志的值等于1,其中,如果所述第二标志的值等于0,则在所述SPS中不发送信号通知所述第一标志。
14、根据条款9-11中任一项所述的方法,还包括:
在所述SPS中,发信号通知第二标志,所述第二标志指示对于所述条带是启用或禁用亮度映射。
15、一种视频解码器,包括:
用于存储指令集的存储器;以及
至少一个处理器,其被配置为执行所述指令集以使所述系统执行:
接收序列参数集(SPS);以及
基于在所述SPS中发信号通知的第一标志,确定对于与所述SPS相关联的条带是启用或禁用色度残差缩放。
16、根据条款15所述的视频解码器,其中所述至少一个处理器被配置为执行所述指令集以使所述系统执行:
响应于所述第一标志的值等于1,确定针对于所述条带启用所述色度残差缩放。
17、根据条款15和16中任一项所述的视频解码器,其中所述至少一个处理器被配置为执行所述指令集以使所述系统执行:
响应于所述第一标志的值等于0,确定对于所述条带禁用所述色度残差缩放。
18、根据条款15-17中任一项所述的视频解码器,其中所述至少一个处理器被配置为执行所述指令集以使所述系统执行:
接收第二SPS;以及
当所述第二SPS中不存在所述第一标志时,确定对于与所述第二SPS相关联的条带禁用所述色度残差缩放。
19、根据条款15-18中任一项所述的视频解码器,其中,基于在与所述条带相关联的图像头中用信号通知的第二标志来用信号通知所述第一标志。
20、根据条款19所述的视频解码器,其中:
所述第二标志的第一值指示对于与所述图像头相关联的一个或多个条带启用所述色度残差缩放;以及
所述第二标志的第二值指示对于与所述图像头相关联的所有条带禁用所述色度残差缩放。
21、根据条款15-18中任一项所述的视频解码器,其中所述至少一个处理器被配置为执行所述指令集以使所述系统执行:
接收图像头;以及
响应于在所述图像头中用信号通知的具有第一值的第二标志,确定对于与所述图像头相关联的所有条带禁用所述色度残差缩放。
22、根据条款15-18中任一项所述的视频解码器,其中所述至少一个处理器被配置为执行所述指令集以使所述系统执行:
基于在所述SPS中用信号通知的第二标志,确定对于所述条带是启用还是禁用亮度映射。
23、一种视频编码器,包括:
用于存储指令集的存储器;以及
至少一个处理器,其被配置为执行所述指令集以使所述系统执行:
在与条带相关联的序列参数集(SPS)中用信号通知第一标志,所述第一标志指示对于所述条带启用或禁用色度残差缩放。
24、根据条款23所述的视频编码器,其中所述至少一个处理器被配置为执行所述指令集以使所述系统执行:
响应于对于所述条带启用所述色度残差缩放,将所述第一标志的值设置为1。
25、根据条款23和24中任一项所述的视频编码器,其中所述至少一个处理器被配置为执行所述指令集以使所述系统执行:
响应于对所述条带禁用所述色度残差缩放,将第一标志的值设置为0。
26、根据条款23-25中任一项所述的视频编码器,其中所述至少一个处理器被配置为执行所述指令集以使所述系统执行:
在图像头中,用信号通知第二标志,所述第二标志指示是否针对与所述图像头相关联的图像启用所述色度残差缩放。
27、根据条款26所述的视频编码器,其中所述条带是所述图像的一部分,并且所述第一标志的所述信号通知是响应于所述第二标志的值等于1,其中,如果所述第二标志的值等于0,则在所述SPS中不发送信号通知所述第一标志。
28、根据条款23-25中任一项所述的视频编码器,其中所述至少一个处理器被配置为执行所述指令集以使所述系统执行:
在所述SPS中,用信号通知第二标志,所述第二标志指示对于所述条带启用或禁用亮度映射。
29、一种非暂时性计算机可读介质,其存储有指令集,所述指令集可由计算机系统的至少一个处理器执行,以使所述计算机系统执行用于解码视频内容的方法,所述方法包括:
接收序列参数集(SPS);以及
基于在所述SPS中发信号通知的第一标志,确定对于与所述SPS相关联的条带是启用或禁用色度残差缩放。
30、根据条款29所述的非暂时性计算机可读介质,其中所述指令集还使所述至少一个处理器执行:
响应于所述第一标志的值等于1,确定对于所述条带启用色度残差缩放。
31、根据条款29和30中任一项所述的非暂时性计算机可读介质,其中所述指令集还使所述至少一个处理器执行:
响应于所述第一标志的值等于0,确定对于所述条带禁用色度残差缩放。
32、根据条款29-31中任一项所述的非暂时性计算机可读介质,其中所述指令集还使所述至少一个处理器执行:
接收第二SPS;以及
当所述第二SPS中不存在所述第一标志时,确定对于与所述第二SPS相关联的条带禁用所述色度残差缩放。
33、根据条款29-32中任一项所述的非暂时性计算机可读介质,其中,基于在与所述条带相关联的图像头中用信号通知的第二标志来用信号通知所述第一标志。
34、根据条款33所述的非暂时性计算机可读介质,其中:
所述第二标志的第一值指示对于与所述图像头相关联的一个或多个条带启用所述色度残差缩放;以及
所述第二标志的第二值指示对于与所述图像头相关联的所有条带禁用所述色度残差缩放。
35、根据条款29-32中任一项所述的非暂时性计算机可读介质,其中所述指令集还使所述至少一个处理器执行:
接收图像头;以及
响应于在所述图像头中用信号通知的具有第一值的第二标志,确定对于与所述图像头相关联的所有条带禁用所述色度残差缩放。
36、根据条款29-32中任一项所述的非暂时性计算机可读介质,其中所述指令集还使所述至少一个处理器执行:
基于在所述SPS中用信号通知的第二标志,确定对于所述条带是启用还是禁用亮度映射。
37、一种非暂时性计算机可读介质,其存储有指令集,所述指令集可由计算机系统的至少一个处理器执行,以使所述计算机系统执行用于对视频内容进行编码的方法,所述方法包括:
在与条带相关联的序列参数集(SPS)中用信号通知第一标志,所述第一标志指示对于所述条带启用或禁用色度残差缩放。
38、根据条款37所述的非暂时性计算机可读介质,其中所述指令集还使所述至少一个处理器执行:
响应于对于所述条带启用所述色度残差缩放,将所述第一标志的值设置为1。
39、根据条款37和38中任一项所述的非暂时性计算机可读介质,其中所述指令集还使所述至少一个处理器执行:
响应于对所述条带禁用所述色度残差缩放,将第一标志的值设置为0。
40、根据条款37-39中任一项所述的非暂时性计算机可读介质,其中所述指令集还使所述至少一个处理器执行:
在图像头中,用信号通知第二标志,所述第二标志指示是否针对与所述图像头相关联的图像启用所述色度残差缩放。
41、根据条款40所述的非暂时性计算机可读介质,其中,所述条带是所述图像的一部分,并且所述第一标志的所述信号通知是响应于所述第二标志的值等于1,其中,如果所述第二标志的值等于0,则在所述SPS中不发送信号通知所述第一标志。
42、根据条款37-39中任一项所述的非暂时性计算机可读介质,其中所述指令集还使所述至少一个处理器执行:
在所述SPS中,用信号通知第二标志,所述第二标志指示对于所述条带启用或禁用亮度映射。
43、一种计算机实现的视频内容处理方法,包括:
确定视频序列是否为单色;以及
响应于确定所述视频序列不是单色,在与所述视频序列相关联的位流中用信号通知色度去块参数,
其中,当所述视频序列为单色时,在所述位流中不用信号通知色度去块参数。
44、根据条款43所述的方法,其中,在图像头中用信号通知所述色度去块参数。
45、根据条款43和44中任一项所述的方法,其中在条带头中用信号通知所述色度去块参数。
46、根据条款43-45中任一项所述的方法,其中基于ChromaArrayType的值确定所述视频序列是否是单色。
47、根据条款46所述的方法,还包括:
在与所述视频序列相关联的图像参数集(PPS)中,用信号通知指示所述视频序列是否包括多个单独编码的颜色分量的第一标志,以及指示关于相对于亮度采样的色度采样的信息的第二标志。
48、根据条款47所述的方法,还包括:
响应于所述第一标志的值等于0,将ChromaArrayType设置为等于所述第二标志的值。
49、根据条款47所述的方法,还包括:
响应于第一个标志的值等于1,将ChromaArrayType设置为等于0。
50、根据条款43-49中任一项所述的方法,还包括:
在与所述视频序列相关联的PPS中,用信号通知一标志,该标志指示PPS原始字节序列有效载荷(RBSP)语法结构包括色度工具相关语法。
51、根据条款50所述的方法,其中所述标志是pps_chroma_tool_present_flag。
52、根据条款51所述的方法,还包括:
响应于所述pps_chroma_tool_present_flag等于1,用信号通知一个或多个条带级别色度去块参数,
其中,当所述pps_chroma_tool_present_flag等于0时,不用信号通知条带级别色度去块参数。
53、根据条款52所述的方法,其中所述一个或多个条带级别色度去块参数包括:
slice_cb_beta_offset_div2,slice_cb_tc_offset_div2,
slice_cr_beta_offset_div2或slice_cb_beta_offset_div2。
54、根据条款51所述的方法,还包括:
响应于pps_chroma_tool_present_flag等于1,用信号通知一个或多个图像级别色度去块参数,
其中,当pps_chroma_tool_present_flag等于0时,不用信号通知图像级别色度去块参数。
55、根据条款54所述的方法,其中所述一个或多个条带级别色度去块参数包括:
ph_cb_beta_offset_div2、ph_cb_tc_offset_div2、ph_cr_beta_offset_div2和ph_cb_beta_offset_div2。
56、一种装置,包括:
用于存储指令集的存储器;以及
至少一个处理器,其被配置为执行所述指令集以使所述系统执行:
确定视频序列是否为单色;以及
响应于确定所述视频序列不是单色,在与所述视频序列相关联的位流中用信号通知色度去块参数,
其中,当所述视频序列为单色时,在所述位流中不用信号通知色度去块参数。
57、根据条款51所述的装置,其中所述至少一个处理器被配置为执行所述指令集以使所述系统执行:
在图像头中用信号通知所述色度去块参数。
58、根据条款51和52中任一项所述的装置,其中所述至少一个处理器被配置为执行所述指令集以使所述系统执行:
在条带头中用信号通知所述色度去块参数。
59、根据条款51-53中任一项所述的装置,其中,基于ChromaArrayType的值确定所述视频序列是否是单色。
60、根据条款54所述的装置,其中所述至少一个处理器被配置为执行所述指令集以使所述系统执行:
在与所述视频序列相关联的图像参数集(PPS)中,用信号通知指示所述视频序列是否包括多个单独编码的颜色分量的第一标志,以及指示关于相对于亮度采样的色度采样的信息的第二标志。
61、根据条款55所述的装置,其中所述至少一个处理器被配置为执行所述指令集以使所述系统执行:
响应于所述第一标志的值等于0,将ChromaArrayType设置为等于所述第二标志的值。
62、根据条款55所述的装置,其中所述至少一个处理器被配置为执行所述指令集以使所述系统执行:
响应于所述第一个标志的值等于1,将ChromaArrayType设置为等于0。
63、根据条款51-57中任一项所述的装置,其中所述至少一个处理器被配置为执行所述指令集以使所述系统执行:
在与所述视频序列相关联的PPS中,用信号通知一标志,该标志指示PPS原始字节序列有效载荷(RBSP)语法结构包括色度工具相关语法。
64、根据条款63所述的装置,其中,所述标志是pps_chroma_tool_present_flag。
65、根据条款64所述的装置,其中所述至少一个处理器被配置为执行所述指令集以使所述系统执行:
响应于所述pps_chroma_tool_present_flag等于1,用信号通知一个或多个条带级色度去块参数,
其中,当所述pps_chroma_tool_present_flag等于0时,不用信号通知条带级别色度去块参数。
66、根据条款65所述的装置,其中所述一个或多个条带级别色度去块参数包括:
slice_cb_beta_offset_div2,slice_cb_tc_offset_div2,
slice_cr_beta_offset_div2或slice_cb_beta_offset_div2。
67、根据条款64所述的装置,其中所述至少一个处理器被配置为执行所述指令集以使所述系统执行:
响应于pps_chroma_tool_present_flag等于1,用信号通知一个或多个图像级别色度去块参数,
其中,当pps_chroma_tool_present_flag等于0时,不用信号通知图像级别色度去块参数。
68、根据条款67所述的装置,其中所述一个或多个条带级别去块参数包括:
ph_cb_beta_offset_div2、ph_cb_tc_offset_div2、ph_cr_beta_offset_div2和ph_cb_beta_offset_div2。
69、一种非暂时性计算机可读介质,其存储有指令集,所述指令集可由计算机系统的至少一个处理器执行,以使所述计算机系统执行一种方法,所述方法包括:
确定视频序列是否为单色;以及
响应于确定所述视频序列不是单色,在与所述视频序列相关联的位流中用信号通知色度去块参数,
其中,当所述视频序列为单色时,在所述位流中不用信号通知色度去块参数。
70、根据条款59所述的非暂时性计算机可读介质,其中所述指令集还使所述至少一个处理器执行:
在图像头中用信号通知所述色度去块参数。
71、根据条款59和60中任一项所述的非暂时性计算机可读介质,其中所述指令集还使所述至少一个处理器执行:
在条带头中用信号通知所述色度去块参数。
72、根据条款59-61中任一项所述的非暂时性计算机可读介质,其中基于ChromaArrayType的值确定所述视频序列是否是单色。
73、根据条款62所述的非暂时性计算机可读介质,其中所述指令集还使所述至少一个处理器执行:
在与所述视频序列相关联的图像参数集(PPS)中,用信号通知指示所述视频序列是否包括多个单独编码的颜色分量的第一标志,以及指示关于相对于亮度采样的色度采样的信息的第二标志。
74、根据条款63所述的非暂时性计算机可读介质,其中所述指令集还使所述至少一个处理器执行:
响应于所述第一标志的值等于0,将ChromaArrayType设置为等于所述第二标志的值。
75、根据条款63所述的非暂时性计算机可读介质,其中所述指令集还使所述至少一个处理器执行:
响应于第一个标志的值等于1,将ChromaArrayType设置为等于0。
76、根据条款59-65中任一项所述的非暂时性计算机可读介质,其中所述指令集还使所述至少一个处理器执行:
在与所述视频序列相关联的PPS中,用信号通知一标志,该标志指示PPS原始字节序列有效载荷(RBSP)语法结构包括色度工具相关语法。
77、根据条款76所述的非暂时性计算机可读介质,其中所述标志是pps_chroma_tool_present_flag。
78、根据条款77所述的非暂时性计算机可读介质,其中所述指令集还使所述至少一个处理器执行:
响应于所述pps_chroma_tool_present_flag等于1,用信号通知一个或多个条带级色度去块参数,
其中,当所述pps_chroma_tool_present_flag等于0时,不用信号通知条带级别色度去块参数。
79、根据条款78所述的非暂时性计算机可读介质,其中所述一个或多个条带级别色度去块参数包括:
slice_cb_beta_offset_div2,slice_cb_tc_offset_div2,
slice_cr_beta_offset_div2或slice_cb_beta_offset_div2。
80、根据条款77所述的非暂时性计算机可读介质,其中所述指令集还使所述至少一个处理器执行:
响应于pps_chroma_tool_present_flag等于1,用信号通知一个或多个图像级别色度去块参数,
其中,当pps_chroma_tool_present_flag等于0时,不用信号通知图像级别色度去块参数。
81、根据条款80所述的非暂时性计算机可读介质,其中所述一个或多个条带级别色度去块参数包括:
ph_cb_beta_offset_div2、ph_cb_tc_offset_div2、ph_cr_beta_offset_div2和ph_cb_beta_offset_div2。
在一些实施例中,还提供了包括指令的非暂时性计算机可读存储介质,并且所述指令可以由设备(诸如所公开的编码器和解码器)执行,用于执行上述方法。非暂时性介质的常见形式包括,例如,软盘、硬盘、固态驱动器、磁带或任何其他磁性数据存储介质、CD-ROM、任何其他光学数据存储介质、任何具有孔图案的物理介质、RAM、PROM、和EPROM、FLASH-EPROM或任何其他闪存、NVRAM、高速缓存、寄存器、任何其他存储芯片或盒式存储,以及它们的联网版本。该设备可以包括一个或多个处理器(cpu)、输入/输出接口、网络接口和/或存储器。
应该注意的是,本文中的诸如“第一”和“第二”的关系术语仅用于将实体或操作与另一实体或操作区分开来,而不要求或暗示这些实体或操作之间的任何实际关系或顺序。此外,词语“包括”、“具有”、“包含”和“包括”和其他类似的形式在含义上是等效的,并且是开放式的,因为在这些词语中的任何一个后面的一个或多个项目并不意味着是这样一个或多个项目的详尽列表,或者意味着仅限于列出的一个或多个项目。
如本文所用,除非另有特别说明,术语“或”包括所有可能的组合,除非不可行。例如,如果声明数据库可包括a或B,则除非另有明确声明或不可行,否则数据库可包括A、或B、或A和B。作为第二示例,如果声明数据库可以包括A、B或C,则除非另有明确说明或不可行,否则数据库可以包括A、或B、或C、或A和B、或A和C、或B和C、或A,B和C。
应当理解,上述实施例可以通过硬件、或软件(程序代码)、或硬件和软件的组合来实现。如果通过软件实现,则可以将其存储在上述计算机可读介质中。该软件在由处理器执行时可以执行所公开的方法。本公开中描述的计算单元和其他功能单元可以通过硬件、或软件、或硬件和软件的组合来实现。本领域普通技术人员还将理解,可以将上述多个模块/单元组合为一个模块/单元,并且可以将上述模块/单元中的每一个进一步划分为多个子模块/子单元。
在前面的说明书中,已经参考许多具体细节描述了实施例,这些具体细节可以随实施而变化。可以对所描述的实施例进行某些修改和改变。通过考虑本文公开的本发明的说明书和实践,其他实施例对于本领域技术人员来说是显而易见的。本说明书和实施例仅被认为是示例性的,本发明的真正范围和精神由所附的权利要求指示。附图所示的步骤序列仅用于说明目的,而不旨在限于任何特定的步骤序列。因此,本领域技术人员可以理解,这些步骤可以在实施相同方法的同时以不同的顺序执行。
在附图和说明书中,已经公开了示例性实施例。然而,可以对这些实施例进行许多变化和修改。因此,尽管采用了特定的术语,但它们仅在通用和描述性的意义上使用,而不是出于限制的目的。